WorldWideScience

Sample records for derived growth factor

  1. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  2. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  3. Purification of human platelet-derived growth factor

    International Nuclear Information System (INIS)

    Raines, E.W.; Ross, R.

    1985-01-01

    The paper describes a method for purification of human platelet-derived growth factor (PDGF) from outdated platelet-rich plasma (PRP) using commonly available laboratory reagents and yielding a mitogen purified 800,000-fold over the starting material. [ 3 H]thymidine incorporation into DNA of cultured cells responsive to PDGF represents the most readily available method to follow its purification and define the biological activity of a purified preparation. Other assays to quantitate PDGF include radioreceptor assay and radioimmunoassay

  4. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  5. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  6. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  7. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. The role of macrophage derived growth factors in pulmonary fibrosis

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Jarpe, M.; Benson, J.M.; Henderson, R.F.

    1988-01-01

    Factors released from rat alveolar macrophages exposed to high (95 μg/mL) concentrations of the fibrogenic agent, nickel subsulfide, were found to inhibit the proliferation of cultured lung epithelial cells and stimulate the growth of fibroblasts. Such factors, if present in the alveoli of rats exposed by inhalation to nickel subsulfide in vivo, may play a role in inhibiting re-epithelization of nickel-damaged lungs and in stimulating fibroblast proliferation, leading to pulmonary fibrosis. (author)

  9. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  10. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  11. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  12. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Shayesteh Rezayani

    2017-04-21

    Apr 21, 2017 ... susceptibility and environmental risk factors and their interactions. [1] and starts .... Germany) as internal control, and 30 lM of each specific primer. (Eurofins .... thank the Arya Tina Gene company for recruiting study subjects.

  13. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  14. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  15. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  16. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    OpenAIRE

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protei...

  17. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages.

    Directory of Open Access Journals (Sweden)

    Francesco Oddone

    Full Text Available To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF and Nerve Growth Factor (NGF in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters.45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated.Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03. Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019 and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04 but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06 compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01. Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008 and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001 but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32 compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004.BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that both factors could be further investigated

  18. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis

    OpenAIRE

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-hara, Tomoko; Fujita, Naoya

    2014-01-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the pro...

  19. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  20. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  1. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  2. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-01-01

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  3. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    Science.gov (United States)

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  4. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives

    Directory of Open Access Journals (Sweden)

    Düregger Katharina

    2016-09-01

    Full Text Available Thrombocytes can be concentrated in blood derivatives and used as autologous transplants e.g. for wound treatment due to the release of growth factors such as platelet derived growth factor (PDGF. Conditions for processing and storage of these platelet-rich blood derivatives influence the release of PDGF from the platelet-bound α-granules into the plasma. In this study Platelet rich plasma (PRP and Platelet concentrate (PC were produced with a fully automated centrifugation system. Storage of PRP and PC for 1 h up to 4 months at temperatures between −20°C and +37°C was applied with the aim of evaluating the influence on the amount of released PDGF. Storage at −20°C resulted in the highest release of PDGF in PRP and a time dependency was determined: prolonged storage up to 1 month in PRP and 10 days in PC increased the release of PDGF. Regardless of the storage conditions, the release of PDGF per platelet was higher in PC than in PRP.

  5. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  6. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C

    1997-01-01

    The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha...

  7. Are genetic variants in the platelet-derived growth factor [beta] gene associated with chronic pancreatitis?

    Science.gov (United States)

    Muddana, Venkata; Park, James; Lamb, Janette; Yadav, Dhiraj; Papachristou, Georgios I; Hawes, Robert H; Brand, Randall; Slivka, Adam; Whitcomb, David C

    2010-11-01

    Platelet-derived growth factor [beta] (PDGF-[beta]) is a major signal in proliferation and matrix synthesis through activated pancreatic stellate cells, leading to fibrosis of the pancreas. Recurrent acute pancreatitis (RAP) seems to predispose to chronic pancreatitis (CP) in some patients but not others. We tested the hypothesis that 2 known PDGF-[beta] polymorphisms are associated with progression from RAP to CP. We also tested the hypothesis that PDGF-[beta] polymorphisms in combination with environmental risk factors such as alcohol and smoking are associated with CP. Three hundred eighty-two patients with CP (n = 176) and RAP (n = 206) and 251 controls were evaluated. Platelet-derived growth factor [beta] polymorphisms +286 A/G (rs#1800818) seen in 5'-UTR and +1135 A/C (rs#1800817) in first intron were genotyped using single-nucleotide polymorphism polymerase chain reaction approach and confirmed by DNA sequencing. The genotypic frequencies for PDGF-[beta] polymorphisms in positions +286 and +1135 were found to be similar in controls and patients with RAP and CP. There was no difference in genotypic frequencies among RAP, CP, and controls in subjects in the alcohol and smoking subgroups. Known variations in the PDGF-[beta] gene do not have a significant effect on promoting or preventing fibrogenesis in pancreatitis. Further evaluation of this important pathway is warranted.

  8. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  9. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  10. [Risk factors associated with bacterial growth in derivative systems from cerebrospinal liquid in pediatric patients].

    Science.gov (United States)

    de Jesús Vargas-Lares, José; Andrade-Aguilera, Angélica Rocío; Díaz-Peña, Rafael; Barrera de León, Juan Carlos

    2015-01-01

    To determine risk factors associated with bacterial growth in systems derived from cerebrospinal fluid in pediatric patients. Case and controls study from January to December 2012, in patients aged <16 years who were carriers of hydrocephalus and who required placement or replacement of derivative system. Cases were considered as children with cultures with bacterial growth and controls with negative bacterial growth. Inferential statistics with Chi-squared and Mann-Whitney U tests. Association of risk with odds ratio. We reviewed 746 registries, cases n=99 (13%) and controls n=647 (87%). Masculine gender 58 (57%) vs. feminine gender 297 (46%) (p=0.530). Age of cases: median, five months and controls, one year (p=0.02). Median weight, 7 vs. 10 kg (p=0.634). Surgical interventions: median n=2 (range, 1-8) vs. n=1 (range, 1-7). Infection rate, 13.2%. Main etiology ductal stenosis, n=29 (29%) vs. n=50 (23%) (p=0.530). Non-communicating, n=50 (51%) vs. 396 (61%) (p=0.456). Predominant microorganisms: enterobacteria, pseudomonas, and enterococcus. Non-use of iodized dressing OR=2.6 (range, 1.8-4.3), use of connector OR=6.8 (range, 1.9-24.0), System replacement OR=2.0 (range, 1.3-3.1), assistant without surgical facemask OR=9.7 (range, 2.3-42.0). Being a breastfeeding infant, of low weight, non-application of iodized dressing, use of connector, previous derivation, and lack of adherence to aseptic technique were all factors associated with ependymitis.

  11. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available Stem cell treatment and platelet-rich plasma (PRP therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  12. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  13. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia.

    Science.gov (United States)

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-10-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P stress during lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.

    Science.gov (United States)

    Lee, Chunsik; Li, Xuri

    2018-08-01

    The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  16. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  17. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Science.gov (United States)

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  18. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Iezzi, Ennio; Marfia, Girolama A; Simonelli, Ilaria; Musella, Alessandra; Mandolesi, Georgia; Fresegna, Diego; Pasqualetti, Patrizio; Furlan, Roberto; Finardi, Annamaria; Mataluni, Giorgia; Landi, Doriana; Gilio, Luana; Centonze, Diego; Buttari, Fabio

    2018-04-14

    In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. Our results suggest that PDGF could promote a

  19. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    International Nuclear Information System (INIS)

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-01

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation

  20. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  1. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  2. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  3. Clinical and biological significance of hepatoma-derived growth factor in Ewing's sarcoma.

    Science.gov (United States)

    Yang, Yang; Li, Hui; Zhang, Fenfen; Shi, Huijuan; Zhen, Tiantian; Dai, Sujuan; Kang, Lili; Liang, Yingjie; Wang, Jin; Han, Anjia

    2013-11-01

    We sought to investigate the clinicopathological significance and biological function of hepatoma-derived growth factor (HDGF) in Ewing's sarcoma. Our results showed that HDGF expression is up-regulated in Ewing's sarcoma. Nuclear HDGF expression is significantly associated with tumour volume (p Ewing's sarcoma cell growth, proliferation and enhances tumourigenesis, both in vitro and in vivo. Meanwhile, HDGF knock-down causes cell cycle arrest and enhanced sensitization to serum starvation-induced apoptosis. Furthermore, recombinant HDGF promotes proliferation and colony formation of Ewing's sarcoma cells. Ninety-eight candidate HDGF downstream genes were identified in Ewing's sarcoma cells using cDNA microarray analysis. In addition, we found that HDGF knock-down inhibited FLI1 expression in Ewing's sarcoma cells at the mRNA and protein levels. Our findings suggest that HDGF exhibits oncogenic properties and may be a novel prognostic factor in Ewing's sarcoma. Targeting HDGF might be a potential therapeutic strategy for Ewing's sarcoma. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.

    Science.gov (United States)

    Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P

    The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.

  5. Insulin-Like Growth Factor Axis Expression in Dental Pulp Cells Derived From Carious Teeth

    Directory of Open Access Journals (Sweden)

    Hanaa Esa Alkharobi

    2018-04-01

    Full Text Available The insulin-like growth factor (IGF axis plays an important role in dental tissue regeneration and most components of this axis are expressed in human dental pulp cells (DPCs. In our previous study, we analyzed IGF axis gene expression in DPCs and demonstrated a novel role of IGF binding protein (IGFBP-2 and -3 in coordinating mineralized matrix formation in differentiating DPCs. A more recent study from our laboratory partially characterized dental pulp stem cells from teeth with superficial caries (cDPCs and showed that their potential to differentiate odontoblasts and/or into osteoblasts is enhanced by exposure to the mild inflammatory conditions characteristic of superficial caries. In the present study, we examine whether changes apparent in IGF axis expression during osteogenic differentiation of healthy DPCs are also apparent in DPCs derived from carious affected teeth.

  6. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  7. Expression of Hepatoma-derived growth factor family members in the adult central nervous system

    Directory of Open Access Journals (Sweden)

    Abouzied Mekky M

    2006-01-01

    Full Text Available Abstract Background Hepatoma-derived growth factor (HDGF belongs to a polypeptide family containing five additional members called HDGF related proteins 1–4 (HRP-1 to -4 and Lens epithelial derived growth factor. Whereas some family members such as HDGF and HRP-2 are expressed in a wide range of tissues, the expression of others is very restricted. HRP-1 and -4 are only expressed in testis, HRP-3 only in the nervous system. Here we investigated the expression of HDGF, HRP-2 and HRP-3 in the central nervous system of adult mice on the cellular level by immunohistochemistry. In addition we performed Western blot analysis of various brain regions as well as neuronal and glial cell cultures. Results HDGF was rather evenly expressed throughout all brain regions tested with the lowest expression in the substantia nigra. HRP-2 was strongly expressed in the thalamus, prefrontal and parietal cortex, neurohypophysis, and the cerebellum, HRP-3 in the bulbus olfactorius, piriform cortex and amygdala complex. HDGF and HRP-2 were found to be expressed by neurons, astrocytes and oligodendrocytes. In contrast, strong expression of HRP-3 in the adult nervous system is restricted to neurons, except for very weak expression in oligodendrocytes in the brain stem. Although the majority of neurons are HRP-3 positive, some like cerebellar granule cells are negative. Conclusion The coexpression of HDGF and HRP-2 in glia and neurons as well as the coexpression of all three proteins in many neurons suggests different functions of members of the HDGF protein family in cells of the central nervous system that might include proliferation as well as cell survival. In addition the restricted expression of HRP-3 point to a special function of this family member for neuronal cells.

  8. Acceleration of wound healing with stem cell-derived growth factors.

    Science.gov (United States)

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  9. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    Science.gov (United States)

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; De la Fuente, M; Merayo-Lloves, J; Orive, G

    2014-02-01

    We have developed and characterized a new type of plasma rich in growth factors (PRGF) derived eye-drop therapy for patients suffering from autoimmune diseases. To determine the concentration of several growth factors, proteins, immunoglobulins and complement activity of the heat-inactivated eye-drop and to study its biological effects on cell proliferation and migration of different ocular surface cells, blood from healthy donors was collected, centrifuged and PRGF was prepared avoiding the buffy coat. The half volume of the obtained plasma supernatant from each donor was heat-inactivated at 56 °C for 1 h (heat-inactivated PRGF). The concentration of several proteins involved on corneal wound healing, immunoglubolins G, M and E and functional integrity of the complement system assayed by CH50 test were determined. The proliferative and migratory potential of inactivated and non-inactivated PRGF eye drops were assayed on corneal epithelial cells (HCE), keratocytes (HK) and conjunctival fibroblasts (HConF). Heat-inactivated PRGF preserves the content of most of the proteins and morphogens involved in its wound healing effects while reduces drastically the content of IgE and complement activity. Heat-inactivated PRGF eye drops increased proliferation and migration potential of ocular surface cells with regard to PRGF showing significant differences on proliferation and migration rate of HCE and HConF respectively. In summary, heat-inactivation of PRGF eye drops completely reduced complement activity and deceased significantly the presence of IgE, maintaining the biological activity of PRGF on ocular surface cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to sh...

  12. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  13. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  14. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  15. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    Science.gov (United States)

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Expression of platelet-derived growth factor B is upregulated in patients with thoracic aortic dissection.

    Science.gov (United States)

    Meng, Weixin; Liu, Shangdian; Li, Dandan; Liu, Zonghong; Yang, Hui; Sun, Bo; Liu, Hongyu

    2018-04-20

    Thoracic aortic dissection (TAD) is a serious condition requiring urgent treatment to avoid catastrophic consequences. The inflammatory response is involved in the occurrence and development of TAD, possibly potentiated by platelet-derived growth factors (PDGFs). This study aimed to determine whether expression of PDGF-B (a subunit of PDGF-BB) was increased in TAD patients and to explore the factors responsible for its upregulation and subsequent effects on TAD. Full-thickness ascending aorta wall specimens from TAD patients (n = 15) and control patients (n = 10) were examined for expression of PDGF-B and its receptor (PDGFRB) and in terms of morphology, inflammation, and fibrosis. Blood samples from TAD and control patients were collected to detect plasma levels of PDGF-BB and soluble elastins. Expression levels of PDGF-B, PDGFRB, and collagen I were significantly enhanced in ascending aorta wall specimens from TAD patients compared with controls. Furthermore, soluble elastic fragments and PDGF-BB were significantly increased in plasma from TAD patients compared with controls, and numerous irregular elastic fibers and macrophages were seen in the ascending aorta wall in TAD patients. An increase in elastic fragments in the aorta wall might be responsible for inducing the activation and migration of macrophages to injured sites, leading to elevated expression of PDGF-B, which in turn induces deposition of collagen, disrupts extracellular matrix homeostasis, and increases the stiffness of the aorta wall, resulting in compromised aorta compliance. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    Science.gov (United States)

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  18. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Vikjaer, D; Blom, S; Hjørting-Hansen, E

    1997-01-01

    The effect of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on bone healing was examined in calvarial defects in rabbits. Bicortical circular (critical size) defects were prepared in the calvarial bone of 16 rabbits. The defects were closed on the dural side and covered externally...

  19. Platelet-derived growth factor receptors in the human central nervous system : autoradiographic distribution and receptor densities in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N

    1997-01-01

    Platelet derived growth factor (PDGF) receptors were studied in postmortem adult human brain and cervical spinal cord using autoradiography with human recombinant I-125-PDGF-BB. PDGF-BB binds to the three different dimers of PDGF receptors (alpha alpha, alpha beta and beta beta) PDGF receptors were

  20. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  1. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  2. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  3. Reversion of autocrine transformation by a dominant negative platelet-derived growth factor mutant.

    Science.gov (United States)

    Vassbotn, F S; Andersson, M; Westermark, B; Heldin, C H; Ostman, A

    1993-07-01

    A non-receptor-binding mutant of the platelet-derived growth factor (PDGF) A chain, PDGF-0, was generated by exchanging 7 amino acids in the sequence. The mutant chains formed dimers that were similar to wild-type PDGF-AA with regard to stability and rate of processing to the mature 30-kDa secreted forms. Moreover, the mutant chains formed disulfide-bonded heterodimers with the PDGF B chain in NIH 3T3 cells heterodimer underwent the same processing and secretion as PDGF-AB. Transfection of c-sis-expressing 3T3 cells with PDGF-0 significantly inhibited the transformed phenotype of these cells, as determined by the following criteria. (i) Compared with PDGF-0-negative clones, PDGF-0-producing clones showed a reverted morphology. (ii) Clones producing PDGF-0 grew more slowly than PDGF-0-negative clones, with a fivefold difference in cell number after 14 days in culture. (iii) The expression of PDGF-0 completely inhibited the ability of the c-sis-expressing 3T3 cells to form colonies in soft agar; this inhibition was overcome by the addition of recombinant PDGF-BB to the culture medium, showing that the lack of colony formation of these cells was not due to a general unresponsiveness to PDGF. The specific expression of a PDGF-0/PDGF wild-type heterodimer in COS cells revealed that the affinity of the mutant heterodimer for the PDGF alpha receptor was decreased by approximately 50-fold compared with that of PDGF-AA. Thus, we show that a non-receptor-binding PDGF A-chain mutant neutralizes in a trans-dominant manner the autocrine transforming potential of the c-sis/PDGF B chain by forming low-affinity heterodimers with wild-type PDGF chains. This method of specifically antagonizing the effect of PDGF may be useful in investigations of the role of PDGF in normal and pathological conditions.

  4. Hepatoma-derived growth factor and nucleolin exist in the same ribonucleoprotein complex

    Directory of Open Access Journals (Sweden)

    Bremer Stephanie

    2013-01-01

    Full Text Available Abstract Background Hepatoma-derived growth factor (HDGF is a protein which is highly expressed in a variety of tumours. HDGF has mitogenic, angiogenic, neurotrophic and antiapoptotic activity but the molecular mechanisms by which it exerts these activities are largely unknown nor has its biological function in tumours been elucidated. Mass spectrometry was performed to analyse the HDGFStrep-tag interactome. By Pull–down-experiments using different protein and nucleic acid constructs the interaction of HDGF and nucleolin was investigated further. Results A number of HDGFStrep-tag copurifying proteins were identified which interact with RNA or are involved in the cellular DNA repair machinery. The most abundant protein, however, copurifying with HDGF in this approach was nucleolin. Therefore we focus on the characterization of the interaction of HDGF and nucleolin in this study. We show that expression of a cytosolic variant of HDGF causes a redistribution of nucleolin into the cytoplasm. Furthermore, formation of HDGF/nucleolin complexes depends on bcl-2 mRNA. Overexpression of full length bcl-2 mRNA increases the number of HDGF/nucleolin complexes whereas expression of only the bcl-2 coding sequence abolishes interaction completely. Further examination reveals that the coding sequence of bcl-2 mRNA together with either the 5′ or 3′ UTR is sufficient for formation of HDGF/nucleolin complexes. When bcl-2 coding sequence within the full length cDNA is replaced by a sequence coding for secretory alkaline phosphatase complex formation is not enhanced. Conclusion The results provide evidence for the existence of HDGF and nucleolin containing nucleoprotein complexes which formation depends on the presence of specific mRNAs. The nature of these RNAs and other components of the complexes should be investigated in future.

  5. Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2003-03-01

    Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-Cl COT activity and mRNA expression in primary cultures of rat VSMCs. K-Cl COT was determined as the Cl-dependent Rb influx and mRNA expression by semiquantitative RT-PCR. Twenty four-hour serum deprivation inhibited basal K-Cl COT activity. Addition of PDGF increased total protein content and K-Cl COT activity in a time-dependent manner. PDGF activated K-Cl COT in a dose-dependent manner, both acutely (10 min) and chronically (12 h). AG-1296, a selective inhibitor of the PDGF receptor tyrosine kinase, abolished these effects. Actinomycin D and cycloheximide had no effect on the acute PDGF activation of K-Cl COT, suggesting posttranslational regulation by the drug. Furthermore, PDGF increased KCC1 and decreased KCC3 mRNA expression in a time-dependent manner. These results indicate that chronic activation of K-Cl COT activity by PDGF may involve regulation of the two KCC mRNA isoforms, with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.

  6. Biomechanical force induces the growth factor production in human periodontal ligament-derived cells.

    Science.gov (United States)

    Ichioka, Hiroaki; Yamamoto, Toshiro; Yamamoto, Kenta; Honjo, Ken-Ichi; Adachi, Tetsuya; Oseko, Fumishige; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2016-01-01

    Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.

  7. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  8. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    Science.gov (United States)

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.

  9. Treatment of AVN Using Autologous BM Stem Cells and Activated Platelet-Derived Growth Factor Concentrates.

    Science.gov (United States)

    Nandeesh, Nagaraj H; Janardhan, Kiranmayee; Subramanian, Vignesh; Ashtekar, Abhishek Bhushan; Srikruthi, Nandagiri; Koka, Prasad S; Deb, Kaushik

    Avascular Necrosis (AVN) of hip is a devastating condition seen in younger individuals. It is the ischemic death of the constituents of the bone cartilage of the hip. The femoral head (FH) is the most common site for AVN. It results from interruption of the normal blood flow to the FH that fits into the hip socket. Earlier studies using autologous bone marrow stem cell concentrate injections have shown encouraging results with average success rates. The current study was designed to improve significantly the cartilage regeneration and clinical outcome. Total of 48 patients underwent autologous bone marrow stem cell and activated platelet-rich plasma derived growth factor concentrate (PRP-GFC) therapy for early and advanced stages AVN of femoral head in a single multi-specialty center. The total treatment was divided into three phases. In the phase I, all the clinical diagnostic measurements such as magnetic resonance imaging (MRI), computed tomography (CT) etc. with respect to the AVN patients and bone marrow aspiration from posterior iliac spine from the patients were carried out. In the phase II, isolation of stem cells and preparation from the patients were performed. Subsequently, in phase III, the stem cells and PRP- GFCs were transplanted in the enrolled patients. Ninety three percent of the enrolled AVN patients showed marked enhancement in the hip bone joint space (more than 3mm) after combined stem cells and PRP-GFC treatment as evidenced by comparison of the pre- and post-treatment MRI data thus indicative of regeneration of cartilage. The treated patients showed significant improvement in their motor function, cartilage regrowth (3 to 10mm), and high satisfaction in the two-year follow-up. Combination of stem cell and PRP-GFC therapy has shown promising cartilage regeneration in 45 out of 48 patients of AVN. This study clearly demonstrates the safety and efficacy of this treatment. Larger numbers of patients need to be evaluated to better understand the

  10. Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor

    DEFF Research Database (Denmark)

    Hansen, Stine; Li, Shizhong; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) responds to cues in the external environment and transmits signals to the cell through extracellular and intracellular interactions with a number of other signal transduction molecules. One such NCAM interaction partner is the fibroblast growth factor...... various FN3 module loop regions, have been identified as FGFR ligands. All four peptides activate FGFR and differentially modulate a number of neuronal functions, such as differentiation, survival, and synaptic changes that are important for learning, memory, and neuronal regeneration....

