WorldWideScience

Sample records for desalination hydrogen production

  1. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  2. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha; Kiely, Patrick D.; Call, Douglas F.; Logan, Bruce. E.

    2010-01-01

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  3. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    Science.gov (United States)

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.

  4. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  5. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  6. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  7. Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyunku; Yoon, Jaekyung [Hydrogen Energy Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Bae, Sanghyun [Department of Environmental Engineering, Yonsei University, 234 Maeji-ri, Hungub-myun, Wonju, Gangwon-do 220-710 (Korea); Kim, Chunghwan; Kim, Suhan [Korea Institute of Water and Environment, K-Water, 462-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-730 (Korea)

    2009-09-15

    In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO{sub 2} electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 {mu}mol/cm{sup 2} h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm x 1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V. (author)

  8. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving

  9. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  10. ZVI (Fe0 Desalination: Stability of Product Water

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-03-01

    Full Text Available A batch-operated ZVI (zero valent iron desalination reactor will be able to partially desalinate water. This water can be stored in an impoundment, reservoir or tank, prior to use for irrigation. Commercial development of this technology requires assurance that the partially-desalinated product water will not resalinate, while it is in storage. This study has used direct ion analyses to confirm that the product water from a gas-pressured ZVI desalination reactor maintains a stable salinity in storage over a period of 1–2.5 years. Two-point-three-litre samples of the feed water (2–10.68 g (Na+ + Cl−·L−1 and product water (0.1–5.02 g (Na+ + Cl−·L−1 from 21 trials were placed in storage at ambient (non-isothermal temperatures (which fluctuated between −10 and 25 °C, for a period of 1–2.5 years. The ion concentrations (Na+ and Cl− of the stored feed water and product water were then reanalysed. The ion analyses of the stored water samples demonstrated: (i that the product water salinity (Na+ and Cl− remains unchanged in storage; and (ii the Na:Cl molar ratios can be lower in the product water than the feed water. The significance of the results is discussed in terms of the various potential desalination routes. These trial data are supplemented with the results from 122 trials to demonstrate that: (i reactivity does not decline with successive batches; (ii the process is catalytic; and (iii the process involves a number of steps.

  11. Nuclear desalination and electricity production for islands

    International Nuclear Information System (INIS)

    Tran Dai Nghiep

    2005-01-01

    Nuclear desalination is an established and commercially proven technology that is now available and has the potential of further improvement. The technology of a small-sized reactor for desalination and electricity production will be an economically viable option and will also be suitable for islands with geographic, climatic, ecological and hydrological specifics. The operating experiences and achieved safety should benefit the early stage of a national nuclear power programme in developing countries. (author)

  12. Water desalination as a possible opportunity for the GT- and H2-MHR

    International Nuclear Information System (INIS)

    Bogart, S. Locke; Schultz, Ken

    2004-01-01

    There is growing concern that many areas of the world are suffering ongoing and increasing water shortages. Much of this concern is manifested in the United Nation's World Water Assessment Programme, the results of which were published in the spring of 2003. Other researchers have corroborated the findings of this work. However, while the UN has characterized water availability as a 'crisis', this view would seem to be excessive. Nevertheless, many parts of the world, particularly in developing nations inclusive of the middle east, are experiencing severe water stress and some of these have embarked on large-scale seawater desalination projects. The current work explores, in a preliminary way, the application of high temperature helium cooled reactors in either an electricity or a hydrogen production mode for desalination. Three desalination technologies are discussed: reverse osmosis (RO) and thermal processes using either Multi-stage flash distillation (MSF) or Multi-effect distillation (MED). For the latter, it is found that the waste heat rejected from a high temperature reactor comes in power levels and temperatures reasonably well suited for desalination. An economic comparison was made using the best available data and scaling to compare the processes. What was found that reverse osmosis and thermal distillation possess comparable costs within the error bars of the analysis but that the former generally resulted in slightly lower costs. Thus the choice between them can be made with other criteria such as feed salinity and product quality. It was also found that desalinated water co-produced with either electricity (RO and MED) or hydrogen (MED) are expected to cost about the same. Since hydrogen and desalinated water can be produced off the grid, this co-production architecture appears attractive for the early deployment of high temperature helium cooled reactors. (authors)

  13. Economic feasibility of a solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.

    2014-02-01

    Solar still desalination systems offer sustainable tools for fresh water production. However, their widespread application is often hindered by their relatively low production rates compared to other desalination methods. In this study, a simple amendment, in the form of a slowly-rotating hollow cylinder, was introduced within the solar still, significantly increasing the evaporative surface area. This new modified still was analyzed in terms of both operation and economic feasibility. The introduced cylinder resulted in a 200-300% increase in water output relative to a control, which did not include the cylinder. The resulting percent improvement far exceeds that obtained by other modifications. Unit production cost estimates varied between 6 and 60$/m3 depending on discount rates, productivity, service lifetime and initial capital costs. These projections are well within reported cost ranges for renewable-based technologies. In order to evaluate the system\\'s feasibility in real market value, different scenarios that introduce carbon-trading schemes and environmental degradation costs for fuel-based desalination, were performed. Reported costs for fuel-based brackish water and seawater desalination were thus adjusted to include unaccounted-for costs related to environmental damage. This analysis yielded results that further justify the economic feasibility of the new modified solar still, particularly for seawater desalination. © 2013 Elsevier B.V.

  14. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by

  15. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Design of nuclear desalination concentrate plant by using zero discharge desalination concept for Bangka Island

    International Nuclear Information System (INIS)

    Erlan Dewita, Siti Alimah

    2015-01-01

    Nuclear desalination is a process to separate salt of seawater by using nuclear energy. Desalination concentrate is a problem in nuclear desalination. Desalination concentrate is sometimes discharged directly into the seawater, therefore it can affects the water quality of beach and rise negative effects on the biota in the vicinity of the output. ZDD (Zero Discharge Desalination) concept can be applied to minimized environment impact. This study is conducted by using PWR type NPP as nuclear heat source and using ZDD concept to process desalination waste. ZDD is a concept for processing of desalination concentrate into salt and chemical products which have economic values. Objectives of this study is to design nuclear desalination concentrate processing plant in Bangka Island. The methodology is literature assessment and calculation with excel programme. The results of this study shows that the main the products are NaCl (pharmaceutical salt) and cakes BaSO4, Mg(OH)2BaCO3 as by products. (author)

  17. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  18. The development of the Hydrogen Economic Evaluation Program (HEEP)

    International Nuclear Information System (INIS)

    Khamis, I.

    2010-01-01

    The International Atomic Energy Agency (IAEA) is developing software to perform economic analysis related to hydrogen production. The software is expected to analyse the economics of the four most promising processes for hydrogen production. These processes are: high and low temperature electrolysis, thermochemical processes including the S-I process, conventional electrolysis and steam reforming. The IAEA HEEP software is expected to be used for comparative studies between nuclear and fossil energy sources. Therefore, typical conventional methods are also to be included in HEEP to enable comparison with nuclear hydrogen production. The HEEP models will be based on some economic and technical data, and on cost modelling. Modelling will include various aspects of hydrogen economy including storage, transport and distribution with options to eliminate or include specific details as required by the users. Development of HEEP is based on the IAEA's successful programme during the development of DEEP. This IAEA DEEP software has been distributed free of charge to more than 500 scientists/engineers and researchers from 50 countries interested in cost estimation of desalination plants using nuclear/fossil energy sources. DEEP is not a design code. A number of member states engaged in nuclear desalination activities in their countries have used DEEP for conducting feasibility studies for establishing large nuclear desalination projects based on different nuclear reactors types and desalination processes. HEEP is expected to be similar to the IAEA software DEEP which is being used to perform economic analysis and feasibility studies related to nuclear desalination in the IAEA and other member states. It is expected that HEEP will have similar architecture to DEEP but with the possibility of easy update and future expansion. Various major processes and technologies are to be incorporated in the HEEP programme as the basis for modelling the performance and cost

  19. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  20. Thermal energy distribution analysis for hydrogen production in RGTT200K conceptual design

    International Nuclear Information System (INIS)

    Tumpal Pandiangan; Ign Djoko Irianto

    2011-01-01

    RGTT200K is a high temperature gas-cooled reactor (HTGR) which conceptually designed for power generation, hydrogen production and desalination. Hydrogen production process in this design uses thermochemical method of Iodine-Sulphur. To increase the thermal conversion efficiency in hydrogen production installations, it needs to design a thermal energy distribution and temperature associated with the process of thermo-chemical processes in the method of Iodine-Sulphur. In this method there are 7 kinds of processes: (i) H 2 SO4 decomposition reaction (ii) treatment of vaporization (iii) treatment of pre vaporizer (iv) treatment of flash 4 (v) treatment of decomposition of HI (vi) treatment of the flash 1-3 and (vii) Bunsen reaction. To regulate the distribution of energy and temperature appropriate to the needs of each process used 3 pieces of heat exchanger (HE). Calculation of energy distribution through the distribution of helium gas flow has been done with Scilab application programs, so that can know the distribution of thermal energy for production of 1 mole of hydrogen. From this model, it can calculate the thermal energy requirement for production of hydrogen at the desired capacity. In the conceptual design of RGTT200K, helium discharge has been designed by 20 kg/s, so that an efficient hydrogen production capacity needed to produce 15347.8 for 21.74 mole of H 2 . (author)

  1. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  2. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Zaag, P. van der; Munch, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  3. A New Method for Water Desalination Using Microbial Desalination Cells

    KAUST Repository

    Cao, Xiaoxin

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shownhere that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. © 2009 American Chemical Society.

  4. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  5. Implication of dual-purpose nuclear desalination plants

    International Nuclear Information System (INIS)

    Kutbi, I.I.

    1983-01-01

    Available dual purpose nuclear desalination schemes are reviewed. Three specific issues namely, impact of availability and reliability of the desalination stage of the plant, integration of the desalination and power production stages and new safety concerns of dual system, relating to desalination schemes are discussed. Results of operational and reliability studies of nuclear power stations, reverse osmosis and multistage flash distillation desalination plants are considered. Operational aspects of nuclear-multistage flash distillation, nuclear-reverse osmosis and nuclear-multistage flash distillation-reverse osmosis are compared. Concludes that the combined nuclear-multistage flash distillation-reverse osmosis plant arrangement permits very large production capacity, high availability, improvement of plant reliability and proovision of savings on the cost of water and power produced. 23 Ref

  6. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico

    International Nuclear Information System (INIS)

    Rojas A, O; Calleros M, G.

    2016-09-01

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  7. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  8. The application of nuclear energy for seawater desalination. The Candesal nuclear desalination system

    International Nuclear Information System (INIS)

    Humphries, J.R.; Sweeney, C.B.

    1997-01-01

    As the global consumption of water increases with growing population and rising levels of industrialization, major new sources of potable water production must be developed. Desalination of seawater is an energy intensive process which brings with it a demand for additional energy generation capacity. The Candesal nuclear desalination/cogeneration system has been developed to address both requirements, providing improved water production efficiency and lower costs. To meet large scale water production requirements the Candesal system integrates a nuclear energy source, such as the CANDU reactor, with a reverse osmosis (ro) desalination facility, capturing the waste heat from the electrical generation process to improve the efficiency of the ro process. By also using advanced feed water pre-treatment and sophisticated system design integration and optimization techniques, the net results is a substantial improvement in energy efficiency, economics, and environmental impact. The design is also applicable to a variety of conventional energy sources, and applies over the full range of desalination plant sizes. Since potable water production is based on membrane technology, brackish water and tertiary effluent from waste water treatment can also be used as feed streams to the system. Also considered to be a fundamental component of the Candesal philosophy is a technology transfer program aimed at establishing a complete local capability for the design, fabrication, operation and maintenance of these facilities. Through a well defined and logical technology transfer program, the necessary technologies are integrated into a nation's industrial capability and infrastructure, thus preparing local industry for the long term goal of manufacturing large scale, economical and environmentally benign desalination facilities. (author). 8 refs, 3 figs

  9. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  10. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  11. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  12. Economical analysis and study on a solar desalination unit

    DEFF Research Database (Denmark)

    of desalination unit and electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful for the further investigation of solar desalination and for reducing the cost of fresh water...

  13. The nuclear desalination project in Morocco

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the seawater desalination demonstration plant in Morocco are to buildup the technical confidence in the utilization of nuclear heating reactor for seawater desalination; to establish a data base for reliable extrapolation of water production costs for a commercial nuclear plant; and to further strengthen the nuclear infrastructure in Morocco. The water production capacity of the demonstration plant would be about 8000 m 3 /d. The objectives of pre-project study are to establish a reliable basis for a decision on a nuclear desalination plant in Morocco, using a small Chinese heating reactor and to train the Morocco experts in reactor technology and licensing aspects

  14. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  15. Design and development of solar desalination plant

    Directory of Open Access Journals (Sweden)

    Marimuthu Thaneissha a/p

    2017-01-01

    Full Text Available Direct sunlight has been utilized long back for desalination of water. The desalination process takes place in solar still. Solar still is a device that converts saline water to potable water. This process requires seawater and sunlight which are widely available on Earth. However, the current solar desalination generation capacity is generally low and has high installation cost. Hence, there is a need for the enhancement of the productivity which can be achieved through few modifications. This paper explores the challenges and opportunities of solar water desalination worldwide. It presents a comprehensive review of solar desalination technologies that have been developed in recent years which covers the economic and environmental aspects.

  16. Comparative study of economic competitive for nuclear seawater desalination

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing

    2001-01-01

    The method of levelized discounted production water cost and the new desalination economic evaluation program (DEEP1.1) are used. Many cases of seawater desalination by nuclear energy or fossil energy combined with reverse osmosis (RO), Multi-effect distillation (MED) or multi-stage flash (MSF) technology in south-east Asia is performed and their economic competitive is analyzed. Their results indicate, the nuclear desalination plants have stronger economic competitive comparing to the fossil in the RO, MED and MSF technology. The desalination water cost is very changeable depending on the difference of desalination technology and water plant size. Its range is 0.56 dollar · m -3 - 1.89 dollar · m -3 , the lowest desalination water cost is product by RO and the highest is by MSF. The sensitive factors of the economic competitive are orderly the discounted rate, desalination plant size, seawater temperature and total dissolved solids (TDS), fossil fuel price and specific power plant investment. The highest rate of water cost is about 19.3% comparing to base case

  17. A floating desalination/co-generation system using the KLT-40 reactor and Canadian RO desalination technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    2000-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The resulting nuclear desalination/cogeneration plant makes use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques. These innovations have led to improved water production efficiency, lower water production costs and reduced environmental impact. The Russian Federation is developing the KLT-40 reactor for application as a Floating Power Unit (FPU). The reactor is ideally suited for such purposes, having bad many years of successful operation as a marine propulsion reactor aboard floating nuclear powered icebreakers and other nuclear propelled vessels. Under the terms of a cooperation agreement with the Russian Federation Ministry of Atomic Energy, CANDESAL Enterprises Ltd has evaluated the FPU, containing two KLT-40 reactors, as a source of electrical energy and waste heat for RO desalination. A design concept for a floating nuclear desalination complex consisting of the FPU and a barge mounted RO desalination unit has been analyzed to establish preliminary performance characteristics for the complex. The FPU, operating as a barge mounted electrical generating station, provides electricity to the desalination barge. In addition, the condenser cooling water from the FPU is used as a source of preheated feedwater for the RO system on the desalination barge. The waste heat produced by the electrical generating process is sufficient to provide RO feedwater at a temperature of about 10 deg. C above ambient seawater temperature. Preliminary design studies have

  18. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz; El Chakhtoura, Joline; Saikaly, Pascal; Van Loosdrecht, M. C M; Vrouwenvelder, Johannes S.

    2016-01-01

    community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters

  19. Why do local communities support or oppose seawater desalination?

    Science.gov (United States)

    Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.

    2016-12-01

    Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.

  20. Use of nuclear reactors for seawater desalination

    International Nuclear Information System (INIS)

    1990-09-01

    The last International Atomic Energy Agency (IAEA) status report on desalination, including nuclear desalination, was issued nearly 2 decades ago. The impending water crisis in many parts of the world, and especially in the Middle East, makes it appropriate to provide an updated report as a basis for consideration of future activities. This report provides a state-of-the-art review of desalination and pertinent nuclear reactor technology. Information is included on fresh water needs and costs, environmental risks associated with alternatives for water production, and data regarding the technical and economic characteristics of immediately available desalination systems, as well as compatible nuclear technology. 68 refs, 60 figs, 11 tabs

  1. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    Science.gov (United States)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: osmosis (RO) or reverse electrodialysis.

  2. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  3. Seawater desalination using an advanced small integral reactor - SMART

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki

    1999-01-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m 5 /day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART

  4. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    Science.gov (United States)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  5. State-of-art report on the seawater desalination process

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process

  6. State-of-art report on the seawater desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process.

  7. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  8. Coupling of AST-500 heating reactors with desalination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  9. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  10. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  11. Economic Considerations of Nuclear Desalination in Korea

    International Nuclear Information System (INIS)

    Man-Ki, Lee; Seung-Su, Kim

    2006-01-01

    The objective of this study is to assess the economics of SMART (System-integrated Modular Advanced Reactor) desalination plant in Korea through DEEP (Devaluation Economic Evaluation Program). SMART is mainly designed for the dual purpose of producing water and electricity with the total capacity of 100 MWe which 10 MWe is used for water production and the remains for the electric generation. SMART desalination plant using MED (Multi-Effect Distillation) process is in the stage of the commercial development and its cost information is also being accumulated. In this circumstances, the economic assessment of nuclear desalination by SMART and the effect of water(or electric) supply price to the regional economy is meaningful to the policy maker. This study is focused on the case study analysis about the economics of SMART desalination plant and the meanings of the case study result. This study is composed of two parts. One is prepared to survey the methodology regarding cost allocation between electricity and water in DEEP and the other is for the economic assessment of SMART. The cost allocation methods that have been proposed or used can be classified into two main groups, one is the cost prorating method and the other is the credit method. The cost of an product item in the dual-purpose plant can be determined differently depending on the costing methods adopted. When it comes to applying credit method adopted in this thesis, the production cost of water depends on what kind of the power cost will be chosen in calculating the power credit. This study also analyses the changes of nuclear desalination economics according to the changes of the important factors such as fossil fuel price. I wish that this study can afford to give an insight to the policy maker about SMART desalination plant. (authors)

  12. Solar-Powered Desalination: A Modelling and Experimental Study

    Science.gov (United States)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  13. Advances in desalination technology

    International Nuclear Information System (INIS)

    Pankratz, T.M.

    2005-01-01

    Seawater desalination has been the cornerstone of the Middle East's water supply strategy since the mid-1950s, and most of the installed desalination capacity is still provided by multistage flash evaporators. But, desalination is changing. In fact, the term 'desalination' is no longer limited to seawater applications; desalination technologies are now routinely employed to desalinate brackish groundwater and repurify municipal effluents. Recent advances in desalination technology have simultaneously reduced costs while dramatically improving performance and reliability to the point where desalination technologies now compete with 'conventional' treatment processes in many applications. New commercial strategies and a realisation of the economies-of-scale have led to further improvements in plant economics, and an increase in the size of plants now being developed and constructed. This presentation reviews advances in membrane and membrane pretreatment systems, energy recovery devices, materials of construction, hybrid process configurations, increased unit capacities, and the use of public-private partnerships; all of which have led to reduced capital and operating costs, enabling desalination to be economically competitive with traditional treatment options. Advances in desalination technology have resulted in better performances, lower capital and operating costs, and increased application of desalination systems. In the face of increased water shortages and growing costs of 'conventional treatment', this trend will certainly continue. (author)

  14. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  15. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  16. Nuclear Desalination Demonstration Project (NDDP) in India

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    2001-01-01

    In order to gainfully employ the years of experience and expertise in various aspects of desalination activity, BARC (India) has undertaken installation of a hybrid nuclear desalination plant coupled to 170 MW(e) PHWR station at Kalpakkam, Chennai in the Southeast coast of India. The integrated system, called the Nuclear Desalination Demonstration Project (NDDP), will thus meet the dual needs of process water for nuclear power plant and drinking water for the neighbouring people. NDDP aims for demonstrating the safe and economic production of good quality water by nuclear desalination of seawater. It comprises a 4500 m 3 /d Multistage Flash (MSF) and a 1800 m 3 /d Reverse Osmosis (RO) plant. MSF section uses low pressure steam from Madras Atomic Power Station (MAPS), Kalpakkam. The objectives of the NDDP (Kalpakkam) are as follows: to establish the indigenous capability for the design, manufacture, installation and operation of nuclear desalination plants; to generate necessary design inputs and optimum process parameters for large scale nuclear desalination plant; to serve as a demonstration project to IAEA welcoming participation from interested member states. The hybrid plant is envisaged to have a number of advantages: a part of high purity desalted water produced from MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; the RO plant will continue to be operated to provide the water for drinking purposes during the shutdown of the power station

  17. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  18. Science Communication and Desalination Research: Water Experts' Views

    Science.gov (United States)

    Schibeci, R. A.; Williams, A. J.

    2014-01-01

    Access to clean drinking water is a major problem for many people across the world. Desalination is being increasingly used in many countries to provide this important resource. Desalination technology has received varying degrees of support in the communities in which this technology has been adopted. Productive communication suggests we…

  19. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in a research contract between CNEA and the IAEA to evaluate projects of nuclear desalination. This paper analyses the benefits and drawbacks of each desalination technology, the distinctive characteristics of the technology that fit better the different uses, and outlines the related antecedents of its application in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations made in the last years for the different technologies are also described. (author)

  20. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  1. Conditions of competition between the production of water by desalination and natural resources

    International Nuclear Information System (INIS)

    Gaussens, J.

    1969-01-01

    A close examination of the local supply and demand for fresh water is involved when considering a sea water desalination plant in a given region. This examination makes it possible in most cases to undertake a thorough study of the natural resources, resulting in the use of desalination being rejected. After confirming this fact by precise examples, the authors consider that the preliminary study should be extended, taking into account the complementary character of natural resources and desalination systems: contribution to peak demand, contribution to base demand. This analysis results in a classification of the main user regions according to certain economic criteria defining their suitability for the use of desalination processes. (author) [fr

  2. A Feasibility Study of Optimal Nuclear Desalination Process for Industrial Water Supply in Korea

    International Nuclear Information System (INIS)

    Park, Hyunchul; Han, Kiin

    2013-01-01

    Seawater Desalination can be an alternative technology for water production based on salt separation from seawater. Seawater desalination can produce freshwater with necessary quality by choosing an appropriate desalination process and posttreatment methods of the product water. The commercial seawater desalination processes which are proven and reliable for large scale freshwater production are MSF and MED for evaporative desalination and RO for membrane desalination. Vapor compression plants based on thermal and mechanical compression are also employed for the small and medium capacity ranges. The aim of this study is to compare the characteristics and cost of each process methods and suggest the most efficient and effective method of desalination for an industrial water supply to the National Industrial Complex nearby Nuclear Power Plant. The costs associated with desalination depend on many factors such as capital, energy, labor, chemicals that are specific to the location, plant capacity, product salinity pre-treatment necessities, and other site-related costs for land, plant and brine disposal. A detailed analysis of each situation is thus required to estimate desalination costs. It could be stated that RO cost is lower than distillation one in energy and environmental terms. The optimal capacity(10,000 m 3 /day) was decided to analyze the estimated water usage in nuclear power plants. And then compared the availability of each process, energy consumption, O and M and economic aspects. In terms of economic feasibility study, RO is the most recommendable process in nuclear power plants in Korea

  3. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators

    International Nuclear Information System (INIS)

    Mohamed, A.M.I.; El-Minshawy, N.A.

    2011-01-01

    Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.

  4. Canadian nuclear desalination/cogeneration technology development

    International Nuclear Information System (INIS)

    Humphries, J.R.

    1996-01-01

    The goal of the CANDESAL program has been to develop innovative applications of existing technologies that would offer an energy efficient, cost effective mechanism for the production of potable water and electricity. Large scale seawater desalination will be an important element in the solution of the global water shortage problem. For nuclear desalination to capture a significant share of this growing market, it must be economically competitive, as well as offer other advantages over more traditional fossil-fueled alternatives. The focus of activities in Canada has been on development of the technology in directions that would result in improved water production efficiency, reduced energy consumption, reduced environmental burden and reduced costs

  5. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible, and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in the research contract CNEA - IAEA to evaluate projects of nuclear desalination. The objective and scope of this work is to know the advantages and disadvantages of each desalination technology, distinctive characteristics of each of them, that make them adapt better to different uses and outline conditions and analysis of related antecedents of its use in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations found in the last years for the different technologies are also included. (author)

  6. The cost of nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: What would be the cost of fresh water obtained by desalination of sea or brackish water with the help of a nuclear reactor? What methods are being employed for such costing and evaluation? These are basic questions for the increasing number of countries which are considering water desalination for the production of drinking water or for industrial or agricultural purposes. Following the recommendations of a panel of experts convened by the IAEA in Vienna, Austria, in April 1965, the Agency is now preparing a report on the desalination methods used or developed in various countries. Another panel met in Vienna in April of the current year, to help the Agency with the final draft of this report which is due to be published this autumn. The panel, 20 experts from 7 countries, was chaired consecutively by Mr. N. Carrillo (Mexico) and Mr. V.N. Meckoni (India). (author)

  7. Energy Implications of Seawater Desalination (Invited)

    Science.gov (United States)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    rise during droughts, when runoff, and thus power production, is constrained and electricity demands are high. Additionally, electricity prices are projected to rise in many regions to maintain and replace aging transmission and distribution infrastructure, install advanced metering infrastructure, comply with once-through cooling regulations, meet new demand growth , and increase renewable energy production. While rising electricity prices will affect the price of all water sources, they will have a greater impact on those that are the most energy intensive, like desalination. The high energy requirements of seawater desalination also raise concerns about greenhouse gas emissions. In 2006, California lawmakers passed the Global Warming Solutions Act, or Assembly Bill 32, which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. Thus, the state has committed itself to a program of steadily reducing its greenhouse gas emissions in both the short- and long-term, which includes cutting current emissions and preventing future emissions associated with growth. Desalination - through increased energy use - can cause an increase in greenhouse gas emissions, further contributing to the root cause of climate change and running counter to the state's greenhouse gas reduction goals.

  8. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  9. The seawater greenhouse: desalination and crop-production in arid zones based on renewable energy

    International Nuclear Information System (INIS)

    Davies, P. A.; Paton, C.; Sablani, S. S.; Perret, J.; Goosen, M. F. A.; Walterbeek, Reinier R.

    2006-01-01

    population growth is threatening the avaliability of fresh water in many regions of the world. With agriculture accounting for approximately 70% of all water used, the water crisis is closely linked to food production and economic development. Conventional agriculture is very inefficient in its use of water with several hundred liters needed to produce just one kilogram of produce. Although seawater is abundant, conventional desalination consumes substantial energy, usually derived from fossil fuels. There is an urgent ned for affordable and sustainable means of p[roducing crops, without heavy reliance on water and energy resource. The seawater Greenhouse is a novel approach to solving this problem. It combines energy-efficient desalination with water-efficient cultivation. Pilot projects have been constructed in Tenerife, the United Arab Emirates and Oman. This paper describes the results from these projects and outlines the potential for opening the seawater Greenhouse from renewable energy sources. Different types of source are evaluated and compared with respect to cost and load matching. Conclusions are drawn about the viability of a stand-alone system for the production of water and crops.(Author)

  10. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Amy, Gary L.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy

  11. Desalination processes and technologies

    International Nuclear Information System (INIS)

    Furukawa, D.H.

