WorldWideScience

Sample records for desalination hydrogen production

  1. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  2. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  3. Desalination

    Science.gov (United States)

    To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...

  4. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  5. Disinfection by-product formation during seawater desalination: A review.

    Science.gov (United States)

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination.

    Science.gov (United States)

    Luo, Haiping; Xu, Pei; Roane, Timberley M; Jenkins, Peter E; Ren, Zhiyong

    2012-02-01

    The low conductivity and alkalinity in municipal wastewater significantly limit power production from microbial fuel cells (MFCs). This study integrated desalination with wastewater treatment and electricity production in a microbial desalination cell (MDC) by utilizing the mutual benefits among the above functions. When using wastewater as the sole substrate, the power output from the MDC (8.01 W/m(3)) was four times higher than a control MFC without desalination function. In addition, the MDC removed 66% of the salts and improved COD removal by 52% and Coulombic efficiency by 131%. Desalination in MDCs improved wastewater characteristics by increasing the conductivity by 2.5 times and stabilizing anolyte pH, which therefore reduced system resistance and maintained microbial activity. Microbial community analysis revealed a more diverse anode microbial structure in the MDC than in the MFC. The results demonstrated that MDC can serve as a viable option for integrated wastewater treatment, energy production, and desalination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyunku; Yoon, Jaekyung [Hydrogen Energy Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Bae, Sanghyun [Department of Environmental Engineering, Yonsei University, 234 Maeji-ri, Hungub-myun, Wonju, Gangwon-do 220-710 (Korea); Kim, Chunghwan; Kim, Suhan [Korea Institute of Water and Environment, K-Water, 462-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-730 (Korea)

    2009-09-15

    In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO{sub 2} electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 {mu}mol/cm{sup 2} h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm x 1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V. (author)

  8. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong

    2012-02-21

    By combining the microbial electrolysis cell and the microbial desalination cell, the microbial electrolysis desalination cell (MEDC) becomes a novel device to desalinate salty water. However, several factors, such as sharp pH decrease and Cl(-) accumulation in the anode chamber, limit the MEDC development. In this study, a microbial electrolysis desalination and chemical-production cell (MEDCC) was developed with four chambers using a bipolar membrane. Results showed that the pH in the anode chamber of the MEDCC always remained near 7.0, which greatly enhanced the microbial activities in the cell. With applied voltages of 0.3-1.0 V, 62%-97% of Coulombic efficiencies were achieved from the MEDCC, which were 1.5-2.0 times of those from the MEDC. With 10 mL of 10 g/L NaCl in the desalination chamber, desalination rates of the MEDCC reached 46%-86% within 18 h. Another unique feature of the MEDCC was the simultaneous production of HCl and NaOH in the cell. With 1.0 V applied voltage, the pH values at 18 h in the acid-production chamber and cathode chamber were 0.68 and 12.9, respectively. With the MEDCC, the problem with large pH changes in the anode chamber was resolved, and products of the acid and alkali were obtained.

  9. ZVI (Fe0 Desalination: Stability of Product Water

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-03-01

    Full Text Available A batch-operated ZVI (zero valent iron desalination reactor will be able to partially desalinate water. This water can be stored in an impoundment, reservoir or tank, prior to use for irrigation. Commercial development of this technology requires assurance that the partially-desalinated product water will not resalinate, while it is in storage. This study has used direct ion analyses to confirm that the product water from a gas-pressured ZVI desalination reactor maintains a stable salinity in storage over a period of 1–2.5 years. Two-point-three-litre samples of the feed water (2–10.68 g (Na+ + Cl−·L−1 and product water (0.1–5.02 g (Na+ + Cl−·L−1 from 21 trials were placed in storage at ambient (non-isothermal temperatures (which fluctuated between −10 and 25 °C, for a period of 1–2.5 years. The ion concentrations (Na+ and Cl− of the stored feed water and product water were then reanalysed. The ion analyses of the stored water samples demonstrated: (i that the product water salinity (Na+ and Cl− remains unchanged in storage; and (ii the Na:Cl molar ratios can be lower in the product water than the feed water. The significance of the results is discussed in terms of the various potential desalination routes. These trial data are supplemented with the results from 122 trials to demonstrate that: (i reactivity does not decline with successive batches; (ii the process is catalytic; and (iii the process involves a number of steps.

  10. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  11. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  12. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  15. Integrated processes for desalination and salt production: A mini-review

    Science.gov (United States)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  16. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  17. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  18. Economic feasibility of a solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.

    2014-02-01

    Solar still desalination systems offer sustainable tools for fresh water production. However, their widespread application is often hindered by their relatively low production rates compared to other desalination methods. In this study, a simple amendment, in the form of a slowly-rotating hollow cylinder, was introduced within the solar still, significantly increasing the evaporative surface area. This new modified still was analyzed in terms of both operation and economic feasibility. The introduced cylinder resulted in a 200-300% increase in water output relative to a control, which did not include the cylinder. The resulting percent improvement far exceeds that obtained by other modifications. Unit production cost estimates varied between 6 and 60$/m3 depending on discount rates, productivity, service lifetime and initial capital costs. These projections are well within reported cost ranges for renewable-based technologies. In order to evaluate the system\\'s feasibility in real market value, different scenarios that introduce carbon-trading schemes and environmental degradation costs for fuel-based desalination, were performed. Reported costs for fuel-based brackish water and seawater desalination were thus adjusted to include unaccounted-for costs related to environmental damage. This analysis yielded results that further justify the economic feasibility of the new modified solar still, particularly for seawater desalination. © 2013 Elsevier B.V.

  19. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  20. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  1. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  2. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  3. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Lamei, A.; Van der Zaag, P.; Von Muench, E. [UNESCO-IHE Institute for Water Education, 2601 DA Delft (Netherlands)

    2008-05-15

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W{sub p} (W{sub p} is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W{sub p}. Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W{sub p}), but advances in the technology will continue to drive the prices down, whilst

  4. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Van der Zaag, P.; Von Muench, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  5. Nuclear desalination

    International Nuclear Information System (INIS)

    Huyghe, J.

    1975-01-01

    The use of small or medium size nuclear reactors for the desalination of sea water has gained economic interest since the increase of oil prices. These reactors, with a wide range of power from 135 to 1,100Mwth, are parrticularly interesting because their production of fresh water or electricity is tailored to the present need. The replacement of conventional fuel boilers by nuclear reactor boilers does not change the traditional desalination technology and alters very little the coupling of the electricity and water producing parts of the plant. It is a reasonable assumption that the performance of desalination plants will increase with the optimization of the design technology of a mixed plant. The cost of the water produced in a mixed plant is mainly related to local conditions and to the method of splitting the cost between water and electricity. It is therefore impossible to give in this paper a cost for the fresh water production [fr

  6. The hydrogen production

    International Nuclear Information System (INIS)

    Aujollet, P.; Goldstein, St.; Lucchese, P.

    2002-01-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  7. Sodium hydroxide production from seawater desalination brine: process design and energy efficiency.

    Science.gov (United States)

    Du, Fengmin; Warsinger, David; Urmi, Tamanna; Thiel, Gregory P; Kumar, Amit; Lienhard, John H

    2018-04-18

    The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and non-renewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, i.e. the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.

  8. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  9. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  10. Formic acid production using a microbial electrolysis desalination and chemical-production cell.

    Science.gov (United States)

    Lu, Yaobin; Luo, Haiping; Yang, Kunpeng; Liu, Guangli; Zhang, Renduo; Li, Xiao; Ye, Bo

    2017-11-01

    The aim of this study was to investigate the feasibility and optimization of formic acid production in the microbial electrolysis desalination and chemical-production cell (MEDCC). The maximum current density in the MEDCC with 72cm of the anode fiber length (72-MEDCC) reached 24.0±2.0A/m 2 , which was much higher than previously reported. The maximum average formic acid production rate in the 72-MEDCC was 5.28 times higher than that in the MEDCC with 24cm of the anode fiber length (37.00±1.15vs. 7.00±0.25mg/h). High performance in the 72-MEDCC was attributed to small membrane spacing (1mm), high flow rate (1500μL/min) on the membrane surface and high anode biomass. The minimum electricity consumption of 0.34±0.04kWh/kg in the 72-MEDCC was only 3.1-18.8% of those in the EDBMs. The MEDCC should be a promising technology for the formic acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.

    2014-07-10

    Abstract: Increasing the productivity of solar stills has been the focus of intensive research. Many introduced developments, however, require complex components and entail notable increases in cost and land requirements. Developing a compact, productive, and easy-to-operate system is a main challenge. This paper describes a sustainable modification of the solar still that significantly enhances its productivity without forsaking its basic features. A simple amendment in the form of a slowly rotating drum is introduced allowing the formation of thin water films that evaporate rapidly and are continually renewed. The performance of this system was compared against a control without the introduced drum. Throughout the experiment, the new system gave considerably higher yield than the control with an average increase in daily productivity of 200%. Moreover, during sunshine hours, the increase in yield could surpass 6–8 times that of the control. Important parameters such as ease of handling, material availability, efficacy, low cost, safe water quality, and space conservation are maintained. One side-benefit of this design is solving stagnation problems that usually develop in conventional stills. The new simple modification in this study presents a cost-effective and efficient design to solar stills especially in areas with abundant sunshine.

  12. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  13. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  14. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  15. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  17. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  18. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  19. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  20. Nuclear Heat Application: Desalination as an Alternative Process for Potable Water Production in Indonesia (part 2)

    International Nuclear Information System (INIS)

    Amir-Rusli

    2000-01-01

    A survey of water supply and demand system and identification of desalination process need for Indonesia has been carried out. Even Indonesia is located in tropical zone of equator; it is still reported lack of water resources, especially during 6 months dry season. Due to miss-water management and bad attitude of the people itself occurred in the past; most of conventional water resources of river, lake and reservoir were damaged during development period of industrial and agriculture sectors. A half of 200 millions peoples of Indonesian population are still scarce of potable drinking water during the year of 1997. Jakarta as the capital has a population of 10 millions people which is the worse water availability in capita per year in the world at present. Seawater intrusion problem to about more than 11 km away is also detected in big cities of the main islands of Indonesia, and these same conditions are faced to other thousands of small islands. Therefore it is an urgent situation to develop a total integrated water management system in order to improve the performance of water resources. Desalination system of seawater/brackish water is considered and showed a good alternative for potable water production for domestic or industrial purposes. But in the long-term, water management system of the effectiveness cycle use of water should be implemented at sites. (author)

  1. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  2. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  3. Solar-driven hydrogen production in green algae.

    Science.gov (United States)

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  5. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    Biogas , including anaerobic digester gas, can be reformed to produce hydrogen and used in a fuel cell to produce significant amounts of electricity...Waste/By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...and heat. � When biogas is produced and used on‐site in a fuel cell, fuel utilization or overall energy efficiency can reach 90% and can reduce

  6. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  7. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  8. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  9. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  10. The effect of cover geometry on the productivity of a modified solar still desalination unit

    KAUST Repository

    Malaeb, Lilian

    2014-01-01

    Desalination methods based on renewable energy offer a promising solution to both water shortage and environmental degradation problems that continue to grow globally. The solar still is one such method that uses a sustainable energy source to produce potable water albeit at a relatively low productivity rate. A new modification has been introduced to the conventional solar still to enhance its productivity. The modification consists of a light weight, black finished, slowly-rotating drum, which leads to a sustainable, cost-effective, and low-tech amendment that preserves the key features of the still while considerably increasing its yield compared to a control still that does not include the drum. In this paper, three different cover geometries of the modified still are studied and the effect of cover design on the performance of the still in terms of measured temperatures and productivity is considered. The three cover designs are as follows: double-sloped or triangular, single-sloped and curved cover. In addition, a conventional double-sloped still without the rotating drum is operated in parallel as a control and the findings of this study are reported and discussed. © 2014 Published by Elsevier Ltd.

  11. Conditions of competition between the production of water by desalination and natural resources

    International Nuclear Information System (INIS)

    Gaussens, J.

    1969-01-01

    A close examination of the local supply and demand for fresh water is involved when considering a sea water desalination plant in a given region. This examination makes it possible in most cases to undertake a thorough study of the natural resources, resulting in the use of desalination being rejected. After confirming this fact by precise examples, the authors consider that the preliminary study should be extended, taking into account the complementary character of natural resources and desalination systems: contribution to peak demand, contribution to base demand. This analysis results in a classification of the main user regions according to certain economic criteria defining their suitability for the use of desalination processes. (author) [fr

  12. Hydrogen Production in Fusion Reactors

    OpenAIRE

    S., Sudo; Y., Tomita; S., Yamaguchi; A., Iiyoshi; H., Momota; O., Motojima; M., Okamoto; M., Ohnishi; M., Onozuka; C., Uenosono

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  13. High purity hydrogen generator for on-site hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jaesung Han; Il-Su Kim; Keun-Seob Choi [Taedok Institute of Technology, Taejon (Korea)

    2002-10-01

    We report a compact on-site hydrogen generator, which produces 10 Nm{sup 3}/h of 99.9995% or higher purity hydrogen from methanol water mixture. This system consists of a methanol steam reformer to get hydrogen rich reformed gas and a metal membrane purification module to recover high purity hydrogen from the reformed gas. It can be used either as the on-site hydrogen supplier for industries or as the fuel processor for fuel cells. The hydrogen recovery by the metal membrane is about 75%, and the remaining 25% of hydrogen is recycled and burned in the catalytic combustion zone to supply heat for the endothermic steam reforming reaction. The overall thermal efficiency of the system is calculated to be 82% based on high heating values of methanol feed and product hydrogen. (author)

  14. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  15. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  16. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  17. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  18. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  19. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  20. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  1. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  2. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  3. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  4. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  5. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  6. Towards a desalination initiative using cogeneration with an advanced reactor type and uranium recovered from Moroccan phosphoric acid production

    International Nuclear Information System (INIS)

    Lung, M.; Kossir, A.; Msatef, D.

    2005-01-01

    Morocco is known to be among the first few countries to produce phosphate and phosphoric acid. Moroccan phosphate contains substantial amounts of uranium. This uranium can be recovered from the phosphate ore as a by-product during the production of phosphoric acid. Uranium extraction processes linked with phosphoric acid fabrication have been used industrially in some countries. This is done mainly by solvent extraction. Although, the present price of uranium is low in the international market, such uranium recovery could be considered as a side product of phosphoric acid production. The price of uranium has a very small impact on the cost of nuclear energy obtained from it. This paper focuses on the extraction of uranium salt from phosphate rock. If uranium is recovered in Morocco in the proposed manner, it could serve as feed for a number of nuclear power plants. The natural uranium product would have to be either enriched or blended as mixed-oxide fuel to manufacture adequate nuclear fuel. Part of this fuel would feed a desalination initiative using a high temperature reactor of the new generation, chosen for its intrinsic safety, sturdiness, ease of maintenance, thermodynamic characteristics and long fuel life between reloads, that is, good economy. An international cooperation based on commercial contract schemes would concern: the general project and uranium extraction; uranium enrichment and fuel fabrication services; the nuclear power plant; and the desalination plant. This paper presents the overall feasibility of the general project with some quantitative preliminary figures and cost estimates. (author)

  7. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility

    International Nuclear Information System (INIS)

    Eveloy, Valérie; Rodgers, Peter; Qiu, Linyue

    2015-01-01

    Highlights: • Seawater reverse osmosis driven by hybrid gas turbine–organic Rankine power cycle. • High ambient air and seawater temperatures, and high seawater salinity. • Energy–exergy analysis of power and desalination systems for six organic fluids. • Economic viability of waste heat recovery in subsidized utility pricing context. - Abstract: Despite water scarcity, the use of industrial waste heat for seawater desalination has been limited in the Middle East to date. This study evaluates the technical and economic feasibility of integrating on-site gas turbine power generation and reverse osmosis equipment for the production of both electricity and fresh water in a coastal hydrocarbon production facility. Gas turbine exhaust gas waste heat is recovered using an intermediate heat transfer fluid and fed to an organic Rankine cycle evaporator, to generate mechanical power to drive the reverse osmosis high pressure pump. Six candidate organic working fluids are evaluated, namely toluene, benzene, cyclohexane, cyclopentane, n-pentane and R245fa. Thermodynamic and desalination performance are assessed in the harsh climatic and salinity conditions of the Arabian Gulf. The performance metrics considered incorporate electric power and permeate production, thermal and exergy efficiency, specific energy consumption, system size, and permeate quality. Using toluene in the bottoming power cycle, a gain in power generation efficiency of approximately 12% is achieved relative to the existing gas turbine cycle, with an annual average of 2260 m 3 /h of fresh water produced. Depending upon the projected evolution of local water prices, the investment becomes profitable after two to four years, with an end-of-life net present value of 220–380 million USD, and internal rate of return of 26–48%.

  8. Patent landscape for biological hydrogen production.

    Science.gov (United States)

    Levin, David B; Lubieniechi, Simona

    2013-12-01

    Research and development of biological hydrogen production have expanded significantly in the past decade. Production of renewable hydrogen from agricultural, forestry, or other organic waste streams offers the possibility to contribute to hydrogen production capacity with no net, or at least with lower, greenhouse gas emissions. Significant improvements in the volumetric or molar yields of hydrogen production have been accomplished through genetic engineering of hydrogen synthesizing microorganisms. Although no commercial scale renewable biohydrogen production facilities are currently in operation, a few pilot scale systems have been demonstrated successfully, and while industrial scale production of biohydrogen still faces a number of technical and economic barriers, understanding the patent landscape is an important step in developing a viable commercialization strategy. In this paper, we review patents filed on biological hydrogen production. Patents on biohydrogen production from both the Canadian and American Patents databases were classified into three main groups: (1) patents for biological hydrogen by direct photolysis; (2) patents for biological hydrogen by dark fermentation; and (3) patents for process engineering for biological hydrogen production.

  9. Hydrogen energy for tomorrow: Advanced hydrogen production technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

  10. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  11. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by-products

  12. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  13. Redirection of metabolism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and

  14. Economical analysis and study on a solar desalination unit

    DEFF Research Database (Denmark)

    Based on the calculation of the single-factor impact values of the parameters of a triple tower-type solar desalination unit on the cost of fresh water production by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs...... of desalination unit and electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful for the further investigation of solar desalination and for reducing the cost of fresh water...... production for solar desalination units....

  15. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  16. Bioreactor design for photofermentative hydrogen production.

    Science.gov (United States)

    Uyar, Basar

    2016-09-01

    Hydrogen will become a significant fuel in the near future. Photofermentative production of hydrogen is a promising and sustainable process. The design, construction and successful operation of the photobioreactors are of critical importance for photofermentative hydrogen production and became a major field of research where novel technologies are developed and adapted frequently. This paper gives an overview of the design aspects related to photobioreactors giving particular attention to design limitations, construction material, type, operating mode and scale-up. Sub-components of the overall system setup such as mixing, temperature control and hydrogen collection are also discussed. Recent achievements in the photobioreactor technologies are described.

  17. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  18. Hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research

  19. Desalination processes and technologies

    International Nuclear Information System (INIS)

    Furukawa, D.H.

    1996-01-01

    Reasons of the development of desalination processes, the modern desalination technologies, such as multi-stage flash evaporation, multi-effect distillation, reverse osmosis, and the prospects of using nuclear power for desalination purposes are discussed. 9 refs

  20. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature)

    International Nuclear Information System (INIS)

    Hanshik, Chung; Jeong, Hyomin; Jeong, Kwang-Woon; Choi, Soon-Ho

    2016-01-01

    The evaporating process is very important in the system concerned with liquid foods, seawater distillation and wastewater treatment, which is to concentrate the aqueous solution by evaporating the pure water usually at a vacuum state. In general, the liquid concentration is performed through the membrane, electro-dialysis, and evaporation; the former are separation process and the latter is the phase change process. In this study, only the thermal process was treated for evaluating the specific energy consumption by changing the operating conditions of an existing MSF (multi-stage flashing) desalination plant, which is still dominant for a large scale distillation plant. This study shows the quantitative energy saving strategy in sweater distillation process and, additionally, indicates that the performance of the multi-stage evaporating system can be increased with the elevation of a TBT (top brine temperature). The calculated results were based on the operating data of the currently installed plants and suggests the alternative to improve the performance of the MSF desalination plant, which means that the energy saving can be achieved only by changing the operating conditions of the existing MSF plants. - Highlights: • Detailed operating principles of an multi-stage flashing (MSF) desalting process. • Improved freshwater productivity by increasing the top brine temperature (TBT). • Increased energy efficiency of an existing MSF plants by the TBT increase.

  1. Decentralized hydrogen production from diesel and biodiesel

    OpenAIRE

    Martin, S.; Kraaij, G.; Wörner, A.

    2014-01-01

    Assuming that from 2015 onwards an increasing amount of fuel cell powered vehicles will enter the market, hydrogen production from liquid fuels offers a promising option to meet short- and midterm hydrogen fuelling requirements. Besides, on-board hydrogen generation from logistic fuels for auxiliary power applications has attracted increasing attention. The German Aerospace Center acts as coordinator of the 3-year project NEMESIS2+ (www.nemesis-project.eu), a collaborative project funded ...

  2. Bioelectrochemical systems-driven directional ion transport enables low-energy water desalination, pollutant removal, and resource recovery.

    Science.gov (United States)

    Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-09-01

    Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Microwave Hydrogen Production from Methane

    Science.gov (United States)

    2012-04-01

    demonstration of MW technology removing and destroying hydrogen sulfide (H2S) and siloxanes from biogas produced by Sacramento Regional Wastewater...running on biogas and is currently conducting the field demonstration of the unit at Tollenaar Dairy in Elk Grove, CA. SMUD, California Air Resources...Small Grant (EISG) project to produce hydrogen (H2) from biogas for the pre-combustion NOx control for the biogas engine. The CEC sponsors this

  4. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  5. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  6. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  7. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  8. Technical and economic evaluation of potable water production through desalination of seawater by using nuclear energy and other means

    International Nuclear Information System (INIS)

    1992-09-01

    The present report contains an assessment of the need for desalination, information on the most promising desalination processes and energy sources, as well as on nuclear reactor systems proposed by potential suppliers worldwide. The main part of the report is devoted to evaluating the economic viability of seawater desalination by using nuclear energy, in comparison with fossil fuels. This evaluation encompasses a broad range of both nuclear and fossil plant sizes and technologies, and combinations with desalination processes. Finally, relevant safety and institutional aspects are briefly discussed. 27 refs, figs and tabs

  9. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  10. A New Method for Water Desalination Using Microbial Desalination Cells

    KAUST Repository

    Cao, Xiaoxin

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shownhere that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. © 2009 American Chemical Society.

  11. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  12. Hydrogen production using ammonia borane

    Science.gov (United States)

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  13. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  14. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    International Nuclear Information System (INIS)

    Yan, X.; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-01-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO 2 . The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m 3 /day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%

  15. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  16. Use of nuclear reactors for seawater desalination

    International Nuclear Information System (INIS)

    1990-09-01

    The last International Atomic Energy Agency (IAEA) status report on desalination, including nuclear desalination, was issued nearly 2 decades ago. The impending water crisis in many parts of the world, and especially in the Middle East, makes it appropriate to provide an updated report as a basis for consideration of future activities. This report provides a state-of-the-art review of desalination and pertinent nuclear reactor technology. Information is included on fresh water needs and costs, environmental risks associated with alternatives for water production, and data regarding the technical and economic characteristics of immediately available desalination systems, as well as compatible nuclear technology. 68 refs, 60 figs, 11 tabs

  17. Water desalination as a possible opportunity for the GT- and H2-MHR

    International Nuclear Information System (INIS)

    Bogart, S. Locke; Schultz, Ken

    2004-01-01

    There is growing concern that many areas of the world are suffering ongoing and increasing water shortages. Much of this concern is manifested in the United Nation's World Water Assessment Programme, the results of which were published in the spring of 2003. Other researchers have corroborated the findings of this work. However, while the UN has characterized water availability as a 'crisis', this view would seem to be excessive. Nevertheless, many parts of the world, particularly in developing nations inclusive of the middle east, are experiencing severe water stress and some of these have embarked on large-scale seawater desalination projects. The current work explores, in a preliminary way, the application of high temperature helium cooled reactors in either an electricity or a hydrogen production mode for desalination. Three desalination technologies are discussed: reverse osmosis (RO) and thermal processes using either Multi-stage flash distillation (MSF) or Multi-effect distillation (MED). For the latter, it is found that the waste heat rejected from a high temperature reactor comes in power levels and temperatures reasonably well suited for desalination. An economic comparison was made using the best available data and scaling to compare the processes. What was found that reverse osmosis and thermal distillation possess comparable costs within the error bars of the analysis but that the former generally resulted in slightly lower costs. Thus the choice between them can be made with other criteria such as feed salinity and product quality. It was also found that desalinated water co-produced with either electricity (RO and MED) or hydrogen (MED) are expected to cost about the same. Since hydrogen and desalinated water can be produced off the grid, this co-production architecture appears attractive for the early deployment of high temperature helium cooled reactors. (authors)

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  19. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  20. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  1. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by

  2. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  3. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  4. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico

    International Nuclear Information System (INIS)

    Rojas A, O; Calleros M, G.