  11. 15-Deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ichiki, Toshihiro; Tokunou, Tomotake; Fukuyama, Kae; Iino, Naoko; Masuda, Satoko; Takeshita, Akira

    2004-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is induced by various mitogens through activation of extracellular signal-regulated protein kinase (ERK) pathway. We recently reported that peroxisome proliferator-activated receptor (PPAR)γ activators such as 15-deoxy-Δ 12,14 -prostaglandin J2 (15-d-PGJ2) and thiazolidinediones (TZDs) activated MEK/ERK pathway through phosphatidylinositol 3-kinase (PI3-K) and induced proliferation of VSMCs. However, the precise mechanisms of PPARγ activators-induced activation of PI3-K/ERK pathway have not been determined. We examined whether transactivation of growth factor receptor is involved in this process. Stimulation of VSMCs with 15-d-PGJ2 or TZDs for 15 min induced phosphorylation of ERK1/2 and Akt. 15-d-PGJ2- or TZDs-induced phosphorylation of ERK1/2 and Akt was inhibited by AG1478, an inhibitor of epidermal growth factor receptor (EGF-R) as well as AG1295, an inhibitor of platelet derived growth factor receptor (PDGF-R). 15-d-PGJ2-induced phosphorylation of both EGF-R and PDGF-R. GM6001, a matrix metalloproteinase inhibitor, and PP2, a Src family protein kinase inhibitor, suppressed 15-d-PGJ2- and TZDs-induced phosphorylation of EGF-R and PDGFβ-R as well as activation of ERK1/2 and Akt. PDGFβ-R was co-immunoprecipitated with EGF-R, regardless of the presence or absence of 15-d-PGJ2. These data suggest that 15-d-PGJ2 and TZDs activate PI3-K/ERK pathway through Src family kinase- and matrix metalloproteinase-dependent transactivation of EGF-R and PDGF-R. Both receptors seemed to associate constitutively. This novel signaling mechanisms may contribute to diverse biological functions of PPARγ activators

  12. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    Science.gov (United States)

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  13. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  14. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  15. Lung-derived growth factors: possible paracrine effectors of fetal lung development

    International Nuclear Information System (INIS)

    Montes, A.M.

    1985-01-01

    A potential role for paracrine secretions in lung organogenesis has been hypothesized (Alescio and Piperno, 1957). These studies present direct support for the paracrine model by demonstrating the presence of locally produced mitogenic/maturational factors in fetal rat lung tissue. Conditioned serum free medium (CSFM) from nineteen-day fetal rat lung cultures was shown to contain several bioactive peptides as detected by 3 H-Thymidine incorporation into chick embryo and rat lung fibroblasts, as well as 14 C-choline incorporation into surfactant in mixed cell cultures. Using ion-exchange chromatography and Sephadex gel filtration, a partially purified mitogen, 11-III, was obtained. The partially purified 11-III stimulates mitosis in chick embryo fibroblasts and post-natal rat lung fibroblasts. Multiplication in fetal rat lung fibroblasts cultures is stimulated only when these are pre-incubated with a competence factor or unprocessed CSFM. This suggests the existence of an endogenously produced competence factor important in the regulation of fetal lung growth. Preparation 11-III does not possess surfactant stimulating activity as assessed by 3 H-choline incorporation into lipids in predominantly type-II cell cultures. These data demonstrate the presence of a maturational/mitogenic factor, influencing type-II mixed cell cultures. In addition, 11-III had been shown to play an autocrine role stimulating the proliferation of fetal lung fibroblasts. Finally, these data suggest the existence of a local produced competence factor

  16. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Senior Juan M; Cuellar Francisco; Velasquez Oscar; Velasquez Margarita; Navas Claudia M; Ortiz Sergio; Delgado Juan A; Guillerrno, Blanco; Londono Juan L; Coronado Manuel A; Gomez Francisco; Alzate, Fernando Leon; Zuluaga Alejandra

    2007-01-01

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  17. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Directory of Open Access Journals (Sweden)

    Abel Martin-Garrido

    Full Text Available In adult tissue, vascular smooth muscle cells (VSMCs exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ and the pro-proliferative cytokine platelet derived growth factor (PDGF. In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  18. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    Science.gov (United States)

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  19. Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs.

    Science.gov (United States)

    Kwon, Hyuk-Rak; Wikesjö, Ulf M E; Park, Jung-Chul; Kim, Young-Taek; Bastone, Patrizia; Pippig, Susanne D; Kim, Chong-Kwan

    2010-08-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) in a particulate beta-tricalcium phosphate (beta-TCP) carrier is being evaluated to support periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following an established clinical (benchmark) protocol including surgical implantation of rhGDF-5/beta-TCP in comparison with that following implantation of recombinant human platelet-derived growth factor-BB (rhPDGF) combined with a particulate beta-TCP biomaterial using an established canine defect model. Bilateral, 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in five adult Beagle dogs. Defect sites were randomized to receive rhGDF-5/beta-TCP or the rhPDGF construct followed by wound closure for primary intention healing. The animals were sacrificed following an 8-week healing interval for histological and histometric examination. Clinical healing was generally uneventful. Sites receiving rhGDF-5/beta-TCP exhibited a significantly enhanced cementum formation compared with sites receiving the rhPDGF construct, averaging (+/-SD) 4.49+/-0.48 versus 2.72+/-0.91 mm (palveolar bone. Both protocols displayed beta-TCP residues apparently undergoing resorption. Application of both materials appears safe, as they were associated with limited, if any, adverse events. rhGDF-5/beta-TCP shows a significant potential to support/accelerate periodontal wound healing/regeneration. Application of rhGDF-5/beta-TCP appears safe and should be further evaluated in human clinical trials.

  20. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  1. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  2. Platelet-Derived Growth Factor (PDGF/PDGF Receptors (PDGFR Axis as Target for Antitumor and Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Anca Maria Cimpean

    2010-03-01

    Full Text Available Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF, fibroblast growth factor (FGF-2 or platelet-derived growth factors (PDGF. From these, VEGF and FGF-2 were extensively investigated and it was shown that they significantly contribute to the induction and progression of angiogenesis. A lot of evidence has been accumulated in last 10 years that supports the contribution of PDGF/PDGFR axis in developing angiogenesis in both normal and tumoral conditions. The crucial role of PDGF-B and PDGFR-β in angiogenesis has been demonstrated by gene targeting experiments, and their expression correlates with increased vascularity and maturation of the vascular wall. PDGF and their receptors were identified in a large variety of human tumor cells. In experimental models it was shown that inhibition of PDGF reduces interstitial fluid pressure in tumors and enhances the effect of chemotherapy. PDGFR have been involved in the cardiovascular development and their loss leads to a disruption in yolk sac blood vessels development. PDGFRβ expression by pericytes is necessary for their recruitment and integration in the wall of tumor vessels. Endothelial cells of tumor-associated blood vessels can express PDGFR. Based on these data, it was suggested the potential benefit of targeting PDGFR in the treatment of solid tumors. The molecular mechanisms of PDGF/PDGFR-mediated angiogenesis are not fully understood, but it was shown that tyrosine kinase inhibitors reduce tumor growth and angiogenesis in experimental xenograft models, and recent data demonstrated their efficacy in chemoresistant tumors. The in vivo effects of PDGFR inhibitors are more complex, based on the cross-talk with other angiogenic factors. In this review, we summarize data regarding the mechanisms and

  3. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    Science.gov (United States)

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  4. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  5. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors.

    Science.gov (United States)

    Cui, Jing; Peng, Xia; Gao, Dingding; Dai, Yang; Ai, Jing; Li, Yingxia

    2017-08-15

    Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1nM, FGFR2: 2.0±0.8nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC 50 values of 25.3±4.6nM and 77.4±6.2nM respectively. Copyright © 2017. Published by Elsevier Ltd.

  6. Platelet-derived growth factor (PDGF) stimulates glycogen synthase activity in 3T3 cells

    International Nuclear Information System (INIS)

    Chan, C.P.; Bowen-Pope, D.F.; Ross, R.; Krebs, E.G.

    1986-01-01

    Hormonal regulation of glycogen synthase, an enzyme that can be phosphorylated on multiple sites, is often associated with changes in its phosphorylation state. Enzyme activation is conventionally monitored by determining the synthase activity ratio [(activity in the absence of glucose 6-P)/(activity in the presence of glucose 6-P)]. Insulin causes an activation of glycogen synthase with a concomitant decrease in its phosphate content. In a previous report, the authors showed that epidermal growth factor (EGF) increases the glycogen synthase activity ratio in Swiss 3T3 cells. The time and dose-dependency of this response was similar to that of insulin. Their recent results indicate that PDGF also stimulates glycogen synthase activity. Enzyme activation was maximal after 30 min. of incubation with PDGF; the time course observed was very similar to that with insulin and EGF. At 1 ng/ml (0.03nM), PDGF caused a maximal stimulation of 4-fold in synthase activity ratio. Half-maximal stimulation was observed at 0.2 ng/ml (6 pM). The time course of changes in enzyme activity ratio closely followed that of 125 I-PDGF binding. The authors data suggest that PDGF, as well as EFG and insulin, may be important in regulating glycogen synthesis through phosphorylation/dephosphorylation mechanisms

  7. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  8. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth

    DEFF Research Database (Denmark)

    Markljung, Ellen; Jiang, Lin; Jaffe, Jacob D

    2009-01-01

    and find that the protein, named ZBED6, is previously unknown, specific for placental mammals, and derived from an exapted DNA transposon. Silencing of Zbed6 in mouse C2C12 myoblasts affected Igf2 expression, cell proliferation, wound healing, and myotube formation. Chromatin immunoprecipitation (Ch......, including development and transcriptional regulation. The phenotypic effects in mutant pigs and ZBED6-silenced C2C12 myoblasts, the extreme sequence conservation, its nucleolar localization, the broad tissue distribution, and the many target genes with essential biological functions suggest that ZBED6...... is an important transcription factor in placental mammals, affecting development, cell proliferation, and growth....

  9. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  10. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  11. Modulation of gap junctional intercellular communication between human smooth muscle cells by leukocyte-derived growth factors and cytokines in relation to atherogenesis

    NARCIS (Netherlands)

    Mensink, A.

    1997-01-01


    In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC between SMC was investigated. GJIC is regarded as an important mechanism in the control of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth control is regarded to be a

  12. Bacteria-induced release of white cell--and platelet-derived vascular endothelial growth factor in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Werther, K; Mynster, T

    2001-01-01

    BACKGROUND AND OBJECTIVES: Poor prognosis after resection of primary colorectal cancer may be related to the combination of perioperative blood transfusion and subsequent development of infectious complications. White blood cell--and platelet-derived cancer growth substances, including vascular...... endothelial growth factor (VEGF), may be involved in this process. Therefore, we studied the in vitro release of VEGF from white blood cells and platelets stimulated by bacterial antigens and supernatants from stored red cell components. MATERIALS AND METHODS: Eight units of whole blood (WB) and eight units...... of buffy-coat-depleted red cell (SAGM) blood were donated by healthy blood donors. Subsequently, half of every unit was leucocyte depleted by filtration, and all 32 half-units were stored under standard conditions for 35 days. Just after storage, and on days 7, 21 and 35 during storage, aliquots...

  13. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Directory of Open Access Journals (Sweden)

    Campbell Craig I

    2011-11-01

    Full Text Available Abstract Background Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor. Results MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice, it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis. Conclusion During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.

  14. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  15. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells.

    Science.gov (United States)

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors' production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey's post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. With increasing drug concentration, cellular viability decreased significantly (pcellular viability, PDGF and SCF levels. Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug.

  16. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  17. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  18. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In; Baik, Soon Koo; Rhee, Ki-Jong; Shin, Ha Cheol; Kim, Yong Man; Ahn, Chan Mug; Kong, Jee Hyun; Kim, Hyun Soo; Shim, Kwang Yong

    2014-01-01

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  19. Neer Award 2018: Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator cuff.

    Science.gov (United States)

    Jensen, Andrew R; Kelley, Benjamin V; Mosich, Gina M; Ariniello, Allison; Eliasberg, Claire D; Vu, Brandon; Shah, Paras; Devana, Sai K; Murray, Iain R; Péault, Bruno; Dar, Ayelet; Petrigliano, Frank A

    2018-04-10

    After massive tears, rotator cuff muscle often undergoes atrophy, fibrosis, and fatty degeneration. These changes can lead to high surgical failure rates and poor patient outcomes. The identity of the progenitor cells involved in these processes has not been fully elucidated. Platelet-derived growth factor receptor β (PDGFRβ) and platelet-derived growth factor receptor α (PDGFRα) have previously been recognized as markers of cells involved in muscle fibroadipogenesis. We hypothesized that PDGFRα expression identifies a fibroadipogenic subset of PDGFRβ + progenitor cells that contribute to fibroadipogenesis of the rotator cuff. We created massive rotator cuff tears in a transgenic strain of mice that allows PDGFRβ + cells to be tracked via green fluorescent protein (GFP) fluorescence. We then harvested rotator cuff muscle tissues at multiple time points postoperatively and analyzed them for the presence and localization of GFP + PDGFRβ + PDGFRα + cells. We cultured, induced, and treated these cells with the molecular inhibitor CWHM-12 to assess fibrosis inhibition. GFP + PDGFRβ + PDGFRα + cells were present in rotator cuff muscle tissue and, after massive tears, localized to fibrotic and adipogenic tissues. The frequency of PDGFRβ + PDGFRα + cells increased at 5 days after massive cuff tears and decreased to basal levels within 2 weeks. PDGFRβ + PDGFRα + cells were highly adipogenic and significantly more fibrogenic than PDGFRβ + PDGFRα - cells in vitro and localized to adipogenic and fibrotic tissues in vivo. Treatment with CWHM-12 significantly decreased fibrogenesis from PDGFRβ + PDGFRα + cells. PDGFRβ + PDGFRα + cells directly contribute to fibrosis and fatty degeneration after massive rotator cuff tears in the mouse model. In addition, CWHM-12 treatment inhibits fibrogenesis from PDGFRβ + PDGFRα + cells in vitro. Clinically, perioperative PDGFRβ + PDGFRα + cell inhibition may limit rotator cuff tissue degeneration and, ultimately

  20. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages

    Czech Academy of Sciences Publication Activity Database

    Vereščáková, Hana; Ambrožová, Gabriela; Kubala, Lukáš; Perečko, Tomáš; Koudelka, Adolf; Vašíček, Ondřej; Rudolph, T.K.; Klinke, A.; Woodcock, S.R.; Freeman, B.A.; Pekarová, Michaela

    2017-01-01

    Roč. 104, MAR2017 (2017), s. 10-19 ISSN 0891-5849 R&D Projects: GA ČR GP13-40824P; GA ČR(CZ) GJ17-08066Y; GA MŠk(CZ) LD15069 Institutional support: RVO:68081707 Keywords : colony-stimulating factor * nitrated fatty-acids * hematopoietic stem-cells * gm-csf Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.606, year: 2016

  1. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates

    International Nuclear Information System (INIS)

    Kim, Gang-Il; Sung, Yun-Mo; Kim, Kyung-Woo; Oh, Min-Kyu

    2009-01-01

    High-sensitivity, high-specificity detection of platelet derived growth factor (PDGF)-BB was realized using the change in fluorescence resonance energy transfer (FRET) occurring between quantum dot (QD) donors and black hole quencher (BHQ) acceptors. CdSe/ZnS QD/mercaptoacetic acid (MAA)/PDGF aptamer bioconjugates were successfully synthesized using ligand exchange. Black hole quencher (BHQ)-bearing oligonucleotide molecules showing partial sequence matching to PDGF aptamer were attached to PDGF aptamers and photoluminescence (PL) quenching was obtained through FRET. By adding target PDGF-BB to the bioconjugates containing BHQs, PL recovery was detected due to detachment of BHQ-bearing oligonucleotide from the PDGF aptamer as a result of the difference in affinity to the PDGF aptamer. The detection limit of the sensor was ∼0.4 nM and the linearity was maintained up to 1.6 nM in the PL intensity versus concentration curve. Measurement of PL recovery was suggested as a strong tool for high-sensitivity detection of PDGF-BB. Epidermal growth factor (EGF), the negative control molecule, did not contribute to PL recovery due to lack of binding affinity to the PDGF aptamers, which demonstrates the selectivity of the biosensor.

  2. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    Science.gov (United States)

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  3. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  4. Cloning, purification and structure determination of the HIV integrase-binding domain of lens epithelium-derived growth factor.

    Science.gov (United States)

    Hannon, Clare; Cruz-Migoni, Abimael; Platonova, Olga; Owen, Robin L; Nettleship, Joanne E; Miller, Ami; Carr, Stephen B; Harris, Gemma; Rabbitts, Terence H; Phillips, Simon E V

    2018-03-01

    Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase in human cells. The crystal structure of the HIV integrase-binding domain (IBD) of LEDGF has been determined in the absence of ligand. IBD was overexpressed in Escherichia coli, purified and crystallized by sitting-drop vapour diffusion. X-ray diffraction data were collected at Diamond Light Source to a resolution of 2.05 Å. The crystals belonged to space group P2 1 , with eight polypeptide chains in the asymmetric unit arranged as an unusual octamer composed of four domain-swapped IBD dimers. IBD exists as a mixture of monomers and dimers in concentrated solutions, but the dimers are unlikely to be biologically relevant.

  5. Use of multitarget tyrosine kinase inhibitors to attenuate platelet-derived growth factor signalling in lung disease

    Directory of Open Access Journals (Sweden)

    Rana Kanaan

    2017-10-01

    Full Text Available Platelet-derived growth factors (PDGFs and their receptors (PDGFRs play a fundamental role in the embryonic development of the lung. Aberrant PDGF signalling has been documented convincingly in a large variety of pulmonary diseases, including idiopathic pulmonary arterial hypertension, lung cancer and lung fibrosis. Targeting PDGF signalling has been proven to be effective in these diseases. In clinical practice, the most effective way to block PDGF signalling is to inhibit the activity of the intracellular PDGFR kinases. Although the mechanism of action of such drugs is not specific for PDGF signalling, the medications have a broad therapeutic index that allows clinical use. The safety profile and therapeutic opportunities of these and future medications that target PDGFs and PDGFRs are reviewed.

  6. Macrophage-derived insulin-like growth factor-1 affects influenza vaccine efficacy through the regulation of immune cell homeostasis.

    Science.gov (United States)

    Yoon, Il-Sub; Park, Hyelim; Kwak, Hye-Won; Woo Jung, Yong; Nam, Jae-Hwan

    2017-08-24

    The level of antibody production induced by a vaccine involves a variety of host factors. One of these, insulin-like growth factor-1 (IGF-1), plays an important role in lymphocyte maturation and antibody expression. Here, we investigated the role of macrophage-derived IGF-1 in the induction of influenza vaccine-specific antibodies using macrophage-derived IGF-1 gene knockout (MIKO) mice. The titers of vaccine-specific total immunoglobulin G (IgG) and IgG1 after immunization were about two- to fourfold lower in MIKO mice than in WT mice. Moreover, MIKO mice showed a relatively weak booster effect of repeated immunization. In contrast, antigen-nonspecific total IgG was about threefold higher in MIKO mice than in WT mice. After viral challenge, the viral titer and the pathological damage in lungs of MIKO mice were higher than those in WT mice despite vaccination. Interestingly, the proportions of proinflammatory immune cells including M1 macrophages, Th1 and Th17 cells was higher in unvaccinated MIKO mice than in unvaccinated WT mice. This suggests that nonspecific activation of immune cells may paradoxically impair the response to the vaccine. In addition, although the proportions of T follicular helper (Tfh) cells and GL-7 + germinal center (GC) B cells were higher in MIKO mice than in WT mice, the population of CD138 + B220 + antibody-secreting plasmablasts was lower in MIKO mice, which may be a cause of the low influenza-specific antibody titer in MIKO mice. Taken together, these results suggest that macrophage-derived IGF-1 might play an important role in the vaccine-triggered immune response by regulating immune cell homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  8. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  9. The influence of elevated levels of platelet-derived endothelial cell growth factor/thymidine phosphorylase on tumourigenicity, tumour growth, and oxygenation

    International Nuclear Information System (INIS)

    Griffiths, L.; Stratford, I.J.

    1998-01-01

    Purpose: Investigation of the effect of platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) on various aspects of tumour growth in a xenograft model, including growth rate, tumourigenicity and oxygenation levels. Methods and Materials: MDA 231 breast cancer cells overexpressing PD-ECGF/TP protein were made by retroviral transduction. These cells were grown in vitro and in vivo as xenografts. Direct measurement of tumours was used to record growth parameters, while the comet assay with the bioreductive drug RSU 1069 was used to assess tumour cell oxygenation. Results: We report that MDA 231 breast tumour cell lines expressing an increased range of levels of PD-ECGF/TP have increased tumourigenicity positively related to the level of PD-ECGF/TP when implanted in nude mice. As previously reported, tumours grown from these overexpressing cell lines grew faster than the parental line. These tumours expressed higher levels of TP activity and showed increased immunocytochemical staining for PD-ECGF. In addition, the rate of growth was found to be positively related to the level of PD-ECGF/TP expressed by the tumour cells. When the comet assay was used to compare the oxygenation status of cells between the parental and PD-ECGF/TP overexpressing tumours, the latter were found to have a larger proportion of well oxygenated cells. This is consistent with these tumours having an increased and functionally competent vascular supply in response to the expression of PD-ECGF/TP. Conclusion: PD-ECGF/TP appears to be capable of influencing tumourigenicity, angiogenesis and tumour growth in a proportional manner and can directly influence tumour oxygenation levels via its role in formation of functional vasculature

  10. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  11. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  12. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    Science.gov (United States)

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Osteocyte-derived insulin-like growth factor I is not essential for the bone repletion response in mice.

    Directory of Open Access Journals (Sweden)

    Kin-Hing William Lau

    Full Text Available The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium deprivation. As expected, the two-week dietary calcium depletion led to hypocalcemia, secondary hyperparathyroidism, and increases in bone resorption and bone loss in both Igf1 osteocyte conditional knockout (cKO mutants and WT control mice. Thus, conditional disruption of Igf1 in osteocytes did not impair the calcium depletion-induced bone resorption. After one week of calcium repletion, both cKO mutants and WT littermates showed an increase in endosteal bone formation attended by the reduction in osteoclast number, indicating that deficient Igf1 expression in osteocytes also did not have deleterious effects on the bone repletion response. The lack of an effect of deficient osteocyte-derived IGF-I expression on bone repletion is unexpected since previous studies show that these Igf1 osteocyte cKO mice exhibited impaired developmental growth and displayed complete resistance to bone anabolic effects of loading. These studies suggest that there is a dichotomy between the mechanisms necessary for anabolic responses to mechanical loading and the regulatory hormonal and anabolic skeletal repletion following low dietary calcium challenge. In conclusion, to our knowledge this study has demonstrated for the first time that osteocyte-derived IGF-I, which is essential for anabolic bone response to mechanical loading, is not a key regulatory factor for bone repletion after a low calcium challenge.