    1996-01-01

    Reasons of the development of desalination processes, the modern desalination technologies, such as multi-stage flash evaporation, multi-effect distillation, reverse osmosis, and the prospects of using nuclear power for desalination purposes are discussed. 9 refs

  12. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  13. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  14. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  15. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  16. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    Science.gov (United States)

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A Desalination Battery

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Cui, Yi; La Mantia, Fabio

    2012-01-01

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  18. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  19. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  20. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-12-02

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat sources, from either the renewable or the exhaust gases, and having almost no major moving parts. We present an AD cycle for seawater desalination due to its unique ability to integrate higher water production yields with the existing desalination methods such as reverse osmosis (RO), multi-stage flashing (MSF) and multi-effect distillation (MED), etc. The hybrid cycles exploit the thermodynamic synergy between processes, leading to significant enhancement of the systems\\' performance ratio (PR). In this paper, we demonstrate experimentally the synergetic effect between the AD and MED cycles that results in quantum improvement in water production. The unique feature is in the internal latent heat recovery from the condenser unit of AD to the top-brine stage of MED, resulting in a combined, or simply termed as MEAD, cycle that requires no additional heat input other than the regeneration of an adsorbent. The batch-operated cycles are simple to implement and require low maintenance when compared with conventional desalination methods. Together, they offer a low energy and environmentally friendly desalination solution that addresses the major issues of the water-energy-environment nexus. © 2016 The Royal Society of Chemistry.

  1. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  2. A seawater desalination scheme for global hydrological models

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  3. Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, I.

    2013-01-01

    vaults two different techniques are applied: poultices or establishment of climate chambers. Both techniques can result in ion transport away from the valuable surfaces with murals, but satisfying desalination has not been obtained according to conservators from the Danish National Museums mural...... experiment with a traditional poultice significant pH changes and an absence of satisfying high desalination effect was measured. The new idea in the present paper was to introduce a calculated amount of buffer components corresponding to the productions during the electrode processes to a poultice (a solid......) to minimize the adverse effects and to optimize on the effects. The results showed good ability to retain neutral pH values in the substrate which is of major importance when the method should be applied on existing structures. Also the desalination process continued until a very low and harmless salt content...

  4. Hydrogen generation by nuclear power for sustainable development in the 21-st century

    International Nuclear Information System (INIS)

    Bilegan, Iosif Constantin; Pall, Stefan

    2002-01-01

    Hydrogen is the main non-polluting fuel. It is produced by natural gas steam reforming, water electrolysis and thermonuclear processes. Currently, 4% of the hydrogen world production is obtained by water electrolysis. The use of nuclear power for hydrogen production avoids the generation of greenhouse gases and the dependence of primary external energy sources. The US is currently developing a modular reactor for hydrogen production and water desalination, STAR - H 2 (Secure Transportable Autonomous Reactor for Hydrogen production) with fast neutrons, lead cooling and passive safety systems operating at a temperature of 780 deg C. Also, a Russian reactor of the same type is operated at 540 deg C. China and India joint industrial countries like France, Japan, Russia and US in recognizing that any strategies aiming at a future with clean energy implies the nuclear energy

  5. Some interesting aspects of water, with special reference to nuclear desalination

    International Nuclear Information System (INIS)

    Inam-ur-Rahman

    2002-01-01

    A brief review is given of the formation, importance, resources and some unique characteristics of water. A reference has been made about the available water racecourse of Pakistan and urgent need of acquiring additional water resources in the county. Importance of water for energy production and energy for acquiring additional water resources is mentioned. Attractive features and feasibility of nuclear desalination, using dual purpose nuclear power plants are discussed. Criteria for selection of suitable reactor type and desalination process are discussed for desired water to power ratios. The world wide growth of desalination capacity, using various desalination processes are listed. (author)

  6. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  7. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  8. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  9. An exergy approach to efficiency evaluation of desalination

    KAUST Repository

    Ng, Kim Choon

    2017-05-02

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today\\'s combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  10. Influence of fuel costs on seawater desalination options

    International Nuclear Information System (INIS)

    Methnani, Mabrouk

    2007-01-01

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m 3 . This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  11. An exergy approach to efficiency evaluation of desalination

    Science.gov (United States)

    Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.

    2017-05-01

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  12. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2018-01-01

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  13. Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-05-03

    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.

  14. Nuclear desalination for the northwest of Mexico

    International Nuclear Information System (INIS)

    Ortega C, R. F.

    2008-01-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m 3 for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  15. Design aspects of a multipurpose fusion power plant for desalination and agrochemical processes

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1975-02-01

    A description is given of the skeletal structure of a multipurpose fusion power plant, designed for desalination and agrochemicals production. The plant is a complex that comprises dual purpose power and desalination units, separation and processing units for recovery of soluble salts in the effluent of the desalination unit, mariculture units for production of algae for food and as food for shrimp and other fish species. The electrical power unit is a two-component fusion device that burns deuterium and helium-3 utilizing a fast fusion cycle

  16. Desalination by renewable energy: A mini review of the recent patents

    Directory of Open Access Journals (Sweden)

    Al-Rawajfeh Aiman Eid

    2017-01-01

    Full Text Available Recent patents on water desalination by using renewable energy technologies are critically reviewed with highlighting on environmental impacts and sustainable development. An overview of using wind, hydroelectric, wave and tidal, wind/solar, geothermal, and solar renewable energy technologies for desalinated water production are assessed. Solar energy is the mother of all other renewable energies; it does not pollute, it is free and available everywhere. Several patents have been invented systems and methods that collected and converted solar energy to electrical energy via solar energy which can be used for water desalination. Wind farm with wind-driven pressurizing devices is used to desalinate salt water by reverse osmosis. Geothermal has been used as an effective method for water desalination. It is highly recommended to provide seawater desalination powered by a renewable energy source in remote areas. On the other hand, sequentially staged of energy conversion steps operate at low efficiencies.

  17. Hydrogen production by several cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dhruv; Kumar, H.D. (Banaras Hindu Univ., Varanasi (India). Dept. of Botany)

    1992-11-01

    Twenty species belonging to eleven genera of nitrogen-fixing and non-nitrogen-fixing cyanobacteria were screened for production of hydrogen. Only one species each of Nostoc and Anabaena showed light-and nitrogenase-dependent aerobic hydrogen production. The highest rate of aerobic hydrogen production was recorded in Anabaena sp. strain CA. When incubated anaerobically under 99% Ar + 1% CO[sub 2], all the tested strains produced hydrogen. Nickel supplementation completely abolished hydrogen production both under aerobic and anaerobic conditions, except in Anabaena sp. strain CA, where only the rate of production was decreased. Species of Plectonema, Oscillatoria and Spirulina showed methyl viologen-dependent (hydrogenase-dependent) hydrogen production. Other physiological activities were also studied with a view to selecting a suitable organism for large-scale production of hydrogen. (author)

  18. Water desalination using different capacity reactors options

    International Nuclear Information System (INIS)

    Alonso, G.; Vargas, S.; Del Valle, E.; Ramirez, R.

    2010-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity, cogeneration of potable water production and nuclear electricity is an option to be assessed. In this paper we will perform an economical comparison for cogeneration using a big reactor, the AP1000, and a medium size reactor, the IRIS, both of them are PWR type reactors and will be coupled to the desalination plant using the same method. For this cogeneration case we will assess the best reactor option that can cover both needs using the maximum potable water production for two different desalination methods: Multistage Flash Distillation and Multi-effect Distillation. (authors)

  19. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  20. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  1. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    This study focuses on the water quality assessment (feed, product and brine) of the pilot adsorption desalination (AD) plant. Seawater from the Red Sea is used as feed to the AD plant. Water quality tests are evaluated by complying the Environmental Protection Agency (EPA) standards with major primary and secondary inorganic drinking water pollutants and other commonly tested water quality parameters. Chemical testing of desalinated water at the post desalination stage confirms the high quality of produced fresh water. Test results have shown that the adsorption desalination process is very effective in eliminating all forms of salts, as evidenced by the significant reduction of the TDS levels from approximately 40,000. ppm in feed seawater to less than 10. ppm. Test results exhibit extremely low levels of parameters which are generally abundant in feed seawater. The compositions of seawater and process related parameters such as chloride, sodium, bromide, sulfate, calcium, magnesium, and silicate in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its value is less than 0.5. ppm. © 2014 Elsevier B.V.

  2. General Overview of Desalination Technology

    International Nuclear Information System (INIS)

    Ari-Nugroho

    2004-01-01

    Desalination, as discussed in this journal, refers to a water treatment process that removes salts from water. Desalination can be done in a number of ways, but the result is always the same : fresh water is produced from brackish or seawater. The quality of distillate water is indicated by the contents of Total Dissolved Solid (TDS) in it, the less number of TDS contents in it, the highest quality of distillate water it has. This article describes the general analysis of desalination technologies, the varies of water, operation and maintenance of the plant, and general comparison between desalination technologies. Basically, there are two common technologies are being used, i.e. thermal and membrane desalination, which are Multi Effect Distillation (MED), Multi Stage Flash (MSF) and Reverse Osmosis (RO), respectively. Both technologies differ from the energy source. Thermal desalination needs heat source from the power plant, while membrane desalination needs only the electricity to run the pumps. In thermal desalination, the vapour coming from boiling feedwater is condensate, this process produces the lowest saline water, about 10 part per million (ppm). The membrane technology uses semipermeable membrane to separate fresh water from salt dissolve. This technology produces the fresh water about 350-500 ppm. (author)

  3. Technical and economic evaluation of nuclear seawater desalination systems

    International Nuclear Information System (INIS)

    Grechko, A.G.; Romenkov, A.A.; Shishkin, V.A.

    1998-01-01

    The IAEA Cogeneration/Desalination Cost Model spreadsheets were used for the economic evaluation of sea water desalination plants coupled with small and medium size nuclear reactors developed in RDIPE. The results of calculations have shown that the cost of potable water is equal to or even below 1$/m 3 . This is very close to similar indices of the best fossil driven desalination plants. For remote and difficult-to-access regions, where the transportation share contributes significantly to the product water cost at fossil plants, the nuclear power sources of these reactor types are cost-efficient and can successfully compete with fossil power sources. (author)

  4. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    As seawater desalination technologies are rapidly evolving and more States are opting for dual purpose integrated power plants (i.e. cogeneration), the need for advanced technologies suitable for coupling to nuclear power plants and leading to more efficient and economic nuclear desalination systems is obvious. The Coordinated Research Programme (CRP) New Technologies for Seawater Desalination using Nuclear Energy was organized in the framework of the Technical Working Group on Nuclear Desalination (TWG-ND). The TWGND was established in 2008 with the purpose of advising the IAEA Deputy Director General and promoting the exchange of technical information on national programmes in the field of seawater desalination using nuclear energy. This CRP project was conducted within the Nuclear Power Technology Development Section of the IAEA. It was launched in 2009 and completed by 2011, with research proposals received from nine Member States: Algeria, Egypt, France, India, Indonesia, Pakistan, the Syrian Arab Republic, the United Kingdom and the United States of America. The project aimed to review innovative technologies for seawater desalination which could be coupled to main types of existing nuclear power plant. Such coupling is expected to help making nuclear desalination safer and more economical, and hence more attractive for newcomer States interested in nuclear desalination. The project also aimed to collect ideas and suggestions necessary to update the IAEA desalination economic evaluation program (DEEP) software to become more robust and versatile. The specific objectives of the project were the introduction of innovative technologies and their economic viability, which could help make nuclear desalination a globally viable option for the safe and sustainable production of fresh water. The technologies under scrutiny in this CRP involve the low temperature horizontal tube multi-effect distillation, heat recovery systems using heat pipe based heat exchangers

  5. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  6. Membrane-based seawater desalination: Present and future prospects

    KAUST Repository

    Amy, Gary L.

    2016-10-20

    Given increasing regional water scarcity and that almost half of the world\\'s population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m) required by conventional desalination technologies, further exasperated by high unit costs ($/m) and environmental impacts including GHG emissions (g CO-eq/m), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO.

  7. Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Teoman; Al Madani, Hussain [Mechanical Engineering Department, College of Engineering, University of Bahrain, P.O. box 32038, Isatown 32036 (Bahrain)

    2010-02-15

    With an ever-increasing population and rapid growth of industrialization, there is great demand for fresh water. Desalination has been a key proponent to meet the future challenges due to decreasing availability of fresh water. However, desalination uses significant amount of energy, today mostly from fossil fuels. It is, therefore, reasonable to rely on renewable energy sources such as solar energy, wind energy, ocean thermal energy, waste heat from the industry and other renewable sources. The present study deals with the energy-efficient seawater desalination system utilizing renewable energy sources and natural vacuum technique. A new desalination technology named Natural Vacuum Desalination is proposed. The novel desalination technique achieve remarkable energy efficiency through the evaporation of seawater under vacuum and will be described in sufficient detail to demonstrate that it requires much less electric energy compared to any conventional desalination plant of fresh water production of similar capacity. The discussion will highlight the main operative and maintenance features of the proposed natural vacuum seawater desalination technology which seems to have promising techno-economic potential providing also advantageous coupling with renewable energy sources. (author)

  8. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  9. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility

    International Nuclear Information System (INIS)

    Eveloy, Valérie; Rodgers, Peter; Qiu, Linyue

    2015-01-01

    Highlights: • Seawater reverse osmosis driven by hybrid gas turbine–organic Rankine power cycle. • High ambient air and seawater temperatures, and high seawater salinity. • Energy–exergy analysis of power and desalination systems for six organic fluids. • Economic viability of waste heat recovery in subsidized utility pricing context. - Abstract: Despite water scarcity, the use of industrial waste heat for seawater desalination has been limited in the Middle East to date. This study evaluates the technical and economic feasibility of integrating on-site gas turbine power generation and reverse osmosis equipment for the production of both electricity and fresh water in a coastal hydrocarbon production facility. Gas turbine exhaust gas waste heat is recovered using an intermediate heat transfer fluid and fed to an organic Rankine cycle evaporator, to generate mechanical power to drive the reverse osmosis high pressure pump. Six candidate organic working fluids are evaluated, namely toluene, benzene, cyclohexane, cyclopentane, n-pentane and R245fa. Thermodynamic and desalination performance are assessed in the harsh climatic and salinity conditions of the Arabian Gulf. The performance metrics considered incorporate electric power and permeate production, thermal and exergy efficiency, specific energy consumption, system size, and permeate quality. Using toluene in the bottoming power cycle, a gain in power generation efficiency of approximately 12% is achieved relative to the existing gas turbine cycle, with an annual average of 2260 m"3/h of fresh water produced. Depending upon the projected evolution of local water prices, the investment becomes profitable after two to four years, with an end-of-life net present value of 220–380 million USD, and internal rate of return of 26–48%.

  10. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico; Plan de desalinizacion con reactores nucleares como parte de un programa de desarrollo sustentable en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rojas A, O; Calleros M, G., E-mail: oziel.rojas.siimisa@gmail.com [Soluciones en Instrumentacion Integral y Mantenimiento Industrial y Servicios, S. A. de C. V. (Mexico)

    2016-09-15

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  11. Exergy Evaluation of Desalination Processes

    Directory of Open Access Journals (Sweden)

    Veera Gnaneswar Gude

    2018-06-01

    Full Text Available Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances.

  12. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Dounis, Anastasios I.; Rozakis, Stelios; Arvanitis, Konstantinos G.; Papadakis, George

    2011-01-01

    Highlights: → Polygeneration of power, hydrogen and potable water through desalination in remote areas. → Particle Swarm Optimization for the design of Polygeneration microgrid design with TRNSYS, GenOpt and TRNOPT. → Economic evaluation with Monte Carlo simulation for the calculation of NPV distribution. → Polygeneration microgrids are technically feasible and most likely financially profitable. -- Abstract: This paper presents the concept and the design of a hybrid renewable energy polygeneration microgrid along with its technical and economical evaluation. The energy of the sun and the wind is harvested by photovoltaics and a wind turbine. Besides that, the components of the microgrid include a battery bank, a Proton Exchange Membrane (PEM) fuel cell, a PEM electrolyzer, a metal hydride tank, a reverse osmosis desalination unit using energy recovery and a control system. The microgrid covers the electricity, transport and water needs and thus its products are power, hydrogen as transportation fuel and potable water through desalination. Hydrogen and the desalinated water also act as medium to long term seasonal storage. A design tool based on TRNSYS 16, GenOpt 2.0 and TRNOPT was developed using Particle Swarm Optimization method. The economic evaluation of the concept was based on the discounting cash flow approach. The Monte Carlo Simulation method was used in order to take uncertainty into account. A technically feasible polygeneration microgrid adapted to a small island is financially profitable with a probability of 90% for the present and 100% at the medium term.

  13. RO-PRO desalination: An integrated low-energy approach to seawater desalination

    International Nuclear Information System (INIS)

    Prante, Jeri L.; Ruskowitz, Jeffrey A.; Childress, Amy E.; Achilli, Andrea

    2014-01-01

    Highlights: • In the novel RO-PRO system, the energy produced by PRO is utilized to offset the energy consumed by the RO. • The specific energy consumption of a RO-PRO system was modeled for the first time. • A novel module-based PRO model for full-scale applications was developed. • The minimum net specific energy consumption of the modeled RO-PRO system was 1.2 kW h/m 3 at 50% RO recovery. • A sensitivity analysis showed a min RO-PRO specific energy consumption of 1.0 kW h/m 3 and a max power density of 10 W/m 2 . - Abstract: Although reverse osmosis (RO) is currently the most energy efficient desalination technology, it still requires a great deal of energy to create the high pressures necessary to desalinate seawater. An opposite process of RO, called pressure retarded osmosis (PRO), utilizes the salinity gradient between a relatively fresh impaired water source and seawater to produce pressure and hence, energy. In this paper, PRO is evaluated in conjunction with RO, in a system called RO-PRO desalination, to reduce the energy requirement of seawater RO desalination. RO-PRO specific energy consumption was modeled using RO conditions at the thermodynamic restriction and a newly developed module-based PRO model. Using a well-characterized cellulose triacetate (CTA) membrane, the minimum net specific energy consumption of the system was found to be approximately 40% lower than state-of-the-art seawater RO. A sensitivity analysis was performed to determine the effects of membrane characteristics on the specific energy production of the PRO process in the RO-PRO system. The sensitivity analysis showed that the minimum specific energy consumption using virtual membranes is approximately 1.0 kW h per m 3 of RO permeate at 50% RO recovery and that a maximum power density of approximately 10 W/m 2 could be achieved

  14. Environmental impact assessment of nuclear desalination

    International Nuclear Information System (INIS)

    2010-03-01

    Nuclear desalination is gaining interest among the IAEA Member States, as indicated by the planned projects, and it is expected that the number of nuclear desalination plants will increase in the near future. The IAEA has already provided its Member States with reports and documents that disseminate information regarding the technical and economic feasibility of nuclear desalination. With the rising environmental awareness, in the scope of IAEA's activities on seawater desalination using nuclear power, a need was identified for a report that would provide a generic assessment of the environmental issues in nuclear desalination. In order to offer an overview of specific environmental impacts which are to be expected, their probable magnitude, and recommended mitigation measures, this publication encompasses information provided by the IAEA Member States as well as other specialized sources. It is intended for decision makers and experts dealing with environmental, desalination and water management issues, offering insight into the environmental aspects that are essential in planning and developing nuclear desalination

  15. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  16. Hydrogen production methods

    International Nuclear Information System (INIS)

    Hammerli, M.

    1982-07-01

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  17. Potential for nuclear desalination as a source of low cost potable water in North Africa

    International Nuclear Information System (INIS)

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ''Use of Nuclear Reactors for Seawater Desalination'', IAEA-TECDOC-574 (1990) and ''Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means'', IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs

  18. Potential for nuclear desalination as a source of low cost potable water in North Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ``Use of Nuclear Reactors for Seawater Desalination``, IAEA-TECDOC-574 (1990) and ``Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means``, IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs.

  19. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  20. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  2. International Conference on water reuse and desalination

    International Nuclear Information System (INIS)

    1984-01-01

    The International conference on water reuse and desalination was held on the 13 November 1984 in Johannesburg, South Africa. Papers delivered on this conference covered the following aspects: desalination technology, industrial effluent control, economics of desalination of wastewaters, consumable supplies in desalination, the world market for seawater desalination equipment, reverse osmosis, evaporation and ultrafiltration, treatment of hazardous wastes, role of reverse osmosis in waste water treatment, as well as the desalination, recovery and recycle of water with high efficiency. A paper was also delivered on the mechanical vapour compression process applied to seawater desalination - as an example the paper presents the largest unit so far constructed by SIDEM using this process: a 1,500 mz/day unit installed in the Nuclear power plant of Flamanville in France

  3. PBMR desalination options: An economic study - HTR2008-58212

    International Nuclear Information System (INIS)

    De Bruyn, R.; Van Ravenswaay, J. P.; Hannink, R.; Kuhr, R.; Bhagat, K.; Zervos, N.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR), under development in South Africa, is an advanced helium-cooled graphite moderated high-temperature gas-cooled nuclear reactor. The heat output of the PBMR is primarily suited for process applications or power generation. In addition, various desalination technologies can be coupled to the PBMR to further improve the overall efficiency and economics, where suitable site opportunities exist. Several desalination application concepts were evaluated for both a cogeneration configuration as well as a waste heat utilization configuration. These options were evaluated to compare the relative economics of the different concepts and to determine the feasibility of each configuration. The cogeneration desalination configuration included multiple PBMR units producing steam for a power cycle, using a back-pressure steam turbine generator exhausting into different thermal desalination technologies. These technologies include Multi-Effect Distillation (MED), Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) as well as Multi-Stage Flash (MSF) with all making use of extraction steam from back-pressure turbines. These configurations are optimized to maximize gross revenue from combined power and desalinated water sales using representative economic assumptions with a sensitivity analysis to observe the impact of varying power and water costs. Increasing turbine back pressure results in a loss of power output but a gain in water production. The desalination systems are compared as incremental investments. A standard MED process with minimal effects appears most attractive, although results are very sensitive with regards to projected power and water values. (authors)

  4. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  5. Developments in solar still desalination systems: A critical review

    KAUST Repository

    Ayoub, George M.; Malaeb, Lilian

    2012-01-01

    Solar still desalination uses a sustainable and pollution-free source to produce high-quality water. The main limitation is low productivity and this has been the focus of intensive research. A major concern while increasing productivity

  6. Desalination of Seawater using Nuclear Energy

    International Nuclear Information System (INIS)

    Misra, B.M.

    2006-01-01

    Desalination technologies have been well established since the mid 20th century and are widely deployed in many parts of the world having acute water scarcity problems. The energy for these plants is generally supplied in the form of either steam or electricity largely using fossil fuels. The intensive fuels of fossil fuels raises environmental concerns especially in relation to greenhouse gas emissions. The depleting sources and future price uncertainty of the fossil fuels and their better use for other vital industrial applications is also a factor to be considered for sustainability. The desalination of sea water using nuclear energy is a feasible option to meet the growing demand of potable water. Over 150 reactor-years of operating experience of a nuclear desalination have been accumulated worldwide. Several demonstration programs of nuclear desalination are also in progress to confirm its technical and economic viability under country specific conditions, with the technical coordination or support of IAEA. Recent techno-economic feasibility studies carried out by some Member States indicate the competitiveness of nuclear desalination. This paper presents the salient activities on nuclear desalination in the Agency and in the interested Member states. Economic research on further water cost reduction includes investigation on utilization of waste heat from different reactor types for thermal desalination pre-heat reverse osmosis and hybrid desalination systems. The main challenge for the large scale deployment of nuclear seawater desalination is the lack of infrastructure and the resources in the countries affected by water scarcity problems which are however, interested in adoption of nuclear desalination for the sustainable water resources. Socio-economic and environmental aspects and the public perception are also important factors requiring greater information exchange. (author)

  7. Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle

    KAUST Repository

    Cevallos, Oscar R.

    2012-07-01

    An adsorbent suitable for adsorption desalination cycles is essentially characterized by a hydrophilic and porous structure with high surface area where water molecules are adsorbed via hydrogen bonding mechanism. Silica gel type A++ possesses the highest surface area and exhibits the highest equilibrium uptake from all the silica gels available in the market, therefore being suitable for water desalination cycles; where adsorbent’s adsorption characteristics and water vapor uptake capacity are key parameters in the compactness of the system; translated as feasibility of water desalination through adsorption technologies. The adsorption characteristics of water vapor onto silica gel type A++ over a temperature range of 30 oC to 60 oC are investigated in this research. This is done using water vapor adsorption analyzer utilizing a constant volume and variable pressure method, namely the Hydrosorb-1000 instrument by Quantachrome. The experimental uptake data is studied using numerous isotherm models, i. e. the Langmuir, Tóth, generalized Dubinin-Astakhov (D-A), Dubinin-Astakhov based on pore size distribution (PSD) and Dubinin-Serpinski (D-Se) isotherm for the whole pressure range, and for a pressure range below 10 kPa, proper for desalination cycles; isotherms type V of the International Union of Pure and Applied Chemistry (IUPAC) classification were exhibited. It is observed that the D-A based on PSD and the D-Se isotherm models describe the best fitting of the experimental uptake data for desalination cycles within a regression error of 2% and 6% respectively. All isotherm models, except the D-A based on PSD, have failed to describe the obtained experimental uptake data; an empirical isotherm model is proposed by observing the behavior of Tóth and D-A isotherm models. The new empirical model describes the water adsorption onto silica gel type A++ within a regression error of 3%. This will aid to describe the advantages of silica gel type A++ for the design of

  8. Determination of the costs of the nuclear desalination using the DEEP code from IAEA

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G.

    2005-01-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m 3 . (Author)

  9. Nuclear Desalination Newsletter, No. 2, September 2010

    International Nuclear Information System (INIS)

    2010-09-01

    Seawater desalination is increasingly becoming a vital option for alleviating severe water shortages around the world, and especially in developing countries. Worldwide seawater desalination capacity is expected to increase beyond the current contracted estimate of about 60 million m3/d. The need for an adequate supply of potable water for growing populations and complex problems is now globally recognized. Desalination using nuclear energy could play a vital role in supplying the much needed potable water for sustainable development and alleviate some of the environment impact of using fossil fuels for desalination. The IAEA programme on nuclear desalination continues to provide support to Member States through various forums of information exchange, technical cooperation projects, and publications. In the last year, the IAEA launched a new coordinated research programme which aims at investigating new technologies for seawater desalination using nuclear energy; updated and released a new version of the IAEA DEEP software; released a newly developed toolkit on nuclear desalination; and organized (jointly with the International Centre for Theoretical Physics ICTP) a training workshop on Technology and Performance of Desalination Systems

  10. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  11. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies.

    Science.gov (United States)

    Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well.