    2016-09-01

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  5. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  6. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  7. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  8. Desalination of sea water using nuclear heat

    International Nuclear Information System (INIS)

    Raisic, N.

    1977-01-01

    At present, desalination is the only major unconventional source of water supply of economic significance. It is the only alternative that is technically feasible with respect to large-scale operation. The total world desalination capacity is about 2.1 million cubic metres per day, which is indeed a marginal addition to conventional water supplies. There are two approaches to the use of nuclear reactors in desalination: they can be used for a single purpose (i.e. heat production) or for dual purpose (generating electricity and heat production). For either application, the nuclear reactor must meet several requirements: (1) it should be available in sizes of practical interest for dual power/ desalination or for desalination only; (2) the technology of the particular reactor type should be well developed to guarantee safe and reliable operation; (3) the economics of heat production should be attractive and competitive with other available energy sources

  9. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, Jonathan; Mattingly, Susan M.

    1999-01-01

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

  10. Method for the enzymatic production of hydrogen

    Science.gov (United States)

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  11. Hydrogen production by nonphotosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.D.; Secor, C.K.; Zweig, R.M.; Ascione, R.

    1984-01-01

    H-producing nonphotosynthetic bacteria are identified and H from sewage treatment plants, H from rumen bacteria, and large-scale production of H through the genetic manipulation of H-producing nonphotosynthetic bacteria are discussed. (Refs. 36).

  12. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  13. Method for the continuous production of hydrogen

    Science.gov (United States)

    Getty, John Paul; Orr, Mark T.; Woodward, Jonathan

    2002-01-01

    The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of .ltoreq.80.degree. C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

  14. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  15. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  16. Hydrogen production by fermentative consortia

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Department of Marine Biotechnology, Ensenada, B.C. Mexico (Mexico); Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department of Biotechnology and Bioengineering, PO Box 14-740, Mexico D.F. 07000 (Mexico)

    2009-06-15

    In this work, H{sub 2} production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H{sub 2} are discussed. Then, the different methods used to inhibit the H{sub 2}-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H{sub 2}, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H{sub 2}-producers communities are detailed. Later, the hydrogenase structure and activity is related with H{sub 2} production. Also, the causes for H{sub 2} production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H{sub 2} production. (author)

  17. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  18. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  19. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible, and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in the research contract CNEA - IAEA to evaluate projects of nuclear desalination. The objective and scope of this work is to know the advantages and disadvantages of each desalination technology, distinctive characteristics of each of them, that make them adapt better to different uses and outline conditions and analysis of related antecedents of its use in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations found in the last years for the different technologies are also included. (author)

  20. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.

    Science.gov (United States)

    Ye, Bo; Luo, Haiping; Lu, Yaobin; Liu, Guangli; Zhang, Renduo; Li, Xiao

    2017-11-01

    The aim of this study was to improve performance of the microbial electrolysis desalination and chemical-production cell (MEDCC) using enlarged anode and high applied voltages. MEDCCs with anode lengths of 9 and 48cm (i.e., the 9cm-anode MEDCC and 48cm-anode MEDCC, respectively) were tested under different voltages (1.2-3.0V). Our results demonstrated for the first time that the MEDCC could maintain high performance even under the applied voltage higher than that for water dissociation (i.e., 1.8V). Under the applied voltage of 2.5V, the maximum current density in the 48cm-anode MEDCC reached 32.8±2.6A/m 2 , which is one of the highest current densities reported so far in the bioelectrochemical system (BES). The relative abundance of Geobacter was changed along the anode length. Our results show the great potential of the BES with enlarged anode and high applied voltages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-02-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A breakthrough low energy desalination process : production of sustainable water from brackish water for the oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Man, M.; Sparrow, B.; Zoshi, J. [Saltwork Technologies Inc., BC (Canada)

    2010-07-01

    This paper described an innovative desalination system pilot study that is currently being conducted in Vancouver, British Columbia (BC). The thermo-ionic proof-tested system has the potential to achieve an electrical energy consumption rate of less than 1 kW per m{sup 3} through the harnessing of low grade heat. The energy transfer is accomplished by manipulating concentration gradients established and maintained through the evaporation of salt water into the atmosphere. The ion exchange mechanism reduced pre-treatment requirements and provided a self-cleaning mechanism to maintain steady production levels. The electrical energy created during the process was used to run low-pressure circulation pumps and process controls. The driving force for evaporation was the vapor pressure difference between the solution and moisture in the air. Discharges from the system can be tuned to various salt water concentrations. Results of the pilot study to date indicate that it is suitable for use in oil sands steam assisted gravity drainage (SAGD) processes. 8 refs., 1 tab., 4 figs.

  3. Catalytic glycerol steam reforming for hydrogen production

    International Nuclear Information System (INIS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-01-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H 2 . In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al 2 O 3 . The catalyst was prepared by wet impregnation method and characterized through different methods: N 2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H 2 , CH 4 , CO, CO 2 . The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H 2 O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%

  4. The nuclear desalination project in Morocco

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the seawater desalination demonstration plant in Morocco are to buildup the technical confidence in the utilization of nuclear heating reactor for seawater desalination; to establish a data base for reliable extrapolation of water production costs for a commercial nuclear plant; and to further strengthen the nuclear infrastructure in Morocco. The water production capacity of the demonstration plant would be about 8000 m 3 /d. The objectives of pre-project study are to establish a reliable basis for a decision on a nuclear desalination plant in Morocco, using a small Chinese heating reactor and to train the Morocco experts in reactor technology and licensing aspects

  5. Hydrogenated liquids and hydrogen production by non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Centre national de la recherche scientifique, Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    In recent years, hydrogen (H{sub 2}) has been considered as a fuel for electricity generation and transportation purposes. H{sub 2} is a renewable energy source that does not contribute to the greenhouse effect. This paper reported on a comparative study of syngas production from alcohol, with particular reference to the plasma steam-reforming of ethanol, methanol, ammonia and vegetable oil. The H{sub 2} yields and energetic cost in function of hydrogen sources were presented. The non thermal plasma used in this study was a laboratory scale experimental device static discharge. An arc formed between two electrodes made of graphite. The efficiency of the process was determined through chemical diagnostics. Gas chromatography and Fourier transform infrared (FTIR) techniques were used to determine concentrations of H{sub 2}, carbon monoxide, carbon dioxide and carbon as functions of flow and inlet liquid mixture concentration parameters. This paper also presented the values of H{sub 2}/CO ratio and the composition of synthesis gas according to various operating conditions. 18 refs., 2 tabs., 8 figs.

  6. Hydrogen Production from Ammonia Using a Plasma Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Shinji Kambara

    2016-06-01

    Full Text Available In this study, an efficient method for using pulsed plasma to produce hydrogen from ammonia was developed. An original pulsed plasma reactor with a hydrogen separation membrane was developed for efficient hydrogen production, and its hydrogen production performance was investigated. Hydrogen production in the plasma was affected by the applied voltage and flow rate of ammonia gas. The maximum hydrogen production flow rate of a typical plasma reactor was 8.7 L/h, whereas that of the plasma membrane reactor was 21.0 L/h. We found that ammonia recombination reactions in the plasma controlled hydrogen production in the plasma reactor. In the plasma membrane reactor, a significant increase in hydrogen production was obtained because ammonia recombination reactions were inhibited by the permeation of hydrogen radicals generated in the plasma through a palladium alloy membrane. The energy efficiency was 4.42 mol-H2/kWh depending on the discharge power.

  7. Prospects of an integrated nuclear desalination systems

    International Nuclear Information System (INIS)

    Kim, S.H.; Hwang, Y.D.

    2006-01-01

    Currently over one billion persons suffer from water shortages, unreliable water supplies, and unsanitary conditions related to inadequate water supplies. Hence the global need and demand for clean fresh water is increasing. Seawater desalination has become a proven and reliable process to produce clean fresh water. Since 1950, a large number of seawater desalination plants have been installed and it is projected to continue to increase. Seawater desalination requires energy in the form of heat or electricity or both. Fossil fuels have been the energy source for desalination and they are expected to remain the main energy source for desalination in the future. However, many concerns from using fossil fuels as an energy source have been raised such as air pollution, the greenhouse effect, and depletion of valuable natural energy resources. Several alternative energy sources can be considered to partly replace the fossil fuels used for seawater desalination. One of the potentially rewarding alternatives is nuclear energy. Nuclear power plants are well suited to supply the energy needed. Also, nuclear desalination has economic advantages over the alternative energy options. Nuclear reactors are used mainly for the production of either heat or electricity. The steam may be used for supplying the energy to produce potable water. The electricity generated can be used to drive the high pressure pumps of the reverse osmosis desalination plants. A coupling of the nuclear system is not difficult but needs some special considerations. Technical feasibility of integrated nuclear desalination plants has been proven through worldwide operating experience for over 150 reactor-years. Economic competitiveness has been demonstrated through the IAEA's desalination economic evaluation program

  8. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  9. Advances in desalination technology

    International Nuclear Information System (INIS)

    Pankratz, T.M.

    2005-01-01

    Seawater desalination has been the cornerstone of the Middle East's water supply strategy since the mid-1950s, and most of the installed desalination capacity is still provided by multistage flash evaporators. But, desalination is changing. In fact, the term 'desalination' is no longer limited to seawater applications; desalination technologies are now routinely employed to desalinate brackish groundwater and repurify municipal effluents. Recent advances in desalination technology have simultaneously reduced costs while dramatically improving performance and reliability to the point where desalination technologies now compete with 'conventional' treatment processes in many applications. New commercial strategies and a realisation of the economies-of-scale have led to further improvements in plant economics, and an increase in the size of plants now being developed and constructed. This presentation reviews advances in membrane and membrane pretreatment systems, energy recovery devices, materials of construction, hybrid process configurations, increased unit capacities, and the use of public-private partnerships; all of which have led to reduced capital and operating costs, enabling desalination to be economically competitive with traditional treatment options. Advances in desalination technology have resulted in better performances, lower capital and operating costs, and increased application of desalination systems. In the face of increased water shortages and growing costs of 'conventional treatment', this trend will certainly continue. (author)

  10. Photochemical Production of Hydrogen from Water

    International Nuclear Information System (INIS)

    Broda, E.

    1978-01-01

    The energy flux in sunlight is 40 000 kW per head of the world population. Theoretically much of this energy can be used to photolyze water, in presence of a sensitizer, to H2 (and 02) for a hydrogen economy. The main difficulty in a homogeneous medium is the back-reaction of the primary products. According to the 'membrane principle', the reducing and the oxidizing primary products are released on opposite sides of asymmetric membranes, and so prevented from back-reacting. In essence, this is the mechanism of the photosynthetic machinery in plants and bacteria. This therefore serves as an example in the artificial construction of suitable asymmetric, 'vectorial', membranes. Relatively small areas of photolytic collectors, e.g. in tropical deserts, could cover the energy needs of large populations through hydrogen. (author)

  11. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  12. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  13. Space-based bacterial production of hydrogen

    Science.gov (United States)

    Tennakoon, C. L.; Bhardwaj, R. C.; Bockris, J. O.; Henninger, D. L. (Principal Investigator)

    1994-01-01

    This paper deals with the electrochemical production of hydrogen by depolarizing the oxygen evolution reaction using human feces and urine, which contains 30-40% bacteria and yeast. The electroactivity of graphite, tungsten carbide, perovskite and RuO2-coated Ebonex (Ti4O7) as anode materials are compared. The scale-up of the process in a laboratory-scale three-dimensional packed bed cell is discussed.

  14. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  15. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  16. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  17. A Technical and Economic Review of Solar Hydrogen Production Technologies

    Science.gov (United States)

    Wilhelm, Erik; Fowler, Michael

    2006-01-01

    Hydrogen energy systems are being developed to replace fossil fuels-based systems for transportation and stationary application. One of the challenges facing the widespread adoption of hydrogen as an energy vector is the lack of an efficient, economical, and sustainable method of hydrogen production. In the short term, hydrogen produced from…

  18. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  19. Optimization study of the SMART integrated seawater desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. D.; Kang, H. O.; Kim, Y. I.; Lee, D. J.; Jang, M. H. [KAERI, Taejon (Korea, Republic of); Hong, J. M. [DOOSAN Heavy Industries and Construction CO. LTD., Changwon (Korea, Republic of)

    2001-10-01

    This study was performed to investigate optimal coupling between SMART and desalination plant which meets the electricity and water production requirements of the SMART nuclear desalination plant. Optimal performance parameter and the interfacing conditions between SMART and desalination plant were established through the thermodynamic analysis for the selected desalination process, MED-TVC. Also, a series of sensitivity studies on water production cost were performed for the capacity factor, discount rate and the overnight construction cost of SMART. Currently, SMART desalination plant MED-TVC unit is designed with the performance ratio of 15 and unit capacity of 10,000m{sup 3}/day. Steam transformer was installed between SMART secondary system and the desalination plant to protect the desalination plant from the radioactive contamination. In addition, an economic analysis of desalination plant was conducted to investigate the economic viability of the nuclear desalination using SMART. The calculated water production unit costs are in the range of 0.73 {approx} 0.83 ($/m3) for the plant availability of 80% or higher with the discount rate of 8%. This indicates that SMART can be considered as a competitive choice for desalination.

  20. Selecting appropriate technology for hydrogen production

    International Nuclear Information System (INIS)

    Tamhankar, S.S.

    2004-01-01

    'Full text:' Technologies for the production of synthesis gas (H2 + CO), a precursor to hydrogen, from a variety of fossil fuels are well known in industrial applications at relatively large scale. These include Steam Reforming (SR), Auto-Thermal Reforming (ATR) and Partial Oxidation (POX). A particular technology is selected based on the feed type and the desired products. Steam reforming is a mature technology, and is most prevalent for hydrogen production because of its high efficiency. However, at the smaller scale, the capital cost becomes a more significant factor, and a substantial reduction in this cost is necessary to meet the overall H2 gas cost targets, such as that stated by DOE ($1.50/kg). In developing small-scale H2 technologies, often, incremental improvements are incorporated. While useful, these are not adequate for the desired cost reduction. Also, for effective cost reduction, the whole system, including production, purification and associated equipment needs to be evaluated; cost reduction in just one of the units is not sufficient. This paper provides a critical assessment of the existing as well as novel technology options, specifically targeted at small scale H2 production. The technology options are evaluated to clearly point out which may or may not work and why. (author)

  1. Nuclear desalination in Egypt: activities and prospects

    International Nuclear Information System (INIS)

    Megahed, M.M.

    2000-01-01

    The main source of freshwater resources in Egypt is the River Nile. The Egyptian share of the Nile water was limited to 55.5x10 9 m 3 /year in the Nile Water Treaty concluded with Sudan in 1959. Due to the rapid population growth, the annual per capita freshwater resources declined from 2560 m 3 in 1955 to 970 m 3 in 1995. Consequently, desalination plants of various sizes and technologies have been introduced to Egypt in the past three decades. The Egyptian desalination inventory increased from less than 2000 m 3 /day in 1970 to almost 175000 m 3 /day in 1997, of which 54% was seawater desalination. The energy-intensive seawater desalination technologies are expected to play an increasing role in mitigating future potable water deficit in Egypt. Egypt has been considering for a number of years the introduction of nuclear energy to meet the combined challenge of increasing electricity and water demand on one hand and the limited primary energy and water resources on the other hand. In this regard, Egypt has been carrying a number of national, regional and international activities. This paper presents an overview of the Egyptian activities in the field of nuclear desalination including, feasibility studies and Research and Development activities. The results of recent studies are presented regarding: quantification of seawater desalination market in Egypt and preliminary economic assessment of potable water production by various combinations of energy sources and desalination processes proposed for El-Dabaa site. (author)

  2. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    Science.gov (United States)

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  3. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...

  4. Catalyst Needs for Thermochemical Hydrogen Production Cycles

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Rollins, Harry W.; Burch, Kyle C.

    2007-01-01

    Thermochemical cycles can be used to split water through a series of chemical reactions where the net result is the production of hydrogen and oxygen at much lower temperatures than direct thermal decomposition. All chemicals within the cycle are fully recycled and the heat to drive the reactions, which tend to be endothermic, must be provided by a primary energy source. When the primary energy driver is nuclear heat, hydrogen can be generated without producing green-house gases, and can provide independence from our dwindling supplies of fossil fuels. A number of thermochemical cycles can be driven by the primary heat of nuclear reactors, especially a very high temperature reactor (VHTR). The sulfur-based family of thermochemical cycles, including the Sulfur- Iodine cycle (S-I), the Hybrid Sulfur cycle, and the Sulfur-Bromine Hybrid cycle, appears promising for producing hydrogen using nuclear heat. These cycles employ a high-temperature sulfuric acid decomposition reaction step. The reaction produces oxygen and generates SO 2 , which is used in other reaction steps of the cycles. The reaction takes place from 750 to 900 deg. C, or higher, and is facilitated by heterogeneous catalysts. The S-I cycle produces hydrogen by the catalytic decomposition of HI. The calcium-bromine cycle is also being considered as a nuclear powered thermochemical cycle. The various cycles all present requirements of high temperatures and harsh chemical reaction conditions which present significantly challenging environments for catalytic materials. This work will focus on the catalyst needs of thermochemical cycles that are candidates for being powered by nuclear reactors. Specific catalyst activity and stability testing results will be provided for the decomposition of sulfuric acid for the production of oxygen in the sulfur-based family of cycles and for the catalytic decomposition of hydro-iodic acid for the production of hydrogen in the S-I process. Sulfuric acid decomposition

  5. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  6. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  7. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    Depletion of oil and gas reserves and growing global warming concerns have created a world-wide interest in new concepts for future sustainable energy supplies. The development of effective ways to produce hydrogen from biomass is expected to be one important contribution to such a goal [1]. Nowadays, three main processes are considered for future industrial application, namely: gasification of biomass [2], reforming in supercritical water [3] and aqueous phase reforming [4,5]. Other technologies such as enzymatic decomposition of sugars or steam reforming of bio-oils suffer from low hydrogen production rates and/or complex processing requirements and can probably not be considered for industrial applications in the closer future [6,7]. On the other hand, either the gasification of biomass, which is typically carried out at temperatures above 800 C using Ni or Fe catalysts [8,9,10,11], or the reforming in supercritical water, which is typically carried out in presence of Ru catalyst at pressures of 300bar and temperatures ranging from 500 to 700 C [12], suffer of poor energetic efficiency as a lot of energy is required to run the reactions. More recently, an alternative to the two aforementioned high temperature processes has been proposed as ''aqueous phase reforming'' (APR) by Dumesic and coworkers [13,14,15,16,17]. They achieved the reforming of polyols (such as ethylene glycol, glycerol and sorbitol) using heterogeneous catalysts at temperatures between 200 and 250 C and pressure typically between 15-50bar.The temperature level of the reaction allows generating hydrogen with low amounts of CO in a single reactor. The process typically forms 35 % of hydrogen, 40 % of CO2 and 25 % of combined alkanes. The high amount of formed alkanes originates eventually from CO hydrogenation and Fischer-Tropsch (F-T) reaction [18,19,20,21], those are thermodynamically favored in the above mentioned conditions. However, heterogeneously catalyzed APR

  8. Production of hydrogen using an anaerobic biological process

    Science.gov (United States)

    Kramer, Robert; Pelter, Libbie S.; Patterson, John A.

    2016-11-29

    Various embodiments of the present invention pertain to methods for biological production of hydrogen. More specifically, embodiments of the present invention pertain to a modular energy system and related methods for producing hydrogen using organic waste as a feed stock.

  9. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  10. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  11. State-of-art report on the seawater desalination process

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process

  12. State-of-art report on the seawater desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process.

  13. Hydrogen in the Methanol Production Process

    Science.gov (United States)

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  14. Design of a process for supercritical water desalination with zero liquid discharge

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; van der Ham, Aloysius G.J.; Metz, S.; Kersten, Sascha R.A.

    2015-01-01

    Conventional desalination methods have a major drawback; the production of a liquid waste stream which must be disposed. The treatment of this waste stream has always presented technical, economic, and environmental challenges. The supercritical water desalination (SCWD) process meets these

  15. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    International Nuclear Information System (INIS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-01-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  16. Analytical monitoring of systems for the production of high-purity, desalinated water

    International Nuclear Information System (INIS)

    Kunert, I.

    1988-01-01

    The purity requirements to be met by high-purity water currently push the most sensitive analytical methods to their utmost limits of sensitivity. The required degree of purity of the water at present can only be achieved by application of membrane processes, and pre-purification of the feedwater to a quality corresponding to that of the raw water source. The contribution in hand discusses the analytical monitoring of the raw water treatment plant, the water treatment prior to the treatment by reverse osmosis, monitoring and control of the modules for reverse osmosis, and the monitoring of high-purity water production for the microelectronics industry. (orig./RB) [de

  17. Production of hydrogen by lignins fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Baumlin, Sebastien; Broust, Francois; Bazer-Bachi, Frederic; Bourdeaux, Thomas; Herbinet, Olivier; Toutie Ndiaye, Fatou; Ferrer, Monique; Lede, Jacques [Laboratoire des Sciences du Genie Chimique, CNRS-ENSIC, 1, rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2006-12-15

    This paper reports the results of experiments performed on the flash pyrolysis of lignin samples submitted to controlled heat flux densities (short flashes of a concentrated radiation). Two types of lignins are used: Kraft and Organocell lignins. Microscopic observations of the reacted samples reveal the formation of an intermediate liquid compound that precedes the further formation of char, vapours and gases. The rates of mass loss and the production rates of the products are determined for both lignins. The results are compared to each other and to those obtained in former similar studies made with cellulose. The analyses of the produced gases reveal high syngas and H{sub 2} contents (respectively 87 and 50mol%). This composition is compared to results obtained in other different thermal conditions with lignins and other types of biomasses. The possible mechanism of hydrogen formation is further discussed. (author)

  18. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz

    2016-02-18

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  19. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    Science.gov (United States)

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  20. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  1. Nuclear Desalination Demonstration Project (NDDP) in India

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    2001-01-01

    In order to gainfully employ the years of experience and expertise in various aspects of desalination activity, BARC (India) has undertaken installation of a hybrid nuclear desalination plant coupled to 170 MW(e) PHWR station at Kalpakkam, Chennai in the Southeast coast of India. The integrated system, called the Nuclear Desalination Demonstration Project (NDDP), will thus meet the dual needs of process water for nuclear power plant and drinking water for the neighbouring people. NDDP aims for demonstrating the safe and economic production of good quality water by nuclear desalination of seawater. It comprises a 4500 m 3 /d Multistage Flash (MSF) and a 1800 m 3 /d Reverse Osmosis (RO) plant. MSF section uses low pressure steam from Madras Atomic Power Station (MAPS), Kalpakkam. The objectives of the NDDP (Kalpakkam) are as follows: to establish the indigenous capability for the design, manufacture, installation and operation of nuclear desalination plants; to generate necessary design inputs and optimum process parameters for large scale nuclear desalination plant; to serve as a demonstration project to IAEA welcoming participation from interested member states. The hybrid plant is envisaged to have a number of advantages: a part of high purity desalted water produced from MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; the RO plant will continue to be operated to provide the water for drinking purposes during the shutdown of the power station

  2. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes

    KAUST Repository

    Bundschuh, Jochen

    2015-03-01

    The study is dedicated to exploring different types of low-cost low-enthalpy geothermal and their potential integration with conventional thermal-based water desalination and treatment technologies to deliver energy efficient, environmentally friendly solutions for water desalination and treatment, addressing global water crises. Our in-depth investigation through reviews of various low-enthalpy geothermal and conventional thermal-based technologies suggest that the geothermal option is superior to the solar option if low-cost geothermal heat is available because it provides a constant heat source in contrast to solar. Importantly, the stable heat source further allows up-scaling (> 1000 m3/day), which is not currently possible with solar. Solar-geothermal hybrid constellations may also be suitable in areas where both sources are available. The review also discovers that the innovative Membrane distillation (MD) process is very promising as it can be used for many different water compositions, salinity and temperature ranges. Either the geothermal water itself can be desalinated/treated or the geothermal heat can be used to heat feed water from other sources using heat exchangers. However, there are only few economic analyses for large-scale MD units and these are based on theoretical models using often uncertain assumptions resulting in a large variety of results.