  14. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  15. Evidence that platelet-derived growth factor may be a novel endogenous pyrogen in the central nervous system.

    Science.gov (United States)

    Pelá, I R; Ferreira, M E; Melo, M C; Silva, C A; Coelho, M M; Valenzuela, C F

    2000-05-01

    Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory actions in the mammalian central nervous system (CNS). Like the cytokines, PDGF primarily signals through tyrosine phosphorylation-dependent pathways that activate multiple intracellular molecules including Janus family kinases. We previously showed that microinjection of PDGF-BB into the lateral ventricle induced a febrile response in rats that was reduced by pretreatment with Win 41662, a potent inhibitor of PDGF receptors (Pelá IR, Ferreira MES, Melo MCC, Silva CAA, and Valenzuela CF. Ann NY Acad Sci 856: 289-293, 1998). In this study, we further characterized the role of PDGF-BB in the febrile response in rats. Microinjection of PDGF-BB into the third ventricle produced a dose-dependent increase in colonic temperature that peaked 3-4 h postinjection. Win 41662 attenuated fever induced by intraperitoneal injection of bacterial lipopolysaccharide, suggesting that endogenous PDGF participates in the febrile response to this exogenous pyrogen. Importantly, febrile responses induced by tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were unchanged by Win 41662. Both indomethacin and dexamethasone blocked the PDGF-BB-induced increase in colonic temperature, and, therefore, we postulate that PDGF-BB may act via prostaglandin- and/or inducible enzyme-dependent pathways. Thus our findings suggest that PDGF-BB is an endogenous CNS mediator of the febrile response in rats.

  16. Elevated platelet-derived growth factor-BB concentrations in premature neonates who develop chronic lung disease

    Directory of Open Access Journals (Sweden)

    Adcock Kim G

    2004-06-01

    Full Text Available Abstract Background Chronic lung disease (CLD in the preterm newborn is associated with inflammation and fibrosis. Platelet-derived growth factor-BB (PDGF-BB, a potent chemotactic growth factor, may mediate the fibrotic component of CLD. The objectives of this study were to determine if tracheal aspirate (TA concentrations of PDGF-BB increase the first 2 weeks of life in premature neonates undergoing mechanical ventilation for respiratory distress syndrome (RDS, its relationship to the development of CLD, pulmonary hemorrhage (PH and its relationship to airway colonization with Ureaplasma urealyticum (Uu. Methods Infants with a birth weight less than 1500 grams who required mechanical ventilation for RDS were enrolled into this study with parental consent. Tracheal aspirates were collected daily during clinically indicated suctioning. Uu cultures were performed on TA collected in the first week of life. TA supernatants were assayed for PDGF-BB and secretory component of IgA concentrations using ELISA techniques. Results Fifty premature neonates were enrolled into the study. Twenty-eight infants were oxygen dependent at 28 days of life and 16 infants were oxygen dependent at 36 weeks postconceptual age. PDGF-BB concentrations peaked between 4 and 6 days of life. Maximum PDGF-BB concentrations were significantly higher in infants who developed CLD or died from respiratory failure. PH was associated with increased risk of CLD and was associated with higher PDGF-BB concentrations. There was no correlation between maximum PDGF-BB concentrations and Uu isolation from the airway. Conclusions PDGF-BB concentrations increase in TAs of infants who undergo mechanical ventilation for RDS during the first 2 weeks of life and maximal concentrations are greater in those infants who subsequently develop CLD. Elevation in lung PDGF-BB may play a role in the development of CLD.

  17. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mojdeh Abbasi

    2018-03-01

    Full Text Available SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2 is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.

  18. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    International Nuclear Information System (INIS)

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun; Song, Sang Heon; Shin, Hwa Kyoung; Bae, Sun Sik

    2015-01-01

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs

  19. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jung Min; Yun, Sung Ji; Kim, Young Whan; Jin, Seo Yeon; Lee, Hye Sun [Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Song, Sang Heon [Department of Internal Medicine, Pusan National University Hospital, Busan (Korea, Republic of); Shin, Hwa Kyoung [Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2015-08-14

    Mammalian target of rapamycin complex (mTORC) regulates various cellular processes including proliferation, growth, migration and differentiation. In this study, we showed that mTORC1 regulates platelet-derived growth factor (PDGF)-induced phenotypic conversion of vascular smooth muscle cells (VSMCs). Stimulation of contractile VSMCs with PDGF significantly reduced the expression of contractile marker proteins in a time- and dose-dependent manner. In addition, angiotensin II (AngII)-induced contraction of VSMCs was completely blocked by the stimulation of VSMCs with PDGF. PDGF-dependent suppression of VSMC marker gene expression was significantly blocked by inhibition of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and mTOR whereas inhibition of p38 MAPK had no effect. In particular, inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked the PDGF-dependent phenotypic change of VSMCs whereas silencing of Rictor had no effect. In addition, loss of AngII-dependent contraction by PDGF was significantly retained by silencing of Raptor. Inhibition of mTORC1 by rapamycin or by silencing of Raptor significantly blocked PDGF-induced proliferation of VSMCs. Taken together, we suggest that mTORC1 plays an essential role in PDGF-dependent phenotypic changes of VSMCs. - Graphical abstract: Regulation of VSMC phenotype by PDGF-dependent activation of mTORC1. - Highlights: • The expression of contractile marker proteins was reduced by PDGF stimulation. • PDGF-dependent phenotypic conversion of VSMCs was blocked by inhibition of mTOR. • PDGF-induced proliferation of VSMCs was attenuated by inhibition of mTORC1. • mTORC1 plays a critical role in PDGF-dependent phenotypic conversion of VSMCs.

  20. Platelet-derived-growth-factor-induced signalling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.

    Science.gov (United States)

    Selheim, F; Fukami, M H; Holmsen, H; Vassbotn, F S

    2000-09-01

    Human platelets release platelet-derived growth factor (PDGF) from alpha-granules during platelet activation. We have previously shown that platelets have PDGF alpha-receptors, a transmembrane tyrosine kinase that takes part in negative feedback regulation during platelet activation. Here we have described a study of PDGF-induced tyrosine phosphorylation of platelet substrates and phosphoinositide 3-kinase (PI-3K) activity in collagen-stimulated platelets. By immunoblotting with phosphotyrosine antibodies of collagen-activated platelets we found that PDGF increased the phosphorylation of several platelet substrates, e.g. pp140, pp120 and pp85. PDGF inhibited collagen-induced platelet activation in the presence of inhibitors of autocrine stimulation, thus blocking the pure collagen-induced signal transduction. PDGF enhanced the collagen-induced formation of PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) as measured by HPLC. Wortmannin and LY294002, two unrelated inhibitors of PI-3K, were used to investigate the role of PI-3K in PDGF-induced platelet signalling. Incubation of platelets with wortmannin and LY294002 blocked the formation of three phosphorylated inositides as well as the inhibitory effect of PDGF on collagen-induced platelet activation. We conclude that the inhibitory effect of PDGF on platelet activation is PI-3K dependent. This is the first demonstration of a negative regulatory function of 3-phosphorylated inositides in platelets.

  1. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  2. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    International Nuclear Information System (INIS)

    McCarthy, L.; Van Halen, R.G.; St Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-01-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 μM T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by [ 3 H]thymidine incorporation or cell number. The IC 50 for T was approximately 5 μM. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 μg/ml cholesterol or 130 μg/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo

  3. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation.

    Science.gov (United States)

    Bjarnadóttir, Kristbjörg; Benkhoucha, Mahdia; Merkler, Doron; Weber, Martin S; Payne, Natalie L; Bernard, Claude C A; Molnarfi, Nicolas; Lalive, Patrice H

    2016-10-06

    Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1 -/- ) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1 -/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1 -/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.

  4. Terbinafine: effects on platelet-derived growth factor-stimulated smooth muscle cells in vitro and myointimal proliferation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, L.; Van Halen, R.G.; St. Denny, I.H.; Glinka, K.G.; Handley, D.A.; Stuetz, A.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T; (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic agent with antimitogenic activity in fibroblasts, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated aortic smooth muscle cell DNA synthesis in vitro and myointimal proliferation in vivo. Exposure of smooth muscle cells to 1-25 ..mu..M T resulted in a concentration-dependent inhibition of PDGF-induced mitogenesis as determined by (/sup 3/H)thymidine incorporation or cell number. The IC/sub 50/ for T was approximately 5 ..mu..M. The inhibitory effect of terbinafine persisted in the presence of 0.4-8.0 ..mu..g/ml cholesterol or 130 ..mu..g/ml mevalonate. Administration of T to rats for 2 d before and 14 d after balloon catheter carotid injury resulted in a 40% decrease in lesion area. These observations indicate that T is both a potent in vitro antagonist of the smooth muscle cell mitogenic response to PDGF and an effective, well-tolerated, orally active inhibitor of myointimal proliferation in vivo.

  5. Platelet-derived growth factor-DD targeting arrests pathological angiogenesis by modulating glycogen synthase kinase-3beta phosphorylation.

    Science.gov (United States)

    Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri

    2010-05-14

    Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.

  6. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time.

    Science.gov (United States)

    Arora, Satyam; Doda, Veena; Kotwal, Urvershi; Dogra, Mitu

    2016-02-01

    Platelet derived biomaterials represent a key source of cytokines and growth factors extensively used for tissue regeneration; wound healing and tissue repair. Our study was to quantify platelets and growth factors released by PRP when prepared at different centrifugal force (g) and time. Our study was approved by the institutional ethical committee. One hundred millilitres of whole blood (WB) was collected in bag with CPDA as the anticoagulant(AC); (14 mL for 100 mL WB ratio). Nine aliquots of 10 mL each were made from the bag and set of three aliquots were made a group. PRP was prepared at varying centrifugal force (group A: -110 g, group B: -208 g & group C: -440 g) & time (1: -5 min, 2: -10 min & 3: -20 min). Contents of each PRP prepared were analysed. Commercial sandwich ELISA kits were used to quantify the concentrations of CD62P (Diaclone SAS; France), Platelet derived growth factors-AB (Qayee-Bio; China), transforming growth factor-β1 (DRG; Germany) and vascular endothelial growth factor (Boster Immuno Leader; USA) released in each PRP prepared. Eight volunteers were enrolled in the study (24-30 years). The baseline blood counts of all the volunteers were comparable (p ≥ 0.05). Mean ± SD of platelet yield of all nine groups ranged from 17.2 ± 4.2% to 78.7 ± 5.7%. Each PRP was activated with calcified thromboplastin to quantify the growth factors released by them. Significantly higher (p < 0.05) transforming growth factor-β1 and vascular endothelial growth factor were released compared to the baseline. Our study highlights the variation in both force (g) and time results in changes at cellular level and growth factor concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  8. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  9. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    Science.gov (United States)

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  10. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    OpenAIRE

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-01-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth fac...

  11. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia

    NARCIS (Netherlands)

    Andrae, Johanna; Afink, Gijs; Zhang, Xiao-Qun; Wurst, Wolfgang; Nistér, Monica

    2004-01-01

    The platelet-derived growth factor (PDGF) and receptors are expressed in the developing central nervous system and in brain tumors. To investigate the role of PDGF during normal cerebellar development, we created transgenic mice where PDGF-B was introduced into the endogenous Engrailed1 locus (En1).

  12. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    Science.gov (United States)

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  13. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma.

    Science.gov (United States)

    Meyer, F R L; Steinborn, R; Grausgruber, H; Wolfesberger, B; Walter, I

    2015-10-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Assessment of platelet-derived growth factor using A splinted full thickness dermal wound model in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Keller, Krista A; Paul-Murphy, Joanne; Weber, E P Scott; Kass, Philip H; Guzman, Sanchez-Migallon David; Park, Shin Ae; Raghunathan, Vijay Krishna; Gustavsen, Kate A; Murphy, Christopher J

    2014-12-01

    Wounds in reptiles are a common reason for presentation to a veterinarian. At this time there is limited information on effective topical medications to aid in wound closure. The objectives of this study were to translate the splinted, full-thickness dermal wound model, validated in mice, to the bearded dragon (Pogona vitticeps) and to determine the effect of topical becaplermin (BP), a platelet-derived growth factor (0.01%), on the rate of wound closure. Ten bearded dragons were anesthetized and two full-thickness cutaneous wounds were made on the dorsum of each lizard. Encircling splints were applied surrounding each wound and subsequently covered by a semi-occlusive dressing. Five lizards had one wound treated with BP and the adjacent wound treated with a vehicle control. Five additional lizards had one wound treated with saline and the second wound treated with a vehicle control. Wounds were imaged daily, and the wound area was measured using digital image analysis. The change in percentage wound closure over 17 days and the time to 50% wound closure was compared among the four treatment groups. There was no significant difference in wound closure rates between BP-treated and saline-treated wounds or in the time to 50% wound closure between any treatments. Vehicle-treated wounds adjacent to saline-treated wounds closed significantly slower than did BP (P dragons. When compared with saline, BP did not have a significant effect on wound closure rates, while the vehicle alone delayed wound closure. Histologic analysis of experimentally created wounds throughout the wound healing process is needed to further evaluate the effects of these treatments on reptile dermal wound healing.

  15. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Feng, Jiayu; He, Weifeng; Song, Yajun; Wang, Ying; Simpson, Richard J; Zhang, Xiaorong; Luo, Gaoxing; Wu, Jun; Huang, Chibing

    2014-01-01

    Non-muscle-invasive bladder cancer (NMIBC) is one of the most common malignant tumors in the urological system with a high risk of recurrence, and effective non-invasive biomarkers for NMIBC relapse are still needed. The human urinary proteome can reflect the status of the microenvironment of the urinary system and is an ideal source for clinical diagnosis of urinary system diseases. Our previous work used proteomics to identify 1643 high-confidence urinary proteins in the urine from a healthy population. Here, we used bioinformatics to construct a cancer-associated protein-protein interaction (PPI) network comprising 16 high-abundance urinary proteins based on the urinary proteome database. As a result, platelet-derived growth factor receptor beta (PDGFRB) was selected for further validation as a candidate biomarker for NMIBC diagnosis and prognosis. Although the levels of urinary PDGFRB showed no significant difference between patients pre- and post-surgery (n = 185, P>0.05), over 3 years of follow-up, urinary PDGFRB was shown to be significantly higher in relapsed patients (n = 68) than in relapse-free patients (n = 117, P<0.001). The levels of urinary PDGFRB were significantly correlated with the risk of 3-year recurrence of NMIBC, and these levels improved the accuracy of a NMIBC recurrence risk prediction model that included age, tumor size, and tumor number (area under the curve, 0.862; 95% CI, 0.809 to 0.914) compared to PDGFR alone. Therefore, we surmise that urinary PDGFRB could serve as a non-invasive biomarker for predicting NMIBC recurrence.

  16. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    2010-11-01

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  17. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Abu-Asab, Mones S; Yu, Cheng-Rong; Tang, Zhongshu; Shen, Defen; Tuo, Jingsheng; Li, Xuri; Chan, Chi-Chao

    2014-06-01

    Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.

  18. Maternally derived anti-fibroblast growth factor 23 antibody as new tool to reduce phosphorus requirement of chicks.

    Science.gov (United States)

    Ren, Zhouzheng; Bütz, Daniel E; Sand, Jordan M; Cook, Mark E

    2017-04-01

    Novel means to reduce phosphate input into poultry feeds and increase its retention would preserve world phosphate reserves and reduce environmental impact of poultry production. Here we show that a maternally derived antibody to a fibroblast growth factor-23 (FGF-23) peptide (GMNPPPYS) alleviated phosphorus deficiency in chicks fed low non-phytate phosphorus (nPP) diets. White Leghorn laying hens were vaccinated with either an adjuvant control or the synthetic FGF-23 peptide, and chicks with control or anti-FGF-23 maternal antibodies were fed a diet containing either 0.13 or 0.45% nPP (experiment 1), and 0.20 or 0.45% nPP (experiment 2) for 14 d. In both experiments, decreasing nPP from 0.45 to 0.13 or 0.20% decreased BW gain, G:F, excreta phosphorus, plasma phosphate, and plasma FGF-23 at all time periods examined (nPP main effect, P posture scores (d 7, 14) and bone lesion scores (d 14) decreased and plasma phosphate (d 14) increased in anti-FGF-23 chicks fed 0.13% nPP, compared to those with control antibody on the same diet (P < 0.05). In experiment 2, chicks with maternal anti-FGF-23 antibody had increased tibiotarsi ash (d 14), and plasma phosphate (d 14) and 1,25(OH)2D3 (d 14) levels, compared to chicks with control antibody (antibody main effect, P < 0.05). BW gain and G:F were increased in chicks with anti-FGF-23 antibody fed 0.20% nPP, compared to control antibody chicks on the same diet, at all time periods examined (P < 0.05). In conclusion, maternally-derived anti-FGF-23 antibody increased phosphorus retention in chicks fed diets containing either 0.13 or 0.20% nPP and thereby, reduced signs of phosphorus deficiency. © 2016 Poultry Science Association Inc.

  19. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  20. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  1. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function.

    Science.gov (United States)

    Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu

    2016-03-01

    Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.

  2. Role of brain-derived neurotrophic factor and nerve growth factor in the regulation of Neuropeptide W in vitro and in vivo.

    Science.gov (United States)

    Wang, Rikang; Yan, Fengxia; Liao, Rifang; Wan, Pei; Little, Peter J; Zheng, Wenhua

    2017-05-15

    Nerve growth factor (NGF) and Brain-derived neurotrophic factor (BDNF) are neurotrophic factors involved in the growth, survival and functioning of neurons. In addition, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has recently been proposed. Neuropeptide W (NPW) is an endogenous peptide ligand for the GPR7 and GPR8 and a stress mediator in the hypothalamus. It activates the HPA axis by working on hypothalamic corticotrophin-releasing hormone (CRH). No information is available about the interrelationships between neurotrophines like NGF/BDNF and NPW. We studied the effect and underlying mechanisms of NGF/BDNF on the production of NPW in PC12 cells and hypothalamus. NGF time- and concentration-dependently stimulated the expression of NPW in PC12 cells. The effect of NGF was blocked by the inhibition of PI3K/Akt signal pathway with specific inhibitors for PI3K or AktsiRNA for Akt while inhibition of ERK pathway had no effect. Moreover, BDNF concentration-dependently induced the expression of NPW mRNA and decreased the expression of NPY mRNA in primary cultured hypothalamic neurons which was also blocked by a PI3K kinase inhibitor. Finally, in vivo study showed that exogenous BDNF injected icv increased NPW production in the hypothalamus and this effect was reversed by a PI3 kinase inhibitor. These results and the fact that BDNF was able to stimulate the expression of CRH demonstrated that neurotrophines can modulate the expression of NPW in neuronal cells via the PI3K/Akt pathway and suggest that BDNF might be involved in functions of the HPA axis, at least in part by modulating the expression of NPW/NPY and CRH. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transactivation of involucrin, a marker of differentiation in keratinocytes, by lens epithelium-derived growth factor (LEDGF).

    Science.gov (United States)

    Kubo, E; Fatma, N; Sharma, P; Shinohara, T; Chylack, L T; Akagi, Y; Singh, D P

    2002-07-26

    Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand

  4. Comparison of Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1 Responses to Different Endurance Training Intensities in Runner Men

    Directory of Open Access Journals (Sweden)

    M. Habibian

    2017-04-01

    Full Text Available Aims: Blood neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1, mediate exercise- induced health benefits in humans. The purpose of this study was to compare the response of BDNF and IGF-1 to different endurance training intensities in runner men. Materials & Methods: In this semi-experimental study with pre-test-posttest design in 2015, 10 people of male runners from Gorgan were selected through purposeful and accessible sampling. The endurance training protocol was 6 km running with moderate (70-75% of heart rate reserve or severe (80-85% of heart rate reserve intensity, which was performed within a week's interval. Fasting blood samples were collected before and immediately after both acute training sessions and serum levels of BDNF and IGF-1 were measured by ELISA and radioimmunoassay enzyme. Data were analyzed by SPSS 20 software using independent t-test and paired t-test. Findings: Both acute endurance training significantly increased serum levels of BDNF and IGF-1 in runners, but high intensity endurance exercises increased BDNF levels in comparison with moderate intensity (p0.05. Conclusion: Serum BDNF response in endurance athletes is affected by the intensity of exercise, so that the effect of high intensity endurance training on BDNF levels is greater than moderate intensity exercise, but the response of IGF-1 to acute endurance training is independent of the intensity of exercise.

  5. Progestins inhibit estradiol-induced vascular endothelial growth factor and stromal cell-derived factor 1 in human endometrial stromal cells.

    Science.gov (United States)

    Okada, Hidetaka; Okamoto, Rika; Tsuzuki, Tomoko; Tsuji, Shoko; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2011-09-01

    To investigate whether 17β-estradiol (E(2)) and progestins exert direct effects on vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1/CXCL12) in human endometrial stromal cells (ESCs) and thereby to clarify the regulatory function of these local angiogenic factors in the endometrium. In vitro experiment. Research laboratory at Kansai Medical University. Fourteen patients undergoing hysterectomy for benign reasons. ESCs were cultured with E(2) and/or various clinically relevant progestins (medroxyprogesterone acetate [MPA], norethisterone [NET], levonorgestrel [LNG], dienogest [DNG], and progesterone [P]). The mRNA levels and production of VEGF and SDF-1 were assessed by real-time reverse-transcription polymerase chain reaction and ELISA, respectively. E(2) significantly induced the mRNA levels and protein production of VEGF and SDF-1 in ESCs. MPA could antagonize the E(2)-stimulated effects in a time- and dose-dependent manner, and this effect could be reversed by RU-486 (P receptor antagonist). All of the progestins (MPA, NET, LNG, and DNG; 10(-9) to 10(-7) mol/L) attenuated E(2)-induced VEGF and SDF-1 production, whereas P showed these inhibitory effects only when present in a high concentration (10(-7) mol/L). Progestins have inhibitory effects on E(2)-induced VEGF and SDF-1 in ESCs. These results may indicate a potential mechanism for action of the female sex steroids in the human endometrium that can be helpful for various clinical applications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid.