  12. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies

    Science.gov (United States)

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well. PMID:27350984

  13. Nuclear Desalination Newsletter, No. 3, September 2011

    International Nuclear Information System (INIS)

    2011-09-01

    The continuing improvement of technologies and decrease of cost, seawater desalination is expected to play an important role in the global economic and social development as well as in the ecological environment, especially for regions having severe water shortages such as China and the Middle East. Seawater desalination using nuclear energy is not only technically feasible but economically an option in varying site conditions and with a variety of nuclear reactor concepts. In any given country, nuclear desalination will become a viable option if the following two prerequisites exist: lack of potable water and the ability to deploy nuclear energy. In most regions, only one of the two is fulfilled. Many countries; e.g. China, the Republic of Korea and, even more so, India and Pakistan have both factors present. These countries already account for almost half the world's population, and thus represent a potential long term market for nuclear desalination. The accumulated experience in nuclear desalination will undoubtedly contribute to what many consider as the world wide central issue of the 21st century: the crucial need for new sources of freshwater for sustainable development. Within its continuing efforts to support Member States through various forums of information exchange, technical cooperation projects, and publications, the IAEA updated and released a new version of Desalination Economic Evaluation Program (DEEP 4.0) in 2011 with new features and easier usability for both newcomers and experts. The IAEA also released a new tool named DEsalination Thermodynamic Optimization Program (DE-TOP), which complements DEEP and is used to analyze the thermodynamics of cogeneration systems with emphasis on water desalination. The IAEA toolkit on nuclear desalination, intended for Member States considering nuclear power for seawater desalination, provides access to information on nuclear desalination including DEEP and DE-TOP. This tool was further improved in 2010

  14. Use of reactor plants of enhanced safety for sea water desalination, industrial and district heating

    International Nuclear Information System (INIS)

    Panov, Yu.; Polunichev, V.; Zverev, K.

    1997-01-01

    Russian designers have developed and can deliver nuclear complexes to provide sea water desalination, industrial and district heating. This paper provides an overview of these designs utilizing the ABV, KLT-40 and ATETS-80 reactor plants of enhanced safety. The most advanced nuclear powered water desalination project is the APVS-80. This design consists of a special ship equipped with the distillation desalination plant powered at a level of 160 MW(th) utilizing the type KLT-40 reactor plant. More than 20 years of experience with water desalination and reactor plants has been achieved in Aktau and Russian nuclear ships without radioactive contamination of desalinated water. Design is also proceeding on a two structure complex consisting of a floating nuclear power station and a reverse osmosis desalination plant. This new technology for sea water desalination provides the opportunity to considerably reduce the specific consumption of power for the desalination of sea water. The ABV reactor is utilized in the ''Volnolom'' type floating nuclear power stations. This design also features a desalinator ship which provides sea water desalination by the reverse osmosis process. The ATETS-80 is a nuclear two-reactor cogeneration complex which incorporates the integral vessel-type PWR which can be used in the production of electricity, steam, hot and desalinated water. (author). 9 figs

  15. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  16. Technical and economic assessment of photovoltaic-driven desalination systems

    International Nuclear Information System (INIS)

    Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.

    2010-01-01

    Solar desalination systems are approaching technical and cost viability for producing fresh-water, a commodity of equal importance to energy in many arid and coastal regions worldwide. Solar photovoltaics (PV) represent an ideal, clean alternative to fossil fuels, especially for remote communities such as grid-limited villages or isolated islands. These applications for water production in remote areas are the first to be nearing cost-competitiveness due to decreasing PV prices and increasing fossil fuel prices over the last five years. The electricity produced from PV systems for desalination applications can be used for electro-mechanical devices such as pumps or in direct-current (DC) devices. Reverse osmosis (RO) and electrodialysis (ED) desalination units are the most favorable alternatives to be coupled with PV systems. RO usually operates on alternating current (AC) for the pumps, thus requiring a DC/AC inverter. In contrast, electrodialysis uses DC for the electrodes at the cell stack, and hence, it can use the energy supplied from the PV panels with some minor power conditioning. Energy storage is critical and batteries are required for sustained operation. In this paper, we discuss the operational features and system designs of typical PV-RO and PV-ED systems in terms of their suitability and optimization for PV operation. For PV-RO and PV-ED systems, we evaluate their electricity need, capital and operational costs, and fresh-water production costs. We cover ongoing and projected research and development activities, with estimates of their potential economics. We discuss the feasibility of future solar desalination based on expected (or predicted) improvements in technology of the desalination and PV systems. Examples are provided for Middle East and other parts of the World. (author)

  17. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Saha, Bidyut Baran; Chun, Wongee

    2014-01-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends

  18. Performance of indigenously fabricated pyramid type solar desalination unit at Nawabshah

    International Nuclear Information System (INIS)

    Memon, A.H.; Rajpar, A.H.; Memon, N.A.

    2010-01-01

    The performance of locally fabricated pyramid type solar desalination unit was studied and compared with the conventional basin type solar still. Both stills were initially filled with same quantity of brackish water. Their performance was studied in terms of the quality of water produced, quantity of water desalinated per hour and total quantity of water desalinated per day during the time under study. The experiments were conducted and various parameters were recorded from 9-15 hours daily. These results showed that pyramid solar still produced 20% higher desalinated water as compared to the conventional double slope basin type solar still. This study showed that the productivity rate of soar still is dependent upon geometrical configuration of solar still. It was observed that the units can highly reduce the salinity, TDS (Total Dissolved Solids) and EC (Electrical Conductivity) of the saline ground water providing the availability of safe drinking water. (author)

  19. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    NARCIS (Netherlands)

    Belila, A.; El-Chakhtoura, J.; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, G.; Saikaly, P.E.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking

  20. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce

    2017-01-01

    capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes

  1. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-29

    In Gulf Cooperation Council (GCC) countries, cogeneration based desalination processes consume almost 25% of the total annual energy and it is increasing at 2.2% annually. The high fresh water demand is attributed to high gross domestic product (GDP) growth rate, 24%, and the high water languishes, more than 10%. Over the past two decades, GCC countries have spent tens of billion dollars to expand their present and planned desalination capacities. It is foreseeable that with business-as-usual scenario, the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle is proposed by integrating multi cascaded-evaporators (CE) with an adsorption cycle (AD). In this new innovative cycle, AD desorbed vapors are supplied to the CE to exploit the latent condensation energy within the evaporators arranged in both pressures-temperatures cascaded manner to improves the performance ratio (PR) of the cycle. Hybrid cycle shows more than 10 folds water production improvement as compared to conventional AD cycle due to synergetic effect. This concept is demonstrated in a laboratory pilot plant using a 3 cascaded evaporators pilot and simulation of 8 evaporators hybrid cycle.

  2. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  3. Nuclear's potential role in desalination

    International Nuclear Information System (INIS)

    Kupitz, J.

    1992-01-01

    Motivated by the growing need for fresh water in developing countries, the International Atomic Energy Agency (IAEA) has promoted a study of the technical and economic viability of using nuclear energy for producing fresh water by desalination of seawater. The outcome of the study is summarized. The most promising desalination processes for large scale water production are outlined and possible energy sources considered. The main incentives for using nuclear energy rather than fossil fuelled plants include: overall energy supply diversification; conservation of limited fossil fuel resources; promotion of technological development; and in particular, environmental protection through the reduction of emissions causing climate change and acid rain. An economic analysis showed that the levelized costs of electricity generation by nuclear power are in general in the same range as those for fossil fuel. Competitiveness depends on the unit size of the plant and interest rates. (UK)

  4. Design concepts of nuclear desalination plants

    International Nuclear Information System (INIS)

    2002-11-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an inter regional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States. It is aimed at planners, designers and potential end-users in those Member States interested in further assessment of nuclear desalination. Interested readers are also referred to two related and recent IAEA publications, which contain useful information in this area: Introduction of Nuclear Desalination: A Guidebook, Technical Report Series No. 400 (2000) and Safety Aspects of Nuclear Plants Coupled with Seawater Desalination Units, IAEA-TECDOC-1235 (2001)

  5. Hydrogen production by nuclear heat

    International Nuclear Information System (INIS)

    Crosbie, Leanne M.; Chapin, Douglas

    2003-01-01

    A major shift in the way the world obtains energy is on the horizon. For a new energy carrier to enter the market, several objectives must be met. New energy carriers must meet increasing production needs, reduce global pollution emissions, be distributed for availability worldwide, be produced and used safely, and be economically sustainable during all phases of the carrier lifecycle. Many believe that hydrogen will overtake electricity as the preferred energy carrier. Hydrogen can be burned cleanly and may be used to produce electricity via fuel cells. Its use could drastically reduce global CO 2 emissions. However, as an energy carrier, hydrogen is produced with input energy from other sources. Conventional hydrogen production methods are costly and most produce carbon dioxide, therefore, negating many of the benefits of using hydrogen. With growing concerns about global pollution, alternatives to fossil-based hydrogen production are being developed around the world. Nuclear energy offers unique benefits for near-term and economically viable production of hydrogen. Three candidate technologies, all nuclear-based, are examined. These include: advanced electrolysis of water, steam reforming of methane, and the sulfur-iodine thermochemical water-splitting cycle. The underlying technology of each process, advantages and disadvantages, current status, and production cost estimates are given. (author)

  6. Nuclear desalination activities in India

    International Nuclear Information System (INIS)

    Bhattacharjee, B.

    1999-01-01

    The main emphasis of this article is on utilization of nuclear energy for desalination. Nuclear desalination is cheaper, eco-friendly and assists in sustainable growth of total energy generation programme in a country. PHWR type reactors are the main stay of nuclear energy programme in India. Nuclear waste heat for desalination is available in the moderator system of the 220 MW(e) and 500 MW(e) PHWRs. The low temperature evaporation technology (LET) for producing pure water from sea water is also discussed

  7. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering

    2007-07-01

    Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.

  8. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  9. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  10. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Neal Tai-Shung

    2016-01-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  11. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  12. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    Carved stone sculptures and ornaments can be severely damaged by salt induced decay. Often the irregular surfaces are decomposed, and the artwork is lost. The present paper is an experimental investigation on the possibility for using electro-desalination for treatment of stone with irregular shape....... Electro-desalination experiments were made with different duration to follow the progress. Successful desalination of the whole stone piece was obtained, showing that also parts not being placed directly between the electrodes were desalinated. This is important in case of salt damaged carved stones......, where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  13. Technical and economic evaluation of potable water production through desalination of seawater by using nuclear energy and other means

    International Nuclear Information System (INIS)

    1992-09-01

    The present report contains an assessment of the need for desalination, information on the most promising desalination processes and energy sources, as well as on nuclear reactor systems proposed by potential suppliers worldwide. The main part of the report is devoted to evaluating the economic viability of seawater desalination by using nuclear energy, in comparison with fossil fuels. This evaluation encompasses a broad range of both nuclear and fossil plant sizes and technologies, and combinations with desalination processes. Finally, relevant safety and institutional aspects are briefly discussed. 27 refs, figs and tabs

  14. An Improved Multi-Evaporator Adsorption Desalination Cycle for GCC Countries

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon

    2017-01-01

    , the domestic oil consumption of Saudi Arabia may exceed its production capacity by 2040. Innovative and sustainable water production solutions are needed urgently for future water supplies without environment impact. In this paper, a hybrid desalination cycle

  15. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  16. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.

    2009-01-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 o C) and thermophilic (55 o C) temperatures. The hydrogen production yields with activated sludge at 37 o C and 55 o C were 0.25 and 0.93 mol H 2 /mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  17. Development of an environmental impact assessment and decision support system for seawater desalination plants

    NARCIS (Netherlands)

    Lattemann, S.

    2010-01-01

    Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River

  18. Hydrogen production from biomass by biological systems

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Qader, S.

    2009-01-01

    Hydrogen gas is seen as a future energy carrier, not involved in 'greenhouse' gas and its released energy in combustion can be converted to electric power. Biological system with low energy can produce hydrogen compared to electrochemical hydrogen production via solar battery-based water splitting which requires the use of solar batteries with high energy requirements. The biological hydrogen production occurs in microalgae and cyanobacteria by photosynthesis. They consume biochemical energy to produce molecular hydrogen. Hydrogen in some algae is an anaerobic production in the absence of light. In cyanobacteria the hydrogen production simultaneously happens with nitrogen fixation, and also catalyzed by nitrogenase as a side reaction. Hydrogen production by photosynthetic bacteria is mediated by nitrogenase activity, although hydrogenases may be active for both hydrogen production and hydrogen uptake under some conditions. Genetic studies on photosynthetic microorganisms have markedly increased in recent times, relatively few genetic engineering studies have focused on altering the characteristics of these microorganisms, particularly with respect to enhancing the hydrogen-producing capabilities of photosynthetic bacteria and cyanobacteria. (author)

  19. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.H.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Lammers, H.; Verver, A.B.; Wessling, Matthias

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a

  20. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2003-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy. 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques. 3) the heat normally lost at the heat sink could be used for desalination. And 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  1. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2001-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  2. Nuclear energy and water desalination

    International Nuclear Information System (INIS)

    Leprince-Ringuet, L.

    1976-01-01

    A short state-of-the-art survey is given of desalination methods, the involvement of nuclear power reactors in some desalination process, the cost of certain methods, and quantities produced and required in different parts of the world

  3. A new process of desalination by air passing through seawater based on humidification-dehumidification process

    Energy Technology Data Exchange (ETDEWEB)

    El-Agouz, S.A. [Mechanical power Engineering Department, Faculty of Engineering, Tanta University (Egypt)

    2010-12-15

    Experimental and theoretical work investigates the principal operating parameters of a proposed desalination process working with an air humidification-dehumidification method. The main objective of this work was to determine the humid air behavior through single stage of desalination system. The experimental work studied the influence of the operating conditions such as the water temperature, the saline water level and the airflow rate on the desalination performance. The experimental results show that, the productivity of the system increases with the increase of the water temperature and the decrease of the airflow rate. The productivity of the system is moderately affected by the water temperature and airflow rate while, slightly affected by the water level. The humidifier efficiency and the thermal efficiency of the desalination system are higher for m-dot{sub a}=14kg{sub a}/h at different water temperature and level. Within the studied ranges, the maximum productivity of the system reached to 8.22 kg{sub w}/h at 86 C for water temperature and m-dot{sub a}=14kg{sub a}/h. A good agreement achieved with productivity calculations. Finally, correlation for productivity of the system deduced as function of water temperature, water level and airflow rate. (author)

  4. Nanostructured materials for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Humplik, T; Lee, J; O' Hern, S C; Fellman, B A; Karnik, R; Wang, E N [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T, E-mail: tlaoui@kfupm.edu.sa, E-mail: karnik@mit.edu, E-mail: enwang@mit.edu [Departments of Mechanical Engineering and Chemical Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  5. Nanostructured materials for water desalination

    International Nuclear Information System (INIS)

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Karnik, R; Wang, E N; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T

    2011-01-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  6. Nanostructured materials for water desalination

    Science.gov (United States)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  7. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  8. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    International Nuclear Information System (INIS)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-01-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  9. Status and prospects of nuclear desalination

    International Nuclear Information System (INIS)

    Kupitz, J.; Konishi, T.

    2000-01-01

    While availability of potable water is an important prerequisite for socio-economic development, about 1/3 of the world's population is suffering from inadequate potable water supplies. Seawater desalination with nuclear energy could help to cope with the fresh water shortages and several countries are investigating nuclear desalination. Status and future prospects of nuclear desalination and the role of the IAEA in this area are discussed in this paper. (author)

  10. Desalination for a thirsty world

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Shortages of fresh water for some, unbridled consumption by others create intolerable planetary imbalances. The treatment of seawater and brackish water can really be effective in readjusting this inequality. Because they are reliable and efficient and their output is stable, the techniques preferred by the desalination industry are thermal distillation and reverse osmosis. Because thermal distillation processes consume considerable energy, they are often paired with gas-, coal- or fuel oil-fired heating plant to take advantage of the steam produced. More than three-quarters of this energy is effectively used to preheat the seawater. In the nuclear option (fresh water + electric power), the reactors simultaneously produce fresh water and electric power, ensuring a stable, continuous supply of energy. A portion of the steam produced by the turbine of the plant's secondary circuit is customarily used to run the alternator to generate electricity. The other portion can be fed to a desalination installation, which may be composed of a combination of several systems (hybrid installations). Highly competitive, this type of cogeneration is particularly appropriate for large scale desalination installations. This is the case for some of the Gulf Emirates and for Jordan: both are investigating the nuclear option to cover their electric power and fresh water requirements. The first nuclear desalination plant dedicated to producing fresh water was built for the city of Aktau (170,000 inhabitants) in Kazakhstan on the Caspian Sea in 1963 and continued operation through 1999. Experiments for producing potable water are taking place in India, Pakistan, Egypt and Libya. In Japan, around ten small desalination units coupled with nuclear power plants produce fresh water for industrial use, and nuclear-run district heating projects are currently being developed in Russia and China. The problem of what to do with the hyper-saline brine produced by desalination and its affect on

  11. Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea

    International Nuclear Information System (INIS)

    Saleh, A.; Qudeiri, J.A.; Al-Nimr, M.A.

    2011-01-01

    Solar ponds provide the most convenient and least expensive option for heat storage for daily and seasonal cycles. This is particularly important for a desalination facility, if steady and constant water production is required. If, in addition to high storage capacity, other favorable conditions exist, the salt gradient solar ponds (SGSPs) are expected to be able to carry the entire load of a large-scale flash desalination plants without dependence upon supplementary sources. This paper presents a performance investigation of a SGSP coupled with desalination plant under Jordanian climatic conditions. This is particularly convenient in the Dead Sea region characterized by high solar radiation intensities, high ambient temperature most of the year, and by the availability of high concentration brine. It was found that a 3000 m 2 solar pond installed near the Dead Sea is able to provide an annual average production rate of 4.3 L min -1 distilled water compared with 3.3 L min -1 that would be produced by El Paso solar pond, which has the same surface area. Based on this study, solar ponds appear to be a feasible and an appropriate technology for water desalination near the Dead Sea in Jordan. -- Research highlights: → A performance investigation of a solar pond coupled with desalination plant. → Dead Sea area is characterized by availability of high solar radiation and brine. → The Dead Sea solar pond can provide production rate of 4.3 L min -1 . → El Paso solar pond has production rate of 3.32 L min -1 . The improvement is about 30%. → The solar pond with desalination investigated showed to be a feasible technology.

  12. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  13. Techno-economic evaluation of a solar powered water desalination plant

    International Nuclear Information System (INIS)

    Fiorenza, G.; Sharma, V.K.; Braccio, G.

    2003-01-01

    Water desalination technologies and their possible coupling with solar energy have been evaluated. The topic is of particular interest, especially for countries located within the Southern Mediterranean belt, generally characterized with vast arid and isolated areas having practically no access to electric power from the national grid. Economic factors being one of the main barriers to diffusion of solar devices so far, an attempt has been made to estimate the water production cost for two different seawater desalination systems: reverse osmosis and multiple effect, powered by a solar thermal and a photovoltaic field, respectively. The results obtained for plants of capacity varying between 500 and 5000 m 3 /d have been compared to results concerning a conventional desalination system. In addition, the influences of various parameters, such as depreciation factor, economic incentives, PV modules cost and oil price, have also been considered

  14. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  15. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  16. The national project on nuclear desalination in India

    International Nuclear Information System (INIS)

    Misra, B.M.

    1996-01-01

    BARC (Bhabha Atomic Research Centre) has successfully developed both thermal and membrane desalination technologies for seawater and brackish water desalination. 425 m 3 /d Multi-Stage-Flash (MSF) desalination plant producing good quality water from seawater suitable for drinking and industrial water requirements operated. Knowhow developed for Low Temperature Vacuum Evaporation (LTVE) desalination plants utilizing waste heat. Reverse Osmosis (RO) technology developed at the centre has been successfully demonstrated. The experience obtained from the above plants has been utilized for designing a large scale hybrid desalination plant based on MSF and RO for augmenting the drinking water supply in water scarcity coastal areas

  17. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  18. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  19. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  20. New efficient hydrogen process production from organosilane hydrogen carriers derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Jean Michel [Unite URMITE, UMR 6236 CNRS, Faculte de Medecine et de Pharmacie, Universite de la Mediterranee, 27 boulevard Jean Moulin, 13385 Marseille 05 (France)

    2010-04-15

    While the source of hydrogen constitutes a significant scientific challenge, addressing issues of hydrogen storage, transport, and delivery is equally important. None of the current hydrogen storage options, liquefied or high pressure H{sub 2} gas, metal hydrides, etc.. satisfy criteria of size, costs, kinetics, and safety for use in transportation. In this context, we have discovered a methodology for the production of hydrogen on demand, in high yield, under kinetic control, from organosilane hydrogen carriers derivatives and methanol as co-reagent under mild conditions catalyzed by a cheap ammonium fluoride salt. Finally, the silicon by-products can be efficiently recycle leading to an environmentally friendly source of energy. (author)

  1. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  2. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  3. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  4. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  5. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  6. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  7. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  8. Economy Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  9. Economic Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  10. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  11. Economic evaluation of the integrated SMART desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m 3 ) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources

  12. Economic evaluation of the integrated SMART desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m{sup 3}) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources.

  13. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  14. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  15. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon; Shahzad, Muhammad Wakil

    2017-01-01

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination

  16. Trombay symposium on desalination and water reuse: proceedings

    International Nuclear Information System (INIS)

    2007-02-01

    Trombay Symposium on Desalination and Water Reuse (TSDWR-07) addresses the issues related to desalination and water reuse including integrated water resource management. It aims to bring together the desalination and water purification technologists from government R and D, academia, industry and representatives from NGOs and user groups including policy makers. The papers received cover a wide range of topics from water resource management to different aspects of desalination and water purification. Papers relevant to INIS are indexed separately

  17. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Takizuka, Takakazu

    2004-12-01

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  18. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  19. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  20. The nuclear energy in the seawater desalination

    International Nuclear Information System (INIS)

    Moreno A, J.; Flores E, R.M.

    2004-01-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  1. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-01-01

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  2. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-06-28

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  3. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  4. Status of nuclear desalination in IAEA member states

    International Nuclear Information System (INIS)

    2007-01-01

    Some of the IAEA Member States have active nuclear desalination programmes and, during the last few years, substantial overall progress has been made in this field. As part of the ongoing activities within the IAEA's nuclear power programme, it was thus decided to prepare a status report, which would briefly describe the recent nuclear seawater desalination related developments and relevant IAEA activities. This status report briefly covers salient aspects of the new generation reactors and a few innovative reactors being considered for desalination and other non-electrical applications, the recent advances in the commonly employed desalination processes and their coupling to nuclear reactors. A summary of techno-economic feasibility studies carried out in interested Member States has been presented and the potable water cost reduction strategies from nuclear desalination plants have been discussed. The socio-economic and environmental benefits of nuclear power driven desalination plants have been elaborated. It is expected that the concise information provided in this report would be useful to the decision makers in the Member States and would incite them to consider or to accelerate the deployment of nuclear desalination projects in their respective countries

  5. Costing methods for nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    The question of the methods used for costing desalination plants has been recognized as very important in the economic choice of a plant and its optimization. The fifth meeting of the Panel on the Use of Nuclear Energy in Saline Water Conversion, convened by the International Atomic Energy Agency in April 1965, noted this fact and recommended the preparation of a report on suitable methods for costing and evaluating nuclear desalination schemes. The Agency has therefore prepared this document, which was reviewed by an international panel of experts that met in Vienna from 18 to 22 April, 1966. The report contains a review of the underlying principles for costing desalination plants and of the various methods that have been proposed for allocating costs in dual-purpose plants. The effect of the different allocation methods on the water and power costs is shown at the end of the report. No attempt is made to recommend any particular method, but the possible limitations of each are indicated. It is hoped that this report will help those involved in the various phases of desalination projects

  6. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  7. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  9. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...... was contaminated with NaCl during submersion and subsequently desalinated by the method, the desalination was completed in that the high and problematic initial Cl(-) concentration was reduced to an unproblematic concentration. Further conductivity measurements showed a very low conductivity in the tile after...... treatment, indicating that supply of ions from the poultice at the electrodes into the tile was limited. Electroosmotic transport of water was seen when low ionic content was reached. Experiments were also conducted with XVIII-century tiles, which had been removed from Palacio Centeno (Lisbon) during...

  10. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  11. Photochemical hydrogen production system

    International Nuclear Information System (INIS)

    Copeland, R.J.

    1990-01-01

    Both technical and economic factors affect the cost of producing hydrogen by photochemical processes. Technical factors include the efficiency and the capital and operating costs of the renewable hydrogen conversion system; economic factors include discount rates, economic life, credit for co-product oxygen, and the value of the energy produced. This paper presents technical and economic data for a system that generates on-peak electric power form photochemically produced hydrogen

  12. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  13. World interest in nuclear desalination

    International Nuclear Information System (INIS)

    1969-01-01

    Nuclear power will be used in a desalination plant for the first time in a USSR plant now nearing completion. Studies are in progress to expand the concept of linking the power to chemical industries. These and other developing ideas were subjects of keen discussion by world experts at an Agency conference on nuclear desalination in Madrid. (author)

  14. An Interactive Computer Tool for Teaching About Desalination and Managing Water Demand in the US

    Science.gov (United States)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    This paper presents an interactive tool to geospatially and temporally analyze desalination developments and trends in the US in the time span 1950-2013, its current contribution to satisfying water demands and its future potentials. The computer tool is open access and can be used by any user with Internet connection, thus facilitating interactive learning about water resources. The tool can also be used by stakeholders and policy makers for decision-making support and with designing sustainable water management strategies. Desalination technology has been acknowledged as a solution to a sustainable water demand management stemming from many sectors, including municipalities, industry, agriculture, power generation, and other users. Desalination has been applied successfully in the US and many countries around the world since 1950s. As of 2013, around 1,336 desalination plants were operating in the US alone, with a daily production capacity of 2 BGD (billion gallons per day) (GWI, 2013). Despite a steady increase in the number of new desalination plants and growing production capacity, in many regions, the costs of desalination are still prohibitive. At the same time, the technology offers a tremendous potential for `enormous supply expansion that exceeds all likely demands' (Chowdhury et al., 2013). The model and tool are based on data from Global Water Intelligence (GWI, 2013). The analysis shows that more than 90% of all the plants in the US are small-scale plants with the capacity below 4.31 MGD. Most of the plants (and especially larger plants) are located on the US East Coast, as well as in California, Texas, Oklahoma, and Florida. The models and the tool provide information about economic feasibility of potential new desalination plants based on the access to feed water, energy sources, water demand, and experiences of other plants in that region.