  3. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  4. Comparative productivity of distillation and reverse osmosis desalination using energy from solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Tleimat, B.W.; Howe, E.D.

    1982-11-01

    This paper presents comparative analyses of two methods for producing desalted water using the heat collected by a solar pond - the first by distillation, and the second by reverse osmosis. The distillation scheme uses a multiple-effect distiller supplied with steam generated in a flash boiler using heat from a solar pond. Solar pond water passes through a heat exchanger in the water system ahead of the flash boiler. The second scheme uses a similar arrangement to generate hydrocarbon vapor which drives a Rankine cycle engine. This engine produces mechanical/ electrical power for the RO plant. The analyses use two pond water temperatures -82.2/sup 0/C (180/sup 0/F) and 71.1/sup 0/C (160/sup 0/F) -- which seem to cover the range expected from salt-gradient ponds. In each case, the pond water temperature drops by 5.56/sup 0/C (10/sup 0/F) while passing through the vapor generator system. Results of these analyses show that, based on the assumptions made, desalted water could be produced by distillation at productivity rates much greater than those estimated for the RO plant.

  5. Comparative productivity of distillation and reverse osmosis desalination using energy from solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Tleimat, B.W.; Howe, E.D.

    1982-11-01

    This paper presents comparative analyses of two methods for producing desalted water using the heat collected by a solar pond - the first by distillation, and the second by reverse osmosis. The distillation scheme uses a multiple-effect distiller supplied with steam generated in a flash boiler using heat from a solar pond. Solar pond water passes through a heat exchanger in the water system ahead of the flash boiler. The second scheme uses a similar arrangement to generate hydrocarbon vapor which drives a Rankine cycle engine. This engine produces mechanical/ electrical power for the RO plant. The analyses use two pond water temperatures 82.2/sup 0/C (180/sup 0/F) and 71.1/sup 0/C (160/sup 0/F) - which seem to cover the range expected from salt-gradient ponds. In each case, the pond water temperature drops by 5.56/sup 0/C (10/sup 0/F) while passing through the vapor generator system. Results of these analyses show that, based on the assumptions made, desalted water could be produced by distillation at productivity rates much greater than those estimated for the RO plant.

  6. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  7. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  8. Development of a nuclear desalination plant using the SMART

    International Nuclear Information System (INIS)

    Kang, H. O.; Park, H. J.; Hwang, Y. D.; Lee, D. J.; Jang, M. H.

    2000-01-01

    Nuclear desalination simply replaces the fossil fuels used for seawater desalination as a nuclear energy. Since the SMART co-generation plant aims at the most effective use of thermal energy produced by SMART, the desalination process and the coupling method were determined through the thermodynamic analysis for the evaporation process, MSF and MED, and the various coupling method. The performance ratio of the SMART desalination plant was optimized through the sensitive analysis on water production cost with the performance ratio. Also thermodynamic energy balance calculation was performed on the SMART secondary cycle coupled with the desalination plant including steam transformer. In addition, the safety impact of the transients induced by the desalination plant was evaluated through the bounding approach of the key safety parameters of these transients

  9. Method for low temperature catalytic production of hydrogen

    Science.gov (United States)

    Mahajan, Devinder

    2003-07-22

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  10. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  11. Fermentation and Electrohydrogenic Approaches to Hydrogen Production (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Maness, P. C.; Thammannagowda, S.; Magnusson, L.; Logan, B.

    2010-06-01

    This work describes the development of a waste biomass fermentation process using cellulose-degrading bacteria for hydrogen production. This process is then integrated with an electrohydrogenesis process via the development of a microbial electrolysis cell reactor, during which fermentation waste effluent is further converted to hydrogen to increase the total output of hydrogen from biomass.

  12. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz

    2016-12-01

    Eukaryotic microorganisms are naturally present in many water resources and can enter, grow and colonize water treatment and transport systems, including reservoirs, pipes and premise plumbing. In this study, we explored the eukaryotic microbial community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters), reverse osmosis (RO) membrane filtration and post-treatment steps (e.g. remineralization). 454 pyrosequencing analysis of the 18S rRNA gene revealed a highly diverse (35 phyla) and spatially variable eukaryotic community during water treatment and distribution. The desalination plant feed water contained a typical marine picoeukaryotic community dominated by Stramenopiles, Alveolates and Porifera. In the desalination plant Ascomycota was the most dominant phylum (15.5% relative abundance), followed by Alveolata (11.9%), unclassified fungi clade (10.9%) and Porifera (10.7%). In the drinking water distribution network, an uncultured fungi phylum was the major group (44.0%), followed by Chordata (17.0%), Ascomycota (11.0%) and Arthropoda (8.0%). Fungi constituted 40% of the total eukaryotic community in the treatment plant and the distribution network and their taxonomic composition was dominated by an uncultured fungi clade (55%). Comparing the plant effluent to the network samples, 84 OTUs (2.1%) formed the core eukaryotic community while 35 (8.4%) and 299 (71.5%) constituted unique OTUs in the produced water at the plant and combined tap water samples from the network, respectively. RO membrane filtration treatment significantly changed the water eukaryotic community composition and structure, highlighting the fact that (i) RO produced water is not sterile and (ii) the microbial community in the final tap water is influenced by the downstream distribution system. The study

  13. Renewable hydrogen utilisation for the production of methanol.

    OpenAIRE

    Galindo, Cifre P; Badr, Ossama

    2007-01-01

    Electrolytic hydrogen production is an efficient way of storing renewable energy generated electricity and securing the contribution of renewables in the future electricity supply. The use of this hydrogen for the production of methanol results in a liquid fuel that can be utilised directly with minor changes in the existing infrastructure. To utilise the renewable generated hydrogen for production of renewable methanol, a sustainable carbon source is needed. This carbon can...

  14. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  15. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  16. Nuclear desalination for the northwest of Mexico

    International Nuclear Information System (INIS)

    Ortega C, R. F.

    2008-01-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m 3 for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  17. Effect of extrinsic lactic acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B9 (Canada)

    2009-03-15

    In this paper we report the effect of extrinsic lactic acid on hydrogen production from a starch-containing medium by a mixed culture. Study of the effect of addition of four metabolites, namely ethanol, lactic acid, butyric acid and acetic acid illustrated that lactic acid had a positive effect on both the maximum hydrogen production and hydrogen production rate. The addition of 10 mM lactic acid to a batch containing starch increased the hydrogen production rate and hydrogen production yield from 4.31 to 8.23 mL/h and 5.70 to 9.08 mmol H{sub 2}/g starch, respectively. This enhancement in hydrogen production rate and yield was associated with a shift from acetic acid and ethanol formation to formation of butyric acid as the predominant metabolite. The increase in hydrogen production yield was attributed to the increase in the available residual NADH for hydrogen production. When lactic acid was used as the sole carbon source, no significant hydrogen production was observed. (author)

  18. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  19. Creating load for new hydrogen production

    International Nuclear Information System (INIS)

    Smith, R.

    2006-01-01

    This presentation provides an update of the activities of the Hydrogen Village. The Hydrogen Village is a public-private partnership of approximately 40 companies with the goal of advancing awareness of the environmental, economic and social benefits of hydrogen and fuel cell technologies. The intent of the hydrogen village is to create a sustainable commercial market for these technologies within the Greater Toronto Area and to help to catalyze such markets in other areas

  20. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  1. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  2. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  3. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  4. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  5. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia...... and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative...

  6. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  7. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  8. Pyrolysis of biomass for hydrogen production

    International Nuclear Information System (INIS)

    Constantinescu, Marius; David, Elena; Bucura, Felicia; Sisu, Claudia; Niculescu, Violeta

    2006-01-01

    Biomass processing is a new technology within the area of renewable energies. Current energy supplies in the world are dominated by fossil fuels (some 80% of the total use of over 400 EJ per year). Nevertheless, about 10-15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. On average, in the industrialized countries biomass contributes some 9-13% to the total energy supplies, but in developing countries the proportion is as high as a fifth to one third. In quite a number of countries biomass covers even over 50 to 90% of the total energy demand. Classic application of biomass combustion is heat production for domestic applications. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1-2 decades (partly depending on price developments with petroleum). (authors)

  9. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  10. Science Communication and Desalination Research: Water Experts' Views

    Science.gov (United States)

    Schibeci, R. A.; Williams, A. J.

    2014-01-01

    Access to clean drinking water is a major problem for many people across the world. Desalination is being increasingly used in many countries to provide this important resource. Desalination technology has received varying degrees of support in the communities in which this technology has been adopted. Productive communication suggests we…

  11. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  12. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  13. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  14. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  15. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  16. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  17. Permeability of hydrogen isotope through Hastelloy XR in the HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Inagaki, Yoshiyuki; Ogawa, Masuro

    2000-01-01

    Permeation of hydrogen isotope through a high-temperature alloy as used heat exchanger and reformer tubes is an important problem in the hydrogen production system connected to be the high-temperature engineering test reactor (HTTR). The objective of this test is to investigate a governing process of hydrogen permeation and effective methods of reducing an amount of permeated hydrogen isotope through the tubes. This paper described the governing process of hydrogen permeation in the HTTR hydrogen production system and permeability of hydrogen and deuterium of Hastelloy XR. A diffusion process in a solid metal limited the amount of permeated hydrogen isotope in the HTTR hydrogen production system. An activation energy for hydrogen permeation of Hastelloy XR was almost equal to that of Hastelloy X. It was found that an oxide film produced during 140 h heating under helium gas circumference has an effect of reducing the amount of permeated hydrogen isotope. We obtained the permeability of hydrogen and deuterium for Hastelloy XR as follows. Hydrogen : Temperature=570-820degC, Partial pressure=1.06 x 10 2 - 3.95 x 10 3 Pa. Activation energy, E 0 = 67.2 ± 1.2 (kJ·mol -1 ). Pre-exponential factor, F 0 = (1.0 ± 0.2) x 10 -4 (cm 3 (NTP)·cm -1 ·s -1 ·Pa -0.5 ). Deuterium : Temperature = 670 - 820degC, Partial pressure : 9.89 x 10 2 - 4.04 x 10 3 Pa. Activation energy, E 0 = 76.6 ± 0.5 (kJ·mol -1 ). Pre-exponential factor, F 0 = (2.5 ± 0.3) x 10 -4 (cm 3 (NTP)·cm -1 ·s -1 ·Pa -0.5 ). (author)

  18. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  19. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  20. Implication of dual-purpose nuclear desalination plants

    International Nuclear Information System (INIS)

    Kutbi, I.I.

    1983-01-01

    Available dual purpose nuclear desalination schemes are reviewed. Three specific issues namely, impact of availability and reliability of the desalination stage of the plant, integration of the desalination and power production stages and new safety concerns of dual system, relating to desalination schemes are discussed. Results of operational and reliability studies of nuclear power stations, reverse osmosis and multistage flash distillation desalination plants are considered. Operational aspects of nuclear-multistage flash distillation, nuclear-reverse osmosis and nuclear-multistage flash distillation-reverse osmosis are compared. Concludes that the combined nuclear-multistage flash distillation-reverse osmosis plant arrangement permits very large production capacity, high availability, improvement of plant reliability and proovision of savings on the cost of water and power produced. 23 Ref

  1. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  2. Hydrogen from coal: Production and utilisation technologies

    International Nuclear Information System (INIS)

    Shoko, E.; McLellan, B.; Dicks, A.L.; da Costa, J.C. Diniz

    2006-01-01

    Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H 2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (author)

  3. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  4. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    Science.gov (United States)

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    International Nuclear Information System (INIS)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-01-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  6. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  7. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  8. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  9. Carbon dioxide utilization and hydrogen production by photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Katsuhiro [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan); Takasaki, Koichi [Tokyo Gas Co. Ltd., Frontier Technology Research Inst., Yokohama (Japan)]|[RITE, Project Center for CO2 Fixation and Utilization, Minato, Tokyo (Japan); Miyake, Jun; Asada, Yasuo [National Institute of Bioscience and Human-Technology, AIST/MITI, Tsukuba, Ibaraki (Japan)

    1999-07-01

    The solar energy is the largest energy source in the world. Using the photosynthesis, we will be able utilise the huge amount of carbon dioxide. Microalgae, cyanobacteria, photosynthetic bacteria belong to photosynthetic microorganisms, which assimilate carbon dioxide during the photosynthesis. One of the cyanobacteria, Spirulina platensis accumulates carbohydrate photoautotrophically up to 50% of the dry cell weight in the nitrogen-deficient condition. Under an anaerobic condition in the dark, it is degraded into organic compounds such as organic acids, alcohol and sugar. As the hydrogen gas is also evolved in this process, the participation of hydrogenase (Hydrogen producing enzyme) has been suggested in this metabolism. We have investigated several conditions of evolution of hydrogen and production of organic compounds. The bacterial concentration initial pH and temperature had significant effects on hydrogen evolution as well as production of organic compounds. When the bacterial cell concentration was high, the pH of fermentation products was reduced to acidic and the evolution of hydrogen tended to be inhibited. The profiles of fermentation products varied according to the culture condition. The increase of organic acids were remarkable in the inhibitory condition for hydrogen production, such as acidic pH and high temperature. Furthermore these fermentation products were converted into hydrogen gas by using photosynthetic bacterium Rhodobacter sphaeroides RV with light energy. The composition of evolved gas was mainly hydrogen and carbon dioxide, and their contents were 78% and 10%, respectively. The total amount of evolved hydrogen was nearly equal to the estimated, value which was calculated by the degradation of each organic acid. Combining this system with the photosynthesis of cyanobacteria, we could accomplish the production of hydrogen by solar energy, carbon dioxide and water. And we demonstrated that the evolved gas could be directly supplied to the

  10. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  11. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Water effect in hydrogen production from methane

    Energy Technology Data Exchange (ETDEWEB)

    Acha, E.; Requies, J.; Barrio, V.L.; Cambra, J.F.; Gueemez, M.B.; Arias, P.L. [Chemical Engineering and Environmental Department, University of the Basque Country (UPV/EHU) 48013 Bilbao (Spain)

    2010-10-15

    Ni/MgO and Ni/Al{sub 2}O{sub 3} catalysts were prepared, by wet impregnation, to compare their performance in hydrogen production from methane CPO, wet-CPO and SR. The catalytic activity was tested at 1073 K, 1 bar and 600-1200 h{sup -1}. Fresh and used catalysts were characterized by different techniques. Both supports, as expected, had a low surface area (27.1 m{sup 2}/g MgO and 6.2 m{sup 2}/g {alpha}-Al{sub 2}O{sub 3}), as determined by BET method. The images obtained with SEM and TEM revealed that the Ni was more dispersed in the MgO support than in the Al{sub 2}O{sub 3} one. By XRD a strong interaction, as solid-solution, between NiO and MgO was found in the 30Ni/MgO and 40Ni/MgO catalysts. The fresh 40Ni/Al{sub 2}O{sub 3} reduced catalyst was partially reduced. But after the activity tests the stability of the reduced Ni became bigger. Some Ni sintering was also observed in the 40Ni/Al{sub 2}O{sub 3} after the wet-CPO and SR tests. The behaviour of the three catalysts was very good in CPO methane conversion (90-93%), but the gradual increase of the steam to carbon ratio, wet-CPO and SR, affected negatively the conversion. (author)

  13. Study of hydrogen production from wind power in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Aiche-Hamane, Lilia; Belhamel, Maiouf; Benyoucef, Boumedienne; Hamane, Mustapha [Centre for Development of Renewable Energies (CDER), Alger (Algeria)

    2010-07-01

    An overview of the potentiality of hydrogen production from wind power in Algeria has been given in this study. Wind resource assessment has been presented in cartographic form and windy sites have been identified for wind power application. A system constituted by a wind turbine, an electrolyser and a power conditioning device have been proposed for the study of hydrogen production in the southwest region of Algeria. For this purpose, the transient system simulation program (TRNSYS) have been used. The results obtained showed the sensitivity of hydrogen production to the wind resource trend and the importance of optimisation of the electrolyser according to the power produced by the wind turbine. (orig.)

  14. Microelement composition of the products of coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A.P.; Laktionova, N.V.; Titova, T.A.; Tsehdehvsuren, Ts.

    1983-11-01

    Content of microelements in the liquid products of coal hydrogenation was studied by a method developed by the Fossil Fuel Institute utilizing emission spectral analysis. The content of microelements and the limits of their variations in the liquid hydrogenation products were one order lower than in the starting coals. The basic mass of the microelements in the starting coals was concentrated in the solid residue of hydrogenation. The liquid products contained lead, nickel, cobalt, copper, manganese and gallium within the same limits as in Soviet crude oil, but a higher content of barium and lower content of vanadium were observed. (11 refs.) (In Russian)

  15. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied

  16. Carbonate thermochemical cycle for the production of hydrogen

    Science.gov (United States)

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  17. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  18. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  19. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-01-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  20. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  1. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  2. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  3. Stacked microbial desalination cells to enhance water desalination efficiency.

    Science.gov (United States)

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  4. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Dasuki, A.S.; Rahman, M.; Nuriman; Sudarto

    1997-01-01

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  5. Nuclear energy and water desalination

    International Nuclear Information System (INIS)

    Leprince-Ringuet, L.

    1976-01-01

    A short state-of-the-art survey is given of desalination methods, the involvement of nuclear power reactors in some desalination process, the cost of certain methods, and quantities produced and required in different parts of the world

  6. Economic Considerations of Nuclear Desalination in Korea

    International Nuclear Information System (INIS)

    Man-Ki, Lee; Seung-Su, Kim

    2006-01-01

    The objective of this study is to assess the economics of SMART (System-integrated Modular Advanced Reactor) desalination plant in Korea through DEEP (Devaluation Economic Evaluation Program). SMART is mainly designed for the dual purpose of producing water and electricity with the total capacity of 100 MWe which 10 MWe is used for water production and the remains for the electric generation. SMART desalination plant using MED (Multi-Effect Distillation) process is in the stage of the commercial development and its cost information is also being accumulated. In this circumstances, the economic assessment of nuclear desalination by SMART and the effect of water(or electric) supply price to the regional economy is meaningful to the policy maker. This study is focused on the case study analysis about the economics of SMART desalination plant and the meanings of the case study result. This study is composed of two parts. One is prepared to survey the methodology regarding cost allocation between electricity and water in DEEP and the other is for the economic assessment of SMART. The cost allocation methods that have been proposed or used can be classified into two main groups, one is the cost prorating method and the other is the credit method. The cost of an product item in the dual-purpose plant can be determined differently depending on the costing methods adopted. When it comes to applying credit method adopted in this thesis, the production cost of water depends on what kind of the power cost will be chosen in calculating the power credit. This study also analyses the changes of nuclear desalination economics according to the changes of the important factors such as fossil fuel price. I wish that this study can afford to give an insight to the policy maker about SMART desalination plant. (authors)

  7. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  8. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  9. How green are the hydrogen production processes?;Les methodes de production d'hydrogene sont-elles vertes?

    Energy Technology Data Exchange (ETDEWEB)

    Miele, Ph. [Lyon-1 Univ. Claude Bernard, 69 (France); CNRS UMR 5615, Lab. des Multimateriaux et Interfaces, 69 - Villeurbanne (France); Demirci, U.B.

    2010-05-15

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  10. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  11. Exergetic life cycle assessment of hydrogen production from renewables

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38

  12. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    Science.gov (United States)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.

  13. Molecular Transporters for Desalination Applications

    Science.gov (United States)

    2014-08-02

    May-2009 17-Feb-2014 Approved for Public Release; Distribution Unlimited Molecular transporters for desalination applications The views, opinions and...12211 Research Triangle Park, NC 27709-2211 desalination biomimetric membranes activated chemical transport REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Molecular transporters for desalination applications Report Title The primary goal of the ‘Molecular Transporter’ program was to develop a precise

  14. Hydrogen production from algal biomass - Advances, challenges and prospects.

    Science.gov (United States)

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  16. Seawater desalination. Conventional and renewable energy processes

    Energy Technology Data Exchange (ETDEWEB)

    Cipollina, Andrea; Micale, Giorgio; Rizzuti, Lucio (eds.) [Univ. degli Studi, Palermo (Italy). Dipt. di Ingegneria Chimica dei Processi e dei Materiali

    2009-07-01

    A growing proportion of the world's population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. ''Seawater Desalination'' presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply. (orig.)

  17. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  18. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  19. A balanced energy budget plan for hydrogen production and distribution

    Science.gov (United States)

    Williscroft, R. G.

    An integrated plan for hydrogen production and distribution within a balanced energy budget is outlined. Primary energy source is the sun, concentrated in earth orbit by satellite and beamed to selected planetside marine locations for hydrogen production from sea water. Primary distribution via already existent natural gas pipeline networks upgraded for hydrogen transmission is augmented by local network extensions and by surface marine transport using modified LNG carriers. The economic, social and environmental impact of this integrated approach is examined in its relationship to continued reliance upon fossil fuel and expanded use of nuclear fission, to increasing reliance upon so-called alternative energy sources, and to the forthcoming nuclear fusion option.

  20. Hydrogenation of carbon dioxide for methanol production

    NARCIS (Netherlands)

    van der Ham, Aloysius G.J.; van den Berg, Henderikus; Benneker, A.; Simmelink, G.; Timmer, J.; van Weerden, S.

    2012-01-01

    A process for the hydrogenation of CO2 to methanol with a capacity of 10 kt/y methanol is designed in a systematic way. The challenge will be to obtain a process with a high net CO2 conversion. From initially four conceptual designs the most feasible is selected and designed in more detail. The

  1. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  2. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.H.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Lammers, H.; Verver, A.B.; Wessling, Matthias

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a

  3. Solar driven membrane pervaporation for desalination processes

    NARCIS (Netherlands)

    Zwijnenberg, Harmen Jan; Koops, G.H.; Wessling, Matthias

    2005-01-01

    We describe details of a solar driven pervaporation process for the production of desalinated water from highly contaminated waters. The membrane material is a polyetheramide-based polymer film of 40 ¿m thickness. This Solar Dew® membrane is used in a tubular configuration in a direct solar membrane

  4. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  5. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  6. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  7. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

    Science.gov (United States)

    Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.

    2015-01-01

    The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479

  8. Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

    2012-01-01

    Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

  9. Inter-esterified palm products as alternatives to hydrogenation.

    Science.gov (United States)

    Idris, Nor Aini; Dian, Noor Lida Habi Mat

    2005-01-01

    Inter-esterification is one of the processes used to modify the physico-chemical characteristics of oils and fats. Inter-esterification is an acyl-rearrangement reaction on the glycerol molecule. On the other hand, hydrogenation involves addition of hydrogen to the double bonds of unsaturated fatty acids. Due to health implications of trans fatty acids, which are formed during hydrogenation, the industry needs to find alternatives to hydrogenated fats. This paper discusses some applications of inter-esterified fats, with particular reference to inter-esterified palm products, as alternatives to hydrogenation. Some physico-chemical properties of inter-esterified fats used in shortenings are discussed. With inter-esterification, more palm stearin can be incorporated in vanaspati. For confectionary fats and infant formulations, enzymatic inter-esterification has been employed.

  10. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico; Plan de desalinizacion con reactores nucleares como parte de un programa de desarrollo sustentable en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rojas A, O; Calleros M, G., E-mail: oziel.rojas.siimisa@gmail.com [Soluciones en Instrumentacion Integral y Mantenimiento Industrial y Servicios, S. A. de C. V. (Mexico)

    2016-09-15

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  11. Use of reactor plants of enhanced safety for sea water desalination, industrial and district heating

    International Nuclear Information System (INIS)

    Panov, Yu.; Polunichev, V.; Zverev, K.