    Directory of Open Access Journals (Sweden)

    Yuan-Hong Jiang

    Full Text Available To investigate urinary nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF levels in interstitial cystitis/bladder pain syndrome (IC/BPS patients after hyaluronic acid (HA therapy.Thirty-three patients with IC/BPS were prospectively studied; a group of 45 age-matched healthy subjects served as controls. All IC/BPS patients received nine intravesical HA instillations during the 6-month treatment regimen. Urine samples were collected for measuring urinary NGF and BDNF levels at baseline and 2 weeks after the last HA treatment. The clinical parameters including visual analog scale (VAS of pain, daily frequency nocturia episodes, functional bladder capacity (FBC and global response assessment (GRA were recorded. Urinary NGF and BDNF levels were compared between IC/BPS patients and controls at baseline and after HA treatment.Urinary NGF, NGF/Cr, BDNF, and BDNF/Cr levels were significantly higher in IC/BPS patients compared to controls. Both NGF and NGF/Cr levels significantly decreased after HA treatment. Urinary NGF and NGF/Cr levels significantly decreased in the responders with a VAS pain reduction by 2 (both p < 0.05 and the GRA improved by 2 (both p < 0.05, but not in non-responders. Urinary BDNF and BDNF/Cr did not decrease in responders or non-responders after HA therapy.Urinary NGF, but not BDNF, levels decreased significantly after HA therapy; both of these factors remained higher than in controls even after HA treatment. HA had a beneficial effect on IC/BPS, but it was limited. The reduction of urinary NGF levels was significant in responders, with a reduction of pain and improved GRA.

  7. Human histologic evaluation of anorganic bovine bone mineral combined with recombinant human platelet-derived growth factor BB in maxillary sinus augmentation: case series study.

    Science.gov (United States)

    Nevins, Myron; Garber, David; Hanratty, James J; McAllister, Bradley S; Nevins, Marc L; Salama, Maurice; Schupbach, Peter; Wallace, Steven; Bernstein, Simon M; Kim, David M

    2009-12-01

    The objective of this proof-of-principle study was to examine the potential for improved bone regenerative outcomes in maxillary sinus augmentation procedures when recombinant human platelet-derived growth factor BB (0.3 mg/mL) is combined with particulate anorganic bovine bone mineral. The surgical outcomes in all treated sites were uneventful at 6 to 8 months, with sufficient regenerated bone present to allow successful placement of maxillary posterior implants. Large areas of dense, well-formed lamellar bone were seen throughout the intact core specimens in more than half of the grafted sites. Abundant numbers of osteoblasts were noted in concert with significant osteoid in all sites, indicating ongoing osteogenesis. A number of cores demonstrated efficient replacement of the normally slowly resorbing anorganic bovine bone mineral matrix particles with newly formed bone when the matrix was saturated with recombinant human platelet-derived growth factor BB.

  8. Potential of pomegranate fruit extract (Punica granatum Linn.) to increase vascular endothelial growth factor and platelet-derived growth factor expressions on the post-tooth extraction wound of Cavia cobaya.

    Science.gov (United States)

    Nirwana, Intan; Rachmadi, Priyawan; Rianti, Devi

    2017-08-01

    Pomegranates fruit extracts have several activities, among others, anti-inflammatory, antibacterial, and antioxidants that have the main content punicalagin and ellagic acid. Pomegranate has the ability of various therapies through different mechanisms. Vascular endothelial growth factor (VEGF) function was to form new blood vessels produced by various cells one of them was macrophages. Platelet-derived growth factor (PDGF) was a growth factor proven chemotactic, increased fibroblast proliferation and collagen matrix production. In addition, VEGF and PDGF synergize in their ability to vascularize tissues. The PDGF function was to stabilize and regulate maturation of new blood vessels. Activities of pomegranate fruit extract were observed by measuring the increased of VEGF and PDGF expression as a marker of wound healing process. To investigate the potential of pomegranate extracts on the tooth extraction wound to increase the expression of VEGF and PDGF on the 4 th day of wound healing process. This study used 12 Cavia cobaya , which were divided into two groups, namely, the provision of 3% sodium carboxymethyl cellulose and pomegranate extract. The 12 C. cobaya would be executed on the 4 th day, the lower jaw of experimental animals was taken, decalcified about 30 days. The expression of VEGF and PDGF was examined using immunohistochemical techniques. The differences of VEGF and PDGF expression were evaluated statistically using t-test. Statistically analysis showed that there were significant differences between control and treatment groups (p<0.05). Pomegranate fruit extract administration increased VEGF and PDGF expression on post-tooth extraction wound.

  9. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  10. Milk fat globule-epidermal growth factor-factor VIII-derived peptide MSP68 is a cytoskeletal immunomodulator of neutrophils that inhibits Rac1.

    Science.gov (United States)

    Hendricks, Louie; Aziz, Monowar; Yang, Weng-Lang; Nicastro, Jeffrey; Coppa, Gene F; Symons, Marc; Wang, Ping

    2017-02-01

    Prolonged neutrophil infiltration leads to exaggerated inflammation and tissue damage during sepsis. Neutrophil migration requires rearrangement of their cytoskeleton. Milk fat globule-epidermal growth factor-factor VIII-derived short peptide 68 (MSP68) has recently been shown to be beneficial in sepsis-induced tissue injury and mortality. We hypothesize that MSP68 inhibits neutrophil migration by modulating small GTPase Rac1-dependent cytoskeletal rearrangements. Bone marrow-derived neutrophils (BMDNs) or whole lung digest isolated neutrophils were isolated from 8 to 10 wk old C57BL/6 mice by Percoll density gradient centrifugation. The purity of BMDN was verified by flow cytometry with CD11b/Gr-1 staining. Neutrophils were stimulated with N-formylmethionine-leucine-phenylalanine (f-MLP) (10 nM) in the presence or absence of MSP68 at 10 nM or cecal ligation and puncture (CLP) was used to induce sepsis, and MSP68 was administered at 1 mg/kg intravenously. Cytoskeletal organization was assessed by phalloidin staining, followed by analysis using fluorescence microscopy. Activity of the Rac1 GTPase in f-MLP or CLP-activated BMDN in the presence or absence of MSP68 was assessed by GTPase enzyme-linked immunosorbent assay. Mitogen-activated protein (MAP) kinase activity was determined by western blot densitometry. BMDN treatment with f-MLP increased cytoskeletal remodeling as revealed by the localization of filamentous actin to the periphery of the neutrophil. By contrast, cells pretreated with MSP68 had considerably reduced filamentous actin polymerization. Cytoskeletal spreading is associated with the activation of the small GTPase Rac1. We found BMDN-treated with f-MLP or that were exposed to sepsis by CLP had increased Rac1 signaling, whereas the cells pretreated with MSP68 had significantly reduced Rac1 activation (P Rac1-MAP kinase-mediated neutrophil motility. Thus, MSP68 is a novel therapeutic candidate for regulating inflammation and tissue damage caused

  11. Inhibitory effects of brain-derived neurotrophic factor precursor on viability and neurite growth of murine hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Jia CHEN

    2014-10-01

    Full Text Available Objective To explore the mediation effect of p75 neurotrophin receptor (p75NTR in the effect of brainderived neurotrophic factor precursor (proBDNF on viability and neurite growth of murine hippocampal neurons. Methods  Hippocampal neurons were obtained from p75NTR+/+ and p75NTR-/- 18-day mice and primarily cultured. For p75NTR+/+ neurons, three experimental groups were set, i.e. control, proBDNF (30ng/ml, and proBDNF (30ng/ml+p75/Fc (30µg/ml groups. For p75NTR-/- neurons, two experimental groups were set, i.e. control and proBDNF (30ng/ml groups. MTT assays were performed after 24h to examine the viability of neonatal primary neurons. Immunofluorescent staining was conducted after 72h to investigate the neurite length. Results With MAP2 and DAPI double fluorescent staining it was identified that the neonatal hippocampal neurons were successfully cultured in vitro with high purity. For viability assay of p75NTR+/+ neurons, it was found that the absorbance value at 570nm (A570 in proBDNF group was significantly lower than that in control group (P0.05. With neurite growth assay of p75NTR+/+ neurons, it was found that the neurite length in proBDNF group was significantly shorter than that in control group (P0.05. With neurite growth assay of p75NTR-/- neurons, no difference in neurite length was observed between proBDNF group and control group. Conclusion proBDNF may inhibit the neuronal viability and neurite growth via p75NTR. DOI: 10.11855/j.issn.0577-7402.2014.09.03

  12. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    Science.gov (United States)

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.

  13. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    Science.gov (United States)

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  14. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome.

    Science.gov (United States)

    Wilkin, D J; Szabo, J K; Cameron, R; Henderson, S; Bellus, G A; Mack, M L; Kaitila, I; Loughlin, J; Munnich, A; Sykes, B; Bonaventure, J; Francomano, C A

    1998-01-01

    More than 97% of achondroplasia cases are caused by one of two mutations (G1138A and G1138C) in the fibroblast growth factor receptor 3 (FGFR3) gene, which results in a specific amino acid substitution, G380R. Sporadic cases of achondroplasia have been associated with advanced paternal age, suggesting that these mutations occur preferentially during spermatogenesis. We have determined the parental origin of the achondroplasia mutation in 40 sporadic cases. Three distinct 1-bp polymorphisms were identified in the FGFR3 gene, within close proximity to the achondroplasia mutation site. Ninety-nine families, each with a sporadic case of achondroplasia in a child, were analyzed in this study. In this population, the achondroplasia mutation occurred on the paternal chromosome in all 40 cases in which parental origin was unambiguous. This observation is consistent with the clinical observation of advanced paternal age resulting in new cases of achondroplasia and suggests that factors influencing DNA replication or repair during spermatogenesis, but not during oogenesis, may predispose to the occurrence of the G1138 FGFR3 mutations. PMID:9718331

  15. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  16. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    Science.gov (United States)

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. GP88 (PC-Cell Derived Growth Factor, progranulin stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sabnis Gauri

    2011-06-01

    Full Text Available Abstract Background Aromatase inhibitors (AI that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+ breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88, also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.

  18. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    Science.gov (United States)

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar: a preliminary report.

    Science.gov (United States)

    Xiao, Zhibo; Zhang, Fengmin; Lin, Weibin; Zhang, Miaobo; Liu, Ying

    2010-08-01

    Hypertrophic scar is a common dermal disease. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence, alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is unknown. The aim of this study was to explore the effect of BTXA on transforming growth factor beta1 (TGF-beta1) in fibroblasts derived from hypertrophic scar and further elucidate its actual mechanism. Fibroblasts were isolated from tissue specimens of hypertrophic scar. Fibroblasts were treated with BTXA and the difference in proliferation between treated and nontreated cells was analyzed through the MTT method from the first to the fifth day after treatment. Proteins of TGF-beta1 were checked using ELISA in fibroblasts with BTXA and without BTXA from the first to the fifth day. The growth of the fibroblast treated with BTXA was obviously slower than that of the fibroblast without BTXA treatment (p < 0.01), which showed that BTXA effectively inhibited the growth of fibroblasts. Proteins of TGF-beta1 between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (p < 0.01). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from hypertrophic scar and in turn caused a decrease in TGF-beta1 protein, indicating that BTXA-based therapies for hypertrophic scar are promising and worth investigating further.

  20. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  1. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    Science.gov (United States)

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  2. FGF growth factor analogs

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome.

    Science.gov (United States)

    Anitua, Eduardo; Prado, Roberto; Azkargorta, Mikel; Rodriguez-Suárez, Eva; Iloro, Ibon; Casado-Vela, Juan; Elortza, Felix; Orive, Gorka

    2015-11-01

    Plasma rich in growth factors (PRGF®-Endoret®) is an autologous technology that contains a set of proteins specifically addressed to wound healing and tissue regeneration. The scaffold formed by using this technology is a clot mainly composed of fibrin protein, forming a three-dimensional (3D) macroscopic network. This biomaterial is easily obtained by biotechnological means from blood and can be used in a range of situations to help wound healing and tissue regeneration. Although the main constituent of this clot is the fibrin scaffold, little is known about other proteins interacting in this clot that may act as adjuvants in the healing process. The aim of this study was to characterize the proteins enclosed by PRGF-Endoret scaffold, using a double-proteomic approach that combines 1D-SDS-PAGE approach followed by LC-MS/MS, and 2-DE followed by MALDI-TOF/TOF. The results presented here provide a description of the catalogue of key proteins in close contact with the fibrin scaffold. The obtained lists of proteins were grouped into families and networks according to gene ontology. Taken together, an enrichment of both proteins and protein families specifically involved in tissue regeneration and wound healing has been found. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    International Nuclear Information System (INIS)

    Hirata, Eri; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro; Ménard-Moyon, Cécilia; Venturelli, Enrica; Bianco, Alberto

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF–CNT) showed the same effect as FGF alone. In addition, FGF–CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF–CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF–CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications. (paper)

  5. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    Science.gov (United States)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  6. [Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) blood levels in patients with acute carbon monoxide poisoning - a preliminary observations].

    Science.gov (United States)

    Ciszowski, Krzysztof; Gomółka, Ewa; Gawlikowski, Tomasz; Szpak, Dorota; Potoczek, Anna; Boba, Magdalena

    Neurotrophins are the family of proteins which stimulate and regulate the process of neurogenesis. Several factors belong to the family, mainly nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT 3), and neurotrophin-4/5 (NT-4/5). Acute poisoning with carbon monoxide (CO), which usually is accompanied by neurologic symptoms, can potentially change the secretion profile of neurotrophins. Aim of the study. The main goal of the study is to assess the changes of NGF and BDNF plasma levels during an acute phase of CO poisoning as well as immediately after recovery. Additionally, the relationship among neurotrophin levels and selected aspects of clinical course of CO poisoning were studied. The study group consisted of 18 patients (mean age: 31.8±10.3 years) hospitalized in Toxicology Department of University Hospital in Cracow because of acute CO poisoning. There were 10 women (mean age: 30.2±6.9 years) and 8 men (mean age 33.9±13.7 years) in the group. The levels of NGF and BDNF were evaluated using immunoenzymatic method (ELISA) in plasma samples taken thrice in each patient. The sample 1. was taken during hospital admission, the sample 2. about 12-36 hours after admission, and the sample 3. just before the hospital discharging (usually, on the 3rd-4th day). The clinical data were collected from patients’ anamnesis, physical examination and neuropsychological evaluation. The statistical analysis were performed using tools comprised in STATISTICA 12.0 PL (StatSoft Polska, Cracow, Poland) software. The majority of NGF plasma levels were less than 14 pg/mL (values below the limit of quantification), contrary to the sole case of 34.3 pg/mL. BDNF plasma levels ranged from 4.8 ng/mL to above 48 ng/mL, i.e. they were higher than the upper limit of measurement range for the plasma dilution which had been used. The comparison of NGF and BDNF plasma levels in the study group with their analogues in healthy volunteers taken from the

  7. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  8. New microbial growth factor

    Science.gov (United States)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  9. Insulin Like Growth Factor 2 Expression in the Rat Brain Both in Basal Condition and following Learning Predominantly Derives from the Maternal Allele.

    Directory of Open Access Journals (Sweden)

    Xiaojing Ye

    Full Text Available Insulin like growth factor 2 (Igf2 is known as a maternally imprinted gene involved in growth and development. Recently, Igf2 was found to also be regulated and required in the adult rat hippocampus for long-term memory formation, raising the question of its allelic regulation in adult brain regions following experience and in cognitive processes. We show that, in adult rats, Igf2 is abundantly expressed in brain regions involved in cognitive functions, like hippocampus and prefrontal cortex, compared to the peripheral tissues. In contrast to its maternal imprinting in peripheral tissues, Igf2 is mainly expressed from the maternal allele in these brain regions. The training-dependent increase in Igf2 expression derives proportionally from both parental alleles, and, hence, is mostly maternal. Thus, Igf2 parental expression in the adult rat brain does not follow the imprinting rules found in peripheral tissues, suggesting differential expression regulation and functions of imprinted genes in the brain.

  10. Liver-Derived Insulin-Like Growth Factor-I is Involved in the Regulation of Blood Pressure in Mice

    DEFF Research Database (Denmark)

    Tivesten, Asa; Bollano, Entela; Andersson, Irene

    2002-01-01

    IGF-I has been suggested to be of importance for cardiovascular structure and function, but the relative role of locally produced and liver-derived endocrine IGF-I remains unclear. Using the Cre-LoxP recombination system, we have previously created transgenic mice with a liver-specific, inducible...... IGF-I knockout (LI-IGF-I-/-). To examine the role of liver-derived IGF-I in cardiovascular physiology, liver-derived IGF-I was inactivated at 4 wk of age, resulting in a 79% reduction of serum IGF-I levels. At 4 months of age, systolic blood pressure (BP) was increased in LI-IGF-I-/- mice...... to endothelial dysfunction associated with increased expression of endothelin-1 and impaired vasorelaxation of resistance vessels. In conclusion, our findings suggest that liver-derived IGF-I is involved in the regulation of BP in mice....

  11. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Deng Kun; Xiang Yang; Zhang Liqun; Chen Qinghai [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China); Fu Weiling, E-mail: weilingfu@yahoo.com [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Direct electrochemistry of glucose oxidase used for signal generation in aptasensor. Black-Right-Pointing-Pointer Using novel nanocomposite for immobilization and signal amplification. Black-Right-Pointing-Pointer Sensitive electrochemical detection of platelet-derived growth factor. - Abstract: In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection.

  12. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry

    International Nuclear Information System (INIS)

    Deng Kun; Xiang Yang; Zhang Liqun; Chen Qinghai; Fu Weiling

    2013-01-01

    Highlights: ► Direct electrochemistry of glucose oxidase used for signal generation in aptasensor. ► Using novel nanocomposite for immobilization and signal amplification. ► Sensitive electrochemical detection of platelet-derived growth factor. - Abstract: In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection.

  13. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells.

    Science.gov (United States)

    Bahadorani, M; Hosseini, S M; Abedi, P; Abbasi, H; Nasr-Esfahani, M H

    2015-01-01

    Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p culture condition was significantly higher than the other groups (p cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.

  14. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  15. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    Science.gov (United States)

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p atherectomy;  restenosis PMID:9616351

  16. Pigment epithelium derived factor inhibits the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yanmei Sun

    Full Text Available Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.

  17. Effect of plasma-rich in platelet-derived growth factors on peri-implant bone healing: An experimental study in canines

    Science.gov (United States)

    Birang, Reza; Torabi, Alireza; Shahabooei, Mohammad; Rismanchian, Mansour

    2012-01-01

    Background: Tissue engineering principles can be exploited to enhance alveolar and peri-implant bone reconstruction by applying such biological factors as platelet-derived growth factors. The objective of the present study is to investigate the effect of autologous plasma-rich in growth factors (on the healing of peri-implant bone in canine mandible). Materials and Methods: In this prospective experimental animal study, two healthy canines of the Iranian mix breed were selected. Three months after removing their premolar teeth on both sides of the mandible, 12 implants of the Osteo Implant Corporationsystem, 5 mm in diameter and 10 mm in length, were selected to be implanted. Plasma rich in growth factors (PRGF) were applied on six implants while the other six were used as plain implants without the plasma. The implants were installed in osteotomy sites on both sides of the mandible to be removed after 4 weeks with the surrounding bones using a trephine bur. Mesio-distal sections and implant blocks, 50 μ in diameter containing the peri-implant bone, were prepared By basic fuchin toluidine-bluefor histological and histomorphometric evaluation by optical microscope. The data were analyzed using Mann-Whitney Test (PPRGF and control groups had no statistically significant differences (P=0.261, P=0.2) although the parameters showed higher measured values in the PRGF group. However, compared to the control, application of PRGF had significantly increased bone-to-implant contact (P=0.028) Conclusion: Based on the results, it may be concluded that application of PRGF on the surface of implant may enhance bone-to-implant contact. PMID:22363370

  18. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a guinea pig model of acoustic trauma

    Directory of Open Access Journals (Sweden)

    Anna Rita Fetoni

    2014-10-01

    Full Text Available Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Several evidences indicate adipose-derived stem cells (ASCs as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features.This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASC transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASC implantation.These results indicate that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantantion, providing an original proof of principle, which could pave the way for further developments of ASC

  19. Fibroblast growth factor 23

    African Journals Online (AJOL)

    Dr Olaleye

    Systemic phosphate homeostasis is maintained through several hormonal mechanisms which involve fibroblast growth factor 23 (FGF-23), α-klotho, vitamin D and parathyroid hormone. FGF-23 is known to be the major regulator of phosphate balance (Mirams et al., 2004). FGF-23 is a phosphaturic hormone, which is.

  20. The antimicrobial peptide derived from insulin-like growth factor-binding protein 5, AMP-IBP5, regulates keratinocyte functions through Mas-related gene X receptors.

    Science.gov (United States)

    Chieosilapatham, Panjit; Niyonsaba, François; Kiatsurayanon, Chanisa; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2017-10-01

    In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Immunohistochemical expression of platelet-derived growth factor receptors in ovarian cancer patients with long-term follow-up

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Dahl Steffensen, Karina; Waldstrøm, Marianne

    2012-01-01

    relation to histopathological parameters and long-term overall survival. Methods. The immunohistochemical expression of PDGFR-α and PDGFR-β was investigated in tumor and stromal cells in 170 patients with histologically verified epithelial ovarian cancer. Results. Almost half of the tumor specimens showed......Introduction. The well-documented role of the PDGF system in tumor growth and angiogenesis has prompted the development of new biological agents targeting the PDGF system. The aim of the present study was to analyze the expression of the PDGF-receptors in ovarian cancer and to investigate its...... high expression of PDGFR-α and PDGFR-β in tumor cells (43% and 41%) and in stromal compartments (32% and 44%). There was a significant association between high expression of PDGFR-α and high expression of PDGFR-β in both tumor and stromal cells. Coexpression of PDGFR-α and PDGFR-β in stromal cells...

  2. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway.

    Science.gov (United States)

    Zong, JiaXin; Li, YunTian; Du, DaYong; Liu, Yang; Yin, YongJun

    2016-11-01

    Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis.

    Science.gov (United States)

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-02-13

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.

  4. Chitosan inhibits platelet-mediated clot retraction, increases platelet-derived growth factor release, and increases residence time and bioactivity of platelet-rich plasma in vivo.

    Science.gov (United States)

    Deprés-Tremblay, Gabrielle; Chevrier, Anik; Tran-Khanh, Nicolas; Nelea, Monica; Buschmann, Michael D

    2017-11-10

    Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.

  5. Local administration of platelet-derived growth factor B (PDGFB) improves follicular development and ovarian angiogenesis in a rat model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Di Pietro, Mariana; Scotti, Leopoldina; Irusta, Griselda; Tesone, Marta; Parborell, Fernanda; Abramovich, Dalhia

    2016-09-15

    Alterations in ovarian angiogenesis are common features in Polycystic Ovary Syndrome (PCOS) patients; the most studied of these alterations is the increase in vascular endothelial growth factor (VEGF) production by ovarian cells. Platelet-derived growth factor B (PDGFB) and D (PDGFD) are decreased in follicular fluid of PCOS patients and in the ovaries of a rat model of PCOS. In the present study, we aimed to analyze the effects of local administration of PDGFB on ovarian angiogenesis, follicular development and ovulation in a DHEA-induced PCOS rat model. Ovarian PDGFB administration to PCOS rats partially restored follicular development, decreased the percentage of cysts, increased the percentage of corpora lutea, and decreased the production of anti-Müllerian hormone. In addition, PDGFB administration improved ovarian angiogenesis by reversing the increase in periendothelial cell area and restoring VEGF levels. Our results shed light into the mechanisms that lead to altered ovarian function in PCOS and provide new data for potential therapeutic strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2.