  15. Desalinated drinking water in the GCC countries - The need to address consumer perceptions.

    Science.gov (United States)

    Shomar, Basem; Hawari, Jalal

    2017-10-01

    The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people

  16. A preliminary economic feasibility assessment of nuclear desalination in Madura Island

    International Nuclear Information System (INIS)

    Kim, S.-H.; Hwang, Y.-D.; Konishi, T.; Hudi Hastowo

    2005-01-01

    A joint study between KAERI and BATAN, which is entitled 'A preliminary economic feasibility assessment of nuclear desalination in Madura Island', is being conducted under the framework of the Interregional Technical Cooperation Project of IAEA, signed on Oct. 10, 2001 at IAEA. The duration of the project is January 2002 to December 2004. An economic feasibility of nuclear desalination using system-integrated modular advanced reactor (SMART), which will provide Madura Island with electricity and potable water and also support industrialisation and tourism, will be assessed during the project. The scope of this joint study includes the analyses for the short- and long-term energy and water demand as well as the supply plan for Madura Island, evaluation of the site characteristics, environmental impacts and health aspects, technical and economic evaluation of SMART and its desalination system, including the feasibility of its being identified on the Madura Island. KAERI and BATAN are cooperating in conducting a joint study, and IAEA provides technical support and a review of the study products. This paper presents the interim results of the joint study by focussing on the technical and economic aspects of nuclear desalination using SMART in Madura Island. (author)

  17. Economic evaluation of nuclear seawater desalination in an Algerian site: La Macta

    International Nuclear Information System (INIS)

    Belkaid, Abderrahmane; Amzert, Sid Ahmed; Arbaoui, Fahd; Bouaichaoui, Youcef

    2010-01-01

    As the needs for fresh water and electricity increases rapidly in Algeria, the Algerian authorities launched a study to assess the potentialities of the introduction of nuclear energy for the production of electricity and potable water. This study which started in 2007, is held under the framework of an IAEA Project untitled: 'techno-economic feasibility study of seawater desalination using nuclear energy' and its objective is to provide a document which will be used to support the government's decision to introduce the nuclear desalination in Algeria. To that end, one site has been selected to host nuclear desalination plant. This site is located in North West region of the country. In this study, we present the results achieved under this project and which corresponds to the economical evaluation of coupling several nuclear reactors: GT-MHR, PBMR, AP1000 and PWR900, with two desalination processes MED and RO. The results are compared with those obtained with fossil energy sources: Natural Gas Turbine and Natural Gas Combined Cycle. (author)

  18. Optimum size determination of nuclear dual-purpose desalination plants

    International Nuclear Information System (INIS)

    Gaussens, J.

    1966-01-01

    The economics of dual-purpose desalination plants is presented from a general standpoint. The concept of demand curves for water and electricity is introduced, which leads to a rational sharing of production costs between both commodities within the framework of a market. The purpose of the study, which is based upon the principles of classical economics, is to develop objective criteria for the design of desalination plants and to derive from these a normative method for pricing both joint products, water and electricity, following as much as possible the structure of the demand. Such criteria are in particular either the maximization of benefit for the operator or the maximum welfare for the community. They involve either equality between marginal costs and revenues, or equality between marginal costs and marginal satisfactions (theory of surplus). As the size of the plant is often the predominant factor in selecting the process to be used, it follows from the above considerations that this selection is closely related to: (a) The shape of the demand curve for water; (b) The economic criterion selected and the relevant constraints (public or private ownership, limitation of the investments, etc). This makes market surveys and a rather refined economic analysis indispensable before any decision is taken on the desalination technique to be adopted. (author). Abstract only

  19. Impact of socio-economic growth on desalination in the US.

    Science.gov (United States)

    Ziolkowska, Jadwiga R; Reyes, Reuben

    2016-02-01

    In 2013, around 1336 desalination plants in the United States (US) provided purified water mainly to municipalities, the industry sector and for power generation. In 2013 alone, ∼200 million m(3) of water were desalinated; the amount that could satisfy annual municipal water consumption of more than 1.5 million people in the US. Desalination has proven to be a reliable water supply source in many countries around the world, with the total global desalination capacity of ∼60 million m(3)/day in 2013. Desalination has been used to mitigate water scarcity and lessen the pressure on water resources. Currently, data and information about desalination are still limited, while extensive socio-economic analyses are missing. This paper presents an econometric model to fill this gap. It evaluates the impact of selected socio-economic variables on desalination development in the US in the time span 1970-2013. The results show that the GDP and population growth have significantly impacted the desalination sector over the analyzed time period. The insights into the economics of desalination provided with this paper can be used to further evaluate cost-effectiveness of desalination both in the US and in other countries around the world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  1. Optimum design of cogeneration system for nuclear seawater desalination - 15272

    International Nuclear Information System (INIS)

    Jung, Y.H.; Jeong, Y.H.

    2015-01-01

    A nuclear desalination process, which uses the energy released by nuclear fission, has less environmental impact and is generally cost-competitive with a fossil-fuel desalination process. A reference cogeneration system focused on in this study is the APR-1400 coupled with a MED (multi-effect distillation) process using the thermal vapor compression (TVC) technology. The thermal condition of the heat source is the most crucial factor that determines the desalination performance, i.e. energy consumption or freshwater production, of the MED-TVC process. The MED-TVC process operating at a higher motive steam pressure clearly shows a higher desalination performance. However, this increased performance does not necessarily translate to an advantage over processes operated at lower motive steam pressures. For instance, a higher motive steam pressure will increase the heat cost resulting from larger electricity generation loss, and thus may make this process unfavorable from an economic point of view. Therefore, there exists an optimum design point in the coupling configuration that makes the nuclear cogeneration system the most economical. This study is mainly aimed at investigating this optimum coupling design point of the reference nuclear cogeneration system using corresponding analysis tools. The following tools are used: MEE developed by the MEDRC for desalination performance analysis of the MED-TVC process, DE-TOP and DEEP developed by the IAEA for modeling of coupling configuration and economic evaluation of the nuclear cogeneration system, respectively. The results indicate that steam extraction from the MS exhaust and condensate return to HP FWHTR 5 is the most economical coupling design

  2. Sea water desalination using nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.

    2003-01-01

    The paper first underlines the water shortage problem today and in the years to come when, around the time horizon 2020, two-thirds of the total world population would be without access to potable water. Desalination of sea-water (and, to a limited extent, that of brackish water) is shown to be an attractive solution. In this context, sea-water desalination by nuclear energy appears to be not only technically feasible and safe but also economically very attractive and a sustainable solution. Thus, compared to conventional fossil energy based sources, desalination costs by nuclear options could be 30 to 60% lower. The nuclear options are therefore expected to satisfy the fundamental water needs and electricity demands of human beings without in any way producing large amounts of greenhouse gases which any desalination strategy, based on the employment of fossil fuels, cannot fail to avoid. (author)

  3. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  4. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  5. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.

    Science.gov (United States)

    Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V

    2013-07-01

    This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Towards nuclear energy applications other than electricity production

    International Nuclear Information System (INIS)

    Lecomte, M.

    2007-01-01

    Use of nuclear energy relies on operation of a boiler, involving practically no greenhouse gas emission. Whereas production of electricity is, nowadays, virtually its sole purpose, demand for heat production could equally arise, particularly with the emergence of high-temperature, or even very-high-temperature reactors. With the abilities this involves, as regards the recovery of heavy crude oils from tar sands, seawater desalination, or, most importantly, production of hydrogen by electrolysis, or thermochemistry, this being the energy carrier of tomorrow. (authors)

  7. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  8. Appraisal of bio-hydrogen production schemes

    International Nuclear Information System (INIS)

    Bent Sorensen

    2006-01-01

    Work is ongoing on several schemes of biological hydrogen production. At one end is the genetic modification of biological systems (such as algae or cyanobacteria) to produce hydrogen from photosynthesis, instead of the energy-rich compounds (such as NADPH 2 ) normally constituting the endpoint of the transformations through the photo-systems. A second route is to collect and use the biomass produced by normal plant growth processes in a separate step that produces hydrogen. This may be done similar to biogas production by fermentation, where the endpoint is methane (plus CO 2 and minor constituents). Hydrogen could be the outcome of a secondary process starting from methane, involving any of the conventional methods of hydrogen production from natural gas. An alternative to fermentation is gasification of the biomass, followed by a shift-reaction leading to hydrogen. I compare advantages and disadvantages of these three routes, notably factors such as system efficiency, cost and environmental impacts, and also compare them to liquid biofuels. (author)

  9. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  10. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  11. Desalination - A solution to water shortage

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Pakistan as well as neighbouring countries are faced with critical water shortage for the last few decades. The demand for water has outstripped its supply making the availability of safe water sources an issue Also conflicts over water sharing are expected in many regions of the world. Thus, because of this looming crisis water problems are getting increasing attention all over the world. With the advancement of desalination technology many countries had resorted removal of salts from brackish and sea water as an alternative water supply and they are now viewing desalination as a future solution to problems of lack of water. Today, over 100 countries use desalting requirement. A total of 12,451 desalting units (of a unit size of 100 m/sup 3//d or more) with a total capacity of 22,735,000 m /d had been installed or contracted worldwide. Brackish water desalination plants contribute with 9,400,000 m3/d, whereas the capacity of the sea water plants had reached up to 13,300,000 m3/d. This paper will discuss the use of desalination to produce potable water from saline water for domestic or municipal purposes and also the available desalination techniques that have been developed over the years and have achieved commercial success. (author)

  12. Preliminary Cost Estimates for Nuclear Hydrogen Production: HTSE System

    International Nuclear Information System (INIS)

    Yang, K. J.; Lee, K. Y.; Lee, T. H.

    2008-01-01

    KAERI is now focusing on the research and development of the key technologies required for the design and realization of a nuclear hydrogen production system. As a preliminary study of cost estimates for nuclear hydrogen systems, the hydrogen production costs of the nuclear energy sources benchmarking GTMHR and PBMR are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTSE (High Temperature Steam Electrolysis) process with VHTR (Very High Temperature nuclear Reactor) as a thermal energy source. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if CO 2 capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of CO 2 . Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed

  13. Approach for smart application to desalination and power generation

    International Nuclear Information System (INIS)

    Chang Moon Hee; Kim Si-Hwan

    1998-01-01

    A 330 MWt integral reactor, SMART, and an integrated nuclear seawater desalination system coupled with SMART are currently under conceptual development at KAERI. The SMART will provide energy to the desalination system either in the form of heat or electricity, or both. The integrated nuclear desalination system aims to produce about 40,000 m 3 /day potable water from seawater for demonstration purposes. The remaining energy produced by SMART will be converted into electrical energy. Several important factors are especially considered in the process of SMART and its application system development. The development emphasizes the adoption of technically proven and advanced technology, measures to secure the safety and reliability of the reactor system, consideration of the desalination process for coupling with SMART, a licensing strategy for SMART and the integrated nuclear desalination system, and international cooperation for promoting nuclear desalination with the SMART development program. The current effort to establish the concept of SMART and its application for desalination is being pursued intensively to secure the safety and reliability of SMART, to prove the implemented concepts/technology considering the coupling with the desalination process, and to formulate an optimum licensing approach. This paper aims to present the technical and strategic approach of SMART and its application system. (author)

  14. Present and future activities of nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Minato, A.; Hirai, M.

    2004-01-01

    Seawater desalination plants have been installed at several nuclear power plants in Japan in order to satisfy the regulations for nuclear plant installation. This has been done where there is a limited source of water due to the geological conditions. These desalination plants are being operated to ensure supplemental water by using thermal or electrical energy from the nuclear power plant. The desalination plant is not operated continuously during the year because the major function of the plant is to ensure the supply of supplemental water for the nuclear power plant. Regarding maintenance of the desalination plant, some piping was exchanged due to corrosion by high temperature seawater, however, the desalination plants are being operated without any trouble as of today. Recently, the development of innovative and/or small reactor designs, that emphasise safety features, has been promoted in Japan to use for seawater desalination and for installation in developing countries. An advanced RO system with lower energy consumption technology is also being developed. Furthermore, some Japanese industries and universities are now very interested in nuclear desalination. (author)

  15. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    Science.gov (United States)

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  16. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  17. Water desalination price from recent performances: Modelling, simulation and analysis

    International Nuclear Information System (INIS)

    Metaiche, M.; Kettab, A.

    2005-01-01

    The subject of the present article is the technical simulation of seawater desalination, by a one stage reverse osmosis system, the objectives of which are the recent valuation of cost price through the use of new membrane and permeator performances, the use of new means of simulation and modelling of desalination parameters, and show the main parameters influencing the cost price. We have taken as the simulation example the Seawater Desalting centre of Djannet (Boumerdes, Algeria). The present performances allow water desalting at a price of 0.5 $/m 3 , which is an interesting and promising price, corresponding with the very acceptable water product quality, in the order of 269 ppm. It is important to run the desalting systems by reverse osmosis under high pressure, resulting in further decrease of the desalting cost and the production of good quality water. Aberration in choice of functioning conditions produces high prices and unacceptable quality. However there exists the possibility of decreasing the price by decreasing the requirement on the product quality. The seawater temperature has an effect on the cost price and quality. The installation of big desalting centres, contributes to the decrease in prices. A very important, long and tedious calculation is effected, which is impossible to conduct without programming and informatics tools. The use of the simulation model has been much efficient in the design of desalination centres that can perform at very improved prices. (author)

  18. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification

    International Nuclear Information System (INIS)

    Deniz, Emrah; Çınar, Serkan

    2016-01-01

    Highlights: • Possibility of suppling all energy consumption from solar energy was tested. • Air and water-heated humidification-dehumidification desalination system was proposed. • Energy, exergy, economic and environmental analysis were performed. • Productivity and performance of the desalination system was analyzed. • Various operational parameters were investigated. - Abstract: A novel humidification-dehumidification (HDH) solar desalination system is designed and tested with actual conditions and solar energy was used to provide both thermal and electrical energy. Energy-exergy analyses of the system are made and economic and enviro-economic properties are investigated using data obtained from experimental studies. In this way, economic and environmental impacts of the HDH solar desalination systems have also been determined. The maximum daily energy efficiency of the system was calculated as 31.54% and the maximum exergy efficiency was found as 1.87%. The maximum fresh water production rate is obtained as 1117.3 g/h. The estimated cost of fresh water produced through the designed HDH system is 0.0981 USD/L and enviro-economic parameter is 2.4041 USD/annum.

  19. Water reuse and desalination in Spain – challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Teresa Navarro

    2018-04-01

    Full Text Available This article offers an evaluation of the reuse of reclaimed water and desalination in Spain and aims to provide an overview of the state of the art and Spanish legal framework as far as non-conventional resources are concerned. The fight against the scarcity of water resources in this country, especially in the southeast, has made the production of new alternative water resources a clear priority and has turned the nation into a leader in water reuse and seawater desalination. The assessment presented can be used to help build a more general framework, like the European one, and shed light on other comparative legal experiences.

  20. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC)

    Science.gov (United States)

    Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun

    2017-07-01

    Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.

  1. Introduction of nuclear desalination. A guidebook

    International Nuclear Information System (INIS)

    2000-01-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by wide varieties of reasons, inter alia, from economic competitiveness of nuclear energy to energy supply diversification, from conservation of limited fossil fuel resources to environmental protection, and by nuclear technology in industrial development. IAEA feasibility studies, which have been carried out with participation of interested Member States since 1989, have shown that nuclear desalination of seawater is technically and economically viable in many water shortage regions. In view of its perspectives, several Member States have, or are planning to launch, demonstration programmes on nuclear desalination. This guidebook has been prepared for the benefit of such Member States so that the development could be facilitated as well as their resources could be shared among such interested Member States. This guidebook comprises three major parts: Part I - Overview of nuclear desalination, Part II - Special aspects and considerations relevant to the introduction of nuclear desalination, and Part III - Steps to introduce nuclear desalination. In Part I, an overview of relevant technologies and pertinent experience accumulated in the past is presented. The global situation of the freshwater problem is reviewed and incentives for utilizing nuclear energy to contribute to solving the problems are briefly set forth. State-of-the-art relevant technologies and experience with them are summarized. Part II identifies special aspects to be considered in decision making process concerning nuclear desalination. There are technical, safety and environmental and economical aspects as well as national requirements. In Part III necessary steps to be taken once nuclear desalination has been selected are elaborated. Policy issues are discussed, and project planning is summarized. This point also elaborates on project implementation aspects, which

  2. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  3. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  4. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  5. Advances in nuclear desalination

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    The Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam aims to demonstrate the safe and economic production of good quality water by desalination of seawater comprising 4,500 m 3 /d Multi-Stage Flash (MSF) and 1,800 m 3 /d Reverse Osmosis (RO) plant. The design of the hybrid MSF-RO plant to be set up at an existing nuclear power station is presented. The MSF plant based on long tube design requires less energy. The effect on performance of the MSF plant due to higher seawater intake temperature is marginal. The preheat RO system part of the hybrid plant uses reject cooling seawater from the MSF plant. This allows lower pressure operation, resulting in energy saving. The two qualities of water produced are usable for the power station as well as for drinking purposes with appropriate blending. The post treatment is also simplified due to blending of the products from MSF and RO plants. The hybrid plant has a number of advantages: part of high purity desalted water produced from the MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; and the RO plant will continue to be operated to provide water for drinking purposes during the shut down of the power station. Commissioning of the RO section is expected in 2002 and that of the MSF section in 2003. Useful design data are expected from the plant on the coupling of small and medium size reactors (SMR) based on PHWR. This will enable us to design a large size commercial plant up to 50,000 m 3 /d capacity. India will share the O and M experience of NDDP to member states of the International Atomic Energy Agency (IAEA) when the plant is commissioned. The development work for producing good quality water for power station from high salinity water utilizing low grade waste heat is presented. About 40 and 100 MWth low temperature waste heat is

  6. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  7. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Chang, J. H.; Park, J. K.

    2007-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production system, and the assessment of the nuclear hydrogen production economy. To estimate the attainments of the key technologies in progress with the performance goals of GIF, itemized are the attainment indices based on SRP published in VHTR R and D steering committee of Gen-IV. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items conformed to the NHDD concepts established in a preconceptual design in 2005. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  8. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  9. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  10. Nuclear desalination newsletter, No. 1, September 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This issue discusses the recent IAEA and Member States activities in the field of desalination. Reports about these activities in Algeria, China, Germany, India, Cuba, France, Indonesia, Kuwait, Libya, South Africa, Morocco, Saudi Arabia, Spain and USA are given. The new version of the DEEP software - DEEP 3.2 - is presented. A newly developed toolkit on nuclear desalination is also presented. The ongoing IAEA activities include organization and participation in meetings on nuclear desalination, or related topics, like Technical Meeting on Non Electric Applications, held in Daejeon, Rep. of Korea, 3-6 March 2009; Management of Water Use and Consumption in Water Cooled Nuclear Power; Joint ICTP/IAEA Training Workshop on Technology and Performance of Desalination Systems; Advances in Nuclear Power for Process Heat Applications. The plans for future activities and meetings are also presented

  11. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo [Center for Environmental Studies, Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  12. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    International Nuclear Information System (INIS)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo

    2016-01-01

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  13. Status of CEA studies on desalination on July 1, 1967

    International Nuclear Information System (INIS)

    Huyghe, J.; Vignet, P.; Courvoisier, P.; Frejacques, M.; Coriou, M.; Agostini, M.; Lackme, C.; CORPEL, M.; Thiriet, L.

    1967-01-01

    This publication contains a set of articles reporting studies on desalination performed within the CEA: preliminary draft of a desalination plant coupled with a nuclear reactor; the reverse osmosis; corrosion problems in seawater desalination plants; optimisation program of a distillation-based seawater desalination plant; activities of the department of analysis and applied chemistry in the field of desalination; abstract of a lecture on studies on price functions; studies of the department of steady isotopes on the formation of tartar depositions and their prevention; studies performed within the thermal transfer department

  14. Solutions to commercializing metal hydride hydrogen storage products

    International Nuclear Information System (INIS)

    Tomlinson, J.J.; Belanger, R.

    2004-01-01

    'Full text:' Whilst the concept of a Hydrogen economy in the broad sense may for some analysts and Fuel Cell technology developers be an ever moving target the use of hydrogen exists and is growing in other markets today. The use of hydrogen is increasing. Who are the users? What are their unique needs? How can they better be served? As the use of hydrogen increases there are things we can do to improve the perception and handling of hydrogen as an industrial gas that will impact the future issues of hydrogen as a fuel thereby assisting the mainstream availability of hydrogen fuel a reality. Factors that will induce change in the way hydrogen is used, handled, transported and stored are the factors to concentrate development efforts on. Other factors include: cost; availability; safety; codes and standards; and regulatory authorities acceptance of new codes and standards. New methods of storage and new devices in which the hydrogen is stored will influence and bring about change and increased use. New innovative products based on Metal Hydride hydrogen storage will address some of the barriers to widely distributed hydrogen as a fuel or energy carrier to which successful fuel cell product commercialization is subject. Palcan has developed innovative products based on it's Rare Earth Metal Hydride alloy. Some of these innovations will aid the distribution of hydrogen as a fuel and offer alternatives to the existing hydrogen user and to the Fuel Cell product developer. An overview of the products and how these products will affect the distribution and use of hydrogen as an industrial gas and fuel is presented. (author)

  15. Water desalination by electrical resonance inside carbon nanotubes.

    Science.gov (United States)

    Feng, Jia-Wei; Ding, Hong-Ming; Ma, Yu-Qiang

    2016-10-12

    Although previous studies have indicated that the carbon nanotube (CNT) can be used for directed transportation of water and ions, it is still a challenging problem to design a CNT-based device for high performance water desalination. In this study, by using molecular dynamics simulations, we successfully design one type of CNT as a highly efficient desalination membrane through electrical resonance. By decorating the two ends of the CNT with vibrational charges, an alternating electric field is created inside the CNT. When the amplitude of the vibrational charge is 0.05 e, and the vibrational frequency is between 10 THz and 20 THz, the CNT can completely block the transportation of ions. The decrease of the amplitude or the deviation of the frequency in an appropriate range will gradually increase the ion flow. Besides, we also reveal the underlying molecular mechanism of ion blockage, i.e., the electric resonance can disrupt the water structure inside the CNT and then alter the hydration energy of ions inside the CNT. More importantly, we further demonstrate that this mechanism is universal, which is independent of the type of ions and the size of CNT. The present work could be useful for designing water desalination membranes with lower energy consumption and higher fresh water production.

  16. Today's and future challenges in applications of renewable energy technologies for desalination

    KAUST Repository

    Goosen, Mattheus F A; Mahmoudi, Hacè ne; Ghaffour, NorEddine

    2013-01-01

    Recent trends and challenges in applications of renewable energy technologies for water desalination are critically reviewed with an emphasis on environmental concerns and sustainable development. After providing an overview of wind, wave, geothermal, and solar renewable energy technologies for fresh water production, hybrid systems are assessed. Then scale-up and economic factors are considered. This is followed with a section on regulatory factors, environmental concerns, and globalization, and a final segment on selecting the most suitable renewable energy technology for conventional and emerging desalination processes. © 2014 Copyright Taylor & Francis Group, LLC.

  17. Today's and future challenges in applications of renewable energy technologies for desalination

    KAUST Repository

    Goosen, Mattheus F A

    2013-08-28

    Recent trends and challenges in applications of renewable energy technologies for water desalination are critically reviewed with an emphasis on environmental concerns and sustainable development. After providing an overview of wind, wave, geothermal, and solar renewable energy technologies for fresh water production, hybrid systems are assessed. Then scale-up and economic factors are considered. This is followed with a section on regulatory factors, environmental concerns, and globalization, and a final segment on selecting the most suitable renewable energy technology for conventional and emerging desalination processes. © 2014 Copyright Taylor & Francis Group, LLC.

  18. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  19. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  20. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  1. Hydrogen production by alkaline water electrolysis

    OpenAIRE

    Santos, Diogo M. F.; Sequeira, César A. C.; Figueiredo, José L.

    2013-01-01

    Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article...

  2. IAEA activity related to safety of nuclear desalination

    International Nuclear Information System (INIS)

    Gasparini, M.

    2000-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. The current safety approach, based on the achievement of the fundamental safety functions and defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  3. NDDP multi-stage flash desalination process simulator design

    International Nuclear Information System (INIS)

    Chatterjee, M.; Sashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2006-05-01

    A majority of large-scale desalination plants all over the world employ multi-stage flash (MSF) distillation process. Many of these MSF desalination plants have been set up near to nuclear power plants (generally called as nuclear desalination plants) to effectively utilize the low-grade steam from the power plants as the source of energy. A computer program called MSFSIM has been developed to simulate the MSF desalination plant operation both for steady state and various transients including start up. This code predicts the effect of number of stages, flashing temperature, velocity of brine flowing through the tubes of brine heater and evaporators, temperature of the condensing thin film etc. on the plant performance ratio. Such a code can be used for the design of a new plant and to predict its operating and startup characteristics. The code has been extensively validated with available start up data from the pilot MSF desalination plant of 425-m3/day capacity at Trombay, Mumbai. A MSF desalination plant of 4500-m3/day capacity is under construction by BARC at Kalpakkam, which will utilize the steam from Madras Atomic Power Station (MAPS). In this present work extensive parametric study of the 4500-m3/day capacity desalination plant at Kalpakkam has been done using the code MSFSIM for optimizing the operating parameters in order to maximize the performance ratio for stable plant operation. The aim of the work is prediction of plant performance under different operating conditions. (author)

  4. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, C.M.; Racz, I.G.; van Heuven, Jan Willem; Reith, T.; de Haan, A.B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  5. New concepts in hydrogen production in Iceland

    International Nuclear Information System (INIS)

    Arnason, B.; Sigfusson, T.I.; Jonsson, V.K.

    1993-01-01

    The paper presents some new concepts of hydrogen production in Iceland for domestic use and export. A brief overview of the Icelandic energy consumption and available resources is given. The cost of producing hydrogen by electrolysis is calculated for various alternatives such as plant size, load factors and electricity cost. Comparison is made between the total cost of liquid hydrogen delivered to Europe from Iceland and from Northern America, showing that liquid hydrogen delivered to Europe from Iceland would be 9% less expensive. This assumes conventional technology. New technologies are suggested in the paper and different scenarios for geothermally assisted hydrogen production and liquefaction are discussed. It is estimated that the use of geothermal steam would lead to 19% lower hydrogen gas production costs. By analysing the Icelandic fishing fleet, a very large consumer of imported fuel, it is argued that a transition of fuel technology from oil to hydrogen may be a feasible future option for Iceland and a testing ground for changing fuel technology. (Author)

  6. Sea water desalination by horizontal tubes evaporator

    International Nuclear Information System (INIS)

    Mohammadi, H.K.; Mohit, M.

    1986-01-01

    Desalinated water supplies are one of the problems of the nuclear power plants located by the seas. This paper explains saline water desalination by a Horizontal Tube Evaporator (HTE) and compares it with flash evaporation. A thermo compressor research project using HTE method has been designed, constructed, and operated at the Esfahan Nuclear Technology Center ENTC. The poject's ultimate goal is to obtain empirical formulae based on data gathered during operation of the unit and its subsequent development towards design and construction of desalination plants on an industrial scale

  7. Renewable solar hydrogen production and utilization

    International Nuclear Information System (INIS)

    Bakos, J.