    1997-01-01

    Russian designers have developed and can deliver nuclear complexes to provide sea water desalination, industrial and district heating. This paper provides an overview of these designs utilizing the ABV, KLT-40 and ATETS-80 reactor plants of enhanced safety. The most advanced nuclear powered water desalination project is the APVS-80. This design consists of a special ship equipped with the distillation desalination plant powered at a level of 160 MW(th) utilizing the type KLT-40 reactor plant. More than 20 years of experience with water desalination and reactor plants has been achieved in Aktau and Russian nuclear ships without radioactive contamination of desalinated water. Design is also proceeding on a two structure complex consisting of a floating nuclear power station and a reverse osmosis desalination plant. This new technology for sea water desalination provides the opportunity to considerably reduce the specific consumption of power for the desalination of sea water. The ABV reactor is utilized in the ''Volnolom'' type floating nuclear power stations. This design also features a desalinator ship which provides sea water desalination by the reverse osmosis process. The ATETS-80 is a nuclear two-reactor cogeneration complex which incorporates the integral vessel-type PWR which can be used in the production of electricity, steam, hot and desalinated water. (author). 9 figs

  12. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  13. Hydrogen and syngas production by superadiabatic combustion – A review

    International Nuclear Information System (INIS)

    Abdul Mujeebu, Muhammad

    2016-01-01

    Highlights: • A review on application of superadiabatic combustion for H 2 and syngas production. • Conversions of hydrocarbon fuels including biomass and hydrogen sulfide are focused. • It covers non-catalytic TPOX, HFC, hybrid PM-catalyst reactor and SAC without PM. • Separate sections deal the numerical modeling trends and the R&D challenges ahead. • There is wide scope for further research on SAC reactors with and without PM. - Abstract: The application of superadiabatic combustion (SAC) technology for hydrogen and syngas production has been a focus of intensive research in the recent past. A lot of researches have been reported on the conversion of various gaseous and liquid hydrocarbon fuels, hydrogen sulfide and biomass into hydrogen or syngas, by using SAC. The porous medium combustion has been recognized as the most feasible technique to realize SAC, and few recent studies reported to have achieved SAC even without a porous medium (PM). This article compiles the works done so far in this area and suggests future directions. Following the general background, the history of hydrogen/syngas production by SAC is provided. Further developments are organized in the subsequent sections, which include all the published works on SAC-based hydrogen production from hydrocarbon fuels, hydrogen sulfide and biomass. The works on hybrid PM-catalyst filtration combustion and numerical modeling of SAC-based hydrogen/syngas production are discussed in separate sections. Subsequently, the development of SAC reactor without PM is presented, followed by summary and conclusion. This review reveals that there is a wide scope for future research particularly on hybrid-filtration combustion, biomass gasification, hybrid PM-Catalyst reactors, SAC reactors without PM, and on development of efficient reformers for practical stationary and portable applications. Scope is also open for detailed characterizations, both experimental and numerical, with various PM materials and

  14. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  15. Environmental impact of brine discharge from desalination plant

    OpenAIRE

    Gregorič, Elio

    2016-01-01

    Population growth demands constant increase in drinkable water production. Many developing countries have a shortage of fresh water so they have to tap into alternative water sources. Desalination technologies provide the possibility to produce fresh water from sea or brackish water. Every technological process has its by-products; the major one in desalination is the rejected brine. This thesis presents some research made on the influence of brine discharge on the marine environments and ...

  16. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  17. Technical and economic evaluation of nuclear seawater desalination systems

    International Nuclear Information System (INIS)

    Grechko, A.G.; Romenkov, A.A.; Shishkin, V.A.

    1998-01-01

    The IAEA Cogeneration/Desalination Cost Model spreadsheets were used for the economic evaluation of sea water desalination plants coupled with small and medium size nuclear reactors developed in RDIPE. The results of calculations have shown that the cost of potable water is equal to or even below 1$/m 3 . This is very close to similar indices of the best fossil driven desalination plants. For remote and difficult-to-access regions, where the transportation share contributes significantly to the product water cost at fossil plants, the nuclear power sources of these reactor types are cost-efficient and can successfully compete with fossil power sources. (author)

  18. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  19. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Loubette, N.; Junker, M.

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  20. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Nicolas Loubette; Michel Junker

    2006-01-01

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water bio-photolysis, photo-fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are explained. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  1. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  2. Energy Implications of Seawater Desalination (Invited)

    Science.gov (United States)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    rise during droughts, when runoff, and thus power production, is constrained and electricity demands are high. Additionally, electricity prices are projected to rise in many regions to maintain and replace aging transmission and distribution infrastructure, install advanced metering infrastructure, comply with once-through cooling regulations, meet new demand growth , and increase renewable energy production. While rising electricity prices will affect the price of all water sources, they will have a greater impact on those that are the most energy intensive, like desalination. The high energy requirements of seawater desalination also raise concerns about greenhouse gas emissions. In 2006, California lawmakers passed the Global Warming Solutions Act, or Assembly Bill 32, which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. Thus, the state has committed itself to a program of steadily reducing its greenhouse gas emissions in both the short- and long-term, which includes cutting current emissions and preventing future emissions associated with growth. Desalination - through increased energy use - can cause an increase in greenhouse gas emissions, further contributing to the root cause of climate change and running counter to the state's greenhouse gas reduction goals.

  3. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  4. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  5. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianzheng; Zhu, Gefu; Ren, Nanqi; Bo, Lixin; He, Junguo [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering; Li, Baikun [University of Connecticut, Storrs, CT (United States). Department of Civil and Environmental Engineering

    2007-10-15

    Hydrogen production from diluted molasses by anaerobic fermentation bacteria was investigated in a three-compartment anaerobic baffled reactor (ABR) with an effective volume of 27.48 L. After being inoculated with aerobic activated sludge and operated at chemical oxygen demand (COD) of 5000 mg/L and temperature of 35 C for 26 days, the ABR achieved stable ethanol-type fermentation. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1254, 2053, and 2761 mg/L in the three compartments, respectively. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.3-4.4, -241 to -249mV, and 306-334mgCaCO{sub 3}/L, respectively. The hydrogen yield of the ABR was 32.51 L/d at the stable operation status, specific hydrogen production rate of anaerobic activated sludge was 0.13 L/g MLVSS d, and the substrate conversion rate was 0.13 L/g COD. Hydrogen yields, fermentation types, and acclimatization durations varied in each compartment, with the 1st compartment having lowest hydrogen yield but longest acclimatization duration and the 2nd and 3rd compartments having higher hydrogen yields but shorter acclimatization durations. The study found that the individual compartment configuration in the ABR system provided a favorable environment for different types of anaerobic bacteria. Compared with complete stirring tank reactor (CSTR), the ABR system had a better operation stability and microbial activity, which led to higher substrate conversion rate and hydrogen production ability. (author)

  6. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  7. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  8. Proceedings of Trombay symposium on desalination and water reuse

    International Nuclear Information System (INIS)

    1999-12-01

    The symposium Desalination and Water Reuse gave an overview of desalination technologies, R and D on desalination, a few case studies of large size desalination plants and desalination using nuclear energy. The papers related to INIS are indexed separately

  9. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  10. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  11. Hydrogen and oxygen production with nuclear heat

    International Nuclear Information System (INIS)

    Barnert, H.

    1979-09-01

    After some remarks on the necessity of producing secondary energy sources for the heat market, the thermodynamic fundamentals of the processes for producing hydrogen and oxygen from water on the basis of nuclear thermal energy are briefly explained. These processes are summarized as one class of the 'thermochemical cycle process' for the conversion of thermal into chemical energy. A number of thermochemical cycle processes are described. The results of the design work so far are illustrated by the example of the 'sulphuric acid hybrid process'. The nuclear heat source of the thermochemical cycle process is the high-temperature reactor. Statements concerning rentability are briefly commented upon, and the research and development efforts and expenditure required are sketched. (orig.) 891 GG/orig. 892 MB [de

  12. Future prospects for production of methanol and hydrogen from biomass

    Science.gov (United States)

    Hamelinck, Carlo N.; Faaij, André P. C.

    Technical and economic prospects of the future production of methanol and hydrogen from biomass have been evaluated. A technology review, including promising future components, was made, resulting in a set of promising conversion concepts. Flowsheeting models were made to analyse the technical performance. Results were used for economic evaluations. Overall energy efficiencies are around 55% HHV for methanol and around 60% for hydrogen production. Accounting for the lower energy quality of fuel compared to electricity, once-through concepts perform better than the concepts aimed for fuel only production. Hot gas cleaning can contribute to a better performance. Systems of 400 MW th input produce biofuels at US 8-12/GJ, this is above the current gasoline production price of US 4-6/GJ. This cost price is largely dictated by the capital investments. The outcomes for the various system types are rather comparable, although concepts focussing on optimised fuel production with little or no electricity co-production perform somewhat better. Hydrogen concepts using ceramic membranes perform well due to their higher overall efficiency combined with modest investment. Long-term (2020) cost reductions reside in cheaper biomass, technological learning, and application of large scales up to 2000 MW th. This could bring the production costs of biofuels in the US$ 5-7/GJ range. Biomass-derived methanol and hydrogen are likely to become competitive fuels tomorrow.

  13. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  14. Fermentative Hydrogen Production From Food Waste Without Inocula

    Science.gov (United States)

    Shimizu, S.; Fujisawa, A.; Mizuno, O.; Kameda, T.; Yoshioka, T.

    2008-02-01

    The kind of seed microorganisms and its growth conditions are important factors for the hydrogen fermentation. However, there are many kinds of bacteria in food waste, and it is necessary to know their behavior if it is used as a substrate. Therefore, hydrogen fermentation of food waste was investigated in the absence of inocula with an initial pH varying from 5 to 9 and in a temperature range between 22 to 50 °C. Hydrogen production occurred when the initial pH of the solution containing the food waste was adjusted to 7-9 and the temperature was adjusted to 22 or 35 °C (maximum production was 40 ml-H2/g-TS at an initial pH of 9 and a temperature of 35 °C). However, the hydrogen production stopped when the pH decreased due to the accumulation of organic acids. In the next step, the pH was controlled by the addition of a NaOH solution between 5.0 and 9.0. When the pH was controlled between 5.0-6.0, the hydrogen production increased to a maximum of 90 ml-H2/g-TS at a pH of 5.5 and a temperature of 35 °C; more than 4 times more than for the sample without pH adjustment, due to the acceleration of butyrate fermentation.

  15. Experimental design methods for fermentative hydrogen production: A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianlong; Wan, Wei [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2009-01-15

    This review summarized the experimental design methods used to investigate the effects of various factors on fermentative hydrogen production processes, including one-factor-at-a-time design, full factorial design, Taguchi design, Plackett-Burman design, central composite design and Box-Behnken design. Each design method was briefly introduced, followed by the introduction of its analysis. In addition, the advantages and disadvantages of each design method were briefly discussed. Moreover, the application of each design method to the study of fermentative hydrogen production was analyzed and discussed. Based on the discussion in this review, an experimental design strategy for optimizing fermentative hydrogen production processes was proposed. In the end, the software packages that can carry out the above mentioned factorial design and analysis were briefly introduced. (author)

  16. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  17. A study of wind hydrogen production of systems for Malaysia

    International Nuclear Information System (INIS)

    Ibrahim, M.Z.; Kamaruzzaman Sopian; Wan Ramli Wan Daud; Othman, M.Y.; Baharuddin Yatim; Veziroglu, T.N.

    2006-01-01

    Recently, Malaysia is looking into the potential of using hydrogen as future fuel. By recognizing the potential of hydrogen fuel, the government had channeled a big amount of money in funds to related organizations to embark on hydrogen research and development programmed. The availability of indigenous renewable resources, high trade opportunities, excellent research capabilities and current progress in hydrogen research at the university are some major advantages for the country to attract government and industry investment in hydrogen. It is envisaged that overall energy demand in Malaysia as stated in the Eighth Malaysia Plan (EMP) report will increase by about 7.8 percent per annum in this decade at the present economic growth. Considering the vast potential inherent in renewable energy (RE), it could be a significant contributor to the national energy supply. Malaysia had been blessed with abundant and varied resources of energy, nevertheless, concerted efforts should be undertaken to ensure that the development of energy resources would continue to contribute to the nation's economic expansion. In this regard, an initial study has been carried out to see the available potential of wind energy towards the hydrogen production, that could be utilized in various applications particularly in Malaysian climate condition via a computer simulation (HYDROGEMS), which built for TRNSYS (a transient system simulation program) version 15. The system simulated in this study consist of one unit (1 kW) wind turbine, an electrolyze (1 kW), a hydrogen (H 2 ) storage tank, and a power conditioning system. A month hourly data of highest wind speed is obtained from the local weather station that is at Kuala Terengganu Air Port located at 5''o 23'' latitude (N) and 103''o 06'' Longitude (E). The results show, wind energy in Malaysian Climate has a potential to generate hydrogen with the minimum rate approximately 9 m 3 /hr and storage capacity of 60 Nm 3 , State of Charge (SOC

  18. Coupling the modular helium reactor to hydrogen production processes

    International Nuclear Information System (INIS)

    Richards, M.B.; Shenoy, A.S.; Schultz, K.R.

    2004-01-01

    Steam reforming of natural gas (methane) currently produces the bulk of hydrogen gas used in the world today. Because this process depletes natural gas resources and generates the greenhouse gas carbon dioxide as a by-product, there is a growing interest in using process heat and/or electricity generated by nuclear reactors to generate hydrogen by splitting water. Process heat from a high temperature nuclear reactor can be used directly to drive a set of chemical reactions, with the net result of splitting water into hydrogen and oxygen. For example, process heat at temperatures in the range 850 deg C to 950 deg C can drive the sulphur-iodine (S-I) thermochemical process to produce hydrogen with high efficiency. The S-I process produces highly pure hydrogen and oxygen, with formation, decomposition, regeneration, and recycle of the intermediate chemical reagents. Electricity can also 1)e used directly to split water, using conventional, low-temperature electrolysis (LTE). Hydrogen can also be produced with hybrid processes that use both process heat and electricity to generate hydrogen. An example of a hybrid process is high-temperature electrolysis (HTE), in which process heat is used to generate steam, which is then supplied to an electrolyzer to generate hydrogen. This process is of interest because the efficiency of electrolysis increases with temperature. Because of its high temperature capability, advanced stage of development relative to other high-temperature reactor concepts, and passive-safety features, the modular helium reactor (MHR) is well suited for producing hydrogen using nuclear energy. In this paper we investigate the coupling of the MHR to the S-I process, LTE, and HTE. These concepts are referred to as the H2-MHR. (author)

  19. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    Energy Technology Data Exchange (ETDEWEB)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production

  20. Desalination using Membrane Distillation : Experimental and Numerical Study

    OpenAIRE

    Kullab, Alaa

    2011-01-01

    Desalination has been increasingly adopted over the last decades as an option, and sometimes as a necessity to overcome water shortages in many areas around the world. Today, several thermal and physical separation technologies are well established in large scale production for domestic and industrial purposes.  Membrane distillation is a novel thermally-driven process that can be adapted effectively for water desalination or water treatment in industrial applications, due to its potential lo...

  1. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  2. Desalination: Status and Federal Issues

    Science.gov (United States)

    2009-12-30

    waste concentrate or brine . There are a number of desalination methods. Two processes, thermal (e.g., distillation) and membrane processes (e.g...The research program is required to address alternative water supply technology issues, including desalination , brine management, and environmental... desalination and brine disposal components—$20 million for the Rancho California Water District (CA)3 and $46 million in the Santa Ana watershed (CA

  3. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  4. Realistic costs of wind-hydrogen vehicle fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Linnemann, J.; Steinberger-Wilckens, R. [PLANET - Planungsgruppe Energie und Technik GbR, P.O. Box 4003, D-26030 Oldenburg (Germany)

    2007-07-15

    Electricity grids with a high penetration of fluctuating energy production from wind and solar energy sources bear a risk of electricity over-production. A surplus of renewable energy can arise at times of high production when the energy volume cannot be absorbed by the electricity grid. Furthermore, the control of the stochastic power fluctuations has to be addressed since these will result in changes to grid stability. Producing hydrogen from excess electricity is one approach to solve these problems. This hydrogen can either be sold outside the electricity market, for instance as vehicle fuel, or re-converted into electricity, for instance as a means of controlling wind power output. This paper describes two different wind-hydrogen systems and analyses the ensuing costs of hydrogen per unit of energy service (i.e. kWh and Nm{sup 3}). If hydrogen is to represent a practical fuel alternative, it has to compete with conventional energy carriers. If this is not possible on strictly (micro-) economic terms, at least a macro-economic calculation, in this case including all external costs of energy services, needs to show competitiveness. (author)

  5. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  6. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  7. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu [Knoxville, TN

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  8. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  9. Hydrogen production from agricultural waste by dark fermentation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xin Mei; Trably, Eric; Latrille, Eric; Carrere, Helene; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, F-11100 Narbonne (France)

    2010-10-15

    The degradation of the natural environment and the energy crisis are two vital issues for sustainable development worldwide. Hydrogen is considered as one of the most promising candidates as a substitute for fossil fuels. In this context, biological processes are considered as the most environmentally friendly alternatives for satisfying future hydrogen demands. In particular, biohydrogen production from agricultural waste is very advantageous since agri-wastes are abundant, cheap, renewable and highly biodegradable. Considering that such wastes are complex substrates and can be degraded biologically by complex microbial ecosystems, the present paper focuses on dark fermentation as a key technology for producing hydrogen from crop residues, livestock waste and food waste. In this review, recent findings on biohydrogen production from agricultural wastes by dark fermentation are reported. Key operational parameters such as pH, partial pressure, temperature and microbial actors are discussed to facilitate further research in this domain. (author)

  10. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  11. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2004-04-01

    The preparation and performance of membranes for application to hydrogen separation from coal-derived gas is described. The membrane material investigated was dense amorphous silica deposited on a suitable support by chemical vapor deposition (CVD). Two types of support materials were pursued. One type consisted of a two-layer composite, zeolite silicalite/{alpha}-Al{sub 2}O{sub 3}, in the form of tubes approximately 0.7 cm in diameter. The other type was porous glass tubes of diameter below 0.2 cm. The first type of support was prepared starting from {alpha}-Al{sub 2}O{sub 3} tubes of 1{micro}m mean pore diameter and growing by hydrothermal reaction a zeolite silicalite layer inside the pores of the alumina at the OD side. After calcination to remove the organic template used in the hydrothermal reaction, CVD was carried out to deposit the final silica layer. CVD was carried out by alternating exposure of the surface with silicon tetrachloride and water vapor. SEM and N2 adsorption measurements were employed to characterize the membranes at several stages during their preparation. Permeation measurements of several gases yielded H{sub 2}:N{sub 2} ideal selectivity of 150-200 at room temperature declining to 110 at 250 C. The second type of support pursued was porous glass tubes prepared by a novel extrusion technique. A thick suspension of borosilicate glass powder in a polyethersulfone solution was extruded through a spinneret and after gelation the glass-polymer tube was heat treated to obtain a gas-tight glass tube. Leaching of the glass tube in hot water yielded connected pores with diameter on the order of 100 nm. CVD of the final silica layer was not carried out on these tubes on account of their large pore size.

  12. Methane and hydrogen production from crop biomass through anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, O.

    2011-07-01

    The feasibility of methane and hydrogen production from energy crops through anaerobic digestion was evaluated in this thesis. The effects of environmental conditions, e.g. pH and temperature, as well as inoculum source on H{sub 2} yield were studied in batch assays. In addition, the effects of pre-treatments on methane and hydrogen yield as well as the feasibility of two-stage H{sub 2} + CH{sub 4} production was evaluated. Moreover, the effect of storage on methane yield of grasses was evaluated. Monodigestion of grass silage for methane production was studied, as well as shifting the methanogenic process to hydrogenic. Hydrogen production from grass silage and maize was shown to be possible with heat-treated inoculum in batch assays, with highest H{sub 2} yields of 16.0 and 9.9 ml gVS{sub added}-1 from untreated grass silage and maize, respectively. Pre-treatments (NaOH, HCl and water-extraction) showed some potential in increasing H{sub 2} yields, while methane yields were not affected. Two-stage H{sub 2} + CH{sub 4} producing process was shown to improve CH{sub 4} yields when compared to traditional one-stage CH{sub 4} process. Methane yield from grass silage monodigestion in continuously stirred tank reactor (CSTR) with organic loading rate (OLR) of 2 kgVS (m3d)-1 and hydraulic retention time (HRT) of 30 days was at most 218 l kgVS{sub fed}-1. Methanogenic process was shifted to hydrogenic by increasing the OLR to 10 kgVS (m3d)-1 and shortening the HRT to 6 days. Highest H{sub 2} yield from grass silage was 42 l kgVS{sub fed}-1 with a maximum H{sub 2} content of 24 %. Energy crops can be successfully stored even for prolonged periods without decrease in methane yield. However, under sub-optimal storage conditions loss in volatile solids (VS) content and methane yield can occur. According to present results energy crops such as grass silage and maize can be converted to hydrogen or methane in AD process. Hydrogen energy yields are typically only 2-5 % of the

  13. A Feasibility Study of Optimal Nuclear Desalination Process for Industrial Water Supply in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyunchul; Han, Kiin [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-05-15

    Seawater Desalination can be an alternative technology for water production based on salt separation from seawater. Seawater desalination can produce freshwater with necessary quality by choosing an appropriate desalination process and posttreatment methods of the product water. The commercial seawater desalination processes which are proven and reliable for large scale freshwater production are MSF and MED for evaporative desalination and RO for membrane desalination. Vapor compression plants based on thermal and mechanical compression are also employed for the small and medium capacity ranges. The aim of this study is to compare the characteristics and cost of each process methods and suggest the most efficient and effective method of desalination for an industrial water supply to the National Industrial Complex nearby Nuclear Power Plant. The costs associated with desalination depend on many factors such as capital, energy, labor, chemicals that are specific to the location, plant capacity, product salinity pre-treatment necessities, and other site-related costs for land, plant and brine disposal. A detailed analysis of each situation is thus required to estimate desalination costs. It could be stated that RO cost is lower than distillation one in energy and environmental terms. The optimal capacity(10,000 m{sup 3}/day) was decided to analyze the estimated water usage in nuclear power plants. And then compared the availability of each process, energy consumption, O and M and economic aspects. In terms of economic feasibility study, RO is the most recommendable process in nuclear power plants in Korea.

  14. A Feasibility Study of Optimal Nuclear Desalination Process for Industrial Water Supply in Korea

    International Nuclear Information System (INIS)

    Park, Hyunchul; Han, Kiin

    2013-01-01

    Seawater Desalination can be an alternative technology for water production based on salt separation from seawater. Seawater desalination can produce freshwater with necessary quality by choosing an appropriate desalination process and posttreatment methods of the product water. The commercial seawater desalination processes which are proven and reliable for large scale freshwater production are MSF and MED for evaporative desalination and RO for membrane desalination. Vapor compression plants based on thermal and mechanical compression are also employed for the small and medium capacity ranges. The aim of this study is to compare the characteristics and cost of each process methods and suggest the most efficient and effective method of desalination for an industrial water supply to the National Industrial Complex nearby Nuclear Power Plant. The costs associated with desalination depend on many factors such as capital, energy, labor, chemicals that are specific to the location, plant capacity, product salinity pre-treatment necessities, and other site-related costs for land, plant and brine disposal. A detailed analysis of each situation is thus required to estimate desalination costs. It could be stated that RO cost is lower than distillation one in energy and environmental terms. The optimal capacity(10,000 m 3 /day) was decided to analyze the estimated water usage in nuclear power plants. And then compared the availability of each process, energy consumption, O and M and economic aspects. In terms of economic feasibility study, RO is the most recommendable process in nuclear power plants in Korea

  15. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  16. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  17. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  18. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Enterobacter aerogenes ADH-43 is a hydrogen gas (H2) producing mutant bacterium and a facultative anaerobic microbe. This double mutant was obtained by classical mutagenetically treated in order to enhance H2 production. In addition, this mutant has ability to degrade molasses from sugar factory as well as other ...

  19. BINIVOX catalyst for hydrogen production from ethanol by low ...

    Indian Academy of Sciences (India)

    B PATIL

    2017-11-04

    Nov 4, 2017 ... Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications. BINIVOX catalyst for hydrogen production from ethanol by low temperature steam reforming (LTSR). B PATIL, S SHARMA, H K MOHANTA and B ROY. ∗. Department of Chemical Engineering, Birla Institute ...

  20. Managing ulcerative colitis by increasing hydrogen production via ...

    African Journals Online (AJOL)

    The main side-effect of treatment with Acarbose, flatulence, occurs when undigested carbohydrates are fermented by colonic bacteria, resulting in considerable amounts of hydrogen. We found that the enteric benefits of Acarbose are partly due to be their ability to neutralise oxidative stress via increased production of H2 in ...