    Science.gov (United States)

    Shetty, Aditya; Dasari, Subramanyam; Banerjee, Souresh; Gheewala, Taher; Zheng, Guoxing; Chen, Aoshuang; Kajdacsy-Balla, Andre; Bosland, Maarten C; Munirathinam, Gnanasekar

    2016-11-01

    Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated. Here, we show that HDGF is overexpressed in both androgen-sensitive LNCaP cells and androgen-insensitive DU145, 22RV1, and PC-3 cells. Forced overexpression enhanced cell viability of RWPE-1 cells, whereas HDGF knockdown reduced cell proliferation in human prostate cancer cells. We also show that HDGF may serve as a survival-related protein as ectopic overexpression of HDGF in RWPE cells up-regulated the expression of antiapoptosis proteins cyclin E and BCL-2, whereas simultaneously down-regulating proapoptotic protein BAX. Western blot analysis also showed that HDGF overexpression modulated the activity of phospho-AKT as well as NF-kB, and these results correlated with in vitro migration and invasion assays. We next assessed the therapeutic potential of HDGF inhibition with a HDGF monoclonal antibody and vitamin k 2 , showing reduced cell proliferation as well as inhibition of NF-kB expression in HDGF overexpressed RWPE cells treated with a HDGF monoclonal antibody and vitamin K 2 . Collectively, our results suggest that HDGF is a relevant protein in prostate oncogenesis and may serve as a potential therapeutic target in prostate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    -alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co......-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  8. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  9. A Novel Roscovitine Derivative Potently Induces G(1)-Phase Arrest in Platelet-Derived Growth Factor-BB-Activated Vascular Smooth Muscle Cells

    Czech Academy of Sciences Publication Activity Database

    Sroka, I. M.; Heiss, E.H.; Havlíček, Libor; Totzke, F.; Aristei, Y.; Pechan, P.; Kubbutat, M.H.G.; Strnad, Miroslav; Dirsch, V.M.

    2010-01-01

    Roč. 77, č. 2 (2010), s. 255-261 ISSN 0026-895X R&D Projects: GA ČR GA301/08/1649 Grant - others:_(XE) LSHB-CT-2004-503467 Institutional research plan: CEZ:AV0Z50380511 Keywords : CYCLIN-DEPENDENT KINASES * DRUG-ELUTING STENTS * CYC202 R-ROSCOVITINE Subject RIV: FD - Oncology ; Hematology Impact factor: 4.725, year: 2010

  10. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  11. Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients.

    Science.gov (United States)

    Scotti, Leopoldina; Parborell, Fernanda; Irusta, Griselda; De Zuñiga, Ignacio; Bisioli, Claudio; Pettorossi, Hernan; Tesone, Marta; Abramovich, Dalhia

    2014-08-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age, and is characterized by abnormalities in ovarian angiogenesis, among other features. Consistent with this association, follicular fluid (FF) concentration and ovarian expression of vascular endothelial growth factor (VEGF) are increased in PCOS patients. In this study, we examined the protein levels of platelet-derived growth factor (PDGF) BB and DD (PDGFBB and PDGFDD), angiopoietin 1 and 2 (ANGPT1 and ANGPT2), and their soluble receptor sTIE2 in FF from PCOS and control patients undergoing assisted reproductive techniques. We also analyzed the effect of FF from PCOS and control patients on tight and adherens junction protein expression in an endothelial cell line. PDGFBB and PDGFDD were significantly lower whereas ANGPT1 concentration was significantly higher in FF from PCOS patients than from control patients. No changes were found in the concentration of ANGPT2 or sTIE2. Expression of claudin-5 was significantly increased in endothelial cells incubated for 24 hr in the presence of FF from PCOS versus from control patients, while vascular-endothelial cadherin, β-catenin, and zonula occludens 1 expression were unchanged. The changes observed in the levels of PDGF isoforms and ANGPT1 may prevent VEGF-induced vascular permeability in the PCOS ovary by regulating endothelial-cell-junction protein levels. Restoring the levels of angiogenic factors may provide new insights into PCOS treatment and the prevention of ovarian hyperstimulation syndrome in affected women. © 2014 Wiley Periodicals, Inc.

  12. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-01-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall

  13. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    Science.gov (United States)

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. ©AlphaMed Press.

  14. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    Science.gov (United States)

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. © 2014 Wiley Periodicals, Inc.

  15. Platelet-derived growth factor receptor-β, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma

    International Nuclear Information System (INIS)

    Suzuki, Shioto; Heldin, Carl-Henrik; Heuchel, Rainer Lothar

    2007-01-01

    Platelet-derived growth factor (PDGF)-BB and PDGF receptor (PDGFR)-β are mainly expressed in the developing vasculature, where PDGF-BB is produced by endothelial cells and PDGFR-β is expressed by mural cells, including pericytes. PDGF-BB is produced by most types of solid tumors, and PDGF receptor signaling participates in various processes, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. Furthermore, PDGF-BB-producing tumors are characterized by increased pericyte abundance and accelerated tumor growth. Thus, there is a growing interest in the development of tumor treatment strategies by blocking PDGF/PDGFR function. We have recently generated a mouse model carrying an activated PDGFR-β by replacing the highly conserved aspartic acid residue (D) 849 in the activating loop with asparagine (N). This allowed us to investigate, in an orthotopic tumor model, the role of increased stromal PDGFR-β signaling in tumor-stroma interactions. B16 melanoma cells lacking PDGFR-β expression and either mock-transfected or engineered to express PDGF-BB, were injected alone or in combination with matrigel into mice carrying the activated PDGFR-β (D849N) and into wild type mice. The tumor growth rate was followed and the vessel status of tumors, i.e. total vessel area/tumor, average vessel surface and pericyte density of vessels, was analyzed after resection. Tumors grown in mice carrying an activated PDGFR-β were established earlier than those in wild-type mice. In this early phase, the total vessel area and the average vessel surface were higher in tumors grown in mice carrying the activated PDGFR-β (D849N) compared to wild-type mice, whereas we did not find a significant difference in the number of tumor vessels and the pericyte abundance around tumor vessels between wild type and mutant mice. At later phases of tumor progression, no significant difference in tumor growth rate was

  16. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  17. Topical application of recombinant platelet-derived growth factor increases the rate of healing and the level of proteins that regulate this response.

    Science.gov (United States)

    Gowda, Santosh; Weinstein, David A; Blalock, Timothy D; Gandhi, Kavita; Mast, Bruce A; Chin, Gloria; Schultz, Gregory S

    2015-10-01

    A bipedicle ischaemic rat skin flap model was used to study the effects of daily topical applications of platelet-derived growth factor (PDGF) on the healing of ischaemic wounds. Levels of tumour necrosis factor-alpha (TNFA), interleukin 1-beta (IL1B) and both the latent and active forms of matrix metalloproteinase 2 (MMP2) and 9 (MMP9) were measured. Full-thickness wounds were made on a total of 72 adult male Sprague-Dawley rats. Each group of 18 rats with normal and ischaemic wounds received either vehicle or 0·01% recombinant PDGF-BB. Additional applications were made on the wounds on a daily basis. Wound areas were measured at 0, 1, 3, 5, 7 9 and 13 days after wounding. Ischaemia caused a delay in wound healing as well as an increase in TNFA, IL1B and both the pro and active forms of MMP2 and MMP9. PDGF accelerated the rate of wound healing in both normal and ischaemic wounds and negated the effect of ischaemia. PDGF reduced the TNFA concentration in both normal and ischaemic wounds, and the rate of wound healing closely resembled the pattern of TNFA protein expression. PDGF also reduced both the magnitude and duration of the increases in IL1B and both the pro and active forms of MMP2 and MMP9 induced by ischaemia. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  18. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    International Nuclear Information System (INIS)

    Borkham-Kamphorst, Erawan; Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf

    2015-01-01

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model , PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities

  19. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  20. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  1. Prostaglandin E2 and Transforming Growth Factor-β Play a Critical Role in Suppression of Allergic Airway Inflammation by Adipose-Derived Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    Full Text Available The role of soluble factors in the suppression of allergic airway inflammation by adipose-derived stem cells (ASCs remains to be elucidated. Moreover, the major soluble factors responsible for the immunomodulatory effects of ASCs in allergic airway diseases have not been well documented. We evaluated the effects of ASCs on allergic inflammation in asthmatic mice treated with a prostaglandin E2 (PGE2 inhibitor or transforming growth factor-β (TGF-β neutralizing antibodies.Asthmatic mice were injected intraperitoneally with a PGE2 inhibitor or TGF-β neutralizing antibodies at approximately the same time as ASCs injection and were compared with non-treated controls. In asthmatic mice, ASCs significantly reduced airway hyperresponsiveness, the number of total inflammatory cells and eosinophils in the bronchoalveolar lavage fluid (BALF, eosinophilic inflammation, goblet cell hyperplasia, and serum total and allergen-specific IgE and IgG1. ASCs significantly inhibited Th2 cytokines, such as interleukin (IL-4, IL-5, and IL-13, and enhanced the Th1 cytokine (Interferon-γ and regulatory cytokines (IL-10 and TGF-β in the BALF and lung draining lymph nodes (LLNs. ASCs engraftment caused significant increases in the regulatory T cell (Treg and IL-10+ T cell populations in LLNs. However, blocking PGE2 or TGF-β eliminated the immunosuppressive effect of ASCs in allergic airway inflammation.ASCs are capable of secreting PGE2 and TGF-β, which may play a role in inducing Treg expansion. Furthermore, treatment with a PGE2 inhibitor or TGF-β neutralizing antibodies eliminated the beneficial effect of ASCs treatment in asthmatic mice, suggesting that PGE2 and TGF-β are the major soluble factors responsible for suppressing allergic airway inflammation.

  2. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity.

    Science.gov (United States)

    Tasev, Dimitar; van Wijhe, Michiel H; Weijers, Ester M; van Hinsbergh, Victor W M; Koolwijk, Pieter

    2015-01-01

    Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs. The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential. The presented isolation method and subsequent cell expansion in platelet lysate

  3. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity.

    Directory of Open Access Journals (Sweden)

    Dimitar Tasev

    Full Text Available Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs.The findings presented in this study indicate that human platelet lysate (PL as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS. Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator or uPAR (uPA receptor by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential.The presented isolation method and subsequent cell expansion in platelet

  4. Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway.

    Directory of Open Access Journals (Sweden)

    Yu-Jiao Cai

    Full Text Available BACKGROUND: Epithelial cells(EC-derived interleukin-7 (IL-7 plays a crucial role in control of development and homeostasis of neighboring intraepithelial lymphocytes (IEL, and keratinocyte growth factor (KGF exerts protective effects on intestinal epithelial cells and up-regulates EC-derived IL-7 expression through KGFR pathway. This study was to further investigate the molecular mechanism involved in the regulation of IL-7 expression by KGF in the intestine. METHODS: Intestinal epithelial cells (LoVo cells and adult C57BL/6J mice were treated with KGF. Epithelial cell proliferation was studied by flow cytometry for BrdU-incorporation and by immunohistochemistry for PCNA staining. Western blot was used to detect the changes of expression of P-Tyr-STAT1, STAT1, and IL-7 by inhibiting STAT1. Alterations of nuclear extracts and total proteins of IRF-1, IRF-2 and IL-7 following IRF-1 and IRF-2 RNA interference with KGF treatment were also measured with western blot. Moreover, IL-7 mRNA expressions were also detected by Real-time PCR and IL-7 protein level in culture supernatants was measured by enzyme linked immunosorbent assay(ELISA. RESULTS: KGF administration significantly increased LoVo cell proliferation and also increased intestinal wet weight, villus height, crypt depth and crypt cell proliferation in mice. KGF treatment led to increased levels of P-Tyr-STAT1, RAPA and AG490 both blocked P-Tyr-STAT1 and IL-7 expression in LoVo cells. IRF-1 and IRF-2 expression in vivo and in vitro were also up-regulated by KGF, and IL-7 expression was decreased after IRF-1 and IRF-2 expression was silenced by interfering RNA, respectively. CONCLUSION: KGF could up-regulate IL-7 expression through the STAT1/IRF-1, IRF-2 signaling pathway, which is a new insight in potential effects of KGF on the intestinal mucosal immune system.

  5. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and platelet-derived growth factor receptor beta.

    Science.gov (United States)

    Hori, Yuichi; Fukumoto, Miki; Kuroda, Yoshikazu

    2008-11-01

    Success in islet transplantation-based therapies for type 1 diabetes mellitus and an extreme shortage of pancreatic islets have motivated recent efforts to develop renewable sources of islet-replacement tissue. Although pancreatic progenitor cells hold a promising potential, only a few attempts have been made at the prospective isolation of pancreatic stem/progenitor cells, because of the lack of specific markers and the development of effective cell culture methods. We found that prominin1 (also known as CD133) recognized the undifferentiated epithelial cells, whereas platelet-derived growth factor receptor beta (PDGFRbeta) was expressed on the mesenchymal cells in the mouse embryonic pancreas. We then developed an isolation method for putative stem/progenitor cells by flow cytometric cell sorting and characterized their potential for differentiation to pancreatic tissue using both in vitro and in vivo protocols. Flow cytometry and the subsequent reverse transcription-polymerase chain reaction and microarray analysis revealed pancreatic epithelial progenitor cells to be highly enriched in the prominin1(high)PDGFRbeta(-) cell population. During in vivo differentiation, these cell populations were able to differentiate into endocrine, exocrine, and ductal tissues, including the formation of an insulin-producing cell cluster. We established the prospective isolation of putative pancreatic epithelial progenitor cells by sorting for prominin1 and PDGFRbeta. Since this strategy is based on the cell surface markers common to human and rodents, these findings may lead to the development of new strategies to derive transplantable islet-replacement tissues from human pancreatic stem/progenitor cells. Disclosure of potential conflicts of interest is found at the end of this article.

  6. cDNA cloning and expression of a human platelet-derived growth factor (PDGF) receptor specific for B-chain-containing PDGF molecules

    International Nuclear Information System (INIS)

    Claesson-Welsh, L.; Eriksson, A.; Moren, A.; Severinsson, L.; Ek, B.; Ostman, A.; Betsholtz, C.; Heldin, C.H.

    1988-01-01

    The structure of the human receptor for platelet-derived growth factor (PDGF) has been deduced through cDNA cloning. A 5.45-kilobase-pair cDNA clone predicts a 1,106-amino-acid polypeptide, including the cleavable signal sequence. The overall amino acid sequence similarity with the murine PDGFR receptor is 85%. After transcription of the cDNA and translation in vitro, a PDGR receptor antiserum was used to immunoprecipitate a product of predicted size, which also could be phosphorylated in vitro. Stable introduction of the cDNA into Chinese hamster ovary (CHO) cells led to the expression of a 190-kilodalton component, which was immunoprecipitated by the PDGF receptor antiserum; this most probably represents the mature PDGF receptor. Binding assays with different /sup 125/I-labeled dimeric forms of PDGF A and B chains showed that the PDGFR receptor expressed in CHO cells bound PDGF-BB and, to a lesser extent, PDGF-AB, but not PDGF-AA

  7. Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class

    International Nuclear Information System (INIS)

    Gronwald, R.G.K.; Grant, F.J.; Haldeman, B.A.; Hart, C.E.; O'Hara, P.J.; Hagen, F.S.; Ross, R.; Bowen-Pope, D.F.; Murray, M.J.

    1988-01-01

    The complete nucleotide sequence of a cDNA encoding the human platelet-derived growth factor (PDGF) receptor is presented. The cDNA contains an open reading frame that codes for a protein of 1106 amino acids. Comparison to the mouse PDGF receptor reveals an overall amino acid sequence identity of 86%. This sequence identity rises to 98% in the cytoplasmic split tyrosine kinase domain. RNA blot hybridization analysis of poly(A) + RNA from human dermal fibroblasts detects a major and a minor transcript using the cDNA as a probe. Baby hamster kidney cells, transfected with an expression vector containing the receptor cDNA, express an ∼ 190-kDa cell surface protein that is recognized by an anti-human PDGF receptor antibody. The recombinant PDGF receptor is functional in the transfected baby hamster kidney cells as demonstrated by ligand-induced phosphorylation of the receptor. Binding properties of the recombinant PDGF receptor were also assessed with pure preparations of BB and AB isoforms of PDGF. Unlike human dermal fibroblasts, which bind both isoforms with high affinity, the transfected baby hamster kidney cells bind only the BB isoform of PDGF with high affinity. This observation is consistent with the existence of more than one PDGF receptor class

  8. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  9. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  10. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  11. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  12. Malignant melanoma of the nasal cavity: a case report with examination of KIT and platelet derived growth factor receptor-α (PDGFRA

    Directory of Open Access Journals (Sweden)

    Tadashi Terada

    2011-10-01

    Full Text Available Although several clinicopathological studies of malignant melanoma of the nasal cavity have been reported, there are no studies of the expression and gene mutation of KIT and platelet derived growth factor receptor-α (PDGFRA in melanoma of the nasal cavity. A 92-year-old Japanese woman consulted to our hospital because of right nasal obstruction and epistaxis. Physical examination and imaging modalities showed a tumor of the right nasal cavity. A biopsy was taken, and it showed malignant epithelioid cells with melanin deposition. Immunohistochemically, the tumor was positive for S100 protein, HMB45, p53, Ki-67 (labeling=20%, KIT and PDGFRA. The tumor was negative for cytokeratins (AE1/3 and CAM5.2. A genetic analysis using PCR-direct sequencing revealed no mutation of KIT gene (exons 9, 11, 13, and 17 or the PDGFRA gene (exons 12 and 18. The pathological diagnosis was primary malignant melanoma of the nasal cavity. The tumor was reduced in size by local resection and chemotherapy (Darthmose regimen: dacarbazine, carmustine, cisplatine, and tamoxifen, and the patient is now alive and free from metastasis 9 months after the first manifestation. In conclusion, the author reported a case of melanoma of the nasal cavity expressing KIT and PDGFRA without gene mutations of KIT and PDGFRA.

  13. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  14. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    Science.gov (United States)

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  15. Changes in Otx2 and Parvalbumin Immunoreactivity in the Superior Colliculus in the Platelet-Derived Growth Factor Receptor-β Knockout Mice

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2013-01-01

    Full Text Available The superior colliculus (SC, a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO mice displayed socio-emotional deficits associated with parvalbumin (PV-immunoreactive (IR neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.

  16. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    Science.gov (United States)

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  17. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Sotoca, Ana M., E-mail: a.sotoca@science.ru.nl [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Roelofs-Hendriks, Jose [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Boeren, Sjef [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Kraan, Peter M. van der [Department of Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Vervoort, Jacques [Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen (Netherlands); Zoelen, Everardus J.J. van; Piek, Ester [Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2013-10-15

    This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function. - Highlights: • PDGFs (C and D) significantly increased the number of multipotent undifferentiated hMSCs. • Enhanced proliferation did not impair the ability to undergo lineage-specific differentiation. • Proteomic analysis confirmed the overall signatures of the ‘intact’ cells.

  18. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry.

    Science.gov (United States)

    Deng, Kun; Xiang, Yang; Zhang, Liqun; Chen, Qinghai; Fu, Weiling

    2013-01-08

    In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Hepatocyte growth factor is constitutively produced by donor-derived bone marrow cells and promotes regeneration of pancreatic β-cells

    International Nuclear Information System (INIS)

    Izumida, Yoshihiko; Aoki, Takeshi; Yasuda, Daisuke; Koizumi, Tomotake; Suganuma, Chisaki; Saito, Koji; Murai, Noriyuki; Shimizu, Yoshinori; Hayashi, Ken; Odaira, Masanori; Kusano, Tomokazu; Kushima, Miki; Kusano, Mitsuo

    2005-01-01

    Recent studies have demonstrated that the transplantation of bone marrow cells following diabetes induced by streptozotocin can support the recovery of pancreatic β-cell mass and a partial reversal of hyperglycemia. To address this issue, we examined whether the c-Met/hepatocyte growth factor (HGF) signaling pathway was involved in the recovery of β-cell injury after bone marrow transplantation (BMT). In this model, donor-derived bone marrow cells were positive for HGF immunoreactivity in the recipient spleen, liver, lung, and pancreas as well as in the host hepatocytes. Indeed, plasma HGF levels were maintained at a high value. The frequency of c-Met expression and its proliferative activity and differentiative response in the pancreatic ductal cells in the BMT group were greater than those in the PBS-treated group, resulting in an elevated number of endogenous insulin-producing cells. The induction of the c-Met/HGF signaling pathway following BMT promotes pancreatic regeneration in diabetic rats

  20. Growth hormone, growth factors, and acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  1. Heparin-Binding EGF-like Growth Factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas

    Science.gov (United States)

    Todd, Levi; Volkov, Leo I.; Zelinka, Chris; Squires, Natalie; Fischer, Andy J.

    2015-01-01

    Müller glia can be stimulated to de-differentiate, proliferate and form Müller glia-derived progenitor cells (MGPCs) that regenerate retinal neurons. In the zebrafish retina, Heparin-Binding EGF-like Growth Factor (HB-EGF) may be one of the key factors that stimulate the formation of proliferating MGPCs. Currently nothing is known about the influence of HB-EGF on the proliferative potential of Müller glia in retinas of birds and rodents. In the chick retina, we found that levels of both hb-egf and egf-receptor are rapidly and transiently up-regulated following NMDA-induced damage. Although intraocular injections of HB-EGF failed to stimulate cell-signaling or proliferation of Müller glia in normal retinas, HB-EGF stimulated proliferation of MGPCs in damaged retinas. By comparison, inhibition of the EGF-receptor (EGFR) decreased the proliferation of MGPCs in damaged retinas. HB-EGF failed to act synergistically with FGF2 to stimulate the formation of MGPCs in the undamaged retina and inhibition of EGF-receptor did not suppress FGF2-mediated formation of MGPCs. In the mouse retina, HB-EGF stimulated the proliferation of Müller glia following NMDA-induced damage. Furthermore, HB-EGF stimulated not only MAPK-signaling in Müller glia/MGPCs, but also activated mTor- and Jak/Stat-signaling. We propose that levels of expression of EGFR are rate-limiting to the responses of Müller glia to HB-EGF and the expression of EGFR can be induced by retinal damage, but not by FGF2-treatment. We conclude that HB-EGF is mitogenic to Müller glia in both chick and mouse retinas, and HB-EGF is an important player in the formation of MGPCs in damaged retinas. PMID:26500021

  2. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    Science.gov (United States)

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  3. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de

    2015-02-13

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model{sub ,} PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities.