    2006-01-01

    There is a tremendous opportunity to generate large quantities of hydrogen from low grade and economical sources of methane including landfill gas, biogas, flare gas, and coal bed methane. The environmental benefits of generating hydrogen using renewable energy include significant greenhouse gas and air contaminant reductions. Solar Hydrogen Energy Corporation (SHEC LABS) recently constructed and demonstrated a Dry Fuel Reforming (DFR) hydrogen generation system that is powered primarily by sunlight focusing-mirrors in Tempe, Arizona. The system comprises a solar mirror array, a temperature controlling shutter system, and two thermo-catalytic reactors to convert methane, carbon dioxide, and water into hydrogen. This process has shown that solar hydrogen generation is feasible and cost-competitive with traditional hydrogen production. The presentation will provide the following: An overview of the results of the testing conducted in Tempe, Arizona; A look at the design and installation of the scaled-up technology site at a landfill site in Canada; An examination of the economic and environmental benefits of renewable hydrogen production using solar energy

  8. Hydrogen production processes

    International Nuclear Information System (INIS)

    2003-01-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H 2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I 2 /H 2 O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H 2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  9. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  10. Extremophile mediated hydrogen production for hydrogenation of substrates in aqueous media

    Science.gov (United States)

    Anjom, Mouzhgun

    Catalytic hydrogenation reactions are pervasive throughout our economy, from production of margarine as food, liquid fuels for transportation and chiral drugs such as L-DOPA. H2 production from non-fossil fuel feedstocks is highly desirable for transition to the "Hydrogen Economy". Also, the rates of hydrogenation reactions that involve a substrate, H 2 gas and a catalyst are often limited by the solubility of H2 in solvent. The present research thus envisioned designing water-soluble catalysts that could effectively utilize biologically produced H2 in a coupled system to hydrogenate substrates in homogeneous mode (two-phase system). Biological production of H2 as an end product or byproduct of the metabolism of organisms that operate under strict anaerobic conditions has been proposed. However, contrary to what was previously observed, Thermotoga neapolitana, belonging to the order of Thermotogales efficiently produces H2 gas under microaerobic conditions (Van Ooteghem et al. 2004). For H2 production by T. neapolitana in the bacterial growth medium (DSM 5068) at an optimum temperature of 70 C, our results in batch mode show that: (1) H2 was produced from glucose though with 16% efficiency, the rest goes to biomass production, (2) H2 gas was produced even when the cultures were inoculated under microaerobic conditions (up to 8% (v/v) O2) suggesting a protective mechanism for one or more [Fe-Fe] hydrogenases in T. neapolitana, (3) H2 production was pH dependent but addition of simple, non-toxic physiological buffering additives such as Methylene succinic acid increased H2 production and (4) H2 production rate varied linearly in the 100--6800 kPa pressure range. We then screened various water-soluble metal catalysts in batch mode and selected the RhCl3.3H2O/TPPTS (TPPTS is a water-soluble ligand) system that achieved 86% hydrogenation of Methylene succinic acid (an olefin) in an aqueous medium pressurized with preformed H2. When water was replaced with the DSM 5068

  11. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  12. The sea water desalination by the nuclear reactors; Le dessalement de l'eau de mer par les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S. [CEA Cadarache, Dir. du Developpement et de l' Innovation Nucleares DDIN, 13 - Saint-Paul-lez-Durance (France)

    2002-07-01

    This document underlines the importance of water shortage in many areas in the world in the future. The water sea desalination can be a efficient solution to this problem. The desalination methods are presented. In this context the desalination reactors appear as a competitive solution, facing the fossil energies systems not only for the simultaneous electric power and drinking water production, but also for the minimization of greenhouse gases. (A.L.B.)

  13. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  14. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  15. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-04-02

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient temperature, as low as 5. °C in contrast to the conventional MED. The MEDAD cycle results in a quantum increase of distillate production at the same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid cycle, ambient energy can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants. These plants have been tested at assorted heat source temperatures from 15. °C to 70. °C and with portable water as a feed. All system states are monitored including the distillate production and power consumption and the measured results are expressed in terms of performance ratio (PR). It is observed that the synergetic matching of MEDAD cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the same rating. © 2015 Elsevier Ltd.

  16. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  18. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  19. Ruled-based control of off-grid desalination powered by renewable energies

    Directory of Open Access Journals (Sweden)

    Alvaro Serna

    2015-08-01

    Full Text Available A rule-based control is presented for desalination plants operating under variable, renewable power availability. This control algorithm is based on two sets of rules: first, a list that prioritizes the reverse osmosis (RO units of the plant is created, based on the current state and the expected water demand; secondly, the available energy is then dispatched to these units following this prioritized list. The selected strategy is tested on a specific case study: a reverse osmosis plant designed for the production of desalinated water powered by wind and wave energy. Simulation results illustrate the correct performance of the plant under this control.

  20. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  1. Development of interface technology for nuclear hydrogen production system

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2012-06-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production economy. The codes for analyzing the hydrogen production economy are developed for calculating the unit production cost of nuclear hydrogen. We developed basic R and D quality management methodology to meet design technology of VHTR's needs. By putting it in practice, we derived some problems and solutions. We distributed R and D QAP and Q and D QAM to each teams and these are in operation. Computer simulations are performed for estimating the thermal efficiency for the electrodialysis component likely to adapting as one of the hydrogen production system in Korea and EED-SI process known as the key components of the hydrogen production systems. Using the commercial codes, the process diagrams and the spread-sheets were produced for the Bunsen reaction process, Sulphuric Acid dissolution process and HI dissolution process, respectively, which are the key components composing of the SI process

  2. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  3. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  4. Research and development of HTTR hydrogen production systems

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has constructed the High Temperature Engineering Test Reactor (HTTR) with a thermal output of 30MW and a reactor out let coolant temper at ure of 950 .deg. C. There search and development (R and D) program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000m 3 /h by steam reforming of natural gas, using a nuclear heat of 10MW supplied by the HTTR hydrogen production system. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for the out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. In parallel to the out-of-pile test, the following tests as essential problem, a corrosion test of a reforming tube, a permeation test of hydrogen isotopes through heat exchanger and reforming tubes, and an integrity test of a high-temperature isolation valve are carried out to obtain detailed data for safety review and development of analytical codes. Other basis studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R and D of the HTTR hydrogen production systems in JAERI

  5. Prospects of solar desalination in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Saif-ur-Rehman, M; Bhatti, M R; Malik, M A

    1973-01-01

    This paper deals with the present state-of-the-art of solar desalination and evaluates the possibility of using solar stills in Pakistan. Along with the world survey of solar desalination units a brief description of the process and solar still is described. The areas of prospective users, i.e., having acute shortage of freshwater, even for drinking, are outlined.

  6. Experience with nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Shiota, Y.

    1996-01-01

    In Japan, the seawater desalination facilities were used mainly for potable water in remote islands and industrial water such as boiler feedwater. In order to produce potable water, distillation processes, Electrical Dialysis (ED) and Reverse Osmosis (RO) were used in the past. The distillation facilities were used to produce boiler feedwater, however, RO facilities are now used for this purpose, such as the nuclear desalination facilities with capacities of 2600 m 3 /d, 2000 m 3 /d and 1000 m 3 /d, in Kansai Electric Power Co., Ltd., Shikoku Electric Power Co., Inc. and Kyuhshu Electric Power Co., Inc., respectively. The RO process is becoming a main stream of desalination because the process has a low energy consumption. 6 tabs

  7. A review of reverse osmosis membrane materials for desalination-Development to date and future potential

    OpenAIRE

    Lee, Kali Peng; Arnot, Tom C.; Mattia, Davide

    2011-01-01

    Reverse osmosis (RO) is currently the most important desalination technology and it is experiencing significant growth. The objective of this paper is to review the historical and current development of RO membrane materials which are the key determinants of separation performance and water productivity, and hence to define performance targets for those who are developing new RO membrane materials. The chemistry, synthesis mechanism(s) and desalination performance of various RO membranes are ...

  8. Research on hydrogen production system

    International Nuclear Information System (INIS)

    Nakagiri, Toshio

    2002-07-01

    Hydrogen is closely watched for environmental issues in recent years. In this research, hydrogen production systems and production techniques are widely investigated, and selected some hydrogen production process which have high validity for FBR system. Conclusions of the investigation are shown below. (1) Water-electrolysis processes and steam reform processes at low temperatures are already realized in other fields, so they well be easily adopted for FBR system. FBR system has no advantage when compared with other systems, because water-electrolysis processes can be adopted for other electricity generation system. On the other hand, FBR system has an advantage when steam reforming processes at low temperatures will be adopted, because steam reforming processes at 550-600degC can't be adopted for LWR. (2) Thermochemical processes will be able to adopted for FBR when process temperature will be lowered and material problems solved, because their efficiencies are expected high. Radiolysis processes which use ray (for example, gamma rya) emitted in reactor can be generate hydrogen easily, so they will be able to be adopted for FBR if splitting efficiency will be higher. Further investigation and R and D to realize these processes are considered necessary. (author)

  9. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  10. Solar Desalination by Humidification-Dehumidification of Air

    Directory of Open Access Journals (Sweden)

    Moumouh J.

    2018-01-01

    Full Text Available The importance of supplying potable water can hardly be overstressed. In many arid zones, coastal or inlands, seawater or brackish water desalination may be the only solution to the shortage of fresh water. The process based on humidification-dehumidification of air (HDH principle mimic the natural water cycle. HDH technique has been subjected to many studies in recent years due to the low temperature, renewable energy use, simplicity, low cost installation and operation. An experimental test set-up has been fabricated and assembled. The prototype equipped with appropriate measuring and controlling devices. Detailed experiments have been carried out at various operating conditions. The heat and mass transfer coefficients have been obtained experimentally. The results of the investigation have shown that the system productivity increases with the increase in the mass flow rate of water through the unit. Water temperature at condenser exit increases linearly with water temperature at humidifier inlet and it decreases as water flow rate increases. HDH desalination systems realised on also work at atmospheric pressure; hence they do not need mechanical energy except for circulation pumps and fans. These kinds of systems are suitable for developing countries. The system is modular, it is possible to increase productivity with additional solar collectors and additional HDH cycles.

  11. Problems of pricing fresh water obtained from a sea water desalination plant

    International Nuclear Information System (INIS)

    Gaussens, J.

    1967-01-01

    Integrating a double-purpose desalination and electricity generating plant into a water supply system alters the conditions in which the other water and electricity sources are used, as the peak and the base load water and electricity demands have to be met at the least cost. This paper attempts to show how the problem of determining optimal water supply structures can be approached, in definite cases, but against a global economic back-ground. It becomes necessary to define the competition between classical resources and desalination plants, as these plants introduce into optimum studies new factors due to the peculiar shape of their production functions. These new factors (fixed and proportional costs structures, flow availabilities) are studied in relation to the production functions in various management cases (private monopoly, public monopoly). (author) [fr

  12. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  13. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  14. Risk management strategy for initiating nuclear desalination in the Gulf Cooperation Council (GCC)

    International Nuclear Information System (INIS)

    Hakami, Saeed

    2009-01-01

    Full text:The Gulf countries are one of the most water short regions in the world, classified from the arid and semiarid regions. The average precipitation received is 100 mm/year which indicate very limited renewable water resources per capita and per hectare of irrigated land. The water resources in gulf countries not only continued under pressure, but also it drought from other factors such as increasing population and water demand for irrigation and industrial use. Furthermore, Rain is considered the only source of recharging the ground water in the gulf countries and its fall depends upon the storms that occur irregularly in respect of quantity or distribution year-round. While the countries of the Gulf region have the capacity to rapidly expand their economic growth and gross domestic product (GDP). Also, one may observe that their growth rate is very high. For solving their limitation to use fresh water and to develop and sustain their economy and development, they need to nuclear desalinations. Risk management strategy helps to reduce issues in initiating nuclear desalination plants. There are vast theories, strategies and tools that have discussed in regards to risk management strategy in the nuclear desalinations. However, this paper chiefly provides and introduces a new risk management methodology in the Gulf countries This methodology helps to highlight the critical factors and their consequences at nuclear desalinations. This paper is intended to reduce risks in using nuclear desalinations and increase opportunities. Also, the objectives of this paper are how to plan and initiate nuclear desalination plants in Gulf Countries. Consequently, the new methodology helps their sustainable water industry.

  15. Nuclear Heat Application: Desalination as an Alternative Process for Potable Water Production in Indonesia (part 2)

    International Nuclear Information System (INIS)

    Amir-Rusli

    2000-01-01

    A survey of water supply and demand system and identification of desalination process need for Indonesia has been carried out. Even Indonesia is located in tropical zone of equator; it is still reported lack of water resources, especially during 6 months dry season. Due to miss-water management and bad attitude of the people itself occurred in the past; most of conventional water resources of river, lake and reservoir were damaged during development period of industrial and agriculture sectors. A half of 200 millions peoples of Indonesian population are still scarce of potable drinking water during the year of 1997. Jakarta as the capital has a population of 10 millions people which is the worse water availability in capita per year in the world at present. Seawater intrusion problem to about more than 11 km away is also detected in big cities of the main islands of Indonesia, and these same conditions are faced to other thousands of small islands. Therefore it is an urgent situation to develop a total integrated water management system in order to improve the performance of water resources. Desalination system of seawater/brackish water is considered and showed a good alternative for potable water production for domestic or industrial purposes. But in the long-term, water management system of the effectiveness cycle use of water should be implemented at sites. (author)

  16. The photovoltaic-powered water desalination plant 'SORO' design, start up, operating experience

    Science.gov (United States)

    Neuhaeusser, G.; Mohn, J.; Petersen, G.

    Design features, operational parameters, and test results of a year of operation of the SORO prototype photovoltaic (PV) reverse osmosis salt water desalinization plant are described. Chemicals are added to the salt water to control the pH, prevent formation of compounds which could plug the flow system, and kill bacteria and slime which might grow in the solution. The water is pressurized and forced into contact with membranes which separate the fresh water from the brackish or sea water. The flow rate in the project was 180 l/h, with the main electrical energy load being the high pressure pump and the well pump. Batteries are charged before current is switched to power the desalinization system. The plant yielded 1.50 cu of fresh water/day and is concluded to be a viable design for scale-up to larger production figures, besides being economically competitive with solar desalinization installations where the salt content is 2000 ppm.

  17. Rotating carbon nanotube membrane filter for water desalination

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  18. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  19. Nuclear desalination for the northwest of Mexico; Desalacion nuclear para el noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R. F. [Instituto de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)

    2008-07-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m{sup 3} for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  20. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz

    2016-12-01

    Eukaryotic microorganisms are naturally present in many water resources and can enter, grow and colonize water treatment and transport systems, including reservoirs, pipes and premise plumbing. In this study, we explored the eukaryotic microbial community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters), reverse osmosis (RO) membrane filtration and post-treatment steps (e.g. remineralization). 454 pyrosequencing analysis of the 18S rRNA gene revealed a highly diverse (35 phyla) and spatially variable eukaryotic community during water treatment and distribution. The desalination plant feed water contained a typical marine picoeukaryotic community dominated by Stramenopiles, Alveolates and Porifera. In the desalination plant Ascomycota was the most dominant phylum (15.5% relative abundance), followed by Alveolata (11.9%), unclassified fungi clade (10.9%) and Porifera (10.7%). In the drinking water distribution network, an uncultured fungi phylum was the major group (44.0%), followed by Chordata (17.0%), Ascomycota (11.0%) and Arthropoda (8.0%). Fungi constituted 40% of the total eukaryotic community in the treatment plant and the distribution network and their taxonomic composition was dominated by an uncultured fungi clade (55%). Comparing the plant effluent to the network samples, 84 OTUs (2.1%) formed the core eukaryotic community while 35 (8.4%) and 299 (71.5%) constituted unique OTUs in the produced water at the plant and combined tap water samples from the network, respectively. RO membrane filtration treatment significantly changed the water eukaryotic community composition and structure, highlighting the fact that (i) RO produced water is not sterile and (ii) the microbial community in the final tap water is influenced by the downstream distribution system. The study

  1. Roles Prioritization of Hydrogen Production Technologies for Promoting Hydrogen Economy in the Current State of China

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Gao, Suzhao; Tan, Shiyu

    2015-01-01

    Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance...... information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen...... for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision...

  2. Status of the Korean nuclear hydrogen production project

    International Nuclear Information System (INIS)

    Jonghwa, Chang; Won-Jae, Lee

    2010-01-01

    The rapid climate changes and the heavy reliance on imported fuel in Korea have motivated interest in the hydrogen economy. The Korean government has set up a long-term vision for transition to the hydrogen economy. To meet the expected demand of hydrogen as a fuel, hydrogen production using nuclear energy was also discussed. Recently the Korean Atomic Energy Committee has approved nuclear hydrogen production development and demonstration which will lead to commercialisation in late 2030's. An extensive research and development programme for the production of hydrogen using nuclear power has been underway since 2004 in Korea. During the first three years, a technological area was identified for the economic and efficient production of hydrogen using a VHTR. A pre-conceptual design of the commercial nuclear hydrogen production plant was also performed. As a result, the key technology area in the core design, the hydrogen production process, the coupling between reactor and chemical side, and the coated fuel were identified. During last three years, research activities have been focused on the key technology areas. A nuclear hydrogen production demonstration plant (NHDD) consisting of a 200 MWth capacity VHTR and five trains of water-splitting plants was proposed for demonstration of the performance and the economics of nuclear hydrogen. The computer tools for the VHTR and the water-splitting process were created and validated to some extent. The TRISO-coated particle fuel was fabricated and qualified. The properties of high temperature materials, including nuclear graphite, were studied. The sulphur-iodine thermochemical process was proved on a 3 litre/ hour scale. A small gas loop with practical pressure and temperature with the secondary sulphur acid loop was successfully built and commissioned. The results of the first phase research increased the confidence in the nuclear hydrogen technology. From 2009, the government decided to support further key technology

  3. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  4. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes

    KAUST Repository

    Bundschuh, Jochen; Ghaffour, NorEddine; Mahmoudi, Hacè ne; Goosen, Mattheus F A; Mushtaq, Shahbaz; Hoinkis, Jan

    2015-01-01

    The study is dedicated to exploring different types of low-cost low-enthalpy geothermal and their potential integration with conventional thermal-based water desalination and treatment technologies to deliver energy efficient, environmentally friendly solutions for water desalination and treatment, addressing global water crises. Our in-depth investigation through reviews of various low-enthalpy geothermal and conventional thermal-based technologies suggest that the geothermal option is superior to the solar option if low-cost geothermal heat is available because it provides a constant heat source in contrast to solar. Importantly, the stable heat source further allows up-scaling (> 1000 m3/day), which is not currently possible with solar. Solar-geothermal hybrid constellations may also be suitable in areas where both sources are available. The review also discovers that the innovative Membrane distillation (MD) process is very promising as it can be used for many different water compositions, salinity and temperature ranges. Either the geothermal water itself can be desalinated/treated or the geothermal heat can be used to heat feed water from other sources using heat exchangers. However, there are only few economic analyses for large-scale MD units and these are based on theoretical models using often uncertain assumptions resulting in a large variety of results.

  5. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes

    KAUST Repository

    Bundschuh, Jochen

    2015-03-01

    The study is dedicated to exploring different types of low-cost low-enthalpy geothermal and their potential integration with conventional thermal-based water desalination and treatment technologies to deliver energy efficient, environmentally friendly solutions for water desalination and treatment, addressing global water crises. Our in-depth investigation through reviews of various low-enthalpy geothermal and conventional thermal-based technologies suggest that the geothermal option is superior to the solar option if low-cost geothermal heat is available because it provides a constant heat source in contrast to solar. Importantly, the stable heat source further allows up-scaling (> 1000 m3/day), which is not currently possible with solar. Solar-geothermal hybrid constellations may also be suitable in areas where both sources are available. The review also discovers that the innovative Membrane distillation (MD) process is very promising as it can be used for many different water compositions, salinity and temperature ranges. Either the geothermal water itself can be desalinated/treated or the geothermal heat can be used to heat feed water from other sources using heat exchangers. However, there are only few economic analyses for large-scale MD units and these are based on theoretical models using often uncertain assumptions resulting in a large variety of results.

  6. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  7. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  8. Evaluation of Nuclear Hydrogen Production System

    International Nuclear Information System (INIS)

    Park, Won Seok; Park, C. K.; Park, J. K. and others

    2006-04-01

    The major objective of this work is tow-fold: one is to develop a methodology to determine the best VHTR types for the nuclear hydrogen demonstration project and the other is to evaluate the various hydrogen production methods in terms of the technical feasibility and the effectiveness for the optimization of the nuclear hydrogen system. Both top-tier requirements and design requirements have been defined for the nuclear hydrogen system. For the determination of the VHTR type, a comparative study on the reference reactors, PBR and PBR, was conducted. Based on the analytic hierarchy process (AHP) method, a systematic methodology has been developed to compare the two VHTR types. Another scheme to determine the minimum reactor power was developed as well. Regarding the hydrogen production methods, comparison indices were defined and they were applied to the IS (Iodine-Sulfur) scheme, Westinghouse process, and the, high-temperature electrolysis method. For the HTE, IS, and MMI cycle, the thermal efficiency of hydrogen production were systematically evaluated. For the IS cycle, an overall process was identified and the functionality of some key components was identified. The economy of the nuclear hydrogen was evaluated, relative to various primary energy including natural gas coal, grid-electricity, and renewable. For the international collaborations, two joint research centers were established: NH-JRC between Korea and China and NH-JDC between Korea and US. Currently, several joint researches are underway through the research centers

  9. Annex 15 of the IEA Hydrogen Implementing Agreement : Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, P. [Uppsala Univ., Uppsala (Sweden)]|[International Energy Agency, Paris (France)

    2004-07-01

    Task 15 of the Hydrogen Implementation Agreement of the International Energy Agency is to advance the science of biophotosynthesis of hydrogen, which is the biological production of hydrogen from water and sunlight using microalgal photosynthesis. A practical process for biophotolysis would result in an innovative biological source of sustainable and environmentally benign renewable energy source. Japan, Norway, Sweden and the United States initially committed to the project. Since then Canada, the Netherlands and the United Kingdom have joined. The current task is to produce hydrogen from both green algae and cyanobacteria with focus on early-stage applied research on biophotolysis processes with intermediate carbon dioxide fixation. Significant advances have also occurred in the scientific field of cyanobacterial biohydrogen. Cyanobacteria has enzymes that metabolise hydrogen. Photosynthetic cyanobacteria have simple nutritional requirements and can grow in air, water, or mineral salts with light as the only source of energy. This research will help provide the advances needed to achieve practical efficiencies and cost objectives of biological hydrogen production. tabs., figs.

  10. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  11. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  12. Efficiency improvement of seawater desalination processes: the case of the W.E.B. Aruba N.V. on the island of Aruba

    NARCIS (Netherlands)

    Marchena, F.A.

    2013-01-01

    Seawater desalination is known worldwide as the most important source for the production of drinking water in arid areas where there are practically no natural water resources and consequently insufficient surface water or groundwater. However the desalination technology still remains a very costly

  13. Energetic, Exergetic, and Economic Analysis of MED-TVC Water Desalination Plant with and without Preheating

    Directory of Open Access Journals (Sweden)

    Nuri Eshoul

    2018-03-01

    Full Text Available Desalination is the sole proven technique that can provide the necessary fresh water in arid and semi-arid countries in sufficient quantities and meet the modern needs of a growing world population. Multi effect desalination with thermal vapour compression (MED-TVC is one of most common applications of thermal desalination technologies. The present paper presents a comprehensive thermodynamic model of a 24 million litres per day thermal desalination plant, using specialised software packages. The proposed model was validated against a real data set for a large-scale desalination plant, and showed good agreement. The performance of the MED-TVC unit was investigated using different loads, entrained vapour, seawater temperature, salinity and number of effects in two configurations. The first configuration was the MED-TVC unit without preheating system, and the second integrated the MED-TVC unit with a preheating system. The study confirmed that the thermo-compressor and its effects are the main sources of exergy destruction in these desalination plants, at about 40% and 35% respectively. The desalination plant performance with preheating mode performs well due to high feed water temperature leading to the production of more distillate water. The seawater salinity was proportional to the fuel exergy and minimum separation work. High seawater salinity results in high exergy efficiency, which is not the case with membrane technology. The plant performance of the proposed system was enhanced by using a large number of effects due to greater utilisation of energy input and higher generation level. From an economic perspective, both indicators show that using a preheating system is more economically attractive.

  14. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.

    2012-12-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  15. Algal toxins and reverse osmosis desalination operations: Laboratory bench testing and field monitoring of domoic acid, saxitoxin, brevetoxin and okadaic acid

    KAUST Repository

    Seubert, Erica L.; Trussell, Shane; Eagleton, John; Schnetzer, Astrid; Cetinić, Ivona; Lauri, Phil; Jones, Burton; Caron, David A.

    2012-01-01

    The occurrence and intensity of harmful algal blooms (HABs) have been increasing globally during the past few decades. The impact of these events on seawater desalination facilities has become an important topic in recent years due to enhanced societal interest and reliance on this technology for augmenting world water supplies. A variety of harmful bloom-forming species of microalgae occur in southern California, as well as many other locations throughout the world, and several of these species are known to produce potent neurotoxins. These algal toxins can cause a myriad of human health issues, including death, when ingested via contaminated seafood. This study was designed to investigate the impact that algal toxin presence may have on both the intake and reverse osmosis (RO) desalination process; most importantly, whether or not the naturally occurring algal toxins can pass through the RO membrane and into the desalination product. Bench-scale RO experiments were conducted to explore the potential of extracellular algal toxins contaminating the RO product. Concentrations exceeding maximal values previously reported during natural blooms were used in the laboratory experiments, with treatments comprised of 50 μg/L of domoic acid (DA), 2 μg/L of saxitoxin (STX) and 20 μg/L of brevetoxin (PbTx). None of the algal toxins used in the bench-scale experiments were detectable in the desalinated product water. Monitoring for intracellular and extracellular concentrations of DA, STX, PbTx and okadaic acid (OA) within the intake and desalinated water from a pilot RO desalination plant in El Segundo, CA, was conducted from 2005 to 2009. During the five-year monitoring period, DA and STX were detected sporadically in the intake waters but never in the desalinated water. PbTx and OA were not detected in either the intake or desalinated water. The results of this study demonstrate the potential for HAB toxins to be inducted into coastal RO intake facilities, and the

  16. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  17. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  18. Seawater desalination using small and medium light water reactors

    International Nuclear Information System (INIS)

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  19. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil; Thu, Kyaw; Kim, Yong-deuk; Ng, Kim Choon

    2015-01-01

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient

  20. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  1. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  2. Conceptual design of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Ohashi, Kazutaka; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-08-01

    Since hydrogen produced by nuclear should be economically competitive compared with other methods in a hydrogen society, it is important to build hydrogen production system to be coupled with the reactor as a conventional chemical plant. Japan Atomic Energy Agency started the safety study to establish a new safety philosophy to meet safety requirements for non-nuclear grade hydrogen production system. Also, structural concepts with integrating functions for the Bunsen reactor and sulphuric acid decomposer were proposed to reduce construction cost of the IS process hydrogen production system. In addition, HI decomposer which enables the process condition to be eased consisting of conventional materials and technologies was studied. Moreover, technical feasibility of the HTTR-IS system in which the hydrogen production rate of 1,000 Nm 3 /h by using the supplied heat of 10 MW from the intermediate heat exchanger of the HTTR was confirmed. This paper describes the conceptual design of the HTTR-IS hydrogen production system. (author)

  3. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  4. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  5. Desalination of brackish and sea water

    International Nuclear Information System (INIS)

    Shukla, Dilip R.