  1. A review on patents for hydrogen production using membrane reactors

    NARCIS (Netherlands)

    Gallucci, F.; Basile, Angelo; Iulianelli, Adolfo; Kuipers, J.A.M.

    2009-01-01

    Membrane reactors are a modern configuration which integrates reaction and separation units in one vessel and results in a tremendous degree of process intensification. Application of membrane reactors for hydrogen production has been widely studied in literature because membranes with infinite

  2. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  3. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    Hydrogen production from CO2 reforming of methane over 20wt%.Co/Nd2O3 has been investigated in a fixed bed stainless steel reactor. The 20wt%.Co/Nd2O3 catalyst was synthesized using wet impregnation method and characterized for thermal stability, textural property, crystallinity, morphology and nature of chemical ...

  4. Production of hydrogen from renewable resources and its effectiveness

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2012-01-01

    Roč. 37, č. 16 (2012), s. 11563-11578 ISSN 0360-3199 R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : hydrogen production * biological processes * conventional methods Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.548, year: 2012

  5. Production of JET fuel containing molecules of high hydrogen content

    Directory of Open Access Journals (Sweden)

    Tomasek Sz.

    2017-12-01

    Full Text Available The harmful effects of aviation can only be reduced by using alternative fuels with excellent burning properties and a high hydrogen content in the constituent molecules. Due to increasing plastic consumption the amount of the plastic waste is also higher. Despite the fact that landfill plastic waste has been steadily reduced, the present scenario is not satisfactory. Therefore, the aim of this study is to produce JET fuel containing an alternative component made from straight-run kerosene and the waste polyethylene cracking fraction. We carried out our experiments on a commercial NiMo/Al2O3/P catalyst at the following process parameters: T=200-300°C, P=40 bar, LHSV=1.0-3.0 h-1, hydrogen/hydrocarbon ratio= 400 Nm3/m3. We investigated the effects of the feedstocks and the process parameters on the product yields, the hydrodesulfurization and hydrodearomatization efficiencies, and the main product properties. The liquid product yields varied between 99.7-99.8%. As a result of the hydrogenation the sulfur (1-1780 mg/kg and the aromatic contents (9.0-20.5% of the obtained products and the values of their smoke points (26.0-34.7 mm fulfilled the requirements of JET fuel standard. Additionally, the concentration of paraffins increased in the products and the burning properties were also improved. The freezing points of the products were higher than -47°C, therefore product blending is needed.

  6. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  7. Predicting the Specific Energy Consumption of Reverse Osmosis Desalination

    Directory of Open Access Journals (Sweden)

    Ashlynn S. Stillwell

    2016-12-01

    Full Text Available Desalination is often considered an approach for mitigating water stress. Despite the abundance of saline water worldwide, additional energy consumption and increased costs present barriers to widespread deployment of desalination as a municipal water supply. Specific energy consumption (SEC is a common measure of the energy use in desalination processes, and depends on many operational and water quality factors. We completed multiple linear regression and relative importance statistical analyses of factors affecting SEC using both small-scale meta-data and municipal-scale empirical data to predict the energy consumption of desalination. Statistically significant results show water quality and initial year of operations to be significant and important factors in estimating SEC, explaining over 80% of the variation in SEC. More recent initial year of operations, lower salinity raw water, and higher salinity product water accurately predict lower values of SEC. Economic analysis revealed a weak statistical relationship between SEC and cost of water production. Analysis of associated greenhouse gas (GHG emissions revealed important considerations of both electricity source and SEC in estimating the GHG-related sustainability of desalination. Results of our statistical analyses can aid decision-makers by predicting the SEC of desalination to a reasonable degree of accuracy with limited data.

  8. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-12-02

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat sources, from either the renewable or the exhaust gases, and having almost no major moving parts. We present an AD cycle for seawater desalination due to its unique ability to integrate higher water production yields with the existing desalination methods such as reverse osmosis (RO), multi-stage flashing (MSF) and multi-effect distillation (MED), etc. The hybrid cycles exploit the thermodynamic synergy between processes, leading to significant enhancement of the systems\\' performance ratio (PR). In this paper, we demonstrate experimentally the synergetic effect between the AD and MED cycles that results in quantum improvement in water production. The unique feature is in the internal latent heat recovery from the condenser unit of AD to the top-brine stage of MED, resulting in a combined, or simply termed as MEAD, cycle that requires no additional heat input other than the regeneration of an adsorbent. The batch-operated cycles are simple to implement and require low maintenance when compared with conventional desalination methods. Together, they offer a low energy and environmentally friendly desalination solution that addresses the major issues of the water-energy-environment nexus. © 2016 The Royal Society of Chemistry.

  9. Seawater desalination using an advanced small integral reactor - SMART

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki

    1999-01-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m 5 /day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART

  10. Seawater desalination using an advanced small integral reactor - SMART

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki [KAERI, Taejon (Korea, Republic of)

    1999-05-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m{sup 5}/day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART.

  11. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  12. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  13. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  14. Solar-Powered Desalination: A Modelling and Experimental Study

    Science.gov (United States)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  15. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  16. Water desalination using different capacity reactors options

    International Nuclear Information System (INIS)

    Alonso, G.; Vargas, S.; Del Valle, E.; Ramirez, R.

    2010-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity, cogeneration of potable water production and nuclear electricity is an option to be assessed. In this paper we will perform an economical comparison for cogeneration using a big reactor, the AP1000, and a medium size reactor, the IRIS, both of them are PWR type reactors and will be coupled to the desalination plant using the same method. For this cogeneration case we will assess the best reactor option that can cover both needs using the maximum potable water production for two different desalination methods: Multistage Flash Distillation and Multi-effect Distillation. (authors)

  17. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  18. Desalination by renewable energy: A mini review of the recent patents

    Directory of Open Access Journals (Sweden)

    Al-Rawajfeh Aiman Eid

    2017-01-01

    Full Text Available Recent patents on water desalination by using renewable energy technologies are critically reviewed with highlighting on environmental impacts and sustainable development. An overview of using wind, hydroelectric, wave and tidal, wind/solar, geothermal, and solar renewable energy technologies for desalinated water production are assessed. Solar energy is the mother of all other renewable energies; it does not pollute, it is free and available everywhere. Several patents have been invented systems and methods that collected and converted solar energy to electrical energy via solar energy which can be used for water desalination. Wind farm with wind-driven pressurizing devices is used to desalinate salt water by reverse osmosis. Geothermal has been used as an effective method for water desalination. It is highly recommended to provide seawater desalination powered by a renewable energy source in remote areas. On the other hand, sequentially staged of energy conversion steps operate at low efficiencies.

  19. Design aspects of LTE desalination plant utilizing waste heat from nuclear research reactor

    International Nuclear Information System (INIS)

    Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2004-01-01

    Nuclear research reactors produce significant amount of low quality waste heat which can be utilized for producing high quality water from seawater by coupling a Low Temperature Evaporation (LTE) desalination unit. Salient features and design considerations of the desalination plant coupled to the nuclear research reactor and the performance of the desalination plant under varying operational conditions applicable to waste heat utilization from the reactor are discussed. Chemical and radioactive analysis of the product water is given to indicate the usefulness of the water to meet the demineralized water makeup requirements of the reactor. The general scheme of integrating desalination plant with the nuclear research reactor is also presented. This LTE desalination plant utilizing waste heat from a nuclear research reactor is the first of its kind and is a demonstration of safety and economics of nuclear desalination technology as a viable alternative to produce demineralised water from seawater. (author)

  20. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  1. Hydrogen production from cassava in anaerobic fixed bed reactor

    Directory of Open Access Journals (Sweden)

    Andressa Nóe Nunes

    2016-12-01

    Full Text Available The use of agro-industrial waste for the production of hydrogen has shown a very promising trend, because its improper disposal creates environmental problems. Thus, the objective of the research was to evaluate the production of hydrogen from cassava processing residue in anaerobic fixed bed reactor operated under progressively increasing organic loading rate (OLR of 12 kg.m-3.d-1 a 96 kg.m-3.d-1. The support material for the adhesion of biomass was expanded clay with a diameter between 2.80 - 3.35 mm, and the reactor was inoculated with anaerobic sludge pre heat-treated. The reactor was operated for 250 days and the progressive increase of ORL was carried out keeping the COD affluent around 4000 mg. L-1, throughout the operation of the reactor and varying the hydraulic retention time (HRT of 8 hours to 1 hour. The maximum yield of hydrogen was obtained in HRT of 2h (1.66 mol H2 / mol glucose. The soluble metabolites present during operation of the reactor were acetic acid (30.72% to 84.9%, butyric acid (2.89% to 29.13%, propionic acid (3.98 to 13.09%, caproic acid (0.55% and 22.79% and ethanol (3.64% to 10.46%. Methane production was observed along with hydrogen in all operating phases.

  2. General Overview of Desalination Technology

    International Nuclear Information System (INIS)

    Ari-Nugroho

    2004-01-01

    Desalination, as discussed in this journal, refers to a water treatment process that removes salts from water. Desalination can be done in a number of ways, but the result is always the same : fresh water is produced from brackish or seawater. The quality of distillate water is indicated by the contents of Total Dissolved Solid (TDS) in it, the less number of TDS contents in it, the highest quality of distillate water it has. This article describes the general analysis of desalination technologies, the varies of water, operation and maintenance of the plant, and general comparison between desalination technologies. Basically, there are two common technologies are being used, i.e. thermal and membrane desalination, which are Multi Effect Distillation (MED), Multi Stage Flash (MSF) and Reverse Osmosis (RO), respectively. Both technologies differ from the energy source. Thermal desalination needs heat source from the power plant, while membrane desalination needs only the electricity to run the pumps. In thermal desalination, the vapour coming from boiling feedwater is condensate, this process produces the lowest saline water, about 10 part per million (ppm). The membrane technology uses semipermeable membrane to separate fresh water from salt dissolve. This technology produces the fresh water about 350-500 ppm. (author)

  3. Hydrogen production employing Spirulina maxima 2342: A chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Juantorena, A.U.; Santoyo, E.; Gamboa, S.A.; Lastres, O.D. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Cuerpo Academico de Energia, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Sanchez-Escamilla, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Bustos, A. [Centro de Ciencias Fisicas, UNAM, Ave. Universidad, Cuernavaca, Morelos (Mexico); Eapen, D. [Investigacion y Desarrollo en Agroindustria, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    The biomass of the cyanobacteria, Spirulina maxima 2342, was autotrophically obtained in a 20 l bioreactor under illumination and air bubbling and analyzed for its photobiological hydrogen production capability. A volume of 250 ml of Spirulina sp. taken from the reactor was used as culture sample for performing the experiments. An illumination-agitation process was employed to induce the hydrogen photoproduction reaction. The hydrogen produced in this process was quantified by gas chromatography technique using Molesieve 5 A(16ft x (1)/(8)in) column and a thermal conductivity detector (with a detector temperature of 110{sup o}C and a column temperature of 60{sup o}C). The culture samples were finally observed in an electron microscope to evaluate the effect of vacuum on the Spirulina sp. cells. (author)

  4. A CFD Simulation of Hydrogen Production in Microreactors

    Directory of Open Access Journals (Sweden)

    Javad Sabziani

    2015-01-01

    Full Text Available In this study, the modeling of hydrogen production process in microreactors by methanol-steam reforming reaction is investigated. The catalytic reaction of methanol-steam reforming producing hydrogen is simulated considering a 3D geometry for the microreactor. To calculate diffusion among species, mixture average correlations are compared to Stephan-Maxwell equations. The reactions occurring inside the microreactor include reforming of methanol with steam, methanol decomposition, and a reaction between carbon dioxide and hydrogen. The main objectives of this study are the prediction of temperature profile along the microreactor using either mixture average method or Stephan-Maxwell one and the comparison between the present predictions and some existing experimental data. The simulation results indicate that Stephan-Maxwell method conforms more suitably to the experimental results. The difference is more at lower feed flow rates since, when the flow rate increases, mass transfer mechanism changes from diffusion to convection, which in turn reduces the difference.

  5. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  6. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  7. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  8. Nuclear Production of Hydrogen Using Thermochemical Water-Splitting Cycles

    International Nuclear Information System (INIS)

    Brown, L.C.; Besenbruch, G.E.; Schultz, K.R.; Marshall, A.C.; Showalter, S.K.; Pickard, P.S.; Funk, J.F.

    2002-01-01

    The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high-temperature heat from an advanced nuclear power station in a thermochemical water-splitting cycle. We carried out a detailed literature search to create a searchable database with 115 cycles and 822 references. We developed screening criteria to reduce the list to 25 cycles. We used detailed evaluation to select two cycles that appear most promising, the Adiabatic UT-3 cycle and the Sulfur-Iodine cycle. We have selected the Sulfur-Iodine thermochemical water-splitting cycle for further development. We then assessed the suitability of various nuclear reactor types to the production of hydrogen from water using the Sulfur-Iodine cycle. A basic requirement is to deliver heat to the process interface heat exchanger at temperatures up to 900 deg. C. We considered nine categories of reactors: pressurized water-cooled, boiling water-cooled, organic-cooled, alkali metal-cooled, heavy metal-cooled, gas-cooled, molten salt-cooled, liquid-core and gas-core reactors. We developed requirements and criteria to carry out the assessment, considering design, safety, operational, economic and development issues. This assessment process led to our choice of the helium gas-cooled reactor for coupling to the Sulfur-Iodine cycle. In continuing work, we are investigating the improvements that have been proposed to the Sulfur-Iodine cycle and will generate an integrated flowsheet describing a hydrogen production plant powered by a high-temperature helium gas-cooled nuclear reactor. This will allow us to size process equipment and calculate hydrogen production efficiency and capital cost, and to estimate the cost of the hydrogen produced as a function of nuclear reactor cost. (authors)

  9. The application of nuclear energy for seawater desalination. The Candesal nuclear desalination system

    International Nuclear Information System (INIS)

    Humphries, J.R.; Sweeney, C.B.

    1997-01-01

    As the global consumption of water increases with growing population and rising levels of industrialization, major new sources of potable water production must be developed. Desalination of seawater is an energy intensive process which brings with it a demand for additional energy generation capacity. The Candesal nuclear desalination/cogeneration system has been developed to address both requirements, providing improved water production efficiency and lower costs. To meet large scale water production requirements the Candesal system integrates a nuclear energy source, such as the CANDU reactor, with a reverse osmosis (ro) desalination facility, capturing the waste heat from the electrical generation process to improve the efficiency of the ro process. By also using advanced feed water pre-treatment and sophisticated system design integration and optimization techniques, the net results is a substantial improvement in energy efficiency, economics, and environmental impact. The design is also applicable to a variety of conventional energy sources, and applies over the full range of desalination plant sizes. Since potable water production is based on membrane technology, brackish water and tertiary effluent from waste water treatment can also be used as feed streams to the system. Also considered to be a fundamental component of the Candesal philosophy is a technology transfer program aimed at establishing a complete local capability for the design, fabrication, operation and maintenance of these facilities. Through a well defined and logical technology transfer program, the necessary technologies are integrated into a nation's industrial capability and infrastructure, thus preparing local industry for the long term goal of manufacturing large scale, economical and environmentally benign desalination facilities. (author). 8 refs, 3 figs

  10. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  11. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  12. Some interesting aspects of water, with special reference to nuclear desalination

    International Nuclear Information System (INIS)

    Inam-ur-Rahman

    2002-01-01

    A brief review is given of the formation, importance, resources and some unique characteristics of water. A reference has been made about the available water racecourse of Pakistan and urgent need of acquiring additional water resources in the county. Importance of water for energy production and energy for acquiring additional water resources is mentioned. Attractive features and feasibility of nuclear desalination, using dual purpose nuclear power plants are discussed. Criteria for selection of suitable reactor type and desalination process are discussed for desired water to power ratios. The world wide growth of desalination capacity, using various desalination processes are listed. (author)

  13. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  14. Study of organic waste for production of hydrogen in reactor

    International Nuclear Information System (INIS)

    Guzmán Chinea, Jesús Manuel; Guzmán Marrero, Elizabeth; Pérez Ponce, Alejandro

    2015-01-01

    Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated before final disposal. Hydrogen can be produced sustainable by anaerobic bacteria that grow in the dark with rich carbohydrate substrates giving as final products H 2 , CO 2 and volatile fatty acids. The whey byproduct from cheese production, has great potential to be used for the generation of hydrogen as it has a high carbohydrate content and a high organic load. The main advantages of using anaerobic processes in biological treatment of organic waste, are the low operating costs, low power consumption, the ability to degrade high organic loads, resistance biomass to stay long in the absence of substrate, without lose their metabolic activity, and low nutritional requirements and increase the performance of 0.9 mol H2 / mol lactose. (full text)Biological processes have long been used for the treatment of organic waste makes, especially our study is based on the anaerobic process in reactors, using residual organic industry. Without excluding other non-industrial we have studied. Fundamental objectives treating organic waste is to reduce the pollutant load to the environment, another aim is to recover the waste recovering the energy contained in it. In this context, the biological hydrogen production from organic waste is an interesting alternative because it has low operating costs and raw material is being used as a residue in any way should be treated

  15. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run the reac......Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... to determine the cause of these differences, we employ prompt gamma ray/neutron activation analysis and XPS measurements to assess the contribution of heteroatoms and defects, as well as low temperature N2-adsorption and transmission electron microscopy to elucidate the particle size, shape, BET surface area...

  16. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  17. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  18. PBMR desalination options: An economic study - HTR2008-58212

    International Nuclear Information System (INIS)

    De Bruyn, R.; Van Ravenswaay, J. P.; Hannink, R.; Kuhr, R.; Bhagat, K.; Zervos, N.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR), under development in South Africa, is an advanced helium-cooled graphite moderated high-temperature gas-cooled nuclear reactor. The heat output of the PBMR is primarily suited for process applications or power generation. In addition, various desalination technologies can be coupled to the PBMR to further improve the overall efficiency and economics, where suitable site opportunities exist. Several desalination application concepts were evaluated for both a cogeneration configuration as well as a waste heat utilization configuration. These options were evaluated to compare the relative economics of the different concepts and to determine the feasibility of each configuration. The cogeneration desalination configuration included multiple PBMR units producing steam for a power cycle, using a back-pressure steam turbine generator exhausting into different thermal desalination technologies. These technologies include Multi-Effect Distillation (MED), Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) as well as Multi-Stage Flash (MSF) with all making use of extraction steam from back-pressure turbines. These configurations are optimized to maximize gross revenue from combined power and desalinated water sales using representative economic assumptions with a sensitivity analysis to observe the impact of varying power and water costs. Increasing turbine back pressure results in a loss of power output but a gain in water production. The desalination systems are compared as incremental investments. A standard MED process with minimal effects appears most attractive, although results are very sensitive with regards to projected power and water values. (authors)

  19. An exergy approach to efficiency evaluation of desalination

    KAUST Repository

    Ng, Kim Choon

    2017-05-02

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today\\'s combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  20. An exergy approach to efficiency evaluation of desalination

    Science.gov (United States)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  1. Influence of fuel costs on seawater desalination options

    International Nuclear Information System (INIS)

    Methnani, Mabrouk

    2007-01-01

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m 3 . This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  2. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    This study focuses on the water quality assessment (feed, product and brine) of the pilot adsorption desalination (AD) plant. Seawater from the Red Sea is used as feed to the AD plant. Water quality tests are evaluated by complying the Environmental Protection Agency (EPA) standards with major primary and secondary inorganic drinking water pollutants and other commonly tested water quality parameters. Chemical testing of desalinated water at the post desalination stage confirms the high quality of produced fresh water. Test results have shown that the adsorption desalination process is very effective in eliminating all forms of salts, as evidenced by the significant reduction of the TDS levels from approximately 40,000. ppm in feed seawater to less than 10. ppm. Test results exhibit extremely low levels of parameters which are generally abundant in feed seawater. The compositions of seawater and process related parameters such as chloride, sodium, bromide, sulfate, calcium, magnesium, and silicate in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its value is less than 0.5. ppm. © 2014 Elsevier B.V.

  3. Influence of fuel costs on seawater desalination options

    Energy Technology Data Exchange (ETDEWEB)

    Methnani, Mabrouk [International Atomic Energy Agency, Wagramerstrasse 5, Box 100, A-1400 Vienna (Austria)

    2007-02-15

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m{sup 3}. This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  4. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  5. Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production

    KAUST Repository

    Burhan, Muhammad

    2016-11-25

    Current commercial CPV systems are designed as large units which are targeted to be installed in open desert fields with high DNI availability. It appeared that the CPV is among some of those technologies which gained very little attention of people, with less customers and market. For conventional PV systems, the installations at the rooftop of commercial and residential buildings have a significant share in the total installed capacity of PV systems. That is why for most of the countries, the PV installations at the rooftop of commercial and residential buildings are aimed to be increased to half of total installed PV. On the other hand, there is no commercial CPV system available to be suitable for rooftop operation, giving motivation for the development of CPV field of compact systems. This paper discusses the development of a CPV field for the rooftop operation, comprising of compact CPV system with cost effective but highly accurate solar tracking sensor and wireless master slave control. In addition, the performance of the developed CPV systems is evaluated for production of hydrogen, which can be used as energy carrier or energy storage and a maximum solar to hydrogen efficiency of 18% is obtained. However, due to dynamic nature of the weather data and throughout the day variations in the performance of CPV and electrolyser, the solar to hydrogen performance is proposed to be reported as daily and long term average efficiency. The CPV-Hydrogen system showed daily average conversion efficiency of 15%, with solar to hydrogen production rate of 218 kW h/kg.

  6. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    As seawater desalination technologies are rapidly evolving and more States are opting for dual purpose integrated power plants (i.e. cogeneration), the need for advanced technologies suitable for coupling to nuclear power plants and leading to more efficient and economic nuclear desalination systems is obvious. The Coordinated Research Programme (CRP) New Technologies for Seawater Desalination using Nuclear Energy was organized in the framework of the Technical Working Group on Nuclear Desalination (TWG-ND). The TWGND was established in 2008 with the purpose of advising the IAEA Deputy Director General and promoting the exchange of technical information on national programmes in the field of seawater desalination using nuclear energy. This CRP project was conducted within the Nuclear Power Technology Development Section of the IAEA. It was launched in 2009 and completed by 2011, with research proposals received from nine Member States: Algeria, Egypt, France, India, Indonesia, Pakistan, the Syrian Arab Republic, the United Kingdom and the United States of America. The project aimed to review innovative technologies for seawater desalination which could be coupled to main types of existing nuclear power plant. Such coupling is expected to help making nuclear desalination safer and more economical, and hence more attractive for newcomer States interested in nuclear desalination. The project also aimed to collect ideas and suggestions necessary to update the IAEA desalination economic evaluation program (DEEP) software to become more robust and versatile. The specific objectives of the project were the introduction of innovative technologies and their economic viability, which could help make nuclear desalination a globally viable option for the safe and sustainable production of fresh water. The technologies under scrutiny in this CRP involve the low temperature horizontal tube multi-effect distillation, heat recovery systems using heat pipe based heat exchangers

  7. Production of hydrogen from fermentation of pina agroindustrial waste

    International Nuclear Information System (INIS)

    Montoya Perez, Luisa

    2012-01-01

    The performance of biohydrogen production was assesed a laboratory level, by anaerobic fermentation using agroindustrial residue of pineapple heart and employing microorganisms own of sludges from the bottom of an anaerobic digester belonging to a wastewater treatment plant from a seafood processor. Residue of pineapple heart was characterized physicochemically. The amounts were quantified: moisture, ashes, crude fiber, glucose, reducing sugars, hydrogen potential, soluble solids (Brix grades), boron, nitrogen, phosphorus, calcium, magnesium, potassium, sulfur, zinc, iron, copper and manganese. Per gram of pineapple heart is obtained 0,113 g of reducing sugars and 0,0114 g of glucose, which has made it a carbohydrate rich material that could ferment and produce hydrogen or other metabolites of commercial interest. A maximum yield was obtained of 0,0484 mol H 2 / mol of glucose consumed with a hydrogen maximum output of 1,260 mmol, at a maximum production rate of 0.070 mmol/h with a time lag in the production of hydrogen to 7,833 h under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a medium of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum, in a container 125 mL where was consumed 88,4% of the initial glucose. A maximum yield of 1,541 mol H 2 / mol of consumed glucose was obtained, in a fermentation time of 30 h, with a maximum hydrogen production of 41,227 mmol, at a maximum production rate of 6,740 mmol/h with a lag time in the production of hydrogen for 16 h, under the following conditions: initial pH of 5,5, substrate initial concentration of 5 g/L and using a middle of mineral formulation based on sodium, calcium, iodine, zinc, nickel and molybdenum in a fermentor of 5 L where 96,39% was consumed of the initial glucose. The maximum yield from 1,541 mol H 2 / mol of glucose consumed has corresponded to 38% of the target value of the United States Department of Energy equivalent

  8. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  9. Membraneless seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.