  4. Platelet-derived growth factor (PDGF-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bethel-Brown Crystal

    2012-12-01

    Full Text Available Abstract Chemokine (C-C motif ligand 2, also known as monocyte chemoattractant protein 1 (MCP-1 is an important factor for the pathogenesis of HIV-associated neurocognitive disorders (HAND. The mechanisms of MCP-1-mediated neuropathogenesis, in part, revolve around its neuroinflammatory role and the recruitment of monocytes into the central nervous system (CNS via the disrupted blood-brain barrier (BBB. We have previously demonstrated that HIV-1/HIV-1 Tat upregulate platelet-derived growth factor (PDGF-BB, a known cerebrovascular permeant; subsequently, the present study was aimed at exploring the regulation of MCP-1 by PDGF-BB in astrocytes with implications in HAND. Specifically, the data herein demonstrate that exposure of human astrocytes to HIV-1 LAI elevated PDGF-B and MCP-1 levels. Furthermore, treating astrocytes with the human recombinant PDGF-BB protein significantly increased the production and release of MCP-1 at both the RNA and protein levels. MCP-1 induction was regulated by activation of extracellular-signal-regulated kinase (ERK1/2, c-Jun N-terminal kinase (JNK and p38 mitogen-activated protein (MAP kinases and phosphatidylinositol 3-kinase (PI3K/Akt pathways and the downstream transcription factor, nuclear factor κB (NFκB. Chromatin immunoprecipitation (ChIP assays demonstrated increased binding of NFκB to the human MCP-1 promoter following PDGF-BB exposure. Conditioned media from PDGF-BB-treated astrocytes increased monocyte transmigration through human brain microvascular endothelial cells (HBMECs, an effect that was blocked by STI-571, a tyrosine kinase inhibitor (PDGF receptor (PDGF-R blocker. PDGF-BB-mediated release of MCP-1 was critical for increased permeability in an in vitro BBB model as evidenced by blocking antibody assays. Since MCP-1 is linked to disease severity, understanding its modulation by PDGF-BB could aid in understanding the proinflammatory responses in HAND. These results suggest that astrocyte

  5. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  6. Neomycin is a platelet-derived growth factor (PDGF) antagonist that allows discrimination of PDGF alpha- and beta-receptor signals in cells expressing both receptor types.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Siegbahn, A; Holmsen, H; Heldin, C H

    1992-08-05

    The aminoglycoside neomycin has recently been found to affect certain platelet-derived growth factor (PDGF) responses in C3H/10T1/2 C18 fibroblasts. Using porcine aortic endothelial cells transfected with PDGF alpha- or beta-receptors, we explored the possibility that neomycin interferes with the interaction between the different PDGF isoforms and their receptors. We found that neomycin (5 mM) inhibited the binding of 125I-PDGF-BB to the alpha-receptor with only partial effect on the binding of 125I-PDGF-AA; in contrast, the binding of 125I-PDGF-BB to the beta-receptor was not affected by the aminoglycoside. Scatchard analyses showed that neomycin (5 mM) decreased the number of binding sites for PDGF-BB on alpha-receptor-expressing cells by 87%. Together with cross-competition studies with 125I-labeled PDGF homodimers, the effect of neomycin indicates that PDGF-AA and PDGF-BB bind to both common and unique structures on the PDGF alpha-receptor. Neomycin specifically inhibited the autophosphorylation of the alpha-receptor by PDGF-BB, with less effect on the phosphorylation induced by PDGF-AA and no effect on the phosphorylation of the beta-receptor by PDGF-BB. Thus, neomycin is a PDGF isoform- and receptor-specific antagonist that provides a possibility to compare the signal transduction pathways of alpha- and beta-receptors in cells expressing both receptor types. This approach was used to show that activation of PDGF beta-receptors by PDGF-BB mediated a chemotactic response in human fibroblasts, whereas activation of alpha-receptors by the same ligand inhibited chemotaxis.

  7. Controlled chondrogenesis from adipose-derived stem cells by recombinant transforming growth factor-β3 fusion protein in peptide scaffolds.

    Science.gov (United States)

    Zheng, Dong; Dan, Yang; Yang, Shu-hua; Liu, Guo-hui; Shao, Zeng-wu; Yang, Cao; Xiao, Bao-jun; Liu, Xiangmei; Wu, Shuilin; Zhang, Tainjin; Chu, Paul K

    2015-01-01

    Adipose-derived stem cells (ADSCs) are promising for cartilage repair due to their easy accessibility and chondrogenic potential. Although chondrogenesis of transforming growth factor-β (TGF-β) mediated mesenchymal stem cells (MSCs) is well established in vitro, clinical tissue engineering requires effective and controlled delivery of TGF-β in vivo. In this work, a self-assembled peptide scaffold was employed to construct cartilages in vivo through the chondrogenesis from ADSCs controlled by recombinant fusion protein LAP-MMP-mTGF-β3 that was transfected by lentiviral vectors. During this course, the addition of matrix metalloproteinases (MMPs) can trigger the release of mTGF-β3 from the recombinant fusion protein of LAP-MMP-mTGF-β3 in the combined scaffolds, thus stimulating the differentiation of ADSCs into chondrogenesis. The specific expression of cartilage genes was analyzed by real-time polymerase chain reaction and Western blot. The expression of chondrocytic markers was obviously upregulated to a higher level compared to the one by commonly used TGF-β3 alone. After 3 weeks of in vitro culturing, the hybrids with differentiated chondrogenesis were then injected subcutaneously into nude mice and retrieved after 4 weeks of culturing in vivo. Histological analysis also confirmed that the recombinant fusion protein was more effective for the formation of cartilage matrix than the cases either with TGF-β3 alone or without LAP-MMP-mTGF-β3 (P<0.05). This study demonstrates that controlled local delivery of the LAP-MMP-mTGF-β3 constructs can accelerate differentiation of ADSCs into the cartilage in vivo, which indicates the great potential of this hybrid in rapid therapy of osteoarthritis. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  9. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC adipocytes.

    Directory of Open Access Journals (Sweden)

    Darwin V Lee

    Full Text Available Fibroblast growth factor 21 (FGF21 has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR, insulin receptor substrate-1 (IRS-1, and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.

  10. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-01-01

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H 2 O 2 ), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H 2 O 2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H 2 O 2 -activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H 2 O 2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H 2 O 2 -stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes

  11. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression

    International Nuclear Information System (INIS)

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-01-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.

  12. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model.

    Directory of Open Access Journals (Sweden)

    Jiamin Zhang

    Full Text Available Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD. ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group, as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.

  13. Silencing Histone Deacetylase 7 Alleviates Transforming Growth Factor-β1-Induced Profibrotic Responses in Fibroblasts Derived from Peyronie’s Plaque

    Directory of Open Access Journals (Sweden)

    Dong Hyuk Kang

    2018-05-01

    Full Text Available Purpose: Epigenetic modifications, such as histone acetylation/deacetylation and DNA methylation, play a crucial role in the pathogenesis of inflammatory disorders and fibrotic diseases. The aim of this study was to study the differential gene expression of histone deacetylases (HDACs in fibroblasts isolated from plaque tissue of Peyronie’s disease (PD or normal tunica albuginea (TA and to examine the anti-fibrotic effect of small interfering RNA (siRNA-mediated silencing of HDAC7 in fibroblasts derived from human PD plaque. Materials and Methods: For differential gene expression study, we performed reverse-transcriptase polymerase chain reaction for HDAC isoforms (1–11 in fibroblasts isolated from PD plaque or normal TA. Fibroblasts isolated from PD plaque were pretreated with HDAC7 siRNA (100 pmol and then stimulated with transforming growth factor-β1 (TGF-β1, 10 ng/mL. Protein was extracted from treated fibroblasts for Western blotting. We also performed immunocytochemistry to detect the expression of extracellular matrix proteins and to examine the effect of HDAC2 siRNA on the TGF-β1-induced nuclear translocation of Smad2/3 and myofibroblastic differentiation. Results: The mRNA expression of HDAC2, 3, 4, 5, 7, 8, 10, and 11 was higher in fibroblasts isolated from PD plaque than in fibroblasts isolated from normal TA tissue. Knockdown of HDAC7 in PD fibroblasts inhibited TGF-β1-induced nuclear shuttle of Smad2 and Smad3, transdifferentiation of fibroblasts into myofibroblasts, and abrogated TGF-β1-induced production of extracellular matrix protein. Conclusions: These findings suggest that specific inhibition of HDAC7 with RNA interference may represent a promising epigenetic therapy for PD.

  14. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  15. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  16. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  17. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  18. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.

    Science.gov (United States)

    Lohmann, C H; Schwartz, Z; Niederauer, G G; Carnes, D L; Dean, D D; Boyan, B D

    2000-01-01

    Optimal repair of chondral defects is likely to require both a suitable population of chondrogenic cells and a biodegradable matrix to provide a space-filling structural support during the early stages of cartilage formation. This study examined the ability of chondrocytes to support cartilage formation when incorporated into biodegradable scaffolds constructed from copolymers (PLG) of polylactic acid (PLA) and polyglycolic acid (PGA) and implanted in the calf muscle of nude mice. Scaffolds were fabricated to be more hydrophilic (PLG-H) or were reinforced with 10% PGA fibers (PLG-FR), increasing the stiffness of the implant by 20-fold. Confluent primary cultures of rat costochondral resting zone chondrocytes (RC) were loaded into PLG-H foams and implanted intramuscularly. To determine if growth factor pretreatment could modulate the ability of the cells to form new cartilage, RC cells were pretreated with recombinant human platelet derived growth factor-BB IPDGF-BB) for 4 or 24 h prior to implantation. To assess whether scaffold material properties could affect the ability of chondrogenic cells to form cartilage, RC cells were also loaded into PLG-FR scaffolds. To determine if the scaffolds or treatment with PDGF-BB affected the rate of chondrogenesis, tissue at the implant site was harvested at four and eight weeks post-operatively, fixed, decalcified and embedded in paraffin. Sections were obtained along the transverse plane of the lower leg, stained with haematoxylin and eosin, and then assessed by morphometric analysis for area of cartilage, area of residual implant, and area of fibrous connective tissue formation (fibrosis). Whether or not the cartilage contained hypertrophic cells was also assessed. The amount of residual implant did not change with time in any of the implanted tissues. The area occupied by PLG-FR implants was greater than that occupied by PLG-H implants at both time points. All implants were surrounded by fibrous connective tissue, whether

  19. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  20. The platelet-derived growth factor signaling system in snapping turtle embryos, Chelydra serpentina: potential role in temperature-dependent sex determination and testis development.

    Science.gov (United States)

    Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki

    2009-05-01

    The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.

  1. Inhibitory Activities of Epidermal Growth Factor Receptor Tyrosine Kinase-Targeted Dihydroxyisoflavone and Trihydroxydeoxybenzoin Derivatives on Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum Development

    Science.gov (United States)

    Gargala, G.; Baishanbo, A.; Favennec, L.; François, A.; Ballet, J. J.; Rossignol, J.-F.

    2005-01-01

    Several gene sequences of parasitic protozoa belonging to protein kinase gene families and epidermal growth factor (EGF)-like peptides, which act via binding to receptor tyrosine kinases of the EGF receptor (EGFR) family, appear to mediate host-protozoan interactions. As a clue to EGFR protein tyrosine kinase (PTK) mediation and a novel approach for identifying anticoccidial agents, activities against Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum grown in BM and HCT-8 cell cultures of 52 EGFR PTK inhibitor isoflavone analogs (dihydroxyisoflavone and trihydroxydeoxybenzoine derivatives) were investigated. Their cytotoxicities against host cells were either absent, mild, or moderate by a nitroblue tetrazolium test. At concentrations ranging from 5 to 10 μg/ml, 20 and 5 analogs, including RM-6427 and RM-6428, exhibited an in vitro inhibitory effect of ≥95% against at least one parasite or against all three, respectively. In immunosuppressed Cryptosporidium parvum-infected Mongolian gerbils orally treated with either 200 or 400 mg of agent RM-6427/kg of body weight/day for 8 days, fecal microscopic oocyst shedding was abolished in 6/10 animals (P of 0.05, respectively). After RM-6427 therapy (200 mg/kg/day for 8 days), the reduction in the ratio of animals with intracellular parasites was nearly significant in ileum (P = 0.067) and more marked in the biliary tract (P < 0.0013) than after nitazoxanide or paromomycin treatment (0.05 < P < 0.004). RM-6428 treatment at a regimen of 400 mg/kg/day for 12 days inhibited oocyst shedding, measured using flow cytometry from day 4 (P < 0.05) to day 12 (P < 0.02) of therapy, when 2/15 animals had no shedding (P < 0.0001) and 11/15 were free of gut and/or biliary tract parasites (P < 0.01). No mucosal alteration was microscopically observed for treated or untreated infected gerbils. To our knowledge, this report is the first to suggest that the isoflavone class of agents has the potential for

  2. Plasma Levels of Myonectin But Not Myostatin or Fibroblast-Derived Growth Factor 21 Are Associated with Insulin Resistance in Adult Humans without Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Freddy J. K. Toloza

    2018-01-01

    Full Text Available BackgroundMyokines are a group of protein mediators produced by skeletal muscle under stress or physical exertion. Even though their discovery and effects in cell culture and animal models of disease have elicited great enthusiasm, very little is known about their role in human metabolism. We assessed whether plasma concentrations of three known myokines [myonectin, myostatin, and fibroblast-derived growth factor 21 (FGF-21] would be associated with direct and indirect indicators of insulin resistance (IR in individuals who did not have a diagnosis of diabetes.MethodsWe studied 81 adults of both sexes comprising a wide range of body adiposity and insulin sensitivity. All participants underwent a thorough clinical assessment and a 5-point oral glucose tolerance test with calculation of multiple IR and insulin sensitivity indices. Twenty-one of them additionally underwent a hyperinsulinemic–euglycemic clamp with determination of steady-state whole-body insulin-stimulated glucose disposal (“M”. We compared plasma myokine concentrations across quartiles of IR indices and clinical IR surrogates, and explored the correlation of each myokine with the M-value.ResultsPlasma myonectin levels increased monotonically across quartiles of the incremental area under the insulin curve (higher values indicate more IR (p-trend = 0.021 and decreased monotonically across quartiles of the insulin sensitivity index (ISI – higher values indicate less IR (p-trend = 0.012. After multivariate adjustment for other relevant determinants of IR (body mass index, age, and sex, the negative association of myonectin with ISI persisted (standardized beta = −0.235, p = 0.023. Myostatin was not associated with any clinical IR indicator or direct IR index measure. In multivariate analyses, FGF-21 showed a trend toward a positive correlation with glucose disposal that did not reach statistical significance (standardized beta = 0.476, p = 0

  3. Local Application of Gelatin Hydrogel Sheets Impregnated With Platelet-Derived Growth Factor BB Promotes Tendon-to-Bone Healing After Rotator Cuff Repair in Rats.

    Science.gov (United States)

    Tokunaga, Takuya; Ide, Junji; Arimura, Hitoshi; Nakamura, Takayuki; Uehara, Yusuke; Sakamoto, Hidetoshi; Mizuta, Hiroshi

    2015-08-01

    To determine whether the local application of platelet-derived growth factor BB (PDGF-BB) in hydrogel sheets would promote healing and improve histologic characteristics and biomechanical strength after rotator cuff (RC) repair in rats. To assess the effect of PDGF-BB on tendon-to-bone healing we divided 36 adult male Sprague-Dawley rats treated with bilateral surgery to repair the supraspinatus tendon at its insertion site into 3 groups: group 1 = suture-only group; group 2 = suture and gelatin hydrogel sheets impregnated with phosphate-buffered saline (PBS); and group 3 = suture and gelatin hydrogel sheets impregnated with PDGF-BB (0.5 μg). Semiquantitative histologic evaluation was carried out 2, 6, and 12 weeks later; cell proliferation was assessed 2 and 6 weeks postoperatively by immunostaining for proliferating cell nuclear antigen (PCNA), and biomechanical testing, including ultimate load to failure, stiffness, and ultimate stress to failure, was performed 12 weeks after the operation. At 2 weeks, the average percentage of PCNA-positive cells at the insertion site was significantly higher in group 3 (40.5% ± 2.4%) than in group 1 (32.1% ± 6.9%; P = .03) and group 2 (31.9% ± 3.7%; P = .02). At 2 and 6 weeks, the histologic scores were similar among the 3 groups. At 12 weeks, the histologic score was significantly higher in group 3 (10.3 ± 0.8) than in group 1 (8.5 ± 0.5; P = .002) or group 2 (8.8 ± 0.8; P = .009), whereas ultimate load to failure, stiffness, and ultimate load to stress (normal control population, 44.73 ± 9.75 N, 27.59 ± 4.32 N/mm, and 21.33 ± 4.65 N/mm(2), respectively) were significantly higher in group 3 (28.28 ± 6.28 N, 11.05 ± 2.37 N/mm, and 7.99 ± 2.13 N/mm(2), respectively) than in group 1 (10.44 ± 1.98 N, 4.74 ± 1.31 N/mm, and 3.28 ± 1.27 N/mm(2), respectively; all P repair in humans. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Links between carbohydrate metabolism and virulence in Streptococcus pneumoniae have been recurrently established. To investigate these links further we developed a chemically defined medium (CDM and standardized growth conditions that allowed for high growth yields of the related pneumococcal strains D39 and R6. The utilization of the defined medium enabled the evaluation of different environmental and nutritional factors on growth and fermentation patterns under controlled conditions of pH, temperature and gas atmosphere. The same growth conditions impacted differently on the nonencapsulated R6, and its encapsulated progenitor D39. A semi-aerobic atmosphere and a raised concentration of uracil, a fundamental component of the D39 capsule, improved considerably D39 growth rate and biomass. In contrast, in strain R6, the growth rate was enhanced by strictly anaerobic conditions and uracil had no effect on biomass. In the presence of oxygen, the difference in the growth rates was mainly attributed to a lower activity of pyruvate oxidase in strain D39. Our data indicate an intricate connection between capsule production in strain D39 and uracil availability. In this study, we have also successfully applied the in vivo NMR technique to study sugar metabolism in S. pneumoniae R6. Glucose consumption, end-products formation and evolution of intracellular metabolite pools were monitored online by (13C-NMR. Additionally, the pools of NTP and inorganic phosphate were followed by (31P-NMR after a pulse of glucose. These results represent the first metabolic profiling data obtained non-invasively for S. pneumoniae, and pave the way to a better understanding of regulation of central metabolism.

  5. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    Science.gov (United States)

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  6. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    Science.gov (United States)

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  7. A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle

    Directory of Open Access Journals (Sweden)

    D Kuraitis

    2011-09-01

    Full Text Available Although many regenerative cell therapies are being developed to replace or regenerate ischaemic muscle, the lack of vasculature and poor persistence of the therapeutic cells represent major limiting factors to successful tissue restoration. In response to ischaemia, stromal cell-derived factor-1 (SDF-1 is up-regulated by the affected tissue to stimulate stem cell-mediated regenerative responses. Therefore, we encapsulated SDF-1 into alginate microspheres and further incorporated these into an injectable collagen-based matrix in order to improve local delivery. Microsphere-matrix impregnation reduced the time for matrix thermogelation, and also increased the viscosity reached. This double-incorporation prolonged the release of SDF-1, which maintained adhesive and migratory bioactivity, attributed to chemotaxis in response to SDF-1. In vivo, treatment of ischaemic hindlimb muscle with microsphere-matrix led to increased mobilisation of bone marrow-derived progenitor cells, and also improved recruitment of angiogenic cells expressing the SDF-1 receptor (CXCR4 from bone marrow and local tissues. Both matrix and SDF-1-releasing matrix were successful at restoring perfusion, but SDF-1 treatment appeared to play an earlier role, as evidenced by arterioles that are phenotypically older and by increased angiogenic cytokine production, stimulating the generation of a qualitative microenvironment for a rapid and therefore more efficient regeneration. These results support the release of implanted SDF-1 as a promising method for enhancing progenitor cell responses and restoring perfusion to ischaemic tissues via neovascularisation.

  8. Insulin-like growth factor -1 (IGF-1) derived neuropeptides, a novel strategy for the development of pharmaceuticals for managing ischemic brain injury.

    Science.gov (United States)

    Guan, Jian

    2011-08-01

    Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake, and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and is also neuroprotective after ischemic injury, thus providing a potential novel strategy of drug discovery for management of neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. The neuroprotective action of GPE is not age selective, is not dependent on cerebral reperfusion, plasma glucose concentrations, and core body temperature. G-2mPE, a GPE analogue designed to be more resistant to enzymatic activity, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may be involved in modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis, and in vascular remodeling. Small neuropeptides have advantages over growth factors in the treatment of brain injury, and modified neuropeptides, designed to overcome the limitations of their endogenous counterparts, represent a novel strategy of pharmaceutical discovery for neurological disorders. © 2010 Blackwell Publishing Ltd.

  9. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    Science.gov (United States)

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  10. Hepatocyte growth factor enhances the inflammation-alleviating effect of umbilical cord-derived mesenchymal stromal cells in a bronchiolitis obliterans model.

    Science.gov (United States)

    Cao, Xiao-Pei; Han, Dong-Mei; Zhao, Li; Guo, Zi-Kuan; Xiao, Feng-Jun; Zhang, Yi-Kun; Zhang, Xiao-Yan; Wang, Li-Sheng; Wang, Heng-Xiang; Wang, Hua

    2016-03-01

    Specific and effective therapy for prevention or reversal of bronchiolitis obliterans (BO) is lacking. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF) gene modified mesenchymal stromal cells (MSCs) on BO. A mouse model of experimental BO was established by subcutaneously transplanting the tracheas from C57BL/6 mice into Balb/C recipients, which were then administered saline, Ad-HGF-modified human umbilical cord-MSCs (MSCs-HGF) or Ad-Null-modified MSCs (MSCs-Null). The therapeutic effects of MSCs-Null and MSCs-HGF were evaluated by using fluorescence-activated cell sorting (FACS) for lymphocyte immunophenotype of spleen, enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (rt-PCR) for cytokine expression, and histopathological analysis for the transplanted trachea. The histopathologic recovery of allograft tracheas was improved significantly after MSCs-Null and MSCs-HGF treatment and the beneficial effects were particularly observed in MSCs-HGF-treated mice. Furthermore, the allo-transplantation-induced immunophenotype disorders of the spleen, including regulatory T (Treg), T helper (Th)1, Th2 and Th17, were attenuated in both cell-treated groups. MSCs-HGF treatment reduced expression and secretion of inflammation cytokines interferon-gamma (IFN-γ), and increased expression of anti-inflammatory cytokine interleukin (IL)-4 and IL-10. It also decreased the expression level of the profibrosis factor transforming growth factor (TGF)-β. Treatment of BO with HGF gene modified MSCs results in reduction of local inflammation and promotion in recovery of allograft trachea histopathology. These findings might provide an effective therapeutic strategy for BO. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Risk Factors in Derivatives Markets

    Directory of Open Access Journals (Sweden)

    Raimonda Martinkutė-Kaulienė

    2015-02-01

    Full Text Available The objective of the article is to analyse and present the classification of risks actual to derivative securities. The analysis is based on classical and modern literature findings and analysis of newest statistical data. The analysis led to the conclusion, that the main risks typical for derivatives contracts and their traders are market risk, liquidity risk, credit and counterparty risk, legal risk and transactions risk. Pricing risk and systemic risk is also quite important. The analysis showed that market risk is the most important kind of risk that in many situations influences the level of remaining risks.