    2005-01-01

    In Pali, Rajasthan, a population of 4 lacs gets about 6 million liters of water. Only 34 out of 116 municipalities in AP get regular water. Desalination found acceptance because of the decreasing water table leading to high salinity and making conventional treatment methods irrelevant. While choosing amongst the competitive desalination techniques that are available today for conversion of large quantities of saline water, Reverse Osmosis (RO) and distillation techniques stand out. RO rules the brackish water market where feed salinity is over 700 mg/L. Waste heat is nowadays a non-entity in power plants due to the developments of waste heat recovery systems in power plant technology. Most of the large plants tend to choose thermal desalination. Improved RO economics have in turn increased the attractiveness and use of seawater reverse osmosis (SWRO) technology for many large drinking water projects through out the world. Energy cost is the single largest factor in the cost of Sea Water System (usually 20 to 30% of total cost of water). Nuclear Power Corporation, Kudankulam proposed to build a SW desalination system based on RO technology to meet the water requirement of the Anu Vijay Nagar township and Nuclear Power Station. Energy recovery turbine helps reduce the overall system energy requirement. (author)

  6. Comparative Analysis of Hydrogen Production Methods with Nuclear Reactors

    International Nuclear Information System (INIS)

    Morozov, Andrey

    2008-01-01

    Hydrogen is highly effective and ecologically clean fuel. It can be produced by a variety of methods. Presently the most common are through electrolysis of water and through the steam reforming of natural gas. It is evident that the leading method for the future production of hydrogen is nuclear energy. Several types of reactors are being considered for hydrogen production, and several methods exist to produce hydrogen, including thermochemical cycles and high-temperature electrolysis. In the article the comparative analysis of various hydrogen production methods is submitted. It is considered the possibility of hydrogen production with the nuclear reactors and is proposed implementation of research program in this field at the IPPE sodium-potassium eutectic cooling high temperature experimental facility (VTS rig). (authors)

  7. Emerging desalination technologies for water treatment: a critical review.

    Science.gov (United States)

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. How green are the hydrogen production processes?

    International Nuclear Information System (INIS)

    Miele, Ph.; Demirci, U.B.

    2010-01-01

    Molecular hydrogen is recognised as being one of the most promising fuels alternate to fossil fuels. Unfortunately it only exists combined with other elements like e.g. oxygen in the case of water and therefore has to be produced. Today various methods for producing molecular hydrogen are being investigated. Besides its energy potential, molecular hydrogen is regarded as being a green energy carrier because it can be produced from renewable sources and its combustion/oxidation generates water. However as it has to be produced its greenness merits a deeper discussion especially stressing on its production routes. The goal of the present article is to discuss the relative greenness of the various hydrogen production processes on the basis of the twelve principles of green chemistry. It is mainly showed that the combination 'renewable raw materials, biological or electrochemical methods, and renewable energies (e.g. solar or wind)' undeniably makes the hydrogen production green. (authors)

  9. Safety aspects of the desalination of sea water using nuclear energy

    International Nuclear Information System (INIS)

    Carnino, A.; Gasparini, N.

    2001-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. Some specific characteristics of desalination plants such as siting and coupling require particular consideration from a safety point of view, and further safety studies will be needed when the type and size of the reactor are determined. The current safety approach, based on the defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  10. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  11. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  12. Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    Directory of Open Access Journals (Sweden)

    Hydrogen Production by Water Electrolysis Via Photovoltaic Panel

    2016-07-01

    Full Text Available Hydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300 gram. The maximum hydrogen production rate is 153.3 ml/min, the efficiency of the system is 20.88% and the total amount of hydrogen produced in one day is 220.752 liter.

  13. Production of hydrogen from by-products of food industries by rhodospirillaceae

    Energy Technology Data Exchange (ETDEWEB)

    Reh, U.

    1983-11-01

    The decomposition of organic substances from food-by-products as whey, beet sugar molasses, cane-sugar-molasses and potato-water by the Rhodospirillaceae Rp. capsulata, Rp. acidophila, Rm. vannielii, Rs. rubrum, and Rs. tenue to hydrogen and carbon dioxide were tested. In a pre-cultivation Lactobacillus bulgaricus converted the sugars of the by-products into lactic acid, which is easier in handling. Rs. rubrum was superior in producing hydrogen from this nutrient. It released from whey up to 56% of the substrate hydrogen, from beet sugar molasses 42%, from cane-sugar-molasses 89% and from potato-water 19%. Out-door-researches were made to evaluate the decrease of hydrogen yield under the influence of weather as well as day and night periods compared to the homogeneous conditions of the laboratory. From 200 m/sup 3/ whey, the daily output of a dairy, 4000 m/sup 3/ hydrogen corresponding to an energy equivalent of 1000 l fuel oil could be produced. To achieve this, 130 000 m/sup 2/ have to be covered with batch fermenters. These results show, that there is nearly no hope to decompose food by-products by Rhodospirillaceae in large scale technology, unless a new processing technology using a flow-fermenter and raising the hydrogen production significantly will be found.

  14. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  15. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  16. A technical and economic evaluation of reverse osmosis nuclear desalination as applied at the Muria site in Indonesia

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.; Vu, T.D.; Aryono, N.A.; Peryoga, Y.

    1998-01-01

    In many regions of the world, the supply of renewable water resources is inadequate to meet current needs, and that from non-renewable sources is being rapidly depleted. Since the worldwide demand for potable water is steadily growing, the result is water shortages that are already reaching serious proportions in many regions. This is particularly true in Indonesia where there is an increasing reliance on bottled water due to shortage of safe, fresh drinking water. To mitigate the stress being placed on water resources, additional fresh water production capability must be developed. Because of Indonesia's long coastline, seawater desalination is a good alternative. The main drawback of desalination, however, is that it is an energy intensive process. Therefore, the increasing global demand for desalted water creates a tremendous collateral demand for new sources of electrical power. In addition to providing a means of meeting regional electricity demand, the CANDU nuclear reactor can also serve as an energy source for a reverse osmosis (RO) seawater desalination plant. In conjunction with the use of electrical energy, waste heat from the reactor is used in the desalination plant to improve the efficiency of the RO process. This is done by using condenser cooling water being discharged from the CANDU reactor as a source of preheated feedwater for the RO system. The system design also makes use of advanced feedwater pretreatment and sophisticated design optimization analyses. The net result is improved efficiency of energy utilization, increased potable water production capability, reduced product water cost and reduced environmental burden. This approach to the integration of a seawater desalination plant with a CANDU nuclear reactor has the advantage of maximizing the benefits of system integration while at the same time minimizing the impacts of physical interaction between the two systems. Consequently, transients in one plant do not necessarily have adverse

  17. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  18. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to FF-MVR. High pressure reverse osmosis was found to a be a promising alternative desalination technology. A deep-dive technoeconomic analysis of HPRO was performed, including Capex and Opex estimates, for seawater RO (SWRO). Additionally, two additional cases were explored: 1) a comparison of a SWRO plus HPRO system to the option of doubling the size of a standard seawater RO system to achieve the same total pure water recovery rate; and 2) a flue gas desulfurization wastewater treatment zero-liquid discharge (ZLD) application, where preconcentration with RO (SWRO or SWRO + HPRO) before evaporation and crystallization was compared to FF-MVR and crystallization technologies without RO preconcentration. Pre-pilot process validation Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Smaller quantities were processed through microclarification. In addition, analytical methods (purge-and-trap gas chromatography and Hach TOC analytical methods) were validated. Lab-scale HPRO elements were constructed and tested at high pressures, to identify and mitigate technical risks of the technology. Lastly, improvements in RO membrane materials were identified as the necessary next step to achieve further improvement in element performance at high pressure. Scope of Field Pilot A field pilot for extracted water pretreatment was designed.

  19. Equipment and materials for coupling interfaces of a nuclear reactor with desalination and heating plants based on floating NHPS

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Polunichev, V.I.

    1998-01-01

    Intensive design activity is currently underway in Russia on floating nuclear installations, relying on proven marine NSSSs of KLT-40-type, which are capable of generating electricity, producing potable water and heat for industrial and district heating purposes. In particular, design work of the first floating power unit for a pilot nuclear co-generation station, which is due to be situated at the Pevek port area in the Chukotsky national district (extreme north-east of Russia), is approaching completion, and preparatory work is being carried out for fabrication of its most labour-intensive components. Work is also in progress together with 'CANDESAL Inc. (Canada)' on the conceptual design of a floating power-desalination complex. Most suitable options of floating power-desalination complexes are being sought, addressing requirements of potential customers. Earlier, at the IAEA technical committee meeting (1993) it was shown that a complex, which combines a highly effective condensation turbine and a modem reverse-osmosis desalination facility, could be considered as most preferable from the view point of efficient utilisation of thermal energy generated by nuclear reactors for co-production of potable water and electricity. The prospective technology for sea water desalination by a reverse-osmosis method is being developed in particular by 'CANDESAL Inc.'. It was also pointed out that another sufficiently efficient installation for potable water and electricity co-production is a dual-purpose complex which integrates both condensation and back-pressure turbines and a distillation desalination facility. Similar flow configurations were adopted for the nuclear desalination complex at Aktau (Kazakhstan) which has been in operation since 1972. 'SverdNIIKhimMash' institute (Ekaterinburg) is a Russian leading designer of modem distillation desalination facilities. This paper presents heat and fluid diagrams of floating complexes, brief description of their key

  20. Summary of experience and practice in Japanese nuclear desalination plants at the interface between nuclear and desalination systems

    International Nuclear Information System (INIS)

    Shiota, Y.; Minato, A.

    1998-01-01

    The widely prevalent large scale desalination of seawater is accomplished by two primary methods: Distillation and reverse osmosis (RO). In any case, an external energy supply source is mandatory for the operation of the desalination plants. Reverse Osmosis is more energy efficient than distillation. The energy input for RO is usually supplied by electric power, whereas thermal energy is extracted from an electric power plant for the distillation processes (dual purpose plant). There are no impediments in using nuclear power plants to supply energy to desalination plants in an integral site. However, it is essential to eliminate the possibility of penetration of radioactive contamination into produced water. Besides, the investigation of possible back-up facilities is detrimental to meet the demand of electric power and water. In accordance with the Japanese regulations, a nuclear power plant cannot be operated if any amount of radioactive contamination resulted from the failure of fuel is detected in the cooling water. In our experience, we have found that no special provisions and no additional selection criteria are needed to install the desalination plants within the nuclear power plants, except for the carbon steel shell utilized for the RO module. (author)

  1. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Directory of Open Access Journals (Sweden)

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  2. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  3. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  4. Supercritical water desalination (SCWD) : process development, design and pilot plant validation

    NARCIS (Netherlands)

    Odu, Samuel Obarinu

    2017-01-01

    Conventional desalination technologies such as reverse osmosis (RO), multi-stage flash distillation (MSF) and electro dialysis (ED) have a major drawback; the production of a liquid waste stream with an increased salinity (compared to the feed) that has to be disposed of. The treatment of this waste

  5. Minimizing the Environmental Impact of Sea Brine Disposal by Coupling Desalination Plants with Solar Saltworks: A Case Study for Greece

    Directory of Open Access Journals (Sweden)

    Stylianos Gialis

    2010-02-01

    Full Text Available The explosive increase in world population, along with the fast socio-economic development, have led to an increased water demand, making water shortage one of the greatest problems of modern society. Countries such as Greece, Saudi Arabia and Tunisia face serious water shortage issues and have resorted to solutions such as transporting water by ships from the mainland to islands, a practice that is expensive, energy-intensive and unsustainable. Desalination of sea-water is suitable for supplying arid regions with potable water, but extensive brine discharge may affect marine biota. To avoid this impact, we explore the option of directing the desalination effluent to a solar saltworks for brine concentration and salt production, in order to achieve a zero discharge desalination plant. In this context, we conducted a survey in order to evaluate the potential of transferring desalination brine to solar saltworks, so that its disposal to the sea is avoided. Our analysis showed that brine transfer by trucks is prohibitively expensive. In order to make the zero discharge desalination plant economically feasible, efforts should be directed into developing a more efficient technology that will result in the production of only a fraction of the brine that is produced from our systems today.

  6. Solar driven technologies for hydrogen production

    Directory of Open Access Journals (Sweden)

    Medojević Milovan M.

    2016-01-01

    Full Text Available Bearing in mind that the production of hydrogen based on renewable energy sources, without doubt, is an important aspect to be taken into account when considering the potential of this gas, where as particularly interesting technologies stand out the ones which are based on the use of solar energy to produce hydrogen. The goal of this paper provides basic technological trajectories, with the possibility of combining, for solar driven hydrogen production, such as: electrochemical, photochemical and thermochemical process. Furthermore, the paper presents an analysis of those technologies from a technical as well as economic point of view. In addition, the paper aims to draw attention to the fact that the generation of hydrogen using renewable energy should be imposed as a logical and proper way to store solar energy in the form of chemical energy.

  7. Biological hydrogen production by moderately thermophilic anaerobic bacteria

    International Nuclear Information System (INIS)

    HP Goorissen; AJM Stams

    2006-01-01

    This study focuses on the biological production of hydrogen at moderate temperatures (65-75 C) by anaerobic bacteria. A survey was made to select the best (moderate) thermophiles for hydrogen production from cellulolytic biomass. From this survey we selected Caldicellulosiruptor saccharolyticus (a gram-positive bacterium) and Thermotoga elfii (a gram-negative bacterium) as potential candidates for biological hydrogen production on mixtures of C 5 -C 6 sugars. Xylose and glucose were used as model substrates to describe growth and hydrogen production from hydrolyzed biomass. Mixed substrate utilization in batch cultures revealed differences in the sequence of substrate consumption and in catabolites repression of the two microorganisms. The regulatory mechanisms of catabolites repression in these microorganisms are not known yet. (authors)

  8. Wireless desalination using inductively powered porous carbon electrodes

    NARCIS (Netherlands)

    Kuipers, J.; Porada, S.

    2013-01-01

    Water desalination by capacitive deionization (CDI) uses electrochemical cell pairs formed of porous carbon electrodes, which are brought in contact with the water that must be desalinated. Upon applying a cell voltage or current between the electrodes, ions are electrosorbed and water is produced

  9. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  10. Use of renewable energy for desalination in urban agriculture in the GCC countries: Possibilities and challenges

    Directory of Open Access Journals (Sweden)

    Salem Al-Jabri

    2018-01-01

    Full Text Available The current dependence of the GCC countries on fossil oil and gas is unwise in terms of economic and environmental sustainability. GCC countries must consider the use of renewable energy to cope with price fluctuations of oil and gas in the global market and to lower the emission of green house gases. The demand for food and water in the GCC countriesis increasing due to high growth rate of population. Given the weather conditions and available amounts of natural water resources, the demand on food and water cannot be met unless alternative sources of water are considered. Several studies pointed out that the desalination technology is probably the only option for producing ample amounts of water for food production in arid environments. This work explores the potential of use of desalination technology for producing irrigation water in GCC countries, with special emphasis on experience of the Sultanate of Oman compared with that of Spain. Desalination can always provide a tailored-quality irrigation water at any climatic conditions. The main challenge for considering desalination for agriculture is purely economic; where GCC countries could consider it only if intensive horticulture of high-value cash crops, such as vegetables and flowers in controlled environments, is considered. Disposal of brine water is also a challenge and must be done at an additional cost. Depending on the quality of desalinated water, several studies showed that solar-operated desalination technologies are in a mature stage and economically viable. Therefore, solar energy can make the desalination technology an attractive option to sustain agriculture and food supply in GCC countries.

  11. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz

    2016-02-18

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m3/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  12. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    Science.gov (United States)

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  14. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  15. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature)

    International Nuclear Information System (INIS)

    Hanshik, Chung; Jeong, Hyomin; Jeong, Kwang-Woon; Choi, Soon-Ho

    2016-01-01

    The evaporating process is very important in the system concerned with liquid foods, seawater distillation and wastewater treatment, which is to concentrate the aqueous solution by evaporating the pure water usually at a vacuum state. In general, the liquid concentration is performed through the membrane, electro-dialysis, and evaporation; the former are separation process and the latter is the phase change process. In this study, only the thermal process was treated for evaluating the specific energy consumption by changing the operating conditions of an existing MSF (multi-stage flashing) desalination plant, which is still dominant for a large scale distillation plant. This study shows the quantitative energy saving strategy in sweater distillation process and, additionally, indicates that the performance of the multi-stage evaporating system can be increased with the elevation of a TBT (top brine temperature). The calculated results were based on the operating data of the currently installed plants and suggests the alternative to improve the performance of the MSF desalination plant, which means that the energy saving can be achieved only by changing the operating conditions of the existing MSF plants. - Highlights: • Detailed operating principles of an multi-stage flashing (MSF) desalting process. • Improved freshwater productivity by increasing the top brine temperature (TBT). • Increased energy efficiency of an existing MSF plants by the TBT increase.

  16. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  17. Energy system impacts of desalination in Jordan

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    and Multi Stage Flash (MSF) desalination driven by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts......Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst...... others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO) driven by electricity...

  18. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.......5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis...

  19. Design concept and its requirements of the integrated SMART nuclear desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements

  20. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  1. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  2. Technology selection for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Siti Alimah; Erlan Dewita

    2008-01-01

    The NPP can either be used to produce electricity, or as heat source for non-electric applications (cogeneration). High Temperature Reactor (HTR) with high outlet coolant temperature around 900~1000 o C, is a reactor type potential for cogeneration purposes such as hydrogen production and other chemical industry processes that need high heat. Considering the national energy policy that a balanced arrangement of renewable and unrenewable natural resources has to be made to keep environmental conservation for the sake of society prosperity in the future, hydrogen gas production using nuclear heat is an appropriate choice. Hydrogen gas is a new energy which is environmentally friendly that it is a prospecting alternative energy source in the future. Within the study, a comparison of three processes of hydrogen gas production covering electrolysis, steam reforming and sulfur-iodine cycle, have been conducted. The parameters that considered are the production cost, capital cost and energy cost, technological status, the independence of fossil fuel, the environmental friendly aspect, as well as the efficiency and the independence of corrosion-resistance material. The study result showed that hydrogen gas production by steam reforming is a better process compared to electrolysis and sulfur-iodine process. Therefore, steam reforming process can be a good choice for hydrogen gas production using nuclear energy in Indonesia. (author)

  3. Economics of Renewable Energy for Water Desalination in Developing Countries

    Directory of Open Access Journals (Sweden)

    Enas R. Shouman

    2015-12-01

    Full Text Available The aim of this study is to investigate the economics of renewable energy- powered desalination, as applied to water supply for remote coastal and desert communities in developing countries. In this paper, the issue of integration of desalination technologies and renewable energy from specified sources is addressed. The features of Photovoltaic (PV system combined with reverse osmosis desalination technology, which represents the most commonly applied integration between renewable energy and desalination technology, are analyzed. Further, a case study for conceptual seawater reverse osmosis (SW-RO desalination plant with 1000 m3 /d capacity is presented, based on PV and conventional generators powered with fossil fuel to be installed in a remote coastal area in Egypt, as a typical developing country. The estimated water cost for desalination with PV/ SW-RO system is about $1.25 m3 , while ranging between $1.22-1.59 for SW-RO powered with conventional generator powered with fossil fuel. Analysis of the economical, technical and environmental factors depicts the merits of using large scale integrated PV/RO system as an economically feasible water supply relying upon a renewable energy source.

  4. Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination

    International Nuclear Information System (INIS)

    Sahoo, U.; Kumar, R.; Pant, P.C.; Chaudhary, R.

    2017-01-01

    Highlights: • Heat utilization from solar and biomass resources are considered for hybridization. • Modeling of polygeneration process in hybrid solar-biomass power plant is considered. • Thermodynamic evaluation are performed to identify the effect of various parameters. • Primary Energy Saving of polygeneration process is determined. - Abstract: In the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiency take place. It is one of the solutions to fulfill energy requirements from renewable sources and also helps in the reduction of carbon dioxide emissions. The VAR cooling system operates using the extracted heat taken from turbine and condenser heat of the VAR cooling system is used in desalination system for production of drinking water as per demand requirement. Though the production of electricity decreases due to extraction of heat from turbine for VAR cooling and desalination, the complete system meets the energy requirements & increases the primary energy savings (PES). The thermodynamic evaluation and optimization of HSB system in polygeneration process for combined power, cooling and desalination is investigated to identify the effects of various operating parameters. Primary energy savings (PES) of polygeneration process in HSB system is achieved to 50.5%. The energy output is increased to 78.12% from this system as compared to simple power plant.

  5. Scaling Phenomena in Desalination With Multi Stage Flash Distillation (MSF)

    International Nuclear Information System (INIS)

    Siti-Alimah

    2006-01-01

    Assessment of scaling phenomena in MSF desalination has been carried out. Scale is one of predominantly problem in multi stage flash (MSF) desalination installation. The main types of scale in MSF are carbonate calcium (CaCO 3 ), hydroxide magnesium (Mg(OH) 2 ) and sulphate calcium (CaSO 4 ). CaCO 3 and Mg(OH) 2 scales result from the thermal decomposition of bicarbonate ion, however sulphate calcium scale result from reaction of calcium ion and sulfate ion present in seawater. The rate of formation scale in seawater depends on temperature, pH, concentration of ions, supersaturated solution, nucleation and diffusion. The scales in MSF installation can occur inside heat exchanger tube, brine heater tubes, water boxes, on the face of tube sheets and demister pads. Scaling reduces effectiveness (production and heat consumption) of the process. To avoid the reductions in performance caused by scale precipitation, desalination units employ scale control. To control this scaling problem, the following methods can be used; acid, additive (scale inhibitors) and mechanical cleaning. Stoichiometric amounts of acid must be added to seawater, because addition excess of acid will increase corrosion problems. Using of scale inhibitors as polyphosphates, phosphonates, polyacrylates and poly maleates have advantage and disadvantage. (author)

  6. Advances in hydrogen production by thermochemical water decomposition: A review

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2010-01-01

    Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper-chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur-iodine cycles, the copper-chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.

  7. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption desalination cycle that employs internal heat recovery between the evaporator and the condenser, utilizing an encapsulated evaporator-condenser unit for effective heat transfer. A simulation model has been developed based on the actual sorption characteristics of the adsorbent-adsorbate pair, energy and mass balances applied to the components of the AD cycle. With an integrated design, the temperature in the evaporator and the vapor pressurization of the adsorber are raised due to the direct heat recovery from the condenser, resulting in the higher water production rates, typically improved by as much as three folds of the conventional AD cycle. In addition, the integrated design eliminates two pumps, namely, the condenser cooling water and the chilled water pumps, lowering the overall electricity consumption. The performance of the cycle is analyzed at assorted heat source and cooling water temperatures, and different cycle times as well as the transient heat transfer coefficients of the evaporation and condensation. © 2012 Elsevier B.V.

  8. Volume 1: Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheaffer, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brueske, Sabine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dollinger, Caroline [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sarker, Prateeti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cresko, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The U.S. Department of Energy (DOE) has set a goal to reduce the cost of seawater desalination systems to $0.50/ cubic meter (m3) through the development of technology pathways to reduce energy, capital, operating, soft, and system integration costs.1 In support of this goal and to evaluate the technology pathways to lower the energy and carbon intensity of desalination while also reducing the total water cost, DOE is undertaking a comprehensive study of the energy consumption and carbon dioxide (CO2) emissions for desalination technologies and systems. This study is being undertaken in two phases. Phase 1, Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems, collected the background information that will underpin Phase 2, the Energy Water Bandwidth Study for Desalination Systems. This report (Volume 1) summarizes the results from Phase 1. The results from Phase 2 will be summarized in Volume 2: Energy Water Bandwidth Study for Desalination Systems (Volume 2). The analysis effort for Phase 2 will utilize similar methods as other industry-specific Energy Bandwidth Studies developed by DOE,2 which has provided a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macroscale. Volume 2 will assess the current state of desalination energy intensity and reduction potential through the use of advanced and emerging technologies. For the purpose of both phases of study, energy intensity is defined as the amount of energy required per unit of product water output (for example, kilowatt-hours per cubic meter of water produced). These studies will expand the scope of previous sectorial bandwidth studies by also evaluating CO2 intensity and reduction opportunities and informing a techno-economic analysis of desalination systems. Volume 2 is expected to be completed in 2017.

  9. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2017-01-01

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven

  10. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  11. The effect of cover geometry on the productivity of a modified solar still desalination unit

    KAUST Repository

    Malaeb, Lilian; Ayoub, George M.; Al Hindi, Mahmoud

    2014-01-01

    Desalination methods based on renewable energy offer a promising solution to both water shortage and environmental degradation problems that continue to grow globally. The solar still is one such method that uses a sustainable energy source

  12. A prototype for communitising technology: Development of a smart salt water desalination device

    Science.gov (United States)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  13. Hydrogen production by high-temperature gas-cooled reactor. Conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Ohashi, Hirofumi; Sato, Hiroyuki; Hara, Teruo; Kato, Ryoma; Kunitomi, Kazuhiko

    2008-01-01

    Nuclear hydrogen production is necessary in an anticipated hydrogen society that demands a massive quantity of hydrogen without economic disadvantage. Japan Atomic Energy Agency (JAEA) has launched the conceptual design study of a hydrogen production system with a near-term plan to connect it to Japan's first high-temperature gas-cooled reactor HTTR. The candidate hydrogen production system is based on the thermochemical water-splitting iodine sulphur (IS) process.The heat of 10 MWth at approximately 900degC, which can be provided by the secondary helium from the intermediate heat exchanger of the HTTR, is the energy input to the hydrogen production system. In this paper, we describe the recent progresses made in the conceptual design of advanced process heat exchangers of the HTTR-IS hydrogen production system. A new concept of sulphuric acid decomposer is proposed. This involves the integration of three separate functions of sulphuric acid decomposer, sulphur trioxide decomposer, and process heat exchanger. A new mixer-settler type of Bunsen reactor is also designed. This integrates three separate functions of Bunsen reactor, phase separator, and pump. The new concepts are expected to result in improved economics through construction and operation cost reductions because the number of process equipment and complicated connections between the equipment has been substantially reduced. (author)

  14. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    Van Ravenswaay, J.P.; Van Niekerk, F.; Kriek, R.J.; Blom, E.; Krieg, H.M.; Van Niekerk, W.M.K.; Van der Merwe, F.; Vosloo, H.C.M.

    2010-01-01

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO 2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  15. Procedures of water desalination with solar energy and f-chart method

    Directory of Open Access Journals (Sweden)

    Petrović Andrija A.

    2015-01-01

    Full Text Available Due to rapid population growth, and climate change caused by environmental pollution needs for drinking water are increasing while amount of freshwater are decreasing. However possible solution for freshwater scarcity can be found in water desalination procedures. In this article three representative water desalination solar powered plants are described. Except explanation of processes it is also mentioned basic advantages and disadvantages of humidification, reverse osmosis and desalination evaporation by using solar energy. Simulation of the solar desalination system is analyzed with f-chart method monthly, located on located 42 degrees north latitude.