    2018-04-03

    Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.

  10. Process control in multistage flash desalination industry

    International Nuclear Information System (INIS)

    Pandey, Vishnu; Nagaraj, R.; Dangore, A.Y.; Thalor, K.L.; Prabakar, S.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    Process control is an essential part of the desalination industry that requires for operation at the optimum operating conditions, increase in the lifetime of the plant and reduction of the unit product cost. Improved process control is a cost effective approach to energy conservation and increased process profitability. The MSF plant involves many complicated operations related to steam, chemicals and seawater. MSF plant include variable capacity, slow dynamics, dead time characteristics due to certain load changes, significant effects of small deviations from design conditions on plant operation, effects of power plant output conditions on the desalination plant, instability due to disturbances in steam supply and water temperature variations. Keeping in view the above criticalities, the selection of effective control system becomes inevitable. This paper aims at identifying various types of control loops available in MSF plant, selection of control elements, type of control strategy needed for it and integrating the whole system for supervisory control. (author)

  11. Design of nanocatalysts for green hydrogen production from bioethanol.

    Science.gov (United States)

    Bion, Nicolas; Duprez, Daniel; Epron, Florence

    2012-01-09

    Bioethanol is an interesting feedstock that may be used for hydrogen production by steam or autothermal reforming. However, the impurities (heavy alcohols, esters, acids, N compounds) contained in the raw feedstock require a costly purification, as they have a dramatic impact on catalyst activity and stability. Thus, a method that can utilize the raw feedstock without severe degradation of the catalyst would be desirable. In this Minireview, the composition of bioethanol from first and second generation biomass, the reactions involved in the catalytic ethanol steam reforming process and the design of catalysts adapted for hydrogen production from a real bioethanol feed are surveyed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Final Report: Hydrogen Production Pathways Cost Analysis (2013 – 2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allan [Strategic Analysis Inc., Arlington, VA (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-30

    This report summarizes work conducted under a three year Department of Energy (DOE) funded project to Strategic Analysis, Inc. (SA) to analyze multiple hydrogen (H2) production technologies and project their corresponding levelized production cost of H2. The analysis was conducted using the H2A Hydrogen Analysis Tool developed by the DOE and National Renewable Energy Laboratory (NREL). The project was led by SA but conducted in close collaboration with the NREL and Argonne National Laboratory (ANL). In-depth techno-economic analysis (TEA) of five different H2 production methods was conducted. These TEAs developed projections for capital costs, fuel/feedstock usage, energy usage, indirect capital costs, land usage, labor requirements, and other parameters, for each H2 production pathway, and use the resulting cost and system parameters as inputs into the H2A discounted cash flow model to project the production cost of H2 ($/kgH2). Five technologies were analyzed as part of the project and are summarized in this report: Proton Exchange Membrane technology (PEM), High temperature solid oxide electrolysis cell technology (SOEC), Dark fermentation of biomass for H2 production, H2 production via Monolithic Piston-Type Reactors with rapid swing reforming and regeneration reactions, and Reformer-Electrolyzer-Purifier (REP) technology developed by Fuel Cell Energy, Inc. (FCE).

  13. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Roberts, K.

    2003-01-01

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  14. Dispatchable hydrogen production at the forecourt for electricity grid balancing

    Science.gov (United States)

    Rahil, Abdulla; Gammon, Rupert; Brown, Neil

    2017-02-01

    The rapid growth of renewable energy (RE) generation and its integration into electricity grids has been motivated by environmental issues and the depletion of fossil fuels. For the same reasons, an alternative to hydrocarbon fuels is needed for vehicles; hence the anticipated uptake of electric and fuel cell vehicles. High penetrations of RE generators with variable and intermittent output threaten to destabilise electricity networks by reducing the ability to balance electricity supply and demand. This can be greatly mitigated by the use of energy storage and demand-side response (DSR) techniques. Hydrogen production by electrolysis is a promising option for providing DSR as well as an emission-free vehicle fuel. Tariff structures can be used to incentivise the operating of electrolysers as controllable (dispatchable) loads. This paper compares the cost of hydrogen production by electrolysis at garage forecourts under both dispatchable and continuous operation, while ensuring no interruption of fuel supply to fuel cell vehicles. An optimisation algorithm is applied to investigate a hydrogen refueling station in both dispatchable and continuous operation. Three scenarios are tested to see whether a reduced off-peak electricity price could lower the cost of electrolytic hydrogen. These scenarios are: 1) "Standard Continuous", where the electrolyser is operated continuously on a standard all-day tariff of 12p/kWh; 2) "Off-peak Only", where it runs only during off-peak periods in a 2-tier tariff system at the lower price of 5p/kWh; and 3) "2-Tier Continuous", operating continuously and paying a low tariff at off- peak times and a high tariff at other times. This study uses the Libyan coastal city of Derna as a case study. The cheapest electricity cost per kg of hydrogen produced was £2.8, which occurred in Scenario 2. The next cheapest, at £5.8 - £6.3, was in Scenario 3, and the most expensive was £6.8/kg in Scenario 1.

  15. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  16. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  17. Electrolysers for hydrogen production - an international marketing study

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar, V.; Piron, D.L.; Gul, T.

    1988-01-01

    This study was carried out to identify potential international markets for advanced hydrogen electrolysers in the production of nitrogen based fertilizers via ammonia synthesis. The findings revealed that, the major potential markets are concentrated in Central and South America in countries such as Brazil, Chile, Columbia, Panama, Paraguay, Peru and Uruguay. In the African continent Zaire with its huge hydroelectric potential was found to be the only country where such technology can be successfully marketed.

  18. Heptacoordinate Coii complex: a new architecture for photochemical hydrogen production

    OpenAIRE

    Lucarini, Fiorella; Pastore, Mariachiara; Vasylevskyi, Serhii; Varisco, Massimo; Solari, Euro; Crochet, Aurelien; Fromm, Katharina M.; Zobi, Fabio; Ruggi, Albert

    2017-01-01

    The first heptacoordinate cobalt catalyst for light-driven hydrogen production in water has been synthesized and characterized. Photochemical experiments using [Ru(bpy)₃]²⁺ as photosensitizer gave a turnover number (TON) of 16300 mol H₂ (mol  cat.)⁻¹ achieved in 2 hours of irradiation with visible (475 nm) light. This promising result provides a path forward in the development of new structures to improve the efficiency of the catalysis.

  19. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Wan, Wei; Wang, Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2008-12-15

    The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han-Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production. (author)

  20. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  1. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  2. Specificities of micro-reactors for hydrogen production and purification

    Energy Technology Data Exchange (ETDEWEB)

    Mirodatos, C.; Dupont, N.; Germani, G.; Veen, A. C. ven; Schuurman, Y.

    2005-07-01

    Sustainable chemistry and exploitation of energy sources for the next decades requires considerable progress in process intensification. A development of new tools and equipments meeting the objectives of high efficiency, improved safety, compactness and low implementation costs is therefore subject of intensive research effort. Among the various scenarios tested in R and D, micro-structured reactors appear as a highly promising technology 1 and perspectives of mass production are already announced by technology providers 2. These reactors are based on assembly/stacking of micro structured plates or fibres. Due to their high heat and/or mass transfer, low pressure drop and good phase contacting, they sound particularly adapted to the large domain of hydrogen production by fuel reforming and purification. This presentation aims at outlining the state of the art, the advantages and drawbacks of using micro-structured reactors to intensify hydrogen production and purification. Two case studies will illustrate this approach: i) comparison between fixed bed and micro-structured reactor for the reforming of methanol into hydrogen and carbon oxides and ii) use of those devices in kinetic studies on the WGS reaction. (Author)

  3. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa

    2006-01-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H 2 concentration in the biogas is 10%-20% and no CH 4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  4. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  5. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  6. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  7. Production of hyperthermal hydrogen atoms by an arc discharge

    International Nuclear Information System (INIS)

    Samano, E.C.

    1993-01-01

    A magnetically confined thermal electric arc gas heater has been designed and built as a suitable source of heat for dissociating hydrogen molecules with energy in the range of a few eV. Specifically, the average beam kinetic energy is determined to be 1.5 eV, the dissociation rate is 0.5 atoms per molecule and the atom beam intensity in the forward direction is 1018 atoms/sr-sec. The working pressure in the arc discharge region is from 15 to 25 torr. This novel atom source has been successfully ignited and operated with pure hydrogen during several hours of continuous performance, maintaining its characteristics. The hyperthermal hydrogen atom beam, which is obtained from this source is analyzed and characterized in a high vacuum system, the characterization of the atom beam is accomplished by two different methods: calorimetry and surface ionization. Calorimetic sensor were used for detecting the atom beam by measuring the delivered power of the impinging atoms on the sensor surface. In the second approach an H-surface production backscattering experiment from a low work function surface was conducted. The validity of these two methods is discussed, and the results are compared. The different collision mechanisms to dissociate and ionize hydrogen molecules in the arch discharge are reviewed, as well as the physics of electric arcs. Finally, a Monte Carlo simulation program is used to calculate the ionization probability of low energy atoms perpendicularly reflected from a surface converter, as a model for atom surface ionization

  8. Development of an environmental impact assessment and decision support system for seawater desalination plants

    NARCIS (Netherlands)

    Lattemann, S.

    2010-01-01

    Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River

  9. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  10. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  11. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  12. Water Desalination Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Noreddine Ghaffour

    2010-08-01

    Full Text Available The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting.

  13. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  14. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China.

    Science.gov (United States)

    Yang, Yan-min; Liu, Xiao-jing; Li, Wei-qiang; Li, Cun-zhen

    2006-11-01

    Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002~2003 and 2003~2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.

  15. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liwei [Midwest Optoelectronics, LLC, Toledo, OH (United States); Deng, Xunming [Univ. of Toledo, OH (United States); Abken, Anka [Midwest Optoelectronics, LLC, Toledo, OH (United States); Cao, Xinmin [Midwest Optoelectronics, LLC, Toledo, OH (United States); Du, Wenhui [Midwest Optoelectronics, LLC, Toledo, OH (United States); Vijh, Aarohi [Xunlight Corporation, Toledo, OH (United States); Ingler, William [Univ. of Toledo, OH (United States); Chen, Changyong [Univ. of Toledo, OH (United States); Fan, Qihua [Univ. of Toledo, OH (United States); Collins, Robert [Univ. of Toledo, OH (United States); Compaan, Alvin [Univ. of Toledo, OH (United States); Yan, Yanfa [Univ. of Toledo, OH (United States); Giolando, Dean [Univ. of Toledo, OH (United States); Turner, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and has an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH

  16. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  17. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  18. Novel Auto thermal Reforming Process for Pure Hydrogen Production

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.E.H.

    2004-01-01

    Steam reforming of heptane for hydrogen production is investigated in a novel Circulating Fluidized Bed Membrane Reformer-Regenerator system (CFBMRR) utilizing a number of hydrogen and oxygen selective membranes. It is shown that although the amount of carbon deposition is significant, the effect on catalyst deactivation is negligible due to the large solid to gas mass feed ratio and the continuous catalyst regeneration in the system. The combustion of the deposited carbon in the catalyst regenerator supplies the heat needed for the endothermic steam reforming as well as the combustion of flammable gases from the riser reformer. Auto thermal operation is achievable for the entire adiabatic reformer-regenerator system when the exothermic heat generated from the regenerator is sufficient to compensate the endothermic heat consumed in the reformer. Multiplicity of the steady states exists in the range of steam to carbon feed ratio of 1.4442.251 mol/mol. The novel configuration has the potential advantages not only with respect to hydrogen production but also energy minimization

  19. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    Science.gov (United States)

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  20. Solar hydrogen production with cerium oxides thermochemical cycle

    Science.gov (United States)

    Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo

    2017-06-01

    This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.

  1. Production of hydrogen from by-products of food industries by rhodospirillaceae

    Energy Technology Data Exchange (ETDEWEB)

    Reh, U.

    1983-11-01

    The decomposition of organic substances from food-by-products as whey, beet sugar molasses, cane-sugar-molasses and potato-water by the Rhodospirillaceae Rp. capsulata, Rp. acidophila, Rm. vannielii, Rs. rubrum, and Rs. tenue to hydrogen and carbon dioxide were tested. In a pre-cultivation Lactobacillus bulgaricus converted the sugars of the by-products into lactic acid, which is easier in handling. Rs. rubrum was superior in producing hydrogen from this nutrient. It released from whey up to 56% of the substrate hydrogen, from beet sugar molasses 42%, from cane-sugar-molasses 89% and from potato-water 19%. Out-door-researches were made to evaluate the decrease of hydrogen yield under the influence of weather as well as day and night periods compared to the homogeneous conditions of the laboratory. From 200 m/sup 3/ whey, the daily output of a dairy, 4000 m/sup 3/ hydrogen corresponding to an energy equivalent of 1000 l fuel oil could be produced. To achieve this, 130 000 m/sup 2/ have to be covered with batch fermenters. These results show, that there is nearly no hope to decompose food by-products by Rhodospirillaceae in large scale technology, unless a new processing technology using a flow-fermenter and raising the hydrogen production significantly will be found.

  2. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  3. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  4. Storage and production of hydrogen for fuel cell applications

    Science.gov (United States)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  5. Start Up of Biohydrogen Production System and Effect of Metal Ions on Hydrogen Production

    Science.gov (United States)

    Jiao, An-ying; Li, Yong-feng; Yue, Li-ran; Yang, Chuan-ping

    2010-11-01

    Fermentative hydrogen production is a promising biochemical route to produce renewable H2. The effect of organic loading rate on the biohydrogen production during the start-up phase and effect of Fe2+ and Mg2+ concentration on biohydrogen production of a continuous stirred tank reactor using molasses wastewater as substrate were investigated. It was found that an initial biomass of 14.07 gVSS/L and an organic loading rate of 6.0 kgCOD/m3ṡd, an equilibrial microbial community in the butyric-type fermentation could be established with in 30 days. It was demonstrated that both Fe2+ and Mg2+ were able to enhance the hydrogen production capacity of microorganism flora. Different concentration of Fe2+ was added to the biohydrogen producing system (50 mg/L, 100 mg/L, 200 mg/L and 500 mg/L), the maximum biogas production yield of 6.78 L/d and the maximum specific hydrogen production rate of 10.1 ml/gVSSṡh were obtained at Fe2+ concentration of 500 mg/L and 200 mg/L, respectively. The maximum biogas production yield of 6.84 L/d and the maximum specific hydrogen production rate of 10.2 ml/gVSSṡh were obtained at Mg2+ concentration of 100 mg/L and 50 mg/L, respectively.

  6. Potential for nuclear desalination as a source of low cost potable water in North Africa

    International Nuclear Information System (INIS)

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ''Use of Nuclear Reactors for Seawater Desalination'', IAEA-TECDOC-574 (1990) and ''Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means'', IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs

  7. Analysis of economic and infrastructure issues associated with hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Summers, W.A.; Gorensek, M.B.; Danko, E.; Schultz, K.R.; Richards, M.B.; Brown, L.C.

    2004-01-01

    Consideration is being given to the large-scale transition of the world's energy system from one based on carbon fuels to one based on the use of hydrogen as the carrier. This transition is necessitated by the declining resource base of conventional oil and gas, air quality concerns, and the threat of global climate change linked to greenhouse gas emissions. Since hydrogen can be produced from water using non-carbon primary energy sources, it is the ideal sustainable fuel. The options for producing the hydrogen include renewables (e.g. solar and wind), fossil fuels with carbon sequestration, and nuclear energy. A comprehensive study has been initiated to define economically feasible concepts and to determine estimates of efficiency and cost for hydrogen production using next generation nuclear reactors. A unique aspect of the study is the assessment of the integration of a nuclear plant, a hydrogen production process and the broader infrastructure requirements. Hydrogen infrastructure issues directly related to nuclear hydrogen production are being addressed, and the projected cost, value and end-use market for hydrogen will be determined. The infrastructure issues are critical, since the combined cost of storing, transporting, distributing, and retailing the hydrogen product could well exceed the cost of hydrogen production measured at the plant gate. The results are expected to be useful in establishing the potential role that nuclear hydrogen can play in the future hydrogen economy. Approximately half of the three-year study has been completed. Results to date indicate that nuclear produced hydrogen can be competitive with hydrogen produced from natural gas for use at oil refineries or ammonia plants, indicating a potential early market opportunity for large-scale centralized hydrogen production. Extension of the hydrogen infrastructure from these large industrial users to distributed hydrogen users such as refueling stations and fuel cell generators could

  8. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  9. Ultra-clean hydrogen production by ammonia decomposition

    Directory of Open Access Journals (Sweden)

    M.E.E. Abashar

    2018-01-01

    Full Text Available A rigorous heterogeneous mathematical model is used to simulate a cascade of multi-stage fixed bed membrane reactors (MSFBMR with inter-stage heating and fresh sweep gas for the decomposition of ammonia to produce high purity hydrogen suitable for the PEM fuel cells. Different reactor configurations are compared. The comparison between a single fixed bed reactor (FBR and a single fixed bed membrane reactor (FBMR shows that the FBMR is superior to the FBR and gives 60.48% ammonia conversion higher than the FBR. However, 20.91% exit ammonia conversion obtained by the FBMR is considered to be poor. The FBMR is limited by the kinetics at low temperatures. The numerical results show that the MSFBMR of four beds achieve 100.0% ammonia conversion. It was found that the membrane plays the prime role in the displacement of the thermodynamic equilibrium. The results also show that, a linear relationship exists between the number of beds and the feed temperature and a correlation has been developed. A critical point for an effective hydrogen permeation zone has been identified. It is observed that the diffusion limitation is confined to a slim region at the entrance of the reactor. It is also observed that the heat load assumes a maximum inflection point and explanations offered. The results show that the multi-stage configuration has a promising potential to be applied successfully on-site for ultra-clean hydrogen production.

  10. Quantum chemical simulation of methane production by coal hydrogenation pyrolysis

    Science.gov (United States)

    Yang, Zhiyuan; Xue, Wenying; He, Xiaoxiao; Meng, Zhuoyue

    2018-02-01

    In this work, molecular mechanics, molecular dynamics and semi-empirical quantum chemistry of the Wiser molecular structure model of bituminous coal were studied by molecular simulation. The molecular structure model was optimized and the geometrical configuration of the structural model was analyzed. The bond length and bond cleavage energy of different types of bonds were obtained, and the weak bonds and possible fragments were revealed by a series of simulation. The reaction mechanism of methane production from debris of hydrogenation pyrolysis was studied by transition state theory. The results showed that the energy of the optimal structure of Wiser molecular model of bituminous coal was 704.517 kcal/mol, and the arrangement of aromatic layers was approximately parallel. The initial cleavage of the Wiser model mainly occurs in the coal structure of the relatively high degree of cross-linking and the C-C bond connected to carbonyl carbon. The three-dimensional structure of Wiser model was broken and then generated a large number of debris, the groups of methyl were removed from debris molecules under hydrogen atmosphere, and then methyl radicals and hydrogen radicals combined to form methane.

  11. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are

  12. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    Science.gov (United States)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-01-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100

  13. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  14. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation.

    Science.gov (United States)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O; Liu, Jie

    2017-02-23

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.

  15. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  16. Survey of hydrogen production and utilization methods. Volume 1: Executive summary

    Science.gov (United States)

    Gregory, D. P.; Pangborn, J. B.; Gillis, J. C.

    1975-01-01

    The use of hydrogen as a synthetic fuel is considered. Processes for the production of hydrogen are described along with the present and future industrial uses of hydrogen as a fuel and as a chemical feedstock. Novel and unconventional hydrogen-production techniques are evaluated, with emphasis placed on thermochemical and electrolytic processes. Potential uses for hydrogen as a fuel in industrial and residential applications are identified and reviewed in the context of anticipated U.S. energy supplies and demands. A detailed plan for the period from 1975 to 1980 prepared for research on and development of hydrogen as an energy carrier is included.

  17. Dispatchable Hydrogen Production at the Forecourt for Electricity Demand Shaping

    Directory of Open Access Journals (Sweden)

    Abdulla Rahil

    2017-10-01

    Full Text Available Environmental issues and concerns about depletion of fossil fuels have driven rapid growth in the generation of renewable energy (RE and its use in electricity grids. Similarly, the need for an alternative to hydrocarbon fuels means that the number of fuel cell vehicles is also expected to increase. The ability of electricity networks to balance supply and demand is greatly affected by the variable, intermittent output of RE generators; however, this could be relieved using energy storage and demand-side response (DSR techniques. One option would be production of hydrogen by electrolysis powered from wind and solar sources. The use of tariff structures would provide an incentive to operate electrolysers as dispatchable loads. The aim of this paper is to compare the cost of hydrogen production by electrolysis at garage forecourts in Libya, for both dispatchable and continuous operation, without interruption of fuel supply to vehicles. The coastal city of Derna was chosen as a case study, with the renewable energy being produced via a wind turbine farm. Wind speed was analysed in order to determine a suitable turbine, then the capacity was calculated to estimate how many turbines would be needed to meet demand. Finally, the excess power was calculated, based on the discrepancy between supply and demand. The study looked at a hydrogen refueling station in both dispatchable and continuous operation, using an optimisation algorithm. The following three scenarios were considered to determine whether the cost of electrolytic hydrogen could be reduced by a lower off-peak electricity price. These scenarios are: Standard Continuous, in which the electrolyser operates continuously on a standard tariff of 12 p/kWh; Off-peak Only, in which the electrolyser operates only during off-peak periods at the lower price of 5 p/kWh; and 2-Tier Continuous, in which the electrolyser operates continuously on a low tariff at off-peak times and a high tariff at other

  18. Production of Hydrogen Using Nuclear Energy and Inorganic Membranes

    International Nuclear Information System (INIS)

    Bischoff, Brian L.; Trowbridge, Lee D.; Mansur, Louis K.; Forsberg, Charles W.

    2004-01-01

    The sulfur family of thermochemical processes are the leading candidates worldwide for production of hydrogen (H 2 ) using nuclear energy. These processes thermo-catalytically crack water yielding hydrogen and oxygen. The processes consist of a series of chemical reactions where all the chemicals are recycled in the process except for water. The processes are potentially efficient, scalable to large sizes, and use no expensive chemical reagents; however, these processes have one major disadvantage: high operating temperatures (800 to 900 deg. C). The high-temperature chemical reaction common to all of these cycles is the equilibrium thermal decomposition of sulfuric acid. There is a potential to lower the peak temperature by 200+ deg. C if the high-temperature decomposition products of sulfuric acid, O 2 , H 2 O, and SO 2 , can be separated from SO 3 using an inorganic membrane. The goal of this project is to conduct proof-of-principle experiments and associated analysis to demonstrate the potential for inorganic membranes to dramatically improve the sulfur family of thermochemical processes. We will present preliminary data of the separation efficiency of the product gases from SO 3 . (authors)

  19. Production of negative hydrogen ions from accelerated cluster ions

    International Nuclear Information System (INIS)

    Becker, E.W.; Falter, H.D.; Hagena, O.F.; Henkes, W.; Klingelhoefer, R.; Moser, H.O.; Obert, W.; Poth, I.