  12. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  13. Establishment and characterization of a new cell line, FPS-1, derived from human undifferentiated pleomorphic sarcoma, overexpressing epidermal growth factor receptor and cyclooxygenase-2.

    Science.gov (United States)

    Hakozaki, Michiyuki; Hojo, Hiroshi; Sato, Michiko; Tajino, Takahiro; Yamada, Hitoshi; Kikuchi, Shinichi; Abe, Masafumi

    2006-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is among the most common soft tissue sarcomas in adults. In order to improve its aggressive course or prognosis and establish new therapeutic methods, molecular genetic and biological characterizations of UPS are required. A new human UPS cell line (FPS-1) was established from UPS of the upper arm of a 79-year-old man. The cell line has been maintained for over 14 months with more than 60 passages. FPS-1 cells were characterized using molecular biological methods. FPS-1 cells showed the same morphological and immunophenotypical characteristics as the primary tumor. Cytogenetic and molecular analyses revealed a nonsense mutation in exon 6 of the p53 gene. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) were expressed in FPS-1 cells. FPS-1 cells might be useful for investigating biological behavior and developing new molecular targeting antitumor drugs for UPS with EGFR or COX-2 expression.

  14. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. J. W. H.; Buitelaar, J. K.; Kenis, G.; Prickaerts, J.; Elzinga, B. M.; Voshaar, R. C. Oude

    Background: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels

  15. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-01-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  16. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  17. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    Science.gov (United States)

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  19. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  20. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    Science.gov (United States)

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  1. Vertical ridge augmentation using an equine bone and collagen block infused with recombinant human platelet-derived growth factor-BB: a randomized single-masked histologic study in non-human primates.

    Science.gov (United States)

    Nevins, Myron; Al Hezaimi, Khalid; Schupbach, Peter; Karimbux, Nadeem; Kim, David M

    2012-07-01

    This study tests the effectiveness of hydroxyapatite and collagen bone blocks of equine origin (eHAC), infused with recombinant human platelet-derived growth factor-BB (rhPDGF-BB), to augment localized posterior mandibular defects in non-human primates (Papio hamadryas). Bilateral critical-sized defects simulating severe atrophy were created at the time of the posterior teeth extraction. Test and control blocks (without growth factor) were randomly grafted into the respective sites in each non-human primate. All sites exhibited vertical ridge augmentation, with physiologic hard- and soft-tissue integration of the blocks when clinical and histologic examinations were done at 4 months after the vertical ridge augmentation procedure. There was a clear, although non-significant, tendency to increased regeneration in the test sites. As in the first two preclinical studies in this series using canines, experimental eHAC blocks infused with rhPDGF-BB proved to be a predictable and technically viable method to predictably regenerate bone and soft tissue in critical-sized defects. This investigation supplies additional evidence that eHAC blocks infused with rhPDGF-BB growth factor is a predictable and technically feasible option for vertical augmentation of severely resorbed ridges.

  2. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  3. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  4. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  5. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  6. Production and characterization of recombinantly derived peptides and antibodies for accurate determinations of somatolactin, growth hormone and insulin-like growth factor-I in European sea bass (Dicentrarchus labrax).

    Science.gov (United States)

    de Celis, S Vega-Rubín; Gómez-Requeni, P; Pérez-Sánchez, J

    2004-12-01

    A specific radioimmunoassay (RIA) for European sea bass (Dicentrarchus labrax) growth hormone (GH) was developed and validated. For this purpose, a stable source of GH was produced by means of recombinant DNA technology in a bacteria system. The identity of the purified protein (ion exchange chromatography) was demonstrated by Western blot and a specific GH antiserum was raised in rabbit. In Western blot and RIA system, this antiserum recognized specifically native and recombinant GH, and it did not cross-react with fish prolactin (PRL) and somatolactin (SL). In a similar way, a specific polyclonal antiserum against the now available recombinant European sea bass SL was raised and used in the RIA system to a sensitivity of 0.3 ng/ml (90% of binding of tracer). Further, European sea bass insulin-like growth factor-I (IGF-I) was cloned and sequenced, and its high degree of identity with IGF-I peptides of barramundi, tuna, and sparid fish allowed the use of a commercial IGF-I RIA based on barramundi IGF-I antiserum. These assay tools assisted for the first time accurate determinations of SL and GH-IGF-I axis activity in a fish species of the Moronidae family. Data values were compared to those found with gilthead sea bream (Sparus aurata), which is currently used as a Mediterranean fish model for growth endocrinology studies. As a characteristic feature, the average concentration year round of circulating GH in growing mature males of European sea bass was higher than in gilthead sea bream. By contrast, the average concentration of circulating SL was lower. Concerning to circulating concentration of IGF-I, the measured plasma values for a given growth rate were also lower in European sea bass. These findings are discussed on the basis of a different energy status that might allowed a reduced but more continuous growth in European sea bass.

  7. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor

    Science.gov (United States)

    Protein p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis and preserves barrier function by activation of EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study was to determine the mechanisms by which p40...

  9. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.

    Science.gov (United States)

    Hao, Jun; Ci, Xinpei; Xue, Hui; Wu, Rebecca; Dong, Xin; Choi, Stephen Yiu Chuen; He, Haiqing; Wang, Yu; Zhang, Fang; Qu, Sifeng; Zhang, Fan; Haegert, Anne M; Gout, Peter W; Zoubeidi, Amina; Collins, Colin; Gleave, Martin E; Lin, Dong; Wang, Yuzhuo

    2018-06-01

    Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a

  10. Derivation of Batho's correction factor for heterogeneities

    International Nuclear Information System (INIS)

    Lulu, B.A.; Bjaerngard, B.E.

    1982-01-01

    Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method

  11. Antitumor Effect of AZD4547 in a Fibroblast Growth Factor Receptor 2–Amplified Gastric Cancer Patient–Derived Cell Model

    Directory of Open Access Journals (Sweden)

    Jiryeon Jang

    2017-08-01

    Full Text Available BACKGROUND: FGFR2 amplification is associated with aggressive gastric cancer (GC, and targeted drugs have been developed for treatment of GC. We evaluated the antitumor activity of an FGFR inhibitor in FGFR2-amplified GC patients with peritoneal carcinomatosis. METHODS: Two GC patients with FGFR2 amplification confirmed by fluorescence in situ hybridization showed peritoneal seeding and malignant ascites. We used the patient-derived xenograft model; patient-derived cells (PDCs from malignant ascites were used to assess FGFR2 expression and its downstream pathway using immunofluorescence analysis and immunoblot assay in vitro. Apoptosis and cell cycle arrest after treatment of FGFR inhibitor were analyzed by Annexin V-FITC assay and cell cycle analysis. RESULTS: FGFR2 amplification was verified in both PDC lines. AZD4547 as an FGFR inhibitor decreased proliferation of PDCs, and the IC50 value was estimated to be 250 nM in PDC#1 and 210 nM in PDC#2. FGFR inhibitor also significantly decreased levels of phosphorylated FGFR2 and downstream signaling molecules in FGFR2-amplified PDC lines. In cell cycle analysis, apoptosis was significantly increased in AZD4547-treated cells compared with nontreated cells. The proportion of cells in the sub-G1 stage was significantly higher in AZD4547-treated PDCs than in control cells. CONCLUSION: Our findings suggest that FGFR2 amplification is a relevant therapeutic target in GC with peritoneal carcinomatosis.

  12. Silibinin and Its 2,3-Dehydro-Derivative Inhibit Basal Cell Carcinoma Growth via Suppression of Mitogenic Signaling and Transcription Factors Activation

    Czech Academy of Sciences Publication Activity Database

    Tilley, C.; Deep, G.; Agarwal, Ch.; Wempe, M.F.; Biedermann, David; Valentová, Kateřina; Křen, Vladimír; Agarwal, R.

    2016-01-01

    Roč. 55, č. 1 (2016), s. 3-14 ISSN 0899-1987 R&D Projects: GA MŠk LH13097 Institutional support: RVO:61388971 Keywords : basal cell carcinoma * chemoprevention * phytochemicals Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.185, year: 2016

  13. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  14. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  15. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  16. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  17. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  18. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  19. The Brain Derived Neurotrophic Factor and Personality

    OpenAIRE

    Christian Montag

    2014-01-01

    The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF) in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF...

  20. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Science.gov (United States)

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  1. cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor

    International Nuclear Information System (INIS)

    Kobilka, B.K.; Dixon, R.A.F.; Frielle, T.

    1987-01-01

    The authors have isolated and sequenced a cDNA encoding the human β 2 -adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster β 2 -adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. They have localized the gene for the β 2 -adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor

  2. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    Science.gov (United States)

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Growth factors for treating diabetic foot ulcers

    DEFF Research Database (Denmark)

    Martí-Carvajal, Arturo J; Gluud, Christian; Nicola, Susana

    2015-01-01

    following treatment for diabetic foot ulcers (RR 0.64, 95% CI 0.14 to 2.94; P value 0.56, low quality of evidence)Although 11 trials reported time to complete healing of the foot ulcers in people with diabetes , meta-analysis was not possible for this outcome due to the unique comparisons within each trial...... (minimum of one toe), complete healing of the foot ulcer, and time to complete healing of the diabetic foot ulcer as the primary outcomes. DATA COLLECTION AND ANALYSIS: Independently, we selected randomised clinical trials, assessed risk of bias, and extracted data in duplicate. We estimated risk ratios......BACKGROUND: Foot ulcers are a major complication of diabetes mellitus, often leading to amputation. Growth factors derived from blood platelets, endothelium, or macrophages could potentially be an important treatment for these wounds but they may also confer risks. OBJECTIVES: To assess...

  4. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  5. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75).

    Science.gov (United States)

    Panwar, Umesh; Singh, Sanjeev Kumar

    2017-10-23

    HIV-1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure-based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory, and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine-Z742267384, Maybridge-HTS02400, and Specs-AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behavior and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.

  6. A comparative study of the effect of Bio-Oss® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting.

    Science.gov (United States)

    Wang, Fang; Li, Qiong; Wang, Zuolin

    2017-08-01

    To compare the effects of Bio-Oss ® in combination with concentrated growth factors (CGFs) and bone marrow-derived mesenchymal stem cells (BMSCs) on bone regeneration for maxillary sinus floor augmentation in beagle dogs. Six beagle dogs received bilateral maxillary sinus floor augmentation. Venous blood drawn from dogs was collected and centrifuged to obtain CGFs. BMSCs derived from canine bone marrow were cultured using density gradient centrifugation. The suspension of BMSCs was added onto Bio-Oss ® granules at a density of 2 × 10 6 cells/ml, and the BMSCs/Bio-Oss ® constructs were incubated for an additional 4 h before use. Twelve sinuses were grafted with a mixture of CGFs/Bio-Oss ® , BMSCs/Bio-Oss ® construct, or Bio-Oss ® alone. Six months later, the bone formation of bilateral sinuses was evaluated by Micro-CT, microhardness test, histological examination, and histomorphometry. No adverse effect was found in these dogs. The dome-shaped augmentation protruded into the sinus cavity. Micro-CT revealed that there was significant difference in BV/TV but not in Tb. N, between groups A, B, and C. The extent of microhardness in groups A and B was significantly higher than in group C. The proportion of newly formed bone in groups A and B showed significant difference when compared to group C (P ≤ 0.01). The amount of residual grafts in groups A and B was significantly lower than in group C. Grafting with Bio-Oss ® in combination with CGFs can increase new bone formation more efficiently than using Bio-Oss ® alone in a canine model. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezing...... (18.6+/-1.3 ng/ml versus 16.5+/-1.4 ng/ml), and showed a right-skewed BDNF concentration distribution. No association between whole blood BDNF concentrations and thrombocyte count, age, or BDNF genotype was found. In conclusion, the BDNF ELISA assay determines whole blood BDNF accurately and with high...

  8. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  9. Knockdown of hepatoma-derived growth factor-related protein-3 induces apoptosis of H1299 cells via ROS-dependent and p53-independent NF-κB activation

    International Nuclear Information System (INIS)

    Yun, Hong Shik; Baek, Jeong-Hwa; Yim, Ji-Hye; Lee, Su-Jae; Lee, Chang-Woo; Song, Jie-Young; Um, Hong-Duck; Park, Jong Kuk; Park, In-Chul; Hwang, Sang-Gu

    2014-01-01

    Highlights: • HRP-3 is a radiation- and anticancer drug-responsive protein in H1299 cells. • Depletion of HRP-3 induces apoptosis of radio- and chemoresistant H1299 cells. • Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. • ROS generation enhances NF-κB activity, which acts as an upstream signal in the c-Myc/Noxa apoptotic pathway. - Abstract: We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells

  10. Derivation of dose conversion factors for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  11. Derivation of dose conversion factors for tritium

    International Nuclear Information System (INIS)

    Killough, G.G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed

  12. Growth factors, muscle function, and doping.

    Science.gov (United States)

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  13. Overexpression of microRNA-375 impedes platelet-derived growth factor-induced proliferation and migration of human fetal airway smooth muscle cells by targeting Janus kinase 2.

    Science.gov (United States)

    Ji, Yamei; Yang, Xin; Su, Huixia

    2018-02-01

    The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. RhoA/Rho kinase signaling regulates transforming growth factor-β1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway.

    Science.gov (United States)

    Xu, Ting; Wu, Mengjie; Feng, Jianying; Lin, Xinping; Gu, Zhiyuan

    2012-11-01

    Recent studies have suggested that synovium-derived mesenchymal stem cells (SMSCs) may be promising candidates for tissue engineering and play an important role in cartilage regeneration. However, the mechanisms of SMSC chondrogenesis remain to be identified and characterized. The aim of this study was to evaluate the activation of the RhoA/Rho kinase (ROCK) pathway, as well as the manner by which it may contribute to chondrogenesis and the actin cytoskeletal organization of rat temporomandibular SMSCs in response to transforming growth factor-β1 (TGF-β1). Primary isolated SMSCs were treated with TGF-β1, and their actin organization was examined by fluorescein isothiocyanate-phalloidin staining. The specific biochemical inhibitors, C3 transferase, Y27632 and SB431542, were employed to evaluate the function of RhoA/ROCK and Smads. The effect of C3 transferase and Y27632 on the gene expression of chondrocyte-specific markers was evaluated by quantitative real-time polymerase chain reaction. To examine the effect of Y27632 on Smad2/3 phosphorylation induced by TGF-β1, western blot analysis was also performed. The stimulation of TGF-β1 in SMSCs resulted in the activation of the RhoA/ROCK pathway and concomitantly induced cytoskeletal reorganization, which was specifically blocked by C3 transferase and Y27632. The TGF-β-induced gene expression of Sox9, type I collagen, type II collagen and aggrecan was also inhibited by both C3 transferase and Y27632, at different levels. Y27632 treatment reduced the phosphorylation of Smad2/3 in a concentration-dependent manner. These results demonstrate the RhoA/ROCK activation regulates chondrocyte-specific gene transcription and cytoskeletal organization induced by TGF-β1 by interacting with the Smad pathway. This may have significant implications for the successful utilization of SMSCs as a cell source for articular cartilage tissue engineering.

  15. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  16. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2007-01-01

    in DC priming of naive T cells with elevated levels of transforming growth factor-beta (TGF-beta) and markedly reduced levels of bacteria-induced interferon-gamma production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-beta increases upon microbial stimulation in a strain...

  17. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells

    DEFF Research Database (Denmark)

    Mohan, Saktiswaren; Raghavendran, Hanumantharao Balaji; Karunanithi, Puvanan

    2017-01-01

    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release...... was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications....

  18. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  19. Predictive factors for intrauterine growth restriction.

    Science.gov (United States)

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  20. MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3.

    Science.gov (United States)

    Tang, Jin; Luo, Lingying

    2018-06-01

    Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Engineering growth factors for regenerative medicine applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  2. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  3. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  4. Impact of TGF-β family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients

    Directory of Open Access Journals (Sweden)

    E López-Ruiz

    2018-04-01

    Full Text Available The success of cell-based approaches for the treatment of cartilage defects requires an optimal autologous cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. The objective of this study was to compare the chondrogenic capacity of mesenchymal stem cells (MSCs isolated from lipoaspirates (ASCs and the infrapatellar fat pad (IFPSCs of osteoarthritic patients and treated with transforming growth factor (TGF-β family-related growth factors. Cells were cultured for 6 weeks in a 3D pellet culture system with the chimeric activin A/bone morphogenic protein (BMP-2 ligand (AB235, the chimeric nodal/BMP-2 ligand (NB260 or BMP-2. To investigate the stability of the new cartilage, ASCs-treated pellets were transplanted subcutaneously into severe combined immunodeficiency (SCID mice. Histological and immunohistochemical assessment confirmed that the growth factors induced cartilage differentiation in both isolated cell types. However, reverse transcription-quantitative PCR results showed that ASCs presented a higher chondrogenic potential than IFPSCs. In vivo results revealed that AB235-treated ASCs pellets were larger in size and could form stable cartilage-like tissue as compared to NB260-treated pellets, while BMP-2-treated pellets underwent calcification. The chondrogenic induction of ASCs by AB235 treatment was mediated by SMAD2/3 activation, as proved by immunofluorescence analysis. The results of this study indicated that the combination of ASCs and AB235 might lead to a cell-based cartilage regeneration treatment.

  5. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  6. Trasplante de células progenitoras derivadas de la médula ósea y factor de crecimiento granulocítico en cardiopatía isquémica aguda y crónica Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    Directory of Open Access Journals (Sweden)

    Juan M Senior

    2007-12-01

    Full Text Available Introducción: estudios recientes demuestran la seguridad y eficacia de la implantación de células progenitoras derivadas de la médula ósea y de la administración del factor estimulante de colonias de granulocito en pacientes con infarto agudo del miocardio con elevación del segmento ST y en cardiopatía isquémica crónica. Se diseñó un estudio prospectivo, abierto de «antes y después» para evaluar la seguridad y eficacia de la terapia celular asociada a la administración del factor de crecimiento. Se reporta la primera experiencia con este tipo de terapia. Metodología: este es el reporte del seguimiento a seis meses, de los pacientes con cardiopatía isquémica aguda y crónica a quienes se les realizó trasplante de células progenitoras derivadas de la médula ósea, movilizadas con factor de crecimiento estimulante de colonias de granulocitos, por vía intracoronaria o epicárdica. Se incluyeron dos grupos de pacientes: 1. Diez pacientes con infarto de pared anterior y 2. Cinco pacientes con cardiopatía isquémica crónica, todos con necrosis extensa demostrada por ausencia de viabilidad miocárdica por medicina nuclear y fracción de eyección menor del 40%. Resultados: se demostró mejoría significativa de la fracción de eyección de 29,44 ± 3,36 a 37,6 ± 5,3 con pIntroduction: recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective «before and after» design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology; this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to whom transplant of stem cells derived from

  7. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  8. Physiological Actions of Fibroblast Growth Factor-23

    Directory of Open Access Journals (Sweden)

    Reinhold G. Erben

    2018-05-01

    Full Text Available Fibroblast growth factor-23 (FGF23 is a bone-derived hormone suppressing phosphate reabsorption and vitamin D hormone synthesis in the kidney. At physiological concentrations of the hormone, the endocrine actions of FGF23 in the kidney are αKlotho-dependent, because high-affinity binding of FGF23 to FGF receptors requires the presence of the co-receptor αKlotho on target cells. It is well established that excessive concentrations of intact FGF23 in the blood lead to phosphate wasting in patients with normal kidney function. Based on the importance of diseases associated with gain of FGF23 function such as phosphate-wasting diseases and chronic kidney disease, a large body of literature has focused on the pathophysiological consequences of FGF23 excess. Less emphasis has been put on the role of FGF23 in normal physiology. Nevertheless, during recent years, lessons we have learned from loss-of-function models have shown that besides the paramount physiological roles of FGF23 in the control of 1α-hydroxylase expression and of apical membrane expression of sodium-phosphate co-transporters in proximal renal tubules, FGF23 also is an important stimulator of calcium and sodium reabsorption in distal renal tubules. In addition, there is an emerging role of FGF23 as an auto-/paracrine regulator of alkaline phosphatase expression and mineralization in bone. In contrast to the renal actions of FGF23, the FGF23-mediated suppression of alkaline phosphatase in bone is αKlotho-independent. Moreover, FGF23 may be a physiological suppressor of differentiation of hematopoietic stem cells into the erythroid lineage in the bone microenvironment. At present, there is little evidence for a physiological role of FGF23 in organs other than kidney and bone. The purpose of this mini-review is to highlight the current knowledge about the complex physiological functions of FGF23.

  9. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    International Nuclear Information System (INIS)

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A.

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by 125 I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes

  10. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  11. Hematopoietic growth factors and human acute leukemia.

    Science.gov (United States)

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  12. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  13. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  14. Fibroblast growth factor 23 - et fosfatregulerende hormon

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Pedersen, Susanne Møller; Kassem, Moustapha

    2010-01-01

    Fibroblast growth factor 23 (FGF23) er et nyligt identificeret fosfatonin. FGF23's fysiologiske hovedfunktion er at opretholde normalt serumfosfat og at virke som et D-vitaminmodregulatorisk hormon. Sygdomme, der er koblet til forhøjet serum FGF23, er hypofosfatæmisk rakitis, fibrøs dysplasi og t...

  15. Modulation of radiosensitivity by growth factors

    International Nuclear Information System (INIS)

    Paris, F.

    2013-01-01

    The full text of the publication follows. For the past 70 years, radiotherapy protocols were defined to target and kill cancer cells. New research developments showed that the tissue or tumor radiosensitivities might be directly modulated by its own microenvironment. Between all the micro-environmental cells, endothelial cells are playing a unique role due to the need of angio-genesis for tumor genesis and to the microvascular endothelial cell apoptosis involved in acute normal tissue and tumor radiosensitivities. Both endothelial behaviours may be controlled by specific growth factors secreted by tumor cells. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two cytokines involved in angio genesis and endothelial cell survival. Because radiation exposure develops opposite molecular and cellular responses by inhibiting proliferation and by enhancing apoptosis, inhibiting these cytokines has been proposed as a relevant strategy to improve radiotherapy efficiency. Drugs or antibody against VEGF, or other growth factors have been used with success to limit endothelial cell resistance, but also to transiently normalize of blood vessels to improve oxygen distribution into the tumor. However, better characterisation of the role of the cytokines will help to better improve the strategy of the use of their antagonists. We demonstrate that bFGF or sphingosin 1 phosphate (S1P), a lipid endothelial growth factor, protects endothelial cells from radiation stress by inhibiting the pre-mitotic apoptosis through enhancement of pro-survival molecular cascade, such as the Pi3K/AKT pathway, but not post-mitotic death. This discrepancy allowed a specific use of S1P as pharmacological drug protecting quiescent endothelial cells, present in normal tissue blood vessels, but not in proliferating angiogenic blood vessels, majority present in tumor blood vessel. In vivo studies are underway. (author)

  16. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  17. Recombinant-derived chicken growth hormone used for radioimmunoassay

    International Nuclear Information System (INIS)

    Proudman, J.A.