  16. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  17. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  18. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2016-10-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  19. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  20. Seawater desalination in micro grids. An integrated planning approach

    Energy Technology Data Exchange (ETDEWEB)

    Bognar, Kristina; Behrendt, Frank [Technische Univ. Berlin (Germany). Dept. of Energy Engineering; Blechinger, Philipp [Technische Univ. Berlin (Germany). Dept. of Energy Engineering; Reiner Lemoine Institut gGmbH, Berlin (Germany)

    2012-12-15

    Islands often depend on the import of fossil fuels for power generation. Due to the combined effect of high oil prices and transportation costs, energy supply systems based on renewable energies are already able to compete successfully with fossil fuel systems for a number of these islands. Depending on local and regional conditions, not only energy supply is a challenge, but also the finding of a reliable supply of water. A promising alternative to freshwater shipments is seawater desalination. Desalination processes can act as a flexible load whenever excess electricity generated by renewable sources is present. Numerical simulations of combined energy and water supply systems for the Caribbean island, Petite Martinique, Grenada, are accomplished. Considering renewable energy sources like wind and solar radiation, energy storage technologies, and desalination processes, various scenarios are introduced and simulated, and the results are compared. An extension of the current energy supply system with renewable energy technologies reduces power generation costs by approximately 40%. The excess energy generated by renewables can supply a significant share of a desalination plant's energy demand. The levelized costs of electricity and water show that the integration of desalination as a deferrable load is beneficial to the considered micro grid. The implementation of renewable energy generation and desalination as deferrable load is recommendable in Petite Martinique. Possible refinancing strategies depending on the combination of different electricity and water tariffs can be derived and applied to similar business cases in remote regions. (orig.)

  1. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  2. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  3. IEA hydrogen agreement, task 15: photobiological hydrogen production - an international collaboration

    International Nuclear Information System (INIS)

    Lindblad, P.; Asada, Y.; Benemann, J.; Hallenbeck, P.; Melis, A.; Miyake, J.; Seibert, M.; Skulberg, O.

    2000-01-01

    Biological hydrogen production, the production of H 2 by microorganisms, has been an active field of basic and applied research for many years. Realization of practical processes for photobiological hydrogen production from water using solar energy would result in a major, novel source of sustainable and renewable energy, without greenhouse gas emissions or environmental pollution. However, development of such processes requires significant scientific and technological advances, and long-term basic and applied R and D. This International Energy Agency (lEA) Task covers research areas and needs at the interface of basic and applied R and D which are of mutual interest to the countries and researchers participating in the lEA Hydrogen Agreement. The overall objective is to sufficiently advance the basic and early-stage applied science in this area of research over the next five years to allow an evaluation of the potential of such a technology to be developed as a practical renewable energy source for the 21st Century. (author)

  4. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  5. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  6. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tafticht, T.; Agbossou, K. [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  7. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    T Tafticht; K Agbossou

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  8. Hydrogen Production from Optimal Wind-PV Energies Systems

    International Nuclear Information System (INIS)

    Tafticht, T.; Agbossou, K.

    2006-01-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyser, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  9. Hydrogen Production from Optimal Wind-PV Energies Systems

    Energy Technology Data Exchange (ETDEWEB)

    T Tafticht; K Agbossou [Institut de recherche sur l hydrogene, Universite du Quebec - Trois-Rivieres, C.P. 500, Trois-Rivieres, (Ciheam), G9A 5H7, (Canada)

    2006-07-01

    Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energies (RE). A stand-alone RE system based on hydrogen production has been developed at the Hydrogen Research Institute and successfully tested for automatic operation with designed control devices. The system is composed of a wind turbine, a photovoltaic (PV) array, an electrolyzer, batteries for buffer energy storage, hydrogen and oxygen storage tanks, a fuel cell, AC and DC loads, power conditioning devices and different sensors. The long-term excess energy with respect to load demand has been sent to the electrolyser for hydrogen production and then the fuel cell has utilised this stored hydrogen to produce electricity when there were insufficient wind and solar energies with respect to load requirements. The RE system components have substantially different voltage-current characteristics and they are integrated on the DC bus through power conditioning devices for optimal operation by using the developed Maximum Power Point Tracking (MPPT) control method. The experimental results show that the power gain obtained by this method clearly increases the hydrogen production and storage rate from wind-PV systems. (authors)

  10. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  11. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  12. Potential Effects of Desalinated Seawater on Arteriosclerosis in Rats.

    Science.gov (United States)

    Duan, Lian; Zhang, Li Xia; Zhang, Shao Ping; Kong, Jian; Zhi, Hong; Zhang, Ming; Lu, Kai; Zhang, Hong Wei

    2017-10-01

    To evaluate the potential risk of arteriosclerosis caused by desalinated seawater, Wistar rats were provided desalinated seawater over a 1-year period, and blood samples were collected at 0, 90, 180, and 360 days. Blood calcium, magnesium, and arteriosclerosis-related indicators were investigated. Female rats treated with desalinated seawater for 180 days showed lower magnesium levels than the control rats (P seawater for 360 days (P seawater, and no increase in risk of arteriosclerosis was observed. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  14. Fundamental and application aspects of adsorption cooling and desalination

    KAUST Repository

    Saha, Bidyut Baran

    2015-10-23

    Adsorption (AD) cycle is recently pioneered for cooling and desalination applications. For water treatment, the cycle can be used to treat highly concentrated feed water, ranging from seawater, ground water and chemically-laden waste water. This paper presents a review of the recent development of AD cycle and its hybridization with known conventional cycles such as the MED and MSF. We begin by looking at the basic sorption theory for different adsorbent-adsorbate pairs, namely (i) silica gel-water, (ii) the zeolite-water, (iii) parent Maxsorb III/ethanol, (iv) KOH-H2 surface treated Maxsorb III/ethanol, and (v) a metal organic framework (MOF) material namely, MIL-101Cr/ethanol. We also present the basic AD cycle for seawater desalination as well as its hybridization with known conventional thermally-driven cycles for efficiency improvement. We demonstrate the water production improvement by 2-3 folds by hybridization in a pilot comprising a 3-stage MED and AD plant and the top-brine temperature 50oC.

  15. Nuclear hydrogen: An assessment of product flexibility and market viability

    International Nuclear Information System (INIS)

    Botterud, Audun; Yildiz, Bilge; Conzelmann, Guenter; Petri, Mark C.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies

  16. Hydrogen production by alkaline water electrolysis

    Directory of Open Access Journals (Sweden)

    Diogo M. F. Santos

    2013-01-01

    Full Text Available Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.

  17. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  18. Concepts for Large Scale Hydrogen Production

    OpenAIRE

    Jakobsen, Daniel; Åtland, Vegar

    2016-01-01

    The objective of this thesis is to perform a techno-economic analysis of large-scale, carbon-lean hydrogen production in Norway, in order to evaluate various production methods and estimate a breakeven price level. Norway possesses vast energy resources and the export of oil and gas is vital to the country s economy. The results of this thesis indicate that hydrogen represents a viable, carbon-lean opportunity to utilize these resources, which can prove key in the future of Norwegian energy e...

  19. The effect of cover geometry on the productivity of a modified solar still desalination unit

    KAUST Repository

    Malaeb, Lilian

    2014-01-01

    Desalination methods based on renewable energy offer a promising solution to both water shortage and environmental degradation problems that continue to grow globally. The solar still is one such method that uses a sustainable energy source to produce potable water albeit at a relatively low productivity rate. A new modification has been introduced to the conventional solar still to enhance its productivity. The modification consists of a light weight, black finished, slowly-rotating drum, which leads to a sustainable, cost-effective, and low-tech amendment that preserves the key features of the still while considerably increasing its yield compared to a control still that does not include the drum. In this paper, three different cover geometries of the modified still are studied and the effect of cover design on the performance of the still in terms of measured temperatures and productivity is considered. The three cover designs are as follows: double-sloped or triangular, single-sloped and curved cover. In addition, a conventional double-sloped still without the rotating drum is operated in parallel as a control and the findings of this study are reported and discussed. © 2014 Published by Elsevier Ltd.

  20. Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant.

    Science.gov (United States)

    Nagaraj, V; Skillman, L; Li, D; Xie, Z; Ho, G

    2017-07-01

    Control of biofouling on seawater reverse osmosis (SWRO) membranes is a major challenge as treatments can be expensive, damage the membrane material and often biocides do not remove the polymers in which bacteria are embedded. Biological control has been largely ignored for biofouling control. The objective of this study was to demonstrate the effectiveness of xanthine oxidase enzyme against complex fouling communities and then identify naturally occurring bacterial strains that produce the free radical generating enzyme. Initially, 64 bacterial strains were isolated from different locations of the Perth Seawater Desalination Plant. In our preceding study, 25/64 isolates were selected from the culture collection as models for biofouling studies, based on their prevalence in comparison to the genomic bacterial community. In this study, screening of these model strains was performed using a nitroblue tetrazolium assay in the presence of hypoxanthine as substrate. Enzyme activity was measured by absorbance. Nine of 25 strains tested positive for xanthine oxidase production, of which Exiguobacterium from sand filters and Microbacterium from RO membranes exhibited significant levels of enzyme production. Other genera that produced xanthine oxidase were Marinomonas, Pseudomonas, Bacillus, Pseudoalteromonas and Staphylococcus. Strain variations were observed between members of the genera Microbacterium and Bacillus. Xanthine oxidase, an oxidoreductase enzyme that generates reactive oxygen species, is endogenously produced by many bacterial species. In this study, production of the enzyme by bacterial isolates from a full-scale desalination plant was investigated for potential use as biological control of membrane fouling in seawater desalination. We have previously demonstrated that free radicals generated by a commercially available xanthine oxidase in the presence of a hypoxanthine substrate, effectively dispersed biofilm polysaccharides on industrially fouled membranes

  1. Feasibility study on replacement of power plant and desalination plant in Aktau City, Manghistau Region, Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of conserving energy and reducing greenhouse effect gas emission, feasibility study was conducted for improvement of efficiency of power generation/desalination facilities at MAEK Energy Center, Aktau City, Manghistau, Kazakhstan. Presently, the main facilities are the conventional natural gas fired power plant, evaporation type seawater desalination facility, hot water production facility, etc. In the project, introduction of the following was planned to be made: cogeneration facility composed of two units of 1,100-degree C class gas turbine and reverse osmosis (RO) type desalination facility for drinking water production with a capacity of 50,000 t/d. As a result of the study, the energy conservation amount in this project was 151,900-165,400 toe/y in power generation facility, and the greenhouse effect gas reduction amount was 355,000-387,000 t-CO2/y in power generation facility and 268,000 t-CO2/y in desalination facility. The construction cost and operational cost of the plant were 45.7 billion yen and 2.8 billion yen/y. In the economical estimation, ROI and ROE before tax were 7.4 and 34.8, respectively, which were considered to be appropriate values as social infrastructure related conditions. (NEDO)

  2. Examining the economics of seawater desalination using the DEEP code

    International Nuclear Information System (INIS)

    2000-11-01

    This Technical Document presents analysis of the results of the study initiated by the IAEA on comparison of costs of nuclear and fossil fuel energy sources coupled with selected seawater desalination processes, including regional studies and sensitivity analysis. The economical modelling was performed with use of the Desalination Economic Evaluation Program code (DEEP) released in 1998 which incorporated the latest advances in economic modelling and technological changes in both desalination and reactor technologies

  3. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  4. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  5. A comparative study of parameters used in design and operation of desalination experimental facility versus the process parameters in a commercial desalination plant

    International Nuclear Information System (INIS)

    Hanra, M.S.; Verma, R.K.; Ramani, M.P.S.

    1982-01-01

    Desalination Experimental Facility (DEF) based on multistage flash desalination process has been set up by the Desalination Division of the Bhabha Atomic Research Centre, Bombay. The design parameters of DEF and materials used for various equipment and parts of DEF are mentioned. DEF was operated for 2300 hours in six operational runs. The range of operational parameters maintained during operation and observations on the performance of the materials of construction are given. Detailed comparison has been made for the orocess parameters in DEF and those in a large size plant. (M.G.B.)

  6. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    Lee, Ki Young; Park, J. K.; Chang, J. H.

    2009-04-01

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  7. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  8. Desalination of water using conventional and nuclear energy

    International Nuclear Information System (INIS)

    1964-01-01

    The purpose of the present publication is to outline the status of desalination of water at the end of 1963, and is intended as a general review of the subject. Since the International Atomic Energy Agency considers that nuclear energy may, in the near future, be important in the conversion of sea and brackish water into fresh water, the following pages will deal mainly with different aspects of desalination on a large scale. These aspects will be discussed in the light of progress made using demonstration plants as well as results obtained in recent design studies. But in no way is it intended to put forward definitive statements on the advantages or disadvantages of using one or another kind of energy or any particular desalination process. This publication should serve as a technical report intended to help in a preliminary evaluation of projects that may be considered. The scientific and technical aspects of desalination will be subject of further study by the Agency. 65 refs, 25 figs, 12 tabs

  9. Short Review on Predicting Fouling in RO Desalination

    Directory of Open Access Journals (Sweden)

    Alejandro Ruiz-García

    2017-10-01

    Full Text Available Reverse Osmosis (RO membrane fouling is one of the main challenges that membrane manufactures, the scientific community and industry professionals have to deal with. The consequences of this inevitable phenomenon have a negative effect on the performance of the desalination system. Predicting fouling in RO systems is key to evaluating the long-term operating conditions and costs. Much research has been done on fouling indices, methods, techniques and prediction models to estimate the influence of fouling on the performance of RO systems. This paper offers a short review evaluating the state of industry knowledge in the development of fouling indices and models in membrane systems for desalination in terms of use and applicability. Despite major efforts in this field, there are gaps in terms of effective methods and models for the estimation of fouling in full-scale RO desalination plants. In existing models applied to full-scale RO desalination plants, neither the spacer geometry of membranes, nor the efficiency and frequency of chemical cleanings are considered.

  10. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Roberts, K.

    2003-01-01

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  11. Study of reliability for the electricity cogeneration and seawater desalination in the Northwest of Mexico

    International Nuclear Information System (INIS)

    Hernandez U, G. O.; Ortega C, R. F.

    2008-01-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic by its characteristics of zero gas emissions of greenhouse effect, competitive costs in the generation, operative experience and safety of the nuclear reactors, resulting attractive mainly for the desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was analyzed from a thermodynamic viewpoint, mentioning the economic aspect, the nuclear desalination according to the world experience; they were simulated some couplings and operation forms of nuclear reactors and desalination units, was made emphasis in one particularly. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be coupled to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. Specially and topic of this article, it is studied a case of the IRIS reactor of 335 MW e coupled to a MED station of nominal capacity of 140,000 m 3 /day. It is utilized for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out a thermodynamic and economic preliminary evaluation, as well as the THERMOFLEX simulator to reinforce and to compare the thermodynamic part. They

  12. Development of a desalination system driven by solar energy and low grade waste heat

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Sultan, Gamal I.

    2015-01-01

    Highlights: • Productivity increases significantly up to critical waste gas flow rate. • Productivity decreases for waste gas flow rate higher than critical flow rate. • Increasing evaporator inlet waste gas temperature increases productivity. • The proposed system coupled with combined cycle has a fuel saving 1844 kg/h. • The cost of potable water produced is 0.014 USD/L. - Abstract: Various thermal power systems emit flue gases containing significant amount of waste energy. The aim of this research is to recover a valuable amount of this energy to develop an efficient desalination system coupled with solar energy. Experiments were performed in the month of June 2014 at Al-Qassim, Saudi Arabia (26°4′53″N, 43°58′32″E) for different hot air (waste gas) flow rates and evaporator inlet water temperature to study the effect on daily potable water productivity. The proposed setup comprised an evaporator, condenser, air blower, electric heaters, storage tank and evacuated tube solar collectors. It was found that increasing the hot air flow rate increases the water productivity up to the critical flow rate after which the productivity decreases. Analytical model was developed for this desalination setup and the results were compared to that obtained from experiments. The overall daily (9 AM–5 PM) potable water productivity of the proposed system is about 50 L for corresponding useful waste heat varying from 130 to 180 MJ/day and a global solar radiation on a horizontal surface ranging from 15 to 29 MJ/m 2 /day. Water is produced at the cost of 0.014 USD/L and the fuel saving equal to 1844 kg/h is achieved for the proposed desalination system

  13. Hydrogen production from small hyropower sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    A synergistic relationship was not found to exist between low-head hydropower and electrolytic hydrogen production. The storageability of hydrogen was expected to mitigate problems of hydrogen generation variability associated with the use of low-head hydropower as the power source. The expense of gaseous hydrogen storage equipment effectively eliminates storage as a means to decouple hydrogen demand and power/hydrogen production. From the opposite perspective, the availability of a low and stable cost of power from low-head hydro was expected to improve the competitiveness of electrolysis. In actuality, the results indicated that hydroelectric power from small dams would be comparatively expensive by current grid power standards (mid-1979). Electrolysis, in the capacity range considered here, is less sensitive to the cost of the power than originally presumed. Other costs including depreciation and capital related charges are more significant. Due to power generation variability, sole reliance on low-head hydropower to provide electricity to the cells would reduce the utilization of the hydrogen production investment, resulting in an increase in unit production costs. These factors were paramount in the Air Products recommendation to discontinue the study before continuing to more detailed stages of analysis, including an analysis of a site specific facility and the construction of a demonstration facility. Another major factor was the unavailability of a pipeline hydrogen supply situation which, because of lower distribution and capital costs, could have been commercially viable. An unfavorable judgment on the combined facility should not be misinterpreted and extended to the component systems. Although a detailed analysis of the individual prospects for electrolysis and low-head hydropower was beyond the study scope, the reader will realize, as the study is reviewed, that each is worthy of individual consideration.

  14. The techno-economic optimization of a 100MWe CSP-desalination plant in Arandis, Namibia

    Science.gov (United States)

    Dall, Ernest P.; Hoffmann, Jaap E.

    2017-06-01

    Energy is a key factor responsible for a country's economic growth and prosperity. It is closely related to the main global challenges namely: poverty mitigation, global environmental change and food and water security [1.]. Concentrating solar power (CSP) is steadily gaining more market acceptance as the cost of electricity from CSP power plants progressively declines. The cogeneration of electricity and water is an attractive prospect for future CSP developments as the simultaneous production of power and potable water can have positive economic implications towards increasing the feasibility of CSP plant developments [2.]. The highest concentrations of direct normal irradiation are located relatively close to Western coastal and Middle-Eastern North-African regions. It is for this reason worthwhile investigating the possibility of CSP-desalination (CSP+D) plants as a future sustainable method for providing both electricity and water with significantly reduced carbon emissions and potential cost reductions. This study investigates the techno-economic feasibility of integrating a low-temperature thermal desalination plant to serve as the condenser as opposed to a conventional dry-cooled CSP plant in Arandis, Namibia. It outlines the possible benefits of the integration CSP+D in terms of overall cost of water and electricity. The high capital costs of thermal desalination heat exchangers as well as the pumping of seawater far inland is the most significant barrier in making this approach competitive against more conventional desalination methods such as reverse osmosis. The compromise between the lowest levelized cost of electricity and water depends on the sizing and the top brine temperature of the desalination plant.

  15. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  16. Desalination and water recycling by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; Haan, de A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  17. Desalination and Water Recycling by Air Gap Membrane Distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  18. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  19. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    Science.gov (United States)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  20. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  1. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  2. Bioelectrochemical Systems for Indirect Biohydrogen Production

    KAUST Repository

    Regan, John M.

    2014-01-01

    Bioelectrochemical systems involve the use of exoelectrogenic (i.e., anode-reducing) microbes to produce current in conjunction with the oxidation of reduced compounds. This current can be used directly for power in a microbial fuel cell, but there are alternate uses of this current. One such alternative is the production of hydrogen in a microbial electrolysis cell (MEC), which accomplishes cathodic proton reduction with a slight applied potential by exploiting the low redox potential produced by exoelectrogens at the anode. As an indirect approach to biohydrogen production, these systems are not subject to the hydrogen yield constraints of fermentative processes and have been proven to work with virtually any biodegradable organic substrate. With continued advancements in reactor design to reduce the system internal resistance, increase the specific surface area for anode biofilm development, and decrease the material costs, MECs may emerge as a viable alternative technology for biohydrogen production. Moreover, these systems can also incorporate other value-added functionalities for applications in waste treatment, desalination, and bioremediation.

  3. Economical hydrogen production by electrolysis using nano pulsed DC

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaraj, C.H. [Tangedco, Tirunelveli, ME Environmental Engineering (India); Adshkumar, S. [Department of Civil Engineering, Anna University of Technology Tirunelveli, Tirunelveli - 627007 (India)

    2012-07-01

    Hydrogen is an alternate renewable eco fuel. The environmental friendly hydrogen production method is electrolysis. The cost of electrical energy input is major role while fixing hydrogen cost in the conventional direct current Electrolysis. Using nano pulse DC input makes the input power less and economical hydrogen production can be established. In this investigation, a lab scale electrolytic cell developed and 0.58 mL/sec hydrogen/oxygen output is obtained using conventional and nano pulsed DC. The result shows that the nano pulsed DC gives 96.8 % energy saving.

  4. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  5. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  6. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  7. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  8. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  9. CO_2-assisted compression-adsorption hybrid for cooling and desalination

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh; Leong, Kai Choong

    2017-01-01

    Highlights: • Amalgamation of vapour compression and adsorption. • Thermodynamic frameworks of compression-adsorption hybrid. • 60% improvement in COP as compared with conventional CO_2 cooling system. • Energy recovery from CO_2 is used for cooling and desalination. • Energy from gas cooler accelerates the desalination process. - Abstract: This paper presents a novel compression-adsorption hybrid that symbiotically combines adsorption and CO_2 compression cooling devices. The seemingly low efficiency of each cycle individually is overcome by an amalgamation with the other. Hence, both heat and water vapour refrigerant mass are recovered for continuous cooling and desalination. Two different configurations are presented. The first configuration deals with a two-stage heat recovery system. At the first stage, heat is recovered from the compressed carbon dioxide to drive the adsorption device. The second stage heat recovery system internally exchanges heat between the low pressure and high pressure refrigerants of the CO_2 cycle. The second configuration is proposed with an additional third-stage heat recovery from the gas cooler to the high pressure evaporator of the adsorption cycle. The water vapour mass is recovered from bed-to-bed adsorption at relatively higher pressure. A detailed thermodynamic framework is presented to simulate the performances in terms of COP (coefficient of performance), SCP (specific cooling power), SDWP (specific daily water production), PR (performance ratio) and OCR (overall conversion ratio). It is found that the overall COP is improved by more than 60% as compared to the conventional CO_2 cycle, and in addition, the system generates 12.7 m"3 of desalinated water per tonne of silica gel per day as extra benefits. Furthermore, both the heat and mass recoveries improve the overall conversion ratio, which is almost double as compared to the conventional CO_2 cycle.

  10. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk; Thu, K.; Masry, Moawya Ezet; Ng, Kim Choon

    2014-01-01

    in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its

  11. Water recycling and desalination by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.

    2005-01-01

    Because salt and other small components are the most common compounds in wastewater from the process industry, desalination techniques are likely to be suitable as treatment processes in many cases. Although membrane distillation (MD) is a well-known technology for desalination and water treatment,

  12. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Patil, Siddhanth; Lanjekar, Sanket; Jagdale, Bhushan; Srivastava, V.K.

    2015-01-01

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5 th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m 3 /day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  13. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  14. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.

    2003-01-01

    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe

  15. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  16. Floating nuclear energy plants for seawater desalination. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    Floating nuclear desalination facilities are one of the alternatives being considered. They may offer a particularly suitable choice for remote locations and small island or coastal communities where the necessary manpower and infrastructure to support desalination plants are not available. In the interest of focusing specific attention on the technology of floating nuclear desalination, the IAEA sponsored a Technical Committee Meeting on Floating Nuclear Plants for Seawater Desalination from 29 to 31 May 1995 in Obninsk, Russian Federation. This publication documents the papers and presentations given by experts from several countries at that meeting. It is hoped that the information contained in this report will be a valuable resource for those interested in nuclear desalination, and that it will stimulate further interest in the potential for floating nuclear desalination facilities. Refs, figs, tabs

  17. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  18. Production of hydrogen by microbial fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S.; Cox, D.; Levandowsky, M.

    1988-01-01

    Production of hydrogen by defined and undefined bacterial cultures was studied, using pure sugars (glucose and maltose) or natural sources rich in either pure sugars or polysaccharides. The latter included sugar cane juice, corn pulp (enzymatically treated or untreated), and enzymatically treated paper. Mixed microbial flora from sewage and landfill sediments, as well as pure and mixed cultures of known coliform bacteria produced mixtures of hydrogen and carbon dioxide at 37/sup 0/C and 55/sup 0/C, with hydrogen concentrations as high as 87%. In the case of the pure glucose substrate, an average yield of 0.7 mol hydrogen per mol glucose was obtained.

  19. The US department of energy programme on hydrogen production

    International Nuclear Information System (INIS)

    Paster, M.D.

    2004-01-01

    Clean forms of energy are needed to support sustainable global economic growth while mitigating greenhouse gas emissions and impacts on air quality. To address these challenges, the U.S. President's National Energy Policy and the U.S. Department of Energy's (DOE's) Strategic Plan call for expanding the development of diverse domestic energy supplies. Working with industry, the Department developed a national vision for moving toward a hydrogen economy - a solution that holds the potential to provide sustainable clean, safe, secure, affordable, and reliable energy. In February 2003, President George W. Bush announced a new Hydrogen Fuel Initiative to achieve this vision. To realize this vision, the U.S. must develop and demonstrate advanced technologies for hydrogen production, delivery, storage, conversion, and applications. Toward this end, the DOE has worked with public and private organizations to develop a National Hydrogen Energy Technology Road-map. The Road-map identifies the technological research, development, and demonstration steps required to make a successful transition to a hydrogen economy. One of the advantages of hydrogen is that it can utilize a variety of feedstocks and a variety of production technologies. Feedstock options include fossil resources such as coal, natural gas, and oil, and non-fossil resources such as biomass and water. Production technologies include thermochemical, biological, electrolytic and photolytic processes. Energy needed for these processes can be supplied through fossil, renewable, or nuclear sources. Hydrogen can be produced in large central facilities and distributed to its point of use or it can be produced in a distributed manner in small volumes at the point of use such as a refueling station or stationary power facility. In the shorter term, distributed production will play an important role in initiating the use of hydrogen due to its lower capital investment. In the longer term, it is likely that centralized

  20. VHTR-based Nuclear Hydrogen Plant Analysis for Hydrogen Production with SI, HyS, and HTSE Facilities

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    In this paper, analyses of material and heat balances on the SI, HyS, and HTSE processes coupled to a Very High Temperature gas-cooled Reactor (VHTR) were performed. The hydrogen production efficiency including the thermal to electric energy ratio demanded from each process is found and the normalized evaluation results obtained from three processes are compared to each other. The currently technological issues to maintain the long term continuous operation of each process will be discussed at the conference site. VHTR-based nuclear hydrogen plant analysis for hydrogen production with SI, HyS, and HTSE facilities has been carried out to determine the thermal efficiency. It is evident that the thermal to electrical energy ratio demanded from each hydrogen production process is an important parameter to select the adequate process for hydrogen production. To improve the hydrogen production efficiency in the SI process coupled to the VHTR without electrical power generation, the demand of electrical energy in the SI process should be minimized by eliminating an electrodialysis step to break through the azeotrope of the HI/I_2/H_2O ternary aqueous solution

  1. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  2. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production

    KAUST Repository

    Belila, Abdelaziz; El Chakhtoura, Joline; Otaibi, N.; Muyzer, G.; Gonzalez-Gil, Graciela; Saikaly, Pascal; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2016-01-01

    showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit

  3. Desalination of Walls and Façades

    Science.gov (United States)

    Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.