    1976-11-01

    Cluster ion acceleration is a method particularly well suited to produce neutral beams of high particle current density at energies of the order of 1 keV/atom. Since this is the energy required for converting hydrogen atoms or molecules into negative ions in a cesium vapour cell, it is proposed to use cluster ions for the production of negative ion beams of high current density. The system is envisaged as a tandem accelerator with a terminal voltage of 1 MV. (orig.) [de

  20. Photocatalytic hydrogen production over CuO-modified titania.

    Science.gov (United States)

    Yu, Jiaguo; Hai, Yang; Jaroniec, Mietek

    2011-05-01

    Efficient hydrogen production and decomposition of glycerol were achieved on CuO-modified titania (CuO-TiO(2)) photocatalysts in glycerol aqueous solutions. CuO clusters were deposited on the titania surface by impregnation of Degussa P25 TiO(2) powder (P25) with copper nitrate followed by calcination. The resulting CuO-TiO(2) composite photocatalysts were characterized by X-ray diffraction (XRD), UV-visible spectrophotometry, X-ray photoelectron spectroscopy (XPS), N(2) adsorption-desorption, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The low-power ultraviolet light emitting diodes (UV-LED) were used as the light source for photocatalytic H(2)-production reaction. A detailed study of CuO effect on the photocatalytic H(2)-production rates showed that CuO clusters can act as an effective co-catalyst enhancing photocatalytic activity of TiO(2). The optimal CuO content was found to be 1.3 wt.%, giving H(2)-production rate of 2061 μmolh(-1)g(-1) (corresponding to the apparent quantum efficiency (QE) of 13.4% at 365 nm), which exceeded the rate of pure TiO(2) by more than 129 times. The quantum size effect of CuO clusters is deemed to alter its energy levels of the conduction and valence band edges in the CuO-TiO(2) semiconductor systems, which favors the electron transfer and enhances the photocatalytic activity. This work shows not only the possibility of using CuO clusters as a substitute for noble metals in the photocatalytic H(2)-production but also demonstrates a new way for enhancing hydrogen production activity by quantum size effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Membrane-based seawater desalination: Present and future prospects

    KAUST Repository

    Amy, Gary L.

    2016-10-20

    Given increasing regional water scarcity and that almost half of the world\\'s population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m) required by conventional desalination technologies, further exasperated by high unit costs ($/m) and environmental impacts including GHG emissions (g CO-eq/m), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO.

  2. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    International Nuclear Information System (INIS)

    Elnashaie, S.

    2005-01-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO 2 sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO 2 sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  3. French perspectives for production of hydrogen using nuclear energy

    International Nuclear Information System (INIS)

    Vitart, Xavier; Yvon, Pascal; Carles, Philippe; Naour, Francois Le

    2009-01-01

    The demand for hydrogen, driven by classical applications such as fertilizers or oil refining a well as new applications (synthetic fuels, fuel cells ... ) is growing significantly. Presently, most of the hydrogen produced in the world uses methane or another fossil feedstock, which is not a sustainable option, given the limited fossil resources and need to reduce CO 2 emissions. This stimulates the need to develop alternative processes of production which do not suffer from these drawbacks. Water decomposition combined with nuclear energy appears to be an attractive option. Low temperature electrolysis, even if it is used currently for limited amounts is a mature technology which can be generalized in the near future. However, this technology, which requires about 4 kWh of electricity per Nm 3 of hydrogen produced, is energy intensive and presents a low efficiency. Therefore the French Atomic Energy Commission (CEA) launched an extensive research and development program in 2001 in order to investigate advanced processes which could use directly the nuclear heat and present better economic potential. In the frame of this program, high temperature steam electrolysis along with several thermochemical cycles has been extensively studied. HTSE offers the advantage of reducing the electrical energy needed by substituting thermal energy, which promises to be cheaper. The need for electricity is also greatly reduced for the leading thermochemical cycles, the iodine-sulfur and the hybrid sulfur cycles, but they require high temperatures and hence coupling to a gas cooled reactor. Therefore interest is also paid to other processes such as the copper-chlorine cycle which operates at lower temperatures and could be coupled to other generation IV nuclear systems. The technical development of these processes involved acquisition of basic thermodynamic data, optimization of flowsheets, design and test of components and lab scale experiments in the kW range. This will demonstrate

  4. Microfluidic desalination techniques and their potential applications.

    Science.gov (United States)

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  5. Ice method for production of hydrogen clathrate hydrates

    Science.gov (United States)

    Lokshin, Konstantin [Santa Fe, NM; Zhao, Yusheng [Los Alamos, NM

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  6. Cobalt Porphyrin-Polypyridyl Surface Coatings for Photoelectrosynthetic Hydrogen Production.

    Science.gov (United States)

    Beiler, A M; Khusnutdinova, D; Wadsworth, B L; Moore, G F

    2017-10-16

    Hybrid materials that link light capture and conversion technologies with the ability to drive reductive chemical transformations are attractive as components in photoelectrosynthetic cells. We show that thin-film polypyridine surface coatings provide a molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto a visible-light-absorbing p-type gallium phosphide semiconductor. Spectroscopic techniques, including grazing angle attenuated total reflection Fourier transform infrared spectroscopy, confirm that the cobalt centers of the porphyrin macrocycles coordinate to pyridyl nitrogen sites of the organic surface coating. The cobalt porphyrin surface concentration and fraction of pyridyl sites coordinated to a cobalt center are quantified using complementary methods of ellipsometry, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy. In aqueous solutions under simulated solar illumination the modified cathode is photochemically active for hydrogen production, generating the product gas with near-unity Faradaic efficiency at a rate of ≈10 μL min -1 cm -2 when studied in a three-electrode configuration and polarized at the equilibrium potential of the H + /H 2 couple. This equates to a photoelectrochemical hydrogen evolution reaction activity of 17.6 H 2 molecules s -1 Co -1 , the highest value reported to date for a molecular-modified semiconductor. Key features of the functionalized photocathode include (1) the relative ease of synthetic preparation made possible by application of an organic surface coating that provides molecular recognition sites for immobilizing the cobalt porphyrin complexes at the semiconductor surface and (2) the use of visible light to drive cathodic fuel-forming reactions in aqueous solutions with no added organic acids or sacrificial chemical reductants.

  7. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  8. Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Teoman; Al Madani, Hussain [Mechanical Engineering Department, College of Engineering, University of Bahrain, P.O. box 32038, Isatown 32036 (Bahrain)

    2010-02-15

    With an ever-increasing population and rapid growth of industrialization, there is great demand for fresh water. Desalination has been a key proponent to meet the future challenges due to decreasing availability of fresh water. However, desalination uses significant amount of energy, today mostly from fossil fuels. It is, therefore, reasonable to rely on renewable energy sources such as solar energy, wind energy, ocean thermal energy, waste heat from the industry and other renewable sources. The present study deals with the energy-efficient seawater desalination system utilizing renewable energy sources and natural vacuum technique. A new desalination technology named Natural Vacuum Desalination is proposed. The novel desalination technique achieve remarkable energy efficiency through the evaporation of seawater under vacuum and will be described in sufficient detail to demonstrate that it requires much less electric energy compared to any conventional desalination plant of fresh water production of similar capacity. The discussion will highlight the main operative and maintenance features of the proposed natural vacuum seawater desalination technology which seems to have promising techno-economic potential providing also advantageous coupling with renewable energy sources. (author)

  9. Nuclear powered electrodyalysis for desalination

    International Nuclear Information System (INIS)

    Hitchcock, A.; Minken, A.A.L.; Minken, J.W.

    1966-01-01

    The paper is concerned to compare electrodyalysis and flash distillation as means for the production of water when a nuclear reactor also producing power is the heat source. Special attention is paid to the flexibility introduced by the possibility of diverting electric power from the primary load to electrodyalysis plant. On the basis of the costs taken, and assuming that adequate reliability can be obtained from both processes, it is confirmed that electrodyalysis is not an economic process as compared with flash distillation for the desalination of sea water but is fully competitive with salt contents up to 5000 ppm. (Use of nuclear power does not affect the situation). In the case where a nuclear reactor is supplying an isolated economy with power and water and the electric load factor is less than the reactor availability, it can be economic to use off-peak electricity to produce fresh water by high-current electrodyalysis of brackish water (up to 10,000 ppm). At the higher salt contents the amount of water which can be produced in this way is comparatively small, but it rises rapidly as the initial salt concentration falls. If additional water is needed, it is best produced by base-load distillation. (author). Abstract only

  10. The prisoner's dilemma in the production of nuclear hydrogen

    International Nuclear Information System (INIS)

    Mendoza, A.; Francois, J. L.; Martin del Campo, C.

    2011-11-01

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  11. Bioelectrochemical hydrogen production from urban wastewater on a pilot scale

    Science.gov (United States)

    Baeza, Juan A.; Martínez-Miró, Àlex; Guerrero, Javier; Ruiz, Yolanda; Guisasola, Albert

    2017-07-01

    Bioelectrochemical hydrogen production has been successfully achieved in laboratory-scale conditions with different substrates. However, scaling up microbial electrolysis cells (MECs) is not straightforward, and reported attempts have not been completely successful. This work presents the design, building, start-up and operation of an MEC pilot plant (130 L) based on a cassette configuration. The plant was started up in batch mode with acetate and glucose as substrates and operated for five months with different substrates (i.e. glucose, diluted raw glycerol and real urban wastewater). The best results were obtained in the last period with primary effluent from real urban wastewater. The hydrogen production increased to values higher than 4 L d-1 with a gas purity of 95%, a cathodic gas recovery of 82% and an energy recovery of 121% with respect to the electrical input. The organic matter removal efficiency was approximately 25% for a hydraulic retention time of 2 d with an organic loading rate (OLR) of 0.25 gCOD·L-1·d-1. It should be possible to achieve removal efficiencies around 75% with OLRs lower than 0.05 gCOD·L-1·d-1. These results are promising and represent an important step towards the industrial implementation of these systems.

  12. Cobaloxime-based photo-catalytic devices for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Fihri, A.; Artero, V.; Razavet, M.; Baffert, C.; Fontecave, M. [CEA Grenoble, DSV, iRTSV, Lab Chim et Biol Metaux, CNRS, UMR 5249, Univ Grenoble 1, F-38054 Grenoble 9 (France); Leibl, W. [CEA, DSV, iBiTecS, Lab Photocatalyse et Biohydrogene, CNRS, URA 2096, Gif Sur Yvette (France)

    2008-07-01

    In this paper is described the synthesis and activity of a series of novel hetero-dinuclear ruthenium-cobaloxime photo-catalysts able to achieve the photochemical production of hydrogen with the highest turnover numbers so far reported for such devices. First of all, substituting cobalt for rare and expensive platinum, palladium, or rhodium metals in photo-catalysts is a first step toward economically viable hydrogen production. Cobaloximes appear to be good candidates for H{sub 2}-evolving catalysts, and they may provide a good basis for the design of photo-catalysts that function in pure water as both the solvent and the sustainable proton source. Secondly, a molecular connection between the sensitizer and the H{sub 2}-evolving catalyst seems to provide advantages regarding the photo-catalytic activity. Structural modifications of this connection should allow a better tuning of the electron transfer between the light-harvesting unit and the catalytic center and thus an increase of the efficiency of the system. (O.M.)

  13. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Ono, Shizuca; Guimaraes, Lamartine N.F.

    2008-01-01

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  14. Neutron-induced hydrogen and helium production in iron

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C.

    2004-01-01

    In support of the Advanced Fuel Cycle Initiative, cross sections for hydrogen and helium production by neutrons are being investigated on structural materials from threshold to 100 MeV with the continuous-in-energy spallation neutron source at the Los Alamos Neutron Science Center (LANSCE). The present measurements are for elemental iron. The results are compared with values from the ENDF/B-VI library and its extension with LA150 evaluations. For designs in the Advanced Fuel Cycle Initiative, structural materials will be subjected to very large fluences of neutrons, and the selection of these materials will be guided by their resistance to radiation damage. The macroscopic effects of radiation damage result both from displacement of atoms in the materials as well as nuclear transmutation. We are studying the production of hydrogen and helium by neutrons, because these gases can lead to significant changes in materials properties such as embrittlement and swelling. Our experiments span the full range from threshold to 100 MeV. The lower neutron energies are those characteristic of fission neutrons, whereas the higher energies are relevant for accelerator-based irradiation test facilities. Results for the nickel isotopes, {sup 58,60}Ni, have been reported previously. The present studies are on natural iron.

  15. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  16. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  17. Advancing Microbial Desalination Cell towards Practical Applications

    OpenAIRE

    Ping, Qingyun

    2016-01-01

    Conventional desalination plant, municipal water supply and wastewater treatment system are among the most electricity-intensive facilities. Microbial Desalination Cell (MDC) has emerged as a promising technique to capture the chemical energy stored in wastewater directly for desalination, which has the potential to solve the high energy consumption issue in desalination industry as well as wastewater treatment system. The MDC is composed of two critical components, the electrodes (anode and ...

  18. Osmotically-assisted desalination method and system

    Science.gov (United States)

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  19. Process and nondestructive examination of desalination system

    International Nuclear Information System (INIS)

    Chang, Hee Jun; Kim, Sun Je; Yang, Yun Sik

    2006-01-01

    With the result of environment contamination, population increment and industrial development, water insufficiency is recently issued in the world and the construction of desalination plant is increased. In this paper, ASME Code NDE requirement for desalination system and the general of desalination process is described. Then the application of non-destructive test in method for desalination system, such as evaporator, deaerator, brine heater is introduced.

  20. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...... production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed...

  1. Electrokinetic desalination of sandstones for NaCl removal

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben V.

    2012-01-01

    the bricks studied. The stones were contaminated with NaCl by submersion prior to the desalination experiments, where an electric DC field was applied to the stones from electrodes placed in clay poultice. Two poultice types were tested: calcareous clay used brick production and a mixture of kaolinite...... surface) applied. At the end of all desalination experiments the water content in the poultice at the cathode was higher than in the poultice at the anode, revealing electroosmotic water transport. The water profiles in the stones, however, did not indicate electoosmosis as they were quite uniform within...... of similar high pore water concentrations and the same applied electric current. The hypotheses is that a layered structure of the sandstones could be the cause for this, as the electric current may preferentially flow in certain paths through the stone, which are thus desalinated first. After...

  2. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  3. Sustainable production of green feed from carbon dioxide and hydrogen.

    Science.gov (United States)

    Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2014-03-01

    Carbon dioxide hydrogenation to form hydrocarbons was conducted on two iron-based catalysts, prepared according to procedures described in the literature, and on a new iron spinel catalyst. The CO2 conversion measured in a packed-bed reactor was limited to about 60% because of excessive amounts of water produced in this process. Switching to a system of three packed-bed reactors in series with interim removal of water and condensed hydrocarbons increased CO2 conversion to as much as 89%. The pure spinel catalyst displayed a significantly higher activity and selectivity than those of the other iron catalysts. This process produces a product called green feed, which is similar in composition to the product of a high-temperature, iron-based Fischer–Tropsch process from syngas. The green feed can be readily converted into renewable fuels by well-established technologies.

  4. Experience and prospects of desalination in Morocco

    International Nuclear Information System (INIS)

    Boucif, O.

    1998-01-01

    At the current stage of studies of Guiding Schemes for Integrated Planning hydrographic basins, and all the various schemes considered for the development of water resources and the transfer possibilities provided for, some hydrographic basins remain in a deficit situation in the prospect of 2020, especially Oum-Er-Rbia (240 Mm 3 ), Tensift (60 Mm 3 ) and the Souss-Massa (140 Mm 3 ). Besides, it is worth mentioning that the drought periods recently experienced have also shown that the available hydraulic potential is very vulnerable to rainfall deficits, which could lead to deficits, well before 2020. In this respect to preserve the future in the area of production and mobilization of water resources, it is more judicious to reconsider the planning of conventional water resources within the framework of a global vision that also integrates the use of unconventional water resources, especially desalination of sea water for Drinking Water Supply (DWS), mainly in the basins of Tensift, Souss-Massa and the South Atlas. Already, the future sites for the establishment of sea water desalination plants for DWS are to be located at the level of cities situated in the hydrographic basins, especially the the zones overlooking the Atlantic coast. It is the case mainly of Agadir, Tan-Tan and Essaouira. In 1977, a first desalination plant using the technique of mechanical vapor compression was set up m Boujdour. Its production capacity stood at 250 m 3 /day. This plant was renovated in 1990 and operates normally. Seeking to face the demand of drinking water in the Southern Provinces and to fill the water deficit amplified by the region's population and industrial development, ONEP strengthened drinking water production by setting up two RO (Reverse osmosis) plants in Boujdour (800 m 3 /d) and Laayoune (7,000 m 3 /d). (author)

  5. A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2017-10-01

    Full Text Available Hydrogen energy systems are recognized as a promising solution for the energy shortage and environmental pollution crises. To meet the increasing demand for hydrogen, various possible systems have been investigated for the production of hydrogen by efficient and economical processes. Because of its advantages of being renewable and environmentally friendly, biomass processing has the potential to become the major hydrogen production route in the future. Membrane technology provides an efficient and cost-effective solution for hydrogen separation and greenhouse gas capture in biomass processing. In this review, the future prospects of using gas separation membranes for hydrogen production in biomass processing are extensively addressed from two perspectives: (1 the current development status of hydrogen separation membranes made of different materials and (2 the feasibility of using these membranes for practical applications in biomass-derived hydrogen production. Different types of hydrogen separation membranes, including polymeric membranes, dense metal membranes, microporous membranes (zeolite, metal-organic frameworks (MOFs, silica, etc. are systematically discussed in terms of their fabrication methods, gas permeation performance, structure stability properties, etc. In addition, the application feasibility of these membranes in biomass processing is assessed from both practical and economic perspectives. The benefits and possibilities of using membrane reactors for hydrogen production in biomass processing are also discussed. Lastly, we summarize the limitations of the currently available hydrogen membranes as well as the gaps between research achievements and industrial application. We also propose expected research directions for the future development of hydrogen gas membrane technology.

  6. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of geothermal energy for heating and fresh water production in a brackish water greenhouse desalination unit. A case study from Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Hacene [Laboratory of Water and Environment, Hassiba Ben Bouali University, Chlef, P.O. Box 151 (Algeria); Faculty of Sciences and Engineering Sciences, Hassiba Ben Bouali University, Chlef (Algeria); Spahis, Nawel [Faculty of Sciences and Engineering Sciences, Hassiba Ben Bouali University, Chlef (Algeria); Goosen, Mattheus F. [Office of Research and Graduate Studies, Alfaisal University, Riyadh (Saudi Arabia); Ghaffour, Noreddine [Middle East Desalination Research Center, P.O. Box 21, P.C. 133, Muscat (Oman); Drouiche, Nadjib [Silicon Technology Development Unit (UDTS), 2 Bd Frantz Fanon BP399, Algiers (Algeria); Ouagued, Abdellah [Laboratory of Water and Environment, Hassiba Ben Bouali University, Chlef, P.O. Box 151 (Algeria)

    2010-01-15

    The aim of this paper was to outline a proposed a new brackish water greenhouse desalination unit powered by geothermal energy for the development of arid and relatively cold regions, using Algeria as a case study. Countries which have abundant sea/brackish water resources and good geothermal conditions are ideal candidates for producing fresh water from sea/brackish water. The establishment of human habitats in these arid areas strongly depends on availability of fresh water. The main advantage of using geothermal energy to power brackish water greenhouse desalination units is that this renewable energy source can provide power 24 h a day. This resource is generally invariant with less intermittence problems compared to other renewable resources such as solar or wind energy. Geothermal resources can both be used to heat the greenhouses and to provide fresh water needed for irrigation of the crops cultivated inside the greenhouses. A review of the geothermal potential in the case study country is also outlined. (author)

  8. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  9. Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    A smooth transition from gasoline-powered internal combustion engine vehicles to ecologically clean hydrogen fuel cell vehicles depends on the process used for hydrogen production. Three technologies for hydrogen production are considered here: traditional hydrogen production via natural gas reforming, and the use of two renewable technologies (wind and solar electricity generation) to produce hydrogen via water electrolysis. It is shown that a decrease of environmental impact (air pollution and greenhouse gas emissions) as a result of hydrogen implementation as a fuel is accompanied by a decline in the economic efficiency (as measured by capital investments effectiveness). A mathematical procedure is proposed to obtain numerical estimates of environmental and economic criteria interactions in the form of sustainability indexes. On the basis of the obtained sustainability indexes, it is concluded that hydrogen production from wind energy via electrolysis is more advantageous for mitigating greenhouse gas emissions and traditional natural gas reforming is more favorable for reducing air pollution.

  10. Life Cycle Greenhouse Gas Emissions of By-product Hydrogen from Chlor-Alkali Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeon [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Elgowainy, Amgad A. [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division

    2017-12-01

    Current hydrogen production capacity in the U.S. is about 15.8 million tonne (or metric ton) per year (Brown 2016). Some of the hydrogen (2 million tonne) is combusted for its heating energy value, which makes total annual net production 13.8 million tonne (Table 1). If captive by-product hydrogen (3.3 million tonne) from catalytic reforming at oil refineries is excluded (Brown 2016; EIA 2008), approximately 11 million tonne is available from the conventional captive and merchant hydrogen market (DOE 2013). Captive hydrogen (owned by the refiner) is produced and consumed on site (e.g., process input at refineries), whereas merchant hydrogen is produced and sold as a commodity to external consumers. Whether it is merchant or captive, most hydrogen produced in the U.S. is on-purpose (not by-product)— around 10 million tonne/year.

  11. Process integration analysis of an industrial hydrogen production process

    Energy Technology Data Exchange (ETDEWEB)

    Tock, Laurence; Marechal, Francois; Metzger, Christian [EPFL (CH). Industrial Energy Systems Lab. (LENI); Arpentinier, Philippe [AIR LIQUIDE (France). Research center Claude-Delorme

    2010-07-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to exploit at maximum the heat excess at low temperature by producing valuable steam or electricity or by performing cogeneration. By applying a systematic methodology based on energy-flow models, process integration techniques and a multi-objective optimization procedure, the process performances defined by the specific natural gas consumption and the specific steam or electricity production is optimized and analyzed for different operating conditions (i.e. air preheating, pre-reforming/reforming, WGS temperature) and process modification options like pre-reformer integration. Identified measures are to increase the production of exportable steam by consuming the entire waste heat and optimizing the steam production pressure level, and to reduce the natural gas consumption by adjusting process parameters. By these measures the performance can be varied between 0.53-0.59 kmol natural gas/kmol H{sub 2} for the specific total natural gas consumption and 1.8-3.7 kmol steam/kmol H2 for the specific steam production. (orig.)

  12. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil

    2014-11-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends the limited temperature range of the MED, typically from 65 °C at top-brine temperature (TBT) to a low-brine temperature (LBT) of 40 °C to a lower LBT of 5 °C, whilst the TBT remains the same. The integration of cycles is achieved by having vapor uptake by the adsorbent in AD cycle, extracting from the vapor emanating from last effect of MED. By increasing the range of temperature difference (DT) of a MEDAD, its design can accommodate additional condensation-evaporation stages that capitalize further the energy transfer potential of expanding steam. Numerical model for the proposed MEDAD cycle is presented and compared with the water production rates of conventional and hybridized MEDs. The improved MEDAD design permits the latter stages of MED to operate below the ambient temperature, scavenging heat from the ambient air. The increase recovery of water from the seawater feed may lead to higher solution concentration within the latter stages, but the lower saturation temperatures of these stages mitigate the scaling and fouling effects. © 2014 Elsevier Ltd. All rights reserved.

  13. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... The optimum PH range for hydrogen production in this system was in the range from 5 to 5.5. The short hydraulic retention time (2 days) applied in the first stage was enough to separate acidogenesis from methanogenesis. No additional control for preventing methanogenesis in the first stage was necessary...

  14. A proposal for safety design philosophy of HTGR for coupling hydrogen production plant

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Tazawa, Yujiro; Imai, Yoshiyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Kunitomi, Kazuhiko

    2013-06-01

    Japan Atomic Energy Agency (JAEA) has been conducting research and development for hydrogen production utilizing heat from High Temperature Gas-cooled Reactors (HTGRs). Towards the realization of nuclear hydrogen production, coupled hydrogen production plants should not be treated as an extension of a nuclear plant in order to open the door for the entry of non-nuclear industries as well as assuring reactor safety against postulated abnormal events initiated in the hydrogen production plants. Since hydrogen production plant utilizing nuclear heat has never been built in the world, little attention has been given to the establishment of a safety design for such system including the High Temperature engineering Test Reactor (HTTR). In the present study, requirements in order to design, construct and operate hydrogen production plants under conventional chemical plant standards are identified. In addition, design considerations for safety design of nuclear facility are suggested. Furthermore, feasibility of proposed safety design and design considerations are evaluated. (author)

  15. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  16. Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, I.

    2013-01-01

    experiment with a traditional poultice significant pH changes and an absence of satisfying high desalination effect was measured. The new idea in the present paper was to introduce a calculated amount of buffer components corresponding to the productions during the electrode processes to a poultice (a solid......) to minimize the adverse effects and to optimize on the effects. The results showed good ability to retain neutral pH values in the substrate which is of major importance when the method should be applied on existing structures. Also the desalination process continued until a very low and harmless salt content...... was reached after introduction of the buffer components....

  17. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    Science.gov (United States)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  18. Rare metal fission products in nuclear spent fuel as catalysts for hydrogen production by water electrolysis

    International Nuclear Information System (INIS)

    Ozawa, Masaki

    2004-01-01

    Separation and utilization of rare metal fission products (RMFP) in nuclear spent fuel were studied to apply them as a catalyst for hydrogen generation by water electrolysis. The RMFP, namely Pd, Ru, Rh and Tc, etc, are abundant, more than ca. 30kg per metric ton of a typical fast reactor spent fuel. The RMFP can be selectively separated from high level liquid waste (HLLW) by catalytic electrolytic extraction (CEE) method. Specific metallic cations such as Pd 2+ , which originate in the solutions, may act as promoters (i.e., Pd adatom ) or mediators, thereby accelerating electrochemical deposition of RuNO 3+ , Rh 3+ and ReO 4 - (simulator TcO 4 - ). In utilizing CEE method, electrodeposited electrodes were prepared, and successively dedicated to the water (alkaline or artificial sea water) electrolysis tests. Among the RMFP deposited electrodes, maximum potential shifting for hydrogen evolution to noble side was observed for the quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode, with suggesting the highest cathodic currents for hydrogen evolution both in alkaline solution and artificial sea water. The electro analytic activity of quaternary, Pd-Ru-Rh-Re (3.5:4:1:1), deposit Pt electrode exceeded that of Pt electrode by ca. twice both in alkaline solution and artificial sea water. The paper conclusively proposes RMFP generated by nuclear fission to utilize as an alternative material for hydrogen production with a novel vision to bridge nuclear and hydrogen energy systems. (author)

  19. Design aspects of a multipurpose fusion power plant for desalination and agrochemical processes

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1975-02-01

    A description is given of the skeletal structure of a multipurpose fusion power plant, designed for desalination and agrochemicals production. The plant is a complex that comprises dual purpose power and desalination units, separation and processing units for recovery of soluble salts in the effluent of the desalination unit, mariculture units for production of algae for food and as food for shrimp and other fish species. The electrical power unit is a two-component fusion device that burns deuterium and helium-3 utilizing a fast fusion cycle

  20. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, C.M.; Racz, I.G.; van Heuven, Jan Willem; Reith, T.; de Haan, A.B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  1. Self-assembling biomolecular catalysts for hydrogen production

    Science.gov (United States)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  2. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  3. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  4. Improving The Efficiency Of Ammonia Electrolysis For Hydrogen Production

    Science.gov (United States)

    Palaniappan, Ramasamy

    Given the abundance of ammonia in domestic and industrial wastes, ammonia electrolysis is a promising technology for remediation and distributed power generation in a clean and safe manner. Efficiency has been identified as one of the key issues that require improvement in order for the technology to enter the market phase. Therefore, this research was performed with the aim of improving the efficiency of hydrogen production by finding alternative materials for the cathode and electrolyte. 1. In the presence of ammonia the activity for hydrogen evolution reaction (HER) followed the trend Rh>Pt>Ru>Ni. The addition of ammonia resulted in lower rates for HER for Pt, Ru, and Ni, which have been attributed to competition from the ammonia adsorption reaction. 2. The addition of ammonia offers insight into the role of metal-hydrogen underpotential deposition (M-Hupd) on HER kinetics. In addition to offering competition via ammonia adsorption it resulted in fewer and weaker M-Hupd bonds for all metals. This finding substantiates the theory that M-Hupd bonds favor HER on Pt electrocatalyst. However, for Rh results suggest that M-Hupd bond may hinder the HER. In addition, the presence of unpaired valence shell electrons is suggested to provide higher activity for HER in the presence of ammonia. 3. Bimetals PtxM1-x (M = Ir, Ru, Rh, and Ni) offered lower overpotentials for HER compared to the unalloyed metals in the presence of ammonia. The activity of HER in the presence of ammonia follows the trend Pt-Ir>Pt-Rh>Pt-Ru>Pt-Ni. The higher activity of HER is attributed to the synergistic effect of the alloy, where ammonia adsorbs onto the more electropositive alloying metal leaving Pt available for Hupd formation and HER to take place. Additionally, this supports the theory that the presence of a higher number of unpaired electrons favors the HER in the presence of ammonia. 4. Potassium polyacrylate (PAA-K) was successfully used as a substitute for aqueous KOH for ammonia

  5. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  6. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.

    Directory of Open Access Journals (Sweden)

    Y-H Percival Zhang

    Full Text Available BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6H(10O(5 (l+7 H(2O (l-->12 H(2 (g+6 CO(2 (g. The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30 degrees C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2/glucose of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30 degrees C and atmospheric pressure, high hydrogen yields, likely low production costs ($ approximately 2/kg H(2, and a high energy-density carrier starch (14.8 H(2-based mass%, provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy.

  8. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  9. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  10. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    Science.gov (United States)

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  11. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    International Nuclear Information System (INIS)

    Elam, Carolyn C.

    2001-01-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen

  12. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  13. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  14. Training for power plant personnel on hydrogen production and control

    International Nuclear Information System (INIS)

    Dickelman, G.J.

    1982-01-01

    It is the purpose of this paper to address the issue of training for power plant personnel in the area of hydrogen control. The authors experience in the training business indicates that most of the operations and engineering personnel have a very limited awareness of this phenomenon. Topics discussed in this paper include: 1) theory of hydrogen combustion kinetics; 2) incidents involving hydrogen combustion events; 3) normal operations interfacing with hydrogen; 4) accident conditions; and 5) mitigation schemes

  15. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  16. Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.R.; Santa Cruz, R.; Aisa, S. [Universidad Empresarial Siglo 21, Monsenor Pablo Cabrera s/n calle, 5000 Cordoba (Argentina); Riso, M.; Jimenez Yob, G.; Ottogalli, R. [Subsecretaria de Infraestructuras y Programas, Ministerio de Obras y Servicios Publicos del Gobierno de la Provincia de Cordoba, Av. Poeta Lugones 12, 2do. Piso, 5000 Cordoba (Argentina); Jeandrevin, G. [Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6 1/2, 5022 Cordoba (Argentina); Leiva, E.P.M. [INFIQC, Unidad de Matematica y Fisica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre s/n, 5010 Cordoba (Argentina)

    2010-06-15

    The potential for hydrogen production from wind resources in the province of Cordoba, second consumer of fossil fuels for transportation in Argentina, is analyzed. Three aspects of the problem are considered: the evaluation of the hydrogen resource from wind power, the analysis of the production costs via electrolysis and the annual requirements of wind energy to generate hydrogen to fuel the vehicular transport of the province. Different scenarios were considered, including pure hydrogen as well as the so-called CNG plus, where hydrogen is mixed with compressed natural gas in a 20% V/V dilution of the former. The potential for hydrogen production from wind resources is analyzed for each department of the province, excluding those regions not suited for wind farms. The analysis takes into account the efficiency of the electrolyzer and the capacity factor of the wind power system. It is concluded that the automotive transportation could be supplied by hydrogen stemming from wind resources via electrolysis. (author)

  17. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria.

    Science.gov (United States)

    Srirangan, Kajan; Pyne, Michael E; Perry Chou, C

    2011-09-01

    As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Hydrogen production from biomass tar by catalytic steam reforming

    International Nuclear Information System (INIS)

    Yoon, Sang Jun; Choi, Young-Chan; Lee, Jae-Goo

    2010-01-01

    The catalytic steam reforming of model biomass tar, toluene being a major component, was performed at various conditions of temperature, steam injection rate, catalyst size, and space time. Two kinds of nickel-based commercial catalyst, the Katalco 46-3Q and the Katalco 46-6Q, were evaluated and compared with dolomite catalyst. Production of hydrogen generally increased with reaction temperature, steam injection rate and space time and decreased with catalyst size. In particular, zirconia-promoted nickel-based catalyst, Katalco 46-6Q, showed a higher tar conversion efficiency and shows 100% conversion even relatively lower temperature conditions of 600 deg. C. Apparent activation energy was estimated to 94 and 57 kJ/mol for dolomite and nickel-based catalyst respectively.

  19. Control design for an autonomous wind based hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, F.; Evangelista, C.A. [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900, La Plata (Argentina)

    2010-06-15

    This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations. (author)

  20. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  1. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Naterer, G.F.

    2010-01-01

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  2. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  3. Environmental impact assessment of nuclear desalination

    International Nuclear Information System (INIS)

    2010-03-01

    Nuclear desalination is gaining interest among the IAEA Member States, as indicated by the planned projects, and it is expected that the number of nuclear desalination plants will increase in the near future. The IAEA has already provided its Member States with reports and documents that disseminate information regarding the technical and economic feasibility of nuclear desalination. With the rising environmental awareness, in the scope of IAEA's activities on seawater desalination using nuclear power, a need was identified for a report that would provide a generic assessment of the environmental issues in nuclear desalination. In order to offer an overview of specific environmental impacts which are to be expected, their probable magnitude, and recommended mitigation measures, this publication encompasses information provided by the IAEA Member States as well as other specialized sources. It is intended for decision makers and experts dealing with environmental, desalination and water management issues, offering insight into the environmental aspects that are essential in planning and developing nuclear desalination

  4. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  5. Design of the electrolyzer for the solar hydrogen production system

    International Nuclear Information System (INIS)

    Ibrahim, M.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    This paper presents the theoretical design of hydrogen system. Also, it shown the details steps of theoretical calculation to produce the required amount of hydrogen. Hydrogen is considered the fuel of the future. It is promising alternative for fossil fuel. Since, it is non-pollutant and renewable. The system contains and required equipment are photovoltaic panel, energy storage battery, converter, electrolyzer and hydrogen storage. By using 1.7 V supplied by PV, the simulation results gives 89 1/day of hydrogen. Since, the electrolyzer efficiency assumed to be 50%

  6. A seawater desalination scheme for global hydrological models

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  7. Bounding the marginal cost of producing potable water including the use of seawater desalinization as a backstop potable water production technology

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.

    2014-04-01

    The analysis presented in this technical report should allow for the creation of high, medium, and low cost potable water prices for GCAM. Seawater reverse osmosis (SWRO) based desalinization should act as a backstop for the cost of producing potable water (i.e., the literature seems clear that SWRO should establish an upper bound for the plant gate cost of producing potable water). Transporting water over significant distances and having to lift water to higher elevations to reach end-users can also have a significant impact on the cost of producing water. The three potable fresh water scenarios describe in this technical report are: low cost water scenario ($0.10/m3); medium water cost scenario ($1.00/m3); and high water cost scenario ($2.50/m3).

  8. Nuclear co-generation desalination complex with VK-300 simplified boiling-water reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yury

    2008-01-01

    With regard for the global-scale development of desalination technologies and the stable growth demand for them, Russia also takes an active part in the development of these technologies. Two major aspects play a special role here: they are providing the desalination process with power and introducing new materials capable to make the production of fresh water cheaper and raise the technical reliability of desalination units. The report considers a simplified passive boiling water reactor VK-300 based Nuclear Desalination Complex (NDC) with multi-stage evaporation distillation desalination units (MED) with horizontal-tube film evaporators. This is the effective NDC structure allowing the use of turbine steam extractions for heat supply (200-400 Gcal/h) to the desalination system producing high-quality distillate. As it provides with thermal energy a desalination complex with the capacity of 300.000 m 3 /day, a nuclear plant consisting of two VK-300 power units allows production of distillate with the cost of 0.58 dollars/m 3 . In this case, the electricity supply to the power system is 357 MW(e). The electricity cost is 0.029 dollars/kWh. (author)

  9. Hydrogen demand, production, and cost by region to 2050.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Moore, J.; Shadis, W.; Energy Systems; TA Engineering, Inc.

    2005-10-31

    This report presents an analysis of potential hydrogen (H{sub 2}) demand, production, and cost by region to 2050. The analysis was conducted to (1) address the Energy Information Administration's (EIA's) request for regional H{sub 2} cost estimates that will be input to its energy modeling system and (2) identify key regional issues associated with the use of H{sub 2} that need further study. Hydrogen costs may vary substantially by region. Many feedstocks may be used to produce H{sub 2}, and the use of these feedstocks is likely to vary by region. For the same feedstock, regional variation exists in capital and energy costs. Furthermore, delivery costs are likely to vary by region: some regions are more rural than others, and so delivery costs will be higher. However, to date, efforts to comprehensively and consistently estimate future H{sub 2} costs have not yet assessed regional variation in these costs. To develop the regional cost estimates and identify regional issues requiring further study, we developed a H{sub 2} demand scenario (called 'Go Your Own Way' [GYOW]) that reflects fuel cell vehicle (FCV) market success to 2050 and allocated H{sub 2} demand by region and within regions by metropolitan versus non-metropolitan areas. Because we lacked regional resource supply curves to develop our H{sub 2} production estimates, we instead developed regional H{sub 2} production estimates by feedstock by (1) evaluating region-specific resource availability for centralized production of H{sub 2} and (2) estimating the amount of FCV travel in the nonmetropolitan areas of each region that might need to be served by distributed production of H{sub 2}. Using a comprehensive H{sub 2} cost analysis developed by SFA Pacific, Inc., as a starting point, we then developed cost estimates for each H{sub 2} production and delivery method by region and over time (SFA Pacific, Inc. 2002). We assumed technological improvements over time to 2050 and regional

  10. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  11. Hydrogen bio-production of carbohydrate fermentation by anaerobic activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    Ren, N.

    1996-12-31

    Hydrogen gas is expected to be one of the most important clean fuel. The production of hydrogen by biotechnology is one of the ways to obtain low-priced hydrogen gas. According to the types of microorganism, the process of hydrogen production could be divided into photosynthetic and fermentative methods. From the viewpoint of the feasibility of industrial production, the fermentative method of hydrogen production will be the main direction of development. The new type of hydrogen production technology of organic wastewater fermentation by anaerobic activated sludge process was advanced. By the use of the continuous hydrogen bio-production reactor developed by authors and the substrates such as molasses, corn starch and powdered sugar, the effects of some operational parameters such as organic loading rate on the hydrogen production rate were studied, and the ethanol type fermentation of carbohydrate in the process of H{sub 2}-producing acidogenic fermentation was discovered. Under optimal conditions, the gas yield was 0.3m{sup 3} gas/ kg influent COD, the H{sub 2} production rate was 0.42-0.47 L H{sub 2} / L - h, and the specific H{sub 2} production rate was 36-40 mL H{sub 2}/g MLVSS {circ} h. There were only H{sub 2} and CO{sub 2} in fermentation gas that was of 45%-49% of H{sub 2} content. The H{sub 2} production process by use of ethanol type fermentation could obtain high-yield hydrogen gas. This hydrogen bio-production technology using anaerobic activated sludge as H{sub 2} producing bacterium was fast to start-up, easy to operate and cheep to produce hydrogen gas.

  12. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    Science.gov (United States)

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  13. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  14. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  15. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Dounis, Anastasios I.; Rozakis, Stelios; Arvanitis, Konstantinos G.; Papadakis, George

    2011-01-01

    Highlights: → Polygeneration of power, hydrogen and potable water through desalination in remote areas. → Particle Swarm Optimization for the design of Polygeneration microgrid design with TRNSYS, GenOpt and TRNOPT. → Economic evaluation with Monte Carlo simulation for the calculation of NPV distribution. → Polygeneration microgrids are technically feasible and most likely financially profitable. -- Abstract: This paper presents the concept and the design of a hybrid renewable energy polygeneration microgrid along with its technical and economical evaluation. The energy of the sun and the wind is harvested by photovoltaics and a wind turbine. Besides that, the components of the microgrid include a battery bank, a Proton Exchange Membrane (PEM) fuel cell, a PEM electrolyzer, a metal hydride tank, a reverse osmosis desalination unit using energy recovery and a control system. The microgrid covers the electricity, transport and water needs and thus its products are power, hydrogen as transportation fuel and potable water through desalination. Hydrogen and the desalinated water also act as medium to long term seasonal storage. A design tool based on TRNSYS 16, GenOpt 2.0 and TRNOPT was developed using Particle Swarm Optimization method. The economic evaluation of the concept was based on the discounting cash flow approach. The Monte Carlo Simulation method was used in order to take uncertainty into account. A technically feasible polygeneration microgrid adapted to a small island is financially profitable with a probability of 90% for the present and 100% at the medium term.

  16. Nitrophenylboronic acids as highly chemoselective probes to detect hydrogen peroxide in foods and agricultural products.

    Science.gov (United States)

    Lu, Chun-Ping; Lin, Chieh-Ti; Chang, Ching-Ming; Wu, Shih-Hsiung; Lo, Lee-Chiang

    2011-11-09

    Hydrogen peroxide is commonly used in the food processing industry as a chlorine-free bleaching and sterilizing agent, but excessive amounts of residual hydrogen peroxide have led to cases of food poisoning. Here we describe the development of a novel nonenzymatic colorimetric method for the determination of residual hydrogen peroxide in foods and agricultural products. Nitrophenylboronic acids chemoselectively react with hydrogen peroxide under alkaline conditions to produce yellow nitrophenolates. Of the three nitrophenylboronic acid isomers tested, the p-isomer displayed the highest sensitivity for hydrogen peroxide and the fastest reaction kinetics. The reaction product, p-nitrophenolate, has an absorption maximum at 405 nm and a good linear correlation between the hydrogen peroxide concentration and the A(405) values was obtained. We successfully applied this convenient and rapid method for hydrogen peroxide determination to samples of dried bean curds and disposable chopsticks, thereby demonstrating its potential in foods and agricultural industries.

  17. Desalination of painted brick vaults

    DEFF Research Database (Denmark)

    Larsen, Poul Klenz

    The subject of the thesis is salt and moisture movement that causes damage to wall paintings on church vaults. The deterioration was studied in the churches of Fanefjord, Kirkerup and Brarup. A desalination method was tested om location. The salt and moisture transfer was examined in detail...

  18. Costing methods for nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    The question of the methods used for costing desalination plants has been recognized as very important in the economic choice of a plant and its optimization. The fifth meeting of the Panel on the Use of Nuclear Energy in Saline Water Conversion, convened by the International Atomic Energy Agency in April 1965, noted this fact and recommended the preparation of a report on suitable methods for costing and evaluating nuclear desalination schemes. The Agency has therefore prepared this document, which was reviewed by an international panel of experts that met in Vienna from 18 to 22 April, 1966. The report contains a review of the underlying principles for costing desalination plants and of the various methods that have been proposed for allocating costs in dual-purpose plants. The effect of the different allocation methods on the water and power costs is shown at the end of the report. No attempt is made to recommend any particular method, but the possible limitations of each are indicated. It is hoped that this report will help those involved in the various phases of desalination projects

  19. Desalination. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    This guide provides a review of the relevant literature on desalination within the collections of the Library of Congress. While not intended as a comprehensive bibliography, this guide is designed as a quick and ready reference source for the reader, and includes the following sections: (1) articles that provide introductions to the topic of…

  20. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  1. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  2. Thermodynamic analysis of ethanol reforming for hydrogen production

    International Nuclear Information System (INIS)

    Sun, Shaohui; Yan, Wei; Sun, Peiqin; Chen, Junwu

    2012-01-01

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  3. A floating desalination/co-generation system using the KLT-40 reactor and Canadian RO desalination technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    2000-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The resulting nuclear desalination/cogeneration plant makes use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques. These innovations have led to improved water production efficiency, lower water production costs and reduced environmental impact. The Russian Federation is developing the KLT-40 reactor for application as a Floating Power Unit (FPU). The reactor is ideally suited for such purposes, having bad many years of successful operation as a marine propulsion reactor aboard floating nuclear powered icebreakers and other nuclear propelled vessels. Under the terms of a cooperation agreement with the Russian Federation Ministry of Atomic Energy, CANDESAL Enterprises Ltd has evaluated the FPU, containing two KLT-40 reactors, as a source of electrical energy and waste heat for RO desalination. A design concept for a floating nuclear desalination complex consisting of the FPU and a barge mounted RO desalination unit has been analyzed to establish preliminary performance characteristics for the complex. The FPU, operating as a barge mounted electrical generating station, provides electricity to the desalination barge. In addition, the condenser cooling water from the FPU is used as a source of preheated feedwater for the RO system on the desalination barge. The waste heat produced by the electrical generating process is sufficient to provide RO feedwater at a temperature of about 10 deg. C above ambient seawater temperature. Preliminary design studies have

  4. Challenges and opportunities for hydrogen production from microalgae.

    Science.gov (United States)

    Oey, Melanie; Sawyer, Anne Linda; Ross, Ian Lawrence; Hankamer, Ben

    2016-07-01

    The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2 ) emissions by 50-80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast-track the coordinated development and deployment of efficient cost-effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2 ) is the most advanced CO2 -free fuel and provides a 'common' energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon-based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar-driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next-generation systems and how these fit into an evolving H2 economy. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3...

  6. Measurement of the hydrogen yield in the radiolysis of water by dissolved fission products

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.; Hart, E.J.; Flynn, K.F.; Gindler, J.E.

    1976-04-01

    Hydrogen from the radiolysis of water by dissolved fission products is stripped from the solution and collected by bubbling CO 2 through the solution. Quantitative measurements of the G value for hydrogen show that the yield is essentially the same as would be obtained by external gamma radiolysis of nonradioactive solutions of the same chemical composition. The hydrogen yield can be enhanced by addition of a hydrogen-atom donor, such as formic acid, to the solution. The yield of hydrogen from fission-waste solutions is discussed with respect to the question of whether it represents a significant energy source

  7. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  8. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  9. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    NARCIS (Netherlands)

    Ozgur, E.; Afsar, N.; Vrije, de G.J.; Yucel, M.; Gunduz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous

  10. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11.

    Science.gov (United States)

    Nath, Kaushik; Kumar, Anish; Das, Debabrata

    2006-06-01

    Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. The effects of initial substrate concentration, initial medium pH, and temperature were investigated. Results showed that at an initial glucose concentration of 1.0% (m/v), the molar yield of hydrogen was 3.31 mol (mol glucose)(-1). However, at higher initial glucose concentration, both the rate and cumulative volume of hydrogen production decreased. The pH of 6.5 +/- 0.2 at a temperature of 37 degrees C was found most suitable with respect to maximum rate of production of hydrogen in batch fermentation. Activation enthalpies of fermentation and that of thermal deactivation of the present process were estimated following a modified Arrhenius equation. The values were 47.34 and 118.67 kJ mol(-1) K(-1), respectively. The effect of the addition of Fe(2+) on hydrogen production was also studied. It revealed that the presence of iron (Fe(2+)) in the media up to a concentration of 20 mg L(-1) had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was applied to estimate the hydrogen production potential, production rate, and lag-phase time in a batch process, based on the cumulative hydrogen production curves, using the software program Curve Expert 1.3.

  11. Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia); Monis, P.T. [Australian Water Quality Centre, SA Water, Bolivar, SA 5110 (Australia); Saint, C.P.; Jin, B. [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia)]|[Australian Water Quality Centre, SA Water, Bolivar, SA 5110 (Australia)

    2009-01-15

    The fermentation process for hydrogen production has been widely reported. However, there is lack of information related to detailed kinetic studies. The aim of this work was to investigate biochemical kinetics of fermentative hydrogen production by a newly isolated strain of Clostridium butyricum W5. The research objectives were to clarify relationships between hydrogen fermentation and biochemical parameters and hydrogenases, and consequently to seek an index for hydrogen production. Time profiles of hydrogen production, cell growth, volatile fatty acid accumulation and [FeFe]hydrogenase expression level were described. The amount of hydrogen produced in a laboratory batch process was 45.45 mmol/L at 10 h and peak production rate was 7.61 mmol/l/h at 9 h. Cell growth rate peaked at 8 h. Lactic acid was a main by-product, followed by butyric acid and acetic acid. Quantification of [FeFe]hydrogenase mRNA was optimized by a real-time reverse transcriptase-PCR. Statistical analysis showed that [FeFe]hydrogenase mRNA levels peak earlier than hydrogen production rate, and cell growth has a linear positive relationship with hydrogen production. (author)

  12. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5......, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition...

  13. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    International Nuclear Information System (INIS)

    McKellar, Michael G.; Harvego, Edwin A.; Gandrik, Anastasia A.

    2010-01-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322 C and 750 C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  14. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the we