    2012-04-01

    For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost

  4. Desalination - an alternative freshwater resource

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Global water constitutes 94 percent salt water that is from the oceans and 6% is in the form of freshwater. Out of this 6% freshwater approximately 27% is trapped in glaciers and 72% is underground. The sea water is important for transportation, fisheries. Oceans regulate climate through air sea interaction. However direct consumption of sea water is too salty to sustain human life. Water with a dissolved solids (salt) content generally below about 1000 milligrams per liter (mg/L) is considered acceptable for human consumption. The application of desalting technologies over the past 50 years have been in many of the arid zone where freshwater is available. Pakistan lies in the Sun Belt. It is considered a wide margin coastal belt (990 km), having an Exclusive Economic Zone of 240,000 km/sup 2/, that strokes trillion cubic meters of sea water that can be made available as freshwater source to meet the shortfall in the supply of domestic water through desalination along the coastal belt of Pakistan. The freshwater obtained from the other desalination processes is slightly expensive, but the cost of desalination can be considerably reduced provided that the available inexpensive or free waste energy is utilized mainly. (author)

  5. Current activities on nuclear desalination in the Russian Federation

    International Nuclear Information System (INIS)

    Baranaev, Y.D.

    1996-01-01

    The goal of the RF desalination programme has been to develop small power floating nuclear seawater desalination complex based on KLT-40 reactor, originally developed for ship propulsion, as an energy source. Russia has sufficient fresh water resource rather evenly distributed over country territory (except for several specific conditions where sea or brackish water desalination is required for reliable long term potable water supply) and only limited internal deployment of this system is expected. Therefore, the development programme is mostly oriented to external market. Development of the floating nuclear desalination complex goes in parallel and is backed by the project of floating nuclear electricity and heat cogeneration plant using two KLT-40 reactors. This plant producing up to 70 MW(e) of electricity and up to 50 Gcal/of heat for district heating is now at the basic design stage and planned to be implemented around the year 2000 in Russia, at the Arctic Sea area

  6. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil

    2014-11-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends the limited temperature range of the MED, typically from 65 °C at top-brine temperature (TBT) to a low-brine temperature (LBT) of 40 °C to a lower LBT of 5 °C, whilst the TBT remains the same. The integration of cycles is achieved by having vapor uptake by the adsorbent in AD cycle, extracting from the vapor emanating from last effect of MED. By increasing the range of temperature difference (DT) of a MEDAD, its design can accommodate additional condensation-evaporation stages that capitalize further the energy transfer potential of expanding steam. Numerical model for the proposed MEDAD cycle is presented and compared with the water production rates of conventional and hybridized MEDs. The improved MEDAD design permits the latter stages of MED to operate below the ambient temperature, scavenging heat from the ambient air. The increase recovery of water from the seawater feed may lead to higher solution concentration within the latter stages, but the lower saturation temperatures of these stages mitigate the scaling and fouling effects. © 2014 Elsevier Ltd. All rights reserved.

  7. Marine monitoring surveys for desalination plants-A critical review

    KAUST Repository

    Lattemann, Sabine

    2013-01-01

    Environmental impact assessment (EIA) studies are standard practice and a regulatory requirement for most new desalination projects today. However, most of the EIA studies are limited to predictive information; that is, they gather information on the project and the project\\'s environment before project implementation to make predictions about likely impacts. The EIAs may involve comprehensive studies, such as field monitoring, laboratory toxicity testing, and modeling studies. Consequently, the"surprising paucity of useful experimental data, either from laboratory tests or from field monitoring studies", which was observed by the US National Research Council in 2008, has been gradually decreasing. However, there is still a long-term research need on the site-specific effects of desalination plants after project commissioning has taken place. A main challenge of field research is the adequate design of the monitoring studies, which have to adequately distinguish the effects of the desalination project from natural processes over long periods of time. The existing monitoring studies have so far used a wide range of approaches and methods to investigate the environmental impacts of desalination plant discharges. Shortfalls are often that they are limited in scope, short-term, or localized. In essence, many studies fall short of recognizing the potentially synergetic effects of the single waste components of the discharges on marine organisms and the complexity of the potential responses by the ecosystem. While the possible risk of damage arising from the concentrate discharge to the marine environment in close proximity to the outfall is at hand, no conclusive evidence can yet be provided concerning the long-term impacts of desalination plant discharges, let alone the cumulative impacts on certain sea areas. This paper conducts a critical review of existing monitoring programs for desalination plants. Shortcomings of current practices are identified and relevant

  8. A hydrogen production experiment by the thermo-chemical and electrolytic hybrid hydrogen production in lower temperature range. System viability and preliminary thermal efficiency estimation

    International Nuclear Information System (INIS)

    Takai, Toshihide; Nakagiri, Toshio; Inagaki, Yoshiyuki

    2008-10-01

    A new experimental apparatus by the thermo-chemical and electrolytic Hybrid-Hydrogen production in Lower Temperature range (HHLT) was developed and hydrogen production experiment was performed to confirm the system operability. Hydrogen production efficiency was estimated and technical problems were clarified through the experimental results. Stable operation of the SO 3 electrolysis cell and the sulfur dioxide solution electrolysis cell were confirmed during experimental operation and any damage which would be affected solid operation was not detected under post operation inspection. To improve hydrogen production efficiency, it was found that the reduction of sulfuric acid circulation and the decrease in the cell voltage were key issues. (author)

  9. The Energy-Water Nexus: An Analysis and Comparison of Various Configurations Integrating Desalination with Renewable Power

    Directory of Open Access Journals (Sweden)

    Gary M. Gold

    2015-04-01

    Full Text Available This investigation studies desalination powered by wind and solar energy, including a study of a configuration using PVT solar panels. First, a water treatment was developed to estimate the power requirement for brackish groundwater reverse-osmosis (BWRO desalination. Next, an energy model was designed to (1 size a wind farm based on this power requirement and (2 size a solar farm to preheat water before reverse osmosis treatment. Finally, an integrated model was developed that combines results from the water treatment and energy models. The integrated model optimizes performances of the proposed facility to maximize daily operational profits. Results indicate that integrated facility can reduce grid-purchased electricity costs by 88% during summer months and 89% during winter when compared to a stand-alone desalination plant. Additionally, the model suggests that the integrated configuration can generate $574 during summer and $252 during winter from sales of wind- and solar-generated electricity to supplement revenue from water production. These results indicate that an integrated facility combining desalination, wind power, and solar power can potentially reduce reliance on grid-purchased electricity and advance the use of renewable power.

  10. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw

    2015-01-01

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat

  11. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  12. Co-production of hydrogen and electricity with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, S.; Cotone, P.; Davison, J. [Foster Wheeler Italiana (Italy)

    2007-07-01

    This paper summarizes the results of a study carried out by Foster Wheeler for the IEA Greenhouse Gas R & D Programme that focused on different IGCC configurations with CO{sub 2} capture and H{sub 2} production. The three following main cases are compared: production of hydrogen, with minimum amount of electricity for a stand-alone plant production; co-production of the optimum hydrogen/electricity ratio; and co-production of hydrogen and electricity in a flexible plant that varies the hydrogen/electricity ratio. The paper reviews three available gasification technologies and presents the results of a more detailed evaluation of the selected one. The scope of this paper is to underline possible advantages of hydrogen and electricity co-production from coal, that is likely going to replace natural gas and petroleum as a source of hydrogen in the long term. Expected advantage of co-production will be the ability to vary the hydrogen/electricity ratio to meet market demands. A natural gas, diesel and gasoline demand market analysis has been performed for the Netherlands and the USA to determine the expected future hydrogen demand. Plant performance and costs are established and electric power production costs are evaluated. Electricity and hydrogen co-production plants are compared to plants that produce electricity only, with and without CO{sub 2} capture, to evaluate the costs of CO{sub 2} avoidance. 4 refs., 8 figs., 4 tabs.

  13. Efficiency analysis of hydrogen production methods from biomass

    NARCIS (Netherlands)

    Ptasinski, K.J.

    2008-01-01

    Abstract: Hydrogen is considered as a universal energy carrier for the future, and biomass has the potential to become a sustainable source of hydrogen. This article presents an efficiency analysis of hydrogen production processes from a variety of biomass feedstocks by a thermochemical method –

  14. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant

    Directory of Open Access Journals (Sweden)

    Fallatah Mohammad M.

    2018-04-01

    Full Text Available The development of safe desalination plants with low environmental impact is as important an issue as the supply of drinking water. The desalination plant in Jeddah (Saudi Arabia, Red Sea coast produces freshwater from seawater by multi-stage flash distillation (MSFD and reverse osmosis (RO. The process produces brine as by-product, which is dumped into the sea. The aim of this study was to assess the impact of Jeddah desalination plant on the coastal water in the nearby of the plant. Total concentrations of dissolved Cu, Ni, Zn and nutrients in several locations around the plant were analyzed by cathodic stripping voltammetry. The average levels of dissolved Cu, Ni, and Zn on surface in the sampling locations were 15.02, 11.02, and 68.03 nM respectively, whereas the levels at the seafloor near the discharging point were much higher. Distribution of temperature, salinity, nutrients and dissolved oxygen were quite normal both on surface and in depth.

  15. Desalination Processes Evaluation at Common Platform: A Universal Performance Ratio (UPR) Method

    KAUST Repository

    Wakil Shahzad, Muhammad

    2018-01-31

    The inevitable escalation in economic development have serious implications on energy and environment nexus. The International Energy Outlook 2016 (IEO2016) predicted that the Non Organization for Economic Cooperation and Development (non-OECD) countries will lead with 71% rise in energy demand in contrast with only 18% in developed countries from 2012-2040. In Gulf Cooperation Council (GCC) countries, about 40% of primary energy is consumed for cogeneration based power and desalination plants. The cogeneration based plants are struggling with unfair primary fuel cost apportionment to electricity and desalination. Also, the desalination processes performance evaluated based on derived energy, providing misleading selection of processes. There is a need of (i) appropriate primary fuel cost appointment method for multi-purposed plants and (ii) desalination processes performance evaluation method based on primary energy. As a solution, we proposed exergetic analysis for primary fuel percentage apportionment to all components in the cycle according to the quality of working fluid utilized. The proposed method showed that the gas turbine was under charged by 40%, steam turbine was overcharged by 71% and desalination was overcharged by 350% by conventional energetic apportionment methods. We also proposed a new and most suitable desalination processes performance evaluation method based on primary energy, called universal performance ratio (UPR). Since UPR is based on primary energy, it can be used to evaluate any kind of desalination processes, thermally driven, pressure driven & humidification-dehumidification etc. on common platform. We showed that all desalination processes are operating only at 10-13% of thermodynamic limit (TL) of UPR. For future sustainability, desalination must achieve 25-30% of TL and it is only possible either by hybridization of different processes or by innovative membrane materials.

  16. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  17. Thermodynamic analysis of hydrogen production from biomass gasification

    International Nuclear Information System (INIS)

    Cohce, M.K.; Dincer, I.; Rosen, M.A.

    2009-01-01

    'Full Text': Biomass resources have the advantage of being renewable and can therefore contribute to renewable hydrogen production. In this study, an overview is presented of hydrogen production methods in general, and biomass-based hydrogen production in particular. For two methods in the latter category (direct gasification and pyrolysis), assessments are carried out, with the aim of investigating the feasibility of producing hydrogen from biomass and better understanding the potential of biomass as a renewable energy source. A simplified model is presented here for biomass gasification based on chemical equilibrium considerations, and the effects of temperature, pressure and the Gibbs free energy on the equilibrium hydrogen yield are studied. Palm oil (designated C 6 H 10 O 5 ), one of the most common biomass resources in the world, is considered in the analyses. The gasifier is observed to be one of the most critical components of a biomass gasification system, and is modeled using stoichiometric reactions. Various thermodynamic efficiencies are evaluated, and both methods are observed to have reasonably high efficiencies. (author)

  18. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  19. The Modular Helium Reactor for Hydrogen Production

    International Nuclear Information System (INIS)

    E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

    2006-01-01

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR

  20. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  1. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  2. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.; Tabatabai, S. Assiyeh Alizadeh; Dhakal, N.; Amy, Gary L.; Schippers, Jan Cornelis; Kennedy, Maria Dolores

    2014-01-01

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. Nuclear desalination of sea water. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1997-01-01

    About 250 participants from 24 Member States and seven international organizations took part in the Symposium. A wide variety of topics related to nuclear desalination were reviewed and discussed. These covered the activities of some organizations and institutes, the experience gained in existing nuclear desalination plants and their facilities, national and bilateral programmes, including research, design and development, forecasts for the future and the challenges that lie ahead. It is hoped that the Proceedings will be of value to technical, financial and regulatory decision makers associated with nuclear desalination

  4. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS

    Directory of Open Access Journals (Sweden)

    Hsuan Chang

    2014-11-01

    Full Text Available Membrane distillation (MD, which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  5. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine

    2013-01-01

    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  6. Hydrogen production by sodium borohydride in NaOH aqueous solution

    Science.gov (United States)

    Wang, Q.; Zhang, L. F.; Zhao, Z. G.

    2018-01-01

    The kinetics of hydrolysis reaction of NaBH4 in NaOH aqueous solution is studied. The influence of pH of the NaOH aqueous solution on the rate of hydrogen production and the hydrogen production efficiency are studied for the hydrolysis reaction of NaBH4. The results show that the activation energy of hydrolysis reaction of NaBH4 increased with the increase of the initial pH of NaOH aqueous solution.With the increasing of the initial pH of NaOH aqueous solution, the rate of hydrogen production and hydrogen production efficiency of NaBH4 hydrolysis decrease.

  7. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  8. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  9. Operational strategy of adsorption desalination systems

    KAUST Repository

    Thu, Kyaw

    2009-03-01

    This paper presents the performances of an adsorption desalination (AD) system in two-bed and four-bed operational modes. The tested results are calculated in terms of key performance parameters namely, (i) specific daily water production (SDWP), (ii) cycle time, and (iii) performance ratio (PR) for various heat source temperatures, mass flow rates, cycle times along with a fixed heat sink temperature. The optimum input parameters such as driving heat source and cycle time of the AD cycle are also evaluated. It is found from the present experimental data that the maximum potable water production per tonne of adsorbent (silica gel) per day is about 10 m3 whilst the corresponding performance ratio is 0.61, and a longer cycle time is required to achieve maximum water production at lower heat source temperatures. This paper also provides a useful guideline for the operational strategy of the AD cycle. © 2008 Elsevier Ltd. All rights reserved.

  10. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  11. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  12. Batteryless photovoltaic reverse-osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.; Miranda, M.; Gwillim, J.; Rowbottom, A.; Draisey, I.

    2001-07-01

    The aim of this project was to design an efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system, to deliver in the order of 3 m{sup 3} of fresh drinking water per day. The desalination of seawater to produce fresh drinking water is extremely valuable on islands and in coastal regions wherever natural freshwater is scarce. Existing small-scale desalination equipment, suitable for areas of medium and low population density, often requires a copious and constant supply of energy, either electricity or diesel. If supply of these fuels is expensive or insecure, but the area has a good solar resource, the use of photovoltaic power is an attractive option. Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at a constant flow, but are notoriously problematic in practice. The system developed in this project runs at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. In a sense, the freshwater tank is providing the energy storage. In this project, we have reviewed the merits of a wide variety of reverse-osmosis system configurations and component options. We have completed extensive in-house testing and characterisation of major hardware components and used the results to construct detailed software models. Using these, we have designed a system that meets the above project aim, and we have predicted its performance in detail. Our designs show that a system costing 23,055 pounds stirling will produce 1424 m{sup 3} of fresh drinking water annually - an average of just over 3.9 m{sup 3}/day. The system has no fuel costs and no batteries. The overall cost of water, including full maintenance, is 2.00 pounds stirling per m{sup 3}. The energy consumption (photovoltaic-electricity) is typically between 3.2 and 3.7 kWh/m{sup 3} depending on the solar irradiance and feed water

  13. Cogeneration cycles applied to desalination in the Arab World: state of the art

    International Nuclear Information System (INIS)

    Yassin, Jamal Saleh

    2006-01-01

    This paper presents a review of cogeneration cycles applied to water desalination in most of the Arab countries. The scarcity of fresh water resources in many countries around the world, and in particular Gulf countries and north African countries such as Libya and Tunisia forced the local authorities to establish many desalination plants to compensate the water shortage. Some plants are conventional for desalination processes only and others are with cogeneration cycle. The high performance of cogeneration cycles encouraged establishing combined power and desalination plants. The present study is intended to provide an overview of cogeneration cycles in conjunction with desalination technologies under the two main resources of energy, fossils and renewables. Thermal technologies, which utilize fossil resource constitute the mainstay of large-scale desalination in the Arab countries and enjoy a relatively important position worldwide. While the technologies which utilize renewable resources such as solar are getting more attention year by year and still under research and almost for small units.(Author)

  14. A comprehensive economic evaluation of integrated desalination systems, including environmental costs

    International Nuclear Information System (INIS)

    Nisan, S.

    2007-01-01

    Seawater desalination is now widely accepted as an attractive alternative source of freshwater for domestic and industrial uses. Despite the considerable progress made in the relevant technologies desalination, however, remains an energy intensive process in which the energy cost is the paramount factor. Many papers have already been published on desalination economics but a comprehensive study, based on the exhaustive analysis of a combination of energy sources and desalination processes, using state of the art economic models and realistic assumptions, is still quite rare. The aim of this paper is to fulfil this gap with a view to provide clear choices of techno-economic options to decision makers in a wide range of countries be they from the developed regions or emerging countries

  15. Impact of Desalination on Physical and Mechanical Properties of Lanzhou Loess

    Science.gov (United States)

    Bing, Hui; Zhang, Ying; Ma, Min

    2017-12-01

    Soluble salt in soil has a significant influence on the physical and mechanical properties of the soil. We performed desalination experiments on Lanzhou loess, a typical sulfate saline soil, to study the effects of salt on the physical and mechanical properties of the loess and compare variations in the soil properties after desalination. The Atterberg limits of the soil increased after desalination as a result of changes in the soil particle composition and grain refinement. The shear and uniaxial compressive strength of the soil increased as a result of decreased calcitic cementation and other changes to the soil structure. Scanning electron microstructure (SEM) and mercury intrusion porosimetry (MIP) procedures revealed changes to the microstructure and pore-size distribution of the Lanzhou loess after desalination.

  16. Design and Manufacturing of Desalination System Powered by Solar Energy Using CDI Technique

    Science.gov (United States)

    Rostami, Mohammad Sajjad; Khashehchi, Morteza; Pipelzadeh, Ehsan

    2017-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖ graphite ∖ PTFE (Active ∖ Conductive ∖ binder) show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized. A new desalination technique using capacitive deionization.

  17. Use of Low-Temperature Geothermal Energy for Desalination in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cath, Tzahi [Colorado School of Mines, Golden, CO (United States); Vanneste, Johan [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States)

    2015-11-01

    This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C with hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.

  18. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  19. Experimental investigation of a portable desalination unit configured by a thermoelectric cooler

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Soylu, Sezgi Koçak; Atmaca, İbrahim; Solmuş, İsmail

    2014-01-01

    Highlights: • Portable humidification–dehumidification desalination system configured by a thermoelectric cooler is experimentally studied. • Effect of feed water mass flow rate and air flow velocity on COP value of TEC and system productivity are investigated. • Maximum daily yield of system and COP value of TEC unit were recorded as 143.6 g and 0.78, respectively. - Abstract: Possible use of a novel portable desalination system was investigated experimentally. The system is based on humidification–dehumidification principle and thermoelectric cooling technique. A thermoelectric cooler was integrated into the system to enhance the process of both humidification and dehumidification. A prototype was fabricated and its performance was tested for various working conditions of the prototype to observe complex relation between psychrometric and thermoelectric phenomena. The effect of feed water mass flow rate and air flow velocity on the COP value of the thermoelectric cooler and clean water production of the system were examined. The maximum daily yield of the system and the COP value of the thermoelectric cooler unit were recorded as 143.6 g and 0.78, respectively

  20. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  1. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  3. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  4. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications.

  5. A novel small dynamic solar thermal desalination plant with a fluid piston converter

    International Nuclear Information System (INIS)

    Mahkamov, Khamid; Orda, Eugene; Belgasim, Basim; Makhkamova, Irina

    2015-01-01

    Highlights: • A dynamic solar desalination plant was developed which works cyclically. • It integrates an evacuated tube solar collector and fluid piston converter. • Pressure during desalination process varies with frequency of 2–4 Hz. • The system has a small increase in fresh water yield and provides pumping capacity. • Mathematical modelling provides accurate description of experimental performance. - Abstract: An innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the

  6. Utility/user requirements for the MHTGR desalination plant

    International Nuclear Information System (INIS)

    Brown, S.J.; Snyder, G.M.

    1989-01-01

    This paper describes the approach used by Gas-Cooled Reactor Associates (GCRA) and the Metropolitan Water District of Southern California (MWD) in developing Utility/User (U/U) Requirements for the Modular High Temperature Gas-cooled Reactor (MHTGR) Desalination Plant. This is a cogeneration plant that produces fresh water from seawater, and electricity. The U/U requirements for the reference MHTGR plant are used except for those changes necessary to: provide low-grade heat to a seawater desalination process, enable siting in a Southern California coastal area, take advantage of reduced weather extremes where substantial cost reductions are expected, and use seawater cooling instead of a cooling tower. The resulting requirements and the differences from the reference MHTGR requirements are discussed. The nuclear portion of the design is essentially the same as that for the reference MHTGR design. The major differences occur in the turbine-generator and condenser, and for the most part, the design parameters for the reference plant are found to be conservative for the desalination plant. The most important difference in requirements is in the higher seismic levels required for a Southern California site, which requires reassessment and possible modification of the design of some reference plant equipment for use in the desalination plant. (author). 5 refs, 1 tab

  7. Renewable hydrogen production by catalytic steam reforming of peanut shells pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R.J.; Chornet, E.; Czernik, S.; Feik, C.; French, R.; Phillips, S. [National Renewable Energy Lab., Golden, CO (United States); Abedi, J.; Yeboah, Y.D. [Clark Atlanta Univ., Atlanta, GA (United States); Day, D.; Howard, J. [Scientific Carbons Inc., Blakely, GA (United States); McGee, D. [Enviro-Tech Enterprises Inc., Matthews, NC (United States); Realff, M.J. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2002-07-01

    A project was initiated to determine the feasibility of producing hydrogen from agricultural wastes at a cost comparable to methane-reforming technologies. It is possible that hydrogen can be produced cost competitively with natural gas reforming by integrating hydrogen production with existing waste product utilization processes. This report presents initial results of an engineering demonstration project involving the development of a steam reforming process by a team of government, industrial and academic organizations working at the thermochemical facility at the National Renewable Energy Laboratory. The process is to be used on the gaseous byproducts from a process for making activated carbon from densified peanut shells. The reactor is interfaced with a 20 kg/hour fluidized-bed fast pyrolysis system and takes advantage of process chemical analysis and computer control and monitoring capacity. The reactor will be tested on the pyrolysis vapors produced in the activated carbon process. The final phase of the project will look at the production of hydrogen through the conversion of residual CO to H{sub 2} over a shift catalyst and separating hydrogen from CO{sub 2} using pressure swing adsorption. The purified oxygen will be mixed with natural gas and used for transportation purposes. The study demonstrates the potential impact of hydrogen and bioenergy on the economic development and diversification of rural areas. 11 refs., 2 tabs., 5 figs.

  8. Techno-economic analysis of seawater desalination using high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wu Linchun; Qin Zhenya

    2001-01-01

    Our world, including China (especially in big cities and foreland), is facing the increased global shortage of potable water and pollution of water. It is ideal to promote seawater desalination to satisfy the potable water demand in these areas. Among the various processes, MED, RO and VC have proven well developed and promising. Due to the inherent safety and its vapor produced with high parameters and features of small size and modular design, HTGR (High Temperature Gas-cooled Reactor) of 2x200MW is chosen as the energy source for the desalination in dual production of clean water and power. This paper discusses the techno-economic feasibility of different seawater desalting systems using 2x200MW HTGR in the areas mentioned above, that is, ST-MED (Steam Turbine Cycle), RO, MED/TVC, RO/MED and GT-MED (Gas Turbine Cycle). The exergy concept is used in calculating availability to get cost of energy in desalination, and power credit method is used in economic assessment of different systems to get reasonable evaluating, while economic-life levelized cost method is adopted for calculating electricity cost of referred HTGR plant. In addition, sensitivity analysis on ST-MED economy is also presented. (author)

  9. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  10. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.; Mahmoudi, H.; Ghaffour, NorEddine

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability

  11. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw; Chakraborty, Anutosh; Kim, Youngdeuk; Myat, Aung; Saha, Bidyut Baran; Ng, Kim Choon

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption

  12. Composition of hydrogenation products of Borodino brown coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Gyul' malieva; A.S. Maloletnev; G.A. Kalabin; A.M. Gyul' maliev [Institute for Fossil Fuels, Moscow (Russian Federation)

    2008-02-15

    The composition of liquid products of hydrogenation of brown coal from the Borodino deposit was determined by means of {sup 13}C NMR spectroscopy and chemical thermodynamics methods. It was shown that the group composition of the liquid hydrogenation products at thermodynamic equilibrium is predictable from the elemental composition of the organic matter of parent coal. 9 refs., 5 figs., 6 tabs.

  13. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  14. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  15. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  16. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  17. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel

    International Nuclear Information System (INIS)

    Kavvadias, K.C.; Khamis, I.

    2014-01-01

    The reliable supply of water and energy is an important prerequisite for sustainable development. Desalination is a feasible option that can solve the problem of water scarcity in some areas, but it is a very energy intensive technology. Moreover, the rising cost of fossil fuel, its uncertain availability and associated environmental concerns have led to a need for future desalination plants to use other energy sources, such as renewables and nuclear. Nuclear desalination has thus the potential to be an important option for safe, economic and reliable supply of large amounts of fresh water to meet the ever-increasing worldwide water demand. Different approaches to use nuclear power for seawater desalination have been considered including utilisation of the waste heat from nuclear reactors to further reduce the cost of nuclear desalination. Various options to implement nuclear desalination relay mainly on policy making based on socio-economic and environmental impacts of available technologies. This paper examines nuclear desalination costs and proposes a methodology for exploring interactions between critical parameters. - Highlights: • The paper demonstrated desalination costs under uncertainty conditions. • Uncertainty for nuclear power prevails only during the construction period. • Nuclear desalination proved to be cheaper and with less uncertainty

  18. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.; Ng, Kim Choon; Thuw, Kyaw; Wakil Shahzad, Muhammad

    2016-01-01

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  19. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  20. Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle

    KAUST Repository

    Thu, Kyaw; Kim, Young Deuk; Shahzad, Muhammad Wakil; Saththasivam, Jayaprakash; Ng, Kim Choon

    2015-01-01

    This article presents the development of an advanced adsorption desalination system with quantum performance improvement. The proposed multi-effect adsorption desalination (MEAD) cycle utilizes a single heat source i.e., low-temperature hot water