    1984-01-01

    The use of recombinant-derived chicken growth hormone (rcGH) in an avian growth hormone (GH) radioimmunoassay (RIA) procedure is described. Antiserum to turkey GH bound 125 I-labeled rcGH, and unlabeled rcGH or turkey GH displaced binding in a dose-related manner. The dose-response curves of sera and pituitary extract from chickens and turkeys were parallel to the rcGH standard curve. Sera from hypophysectomized (hypox) chickens and turkeys produced no dose-response and did not inhibit binding of labeled rcGH. Recovery of rcGH added to hypox sera was quantitative. Modification of the homologous turkey GH RIA protocol of Proudman and Wentworth (1) to use rcGH made possible either an increase in assay sensitivity or a 3-day reduction in incubation time

  18. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available Insulin-like growth factor 1 (IGF-1 and hepatocyte growth factor (HGF are two potent cell survival and regenerative factors in response to myocardial injury (MI. We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01. IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01 and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  19. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Science.gov (United States)

    Wang, Xiaohong; Li, Qinglu; Hu, Qingsong; Suntharalingam, Piradeep; From, Arthur H L; Zhang, Jianyi

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, Pcell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, Pcell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  20. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    Science.gov (United States)

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  1. Enhancement of intestinal growth in neonatal rats by epidermal growth factor in milk

    International Nuclear Information System (INIS)

    Berseth, C.L.

    1987-01-01

    Breast milk has been shown to enhance neonatal intestinal growth. Because epidermal growth factor (EGF) is present in the milk of various mammalian species, the hypothesis was tested that EGF in rodent milk mediates, in part, the breast milk-enhanced intestinal growth in neonatal rat. Fifty-eight rat pups fed artificial formal that contained 1.2, 3.0, and 6.0 μg/ml EGF for 39 h had greater incorporation of [ 3 H]thymidine into DNA and DNA content of intestine than 29 pups fed unsupplemented formula. Pups fed EGF for 5 days had significantly greater body weight, intestinal weight, length, and DNA content than control pups. Conversely, pups fed pooled rat milk containing rabbit-derived antibody to EGF for 39 h had intestines of lower weight that contained less DNA than animals fed rat milk containing normal rabbit serum. EGF appears to mediate, in part, breast milk-enhanced neonatal intestinal growth

  2. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Alma Y. Galvez-Contreras

    2017-07-01

    Full Text Available Growth factors (GFs are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD and autism spectrum disorders (ASD. In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF, glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.

  3. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  4. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  5. Quantitative measurement of connective tissue growth factor and stromal cell-derived factor-1 in vitreous with diabetic retinopathy%糖尿病视网膜病变玻璃体中CTGF,SDF-1的质量浓度测定

    Institute of Scientific and Technical Information of China (English)

    丁纯

    2010-01-01

    目的:定量测定结缔组织生长因子(connective tissue growth factor,CTGF)和基质细胞衍生因子1(stromal cell-derived factor-1,SDF-1)在糖尿病视网膜病变(diabetic retinopathy,DR)患者玻璃体中的质量浓度,探讨其在糖尿病(diabetic retinopathy, DR)发病机制中的作用.方法:采用双抗体夹心酶联免疫吸附测定法(enzyme linked immunosorbent assay,ELISA)定量检测33例增生型糖尿病视网膜病变(proliferative diabetic retinopathy,PDR)、5例单纯型糖尿病性视网膜病变组(background diabetic retinopathy, BDR组)及5例正常对照组玻璃体中CTGF的质量浓度.结果: PDR组玻璃体中CTGF质量浓度大于对照组(P<0.01)、BDR组(P<0.01).PDR组玻璃体中SDF-1质量浓度大于BDR组(P<0.05).结论: SDF-1,CTGF在DR发展过程中起着一定的作用.

  6. Effect of H-2 complex on the growth of embryo-derived teratomas in mice

    International Nuclear Information System (INIS)

    Taya, C.; Moriwaki, K.

    1986-01-01

    Seven-day-old embryos of several H-2 congenic strains were transplanted under the kidney capsules of syngeneic adult recipients to determine the genetic factors(s) governing the in vivo growth of embryo-derived teratomas. A.TH(H-2t2) and A.TL(H-2t1) strains showed significantly greater tumor weights than A.BY(H-2b) and A.SW(H-2s) strains. The A(H-2a) strain was intermediate in tumor size. A comparison of the genic constitution of the H-2 complex in each congenic strain suggested that the H-2D locus and/or its distal regions affected the growth of embryo-derived teratomas. The teratoma induced in the B10.A(H-2a) strain was smaller than that in the A(H-2a) strain, indicating that the genetic background of the A strain is favorable for teratoma growth. Histological observations demonstrated that the existence of embryonal carcinoma cells was necessary for the growth of teratomas. A radiation-sensitive immunological factor in the recipient probably plays a role in stimulating teratoma growth

  7. Growth factor choice is critical for successful functionalization of nanoparticles

    Directory of Open Access Journals (Sweden)

    Josephine ePinkernelle

    2015-09-01

    Full Text Available Nanoparticles (NPs show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF and glial cell-line derived neurotrophic factor (GDNF. Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12 and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be instable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed.

  8. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    Science.gov (United States)

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level.

  9. Growth factors: biological and clinical aspects

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; McBride, W.H.

    1999-01-01

    Purpose: The purpose of this meeting summary is to provide an overview of cytokine research and its role in radiation oncology. Methods and Materials: The sixth annual Radiation Workshop was held at the International Festival Institute at Round Top, TX. Results: Presentations of seventeen speakers provided the framework for discussions on the biological and clinical aspects of cytokine research. Conclusion: Orchestration of coordinated cellular responses over the time course of radiation effects requires the interaction of many growth factors with their receptors as well as cell-cell and cell-matrix interactions. Cytokine networks and integrated systems are important in tumor development, cancer treatment, and normal and tumor response to cancer treatment

  10. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  11. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... Key words: Growth-promoting factors, mouse spermatogonial stem cells (SSCs), proliferation. INTRODUCTION ... insulin-like growth factor-1 (IGF-1) can stimulate mitotic ...... A Model for Analysis of Spermatogenesis. Zool. Sci.

  12. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  13. Hepatocyte growth factor profile with breast cancer

    Directory of Open Access Journals (Sweden)

    Hoda A EL-Attar

    2011-01-01

    Full Text Available Background: The multifunctional hepatocyte growth factor (HGF is the ligand of c-Met receptor; it plays important role in mammary differentiation. HGF-Met signaling is a critical downstream function of c-Src-Stat3 pathway in mammalian tumorigenesis. Aim: Evaluation of tissue c-Met receptor hepatocyte growth factor receptor (HGFR and serum level of HGF in female breast ductal carcinoma. Materials and Methods: Sixty-eight premenopausal females were divided as 30 control females subdivided into: [Group 1] 15 healthy volunteer females and [Group 2] five with fibrocystic disease and 10 having fibroadenoma of the breast and patients group [Group 3] consisted of 38 female patients with breast ductal carcinoma. Thorough clinical examination, preoperative fine needle aspiration cytology, estimation of fasting serum glucose, urea, creatinine, and uric acid levels, alanine aminotransferase activities, C-reactive protein, HGF level, before surgery and histopathological examination of the breast masses, and immunohistochemical detection of HGFR were done. Results and Conclusions: Significant increase in serum HGF levels were found in patients with breast cancer as compared with controls. Significant increase was also seen in patients with breast cancer with and without lymph node metastasis when each subgroup was compared with controls. Serum level of HGF is an independent prognostic indicator of breast cancer. Fibrocystic disease of the breast showed weak HGFR expression, while in normal tissue, HGFR was scanty; meanwhile, breast invasive ductal carcinoma showed homogenous strong reaction to HGFR. HGF is only one of a number of key factors involved in breast cancer and preoperative high serum HGF levels and malignancy occur usually together.

  14. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    SSCs) in vitro are critical to our understanding of male infertility, genetic resources and endangered species conservation. To investigate the effects of growth-promoting factors, epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and ...

  15. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  16. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  17. Growth Factors and Breast Tumors, Comparison of Selected Growth Factors with Traditional Tumor Markers

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Černá, M.; Ňaršanská, A.; Svobodová, Š.; Straková, M.; Vrzalová, J.; Fuchsová, R.; Třešková, I.; Kydlíček, T.; Třeška, V.; Pecen, Ladislav; Topolčan, O.; Padziora, P.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 4653-4656 ISSN 0250-7005 Grant - others:GA MZd(CZ) NS9727; GA MZd(CZ) NS10238; GA MZd(CZ) NS10253 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth factor * breast cancer * tumor markers * CA 15-3 * CEA * IGF1 * EGF * HGF Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  18. The importance of neuronal growth factors in the ovary.

    Science.gov (United States)

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  19. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  20. Plasma rich in growth factors in dentistry

    Directory of Open Access Journals (Sweden)

    Ana Glavina

    2017-06-01

    Full Text Available Background Plasma rich in growth factors (PRGF has wider use in many fields of dentistry due to its endogenous biocompatible regenerative potential i.e., their potential to stimulate and accelerate tissue healing and bone regeneration. Aims This review shows the increasing use of PRGF technology in various fields of dentistry. Methods In the last nine years PubMed has been searched in order to find out published articles upon PRGF in dentistry and 36 papers have been included. Results PRGF technology has many advantages with positive clinical and biological outcomes in tissue healing and bone regeneration. Conclusion In order to determine the most effective therapeutic value for patients, further research is required.

  1. Aldosterone as a renal growth factor.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-04-05

    Aldosterone regulates blood pressure through its effects on the cardiovascular system and kidney. Aldosterone can also contribute to the development of hypertension that leads to chronic pathologies such as nephropathy and renal fibrosis. Aldosterone directly modulates renal cell proliferation and differentiation as part of normal kidney development. The stimulation of rapidly activated protein kinase cascades is one facet of how aldosterone regulates renal cell growth. These cascades may also contribute to myofibroblastic transformation and cell proliferation observed in pathological conditions of the kidney. Polycystic kidney disease is a genetic disorder that is accelerated by hypertension. EGFR-dependent proliferation of the renal epithelium is a factor in cyst development and trans-activation of EGFR is a key feature in initiating aldosterone-induced signalling cascades. Delineating the components of aldosterone-induced signalling cascades may identify novel therapeutic targets for proliferative diseases of the kidney.

  2. Factor-structure of economic growth in E-commerce

    Institute of Scientific and Technical Information of China (English)

    吴隽; 刘洪久; 栾天行

    2003-01-01

    In order to analyze the factors having effect on economic growth of E-commerce, the economic growthprocess of E-commerce is divided into three stages; growth stage, stabilization stage and re-growth stage. Thesethree different stages are analysed using several economic growth theories, a set of factor-structure is proposedfor each stage of the economic growth process of E-commerce.

  3. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions s...

  4. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  5. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma

    International Nuclear Information System (INIS)

    Jang, F.F.; Wei, W.

    2008-01-01

    Astrocytoma is the most malignant intracranial neoplasm and is characterized by high neovascularization and peritumoural brain oedema. Angiogenesis is a complicated process in oncogenesis regulated by the balance between angiogenic and antiangiogenic factors. The expression of two angiogenic growth factors, vascular endothelial growth factor and basic fibroblast growth factor were investigated using immunohistochemistry for astrocytoma from 82 patients and 11 normal human tissues. The expression of vascular endothelial growth factor and basic fibroblast growth factor positively correlate with the pathological grade of astrocytoma, microvessel density numbers and brain oedema, which may be responsible for the increased tumour neovascularization and peritumoural brain oedema. The results support the idea that inhibiting vascular endothelial growth factor and basic fibroblast growth factor are useful for the treatment of human astrocytoma and to improve patient's clinical outcomes and prognosis. (author)

  6. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery

    Directory of Open Access Journals (Sweden)

    Tanu Talwar

    2014-01-01

    Full Text Available Stroke is a major health problem world-wide and its burden has been rising in last few decades. Until now tissue plasminogen activator is only approved treatment for stroke. Angiogenesis plays a vital role for striatal neurogenesis after stroke. Administration of various growth factors in an early post ischemic phase, stimulate both angiogenesis and neurogenesis and lead to improved functional recovery after stroke. However vascular endothelial growth factors (VEGF is the most potent angiogenic factor for neurovascularization and neurogenesis in ischemic injury can be modulated in different ways and thus can be used as therapy in stroke. In response to the ischemic injury VEGF is released by endothelial cells through natural mechanism and leads to angiogenesis and vascularization. This release can also be up regulated by exogenous administration of Mesenchymal stem cells, by various physical therapy regimes and electroacupuncture, which further potentiate the efficacy of VEGF as therapy in post stroke recovery. Recent published literature was searched using PubMed and Google for the article reporting on methods of up regulation of VEGF and therapeutic potential of growth factors in stroke.

  7. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells

    Directory of Open Access Journals (Sweden)

    Daniel Pelaez

    2016-12-01

    Full Text Available The processes of cellular differentiation and phenotypic maintenance can be influenced by stimuli from a variety of different factors. One commonly overlooked factor is the mechanical properties of the growth substrate in which stem cells are maintained or differentiated down various lineages. Here we explored the effect that growth on an elastic silicone substrate had on the myogenic expression and cytoskeletal morphology of periodontal ligament derived stem cells. Cells were grown on either collagen I coated tissue culture polystyrene plates or collagen I coated elastic silicone membranes for a period of 4 days without further induction from soluble factors in the culture media. Following the 4-day growth, gene expression and immunohistochemical analysis for key cardiomyogenic markers was performed along with a morphological assessment of cytoskeletal organization. Results show that cells grown on the elastic substrate significantly upregulate key markers associated with contractile activity in muscle tissues. Namely, the myosin light chain polypeptides 2 and 7, as well as the myosin heavy chain polypeptide 7 genes underwent a statistically significant upregulation in the cells grown on elastic silicone membranes. Similarly, the cells on the softer elastic substrate stained positive for both sarcomeric actin and cardiac troponin t proteins following just 4 days of growth on the softer material. Cytoskeletal analysis showed that substrate stiffness had a marked effect on the organization and distribution of filamentous actin fibers within the cell body. Growth on silicone membranes produced flatter and shorter cellular morphologies with filamentous actin fibers projecting anisotropically throughout the cell body. These results demonstrate how crucial the mechanical properties of the growth substrate of cells can be on the ultimate cellular phenotype. These observations highlight the need to further optimize differentiation protocols to enhance

  8. Economic growth factors system: theoretical and methodological aspect

    OpenAIRE

    H.Ya. Hlukha

    2014-01-01

    The aim of the article. The main objective of the article is to create theoretical grounds to build the system of economic growth factors, to modernize their classification, to define exogenous and endogenous factors, to analyze them within the state economic policy structure. The results of the analysis. The article focuses on economic growth factors theoretical studies: - economic growth factors classification characteristics have been highlighted; - various approaches to determine...

  9. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  10. Nerve growth factor actions on the brain

    International Nuclear Information System (INIS)

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with [ 125 I]NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and [ 125 I]NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations

  11. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument; Liew, Chong Wee; Shadrach, Jennifer L.; Hu, Jiang; Katsuta, Hitoshi; Hollister-Lock, Jennifer; Qian, Weijun; Wagers, Amy J.; Kulkarni, Rohit N.

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.

  12. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...

  13. Brain-derived neurotrophic factor and early-life stress

    Indian Academy of Sciences (India)

    2016-10-24

    Oct 24, 2016 ... The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and ... forms are produced by splicing individual non-coding ..... VII and. IX m. RNA. ↑. mBDNF. ↓. (MS). 5. BDNF expression was unch;.

  14. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  15. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  16. The Optimal Level and Impact of Internal Factors on Growth

    OpenAIRE

    Li, Kui-Wai

    2011-01-01

    This paper empirically uses data from the world economy to show that performance of domestic factors are equally important to external factors when comes to growth. Various external and domestic factors are used to construct two separate indices and the principal component method is applied in the analysis. The empirical results show that given a different level of performance in the economy’s external factors, a higher performance in the internal factors will produce a higher growth rate....

  17. Factors influencing graphene growth on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, E; Bartelt, N C; McCarty, K F [Sandia National Laboratories, Livermore, CA (United States); Feibelman, P J [Sandia National Laboratories, Albuquerque, NM (United States)], E-mail: mccarty@sandia.gov

    2009-06-15

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  18. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    Science.gov (United States)

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, pplatelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  19. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    Directory of Open Access Journals (Sweden)

    Harris Pratsinis

    2015-01-01

    Full Text Available Intervertebral disc (IVD degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D organotypic milieu, comprising characteristic molecules of IVD’s extracellular matrix. In particular, annulus fibrosus (AF cells were cultured inside collagen type-I gels, while nucleus pulposus (NP cells in chondroitin sulfate A (CSA supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF, basic Fibroblast Growth Factor (bFGF, and Insulin-Like Growth Factor-I (IGF-I were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration.

  20. Production Of Some Virulence Factors Under Different Growth ...

    African Journals Online (AJOL)

    Production Of Some Virulence Factors Under Different Growth Conditions And Antibiotic Susceptibility Pattern Of ... Animal Research International ... Keywords: Virulence, Haemolytic activity, Susceptibility, Antibiotics, Aeromonas hydrophila

  1. Analytically derived weighting factors for transmission tomography cone beam projections

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2009-01-01

    Weighting factors, which define the contributions of individual voxels of a 3D object to individual projection elements (pixels) on the detector, are the basic elements required in iterative tomographic reconstructions from transmission projections. Exact or as accurate as possible values for weighting factors are required in high-resolution reconstructions. Geometric complexity of the problem, however, makes it difficult to obtain exact weighting factor values. In this work, we derive an analytical expression for the weighting factors in cone beam projection geometry. The resulting formula is validated and applied to reconstruction from mega and kilovoltage x-ray cone beam projections. The reconstruction speed and accuracy are significantly improved by using the weighting factor values.

  2. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  3. Growth factors regulate glutamine synthetase activity in ...

    African Journals Online (AJOL)

    Khaled

    2012-07-10

    Jul 10, 2012 ... glutamate and ammonia, which in turn, cells are supplied with ammonia ... out to determine the maximum growth time at which cells will be .... Western blot technique for detection the glutamine synthetase enzyme. Lane 1;.

  4. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    LENUS (Irish Health Repository)

    Sands, Michelle

    2011-01-25

    Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or potentiate the

  5. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

    Directory of Open Access Journals (Sweden)

    McLoughlin Paul

    2011-01-01

    Full Text Available Abstract Background Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. Methods Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2 or hypoxia (10% O2 for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA, VEGFB, placenta growth factor (PlGF, VEGF receptor 1 (VEGFR1 and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. Results Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. Conclusions VEGFB and PlGF can either inhibit or

  6. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    Science.gov (United States)

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  7. Relationship among expression of basic-fibroblast growth factor ...

    African Journals Online (AJOL)

    Relationship among expression of basic-fibroblast growth factor, MTDH/Astrocyte elevated gene-1, adenomatous polyposis coli, matrix metalloproteinase 9,and COX-2 markers with prognostic factors in prostate carcinomas.

  8. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Vascular endothelial growth factor (VEGF), a well known angiogenic factor, has been shown to have direct and/or ... Endogenous repair efforts fail to repair ... Spinal cord injury model preparation and intramedullary spinal.

  9. Molecular characterization of transforming growth factor-beta3

    NARCIS (Netherlands)

    Dijke, ten P.

    1991-01-01

    Normal tissue homeostasis is controlled by a critical balance of positive and negative modulators. Chapter 2 gives an overview of the molecular aspects of growth control, in particular the role of growth factors and oncogene and anti-oncogene products. Uncontrolled growth of cancer cells

  10. Insulin-like growth factor 2

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Hyttel, Poul; Rasmussen, Mikkel Aabech

    2014-01-01

    Intrinsic defects within the embryos, reflected by elevated cell death and low proliferative ability, are considered the most critical factors associated with bovine infertility. The identification of embryonic factors, which are responsible for successful embryo development, is thus critical...

  11. An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    David T. Vereide

    2014-12-01

    Full Text Available During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.

  12. Gender Factors and Inclusive Economic Growth: The Silent Revolution

    Directory of Open Access Journals (Sweden)

    Laura Cabeza-García

    2018-01-01

    Full Text Available The gender factors that trigger economic growth in both high- and low-income countries were investigated in this study. To address these gender factors, four characteristic dimensions of gender inclusion were considered: education, access to the labor market, fertility, and democracy. The relationship between economic growth and gender factors was analyzed in a sample of 127 countries. Value and robustness were added to the results using dynamic models applied to panel data while accounting for endogeneity. We conclude that high fertility in women has negative effects on economic growth. However, when women have greater access to secondary education and the labor market in conditions of equality, the effects are positive. Similarly, the access of women to active political participation has significant effects on economic growth. Overall, this study helps identify which gender factors may promote inclusive economic growth, which is economic growth achieved when both men and women are incorporated in equal conditions.

  13. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  14. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  15. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.

    2003-01-01

    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  16. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  17. Derivation of Sky-View Factors from LIDAR Data

    Science.gov (United States)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  18. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...

  19. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  20. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  1. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  2. Growth factors II: insuline-like growth binging proteins (GFBPs Factores de crecimiento II: factores insulinoides de crecimiento

    Directory of Open Access Journals (Sweden)

    Hilda Norha Jaramillo Londoño

    1996-03-01

    Full Text Available This review summarizes recent knowledge concerning Insulin.like growth factors I and II, with emphasis on their biochemical structure, concentrations, binding proteins, receptors, mechanisms of action, biological effects, and alterations of their concentrations in biological fluids. Se revisan los Factores Insulinoides de Crecimiento, también denominados ";Factores de Crecimiento Similares a la Insulina";, sobre los cuales se dispone de abundante información. Se sintetizan conocimientos recientes sobre dichos factores con énfasis en los siguientes aspectos: estructura bioquímica, concentraciones y sus cambios en los líquidos biológicos, proteínas fijadoras, receptores, mecanismos de acción y efectos biológicos.

  3. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  4. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  5. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    Science.gov (United States)

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  6. Effect of cigarette smoke on monocyte procoagulant activity: Focus on platelet-derived brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Amadio, Patrizia; Baldassarre, Damiano; Sandrini, Leonardo; Weksler, Babette B; Tremoli, Elena; Barbieri, Silvia S

    2017-01-01

    Cigarette smoke (CS) activates platelets, promotes vascular dysfunction, and enhances Tissue Factor (TF) expression in blood monocytes favoring pro-thrombotic states. Brain-derived neurotrophic factor (BDNF), a member of the family of neurotrophins involved in survival, growth, and maturation of neurons, is released by activated platelets (APLTs) and plays a role in the cardiovascular system. The effect of CS on circulating levels of BDNF is controversial and the function of circulating BDNF in atherothrombosis is not fully understood. Here, we have shown that human platelets, treated with an aqueous extract of CS (CSE), released BDNF in a dose-dependent manner. In addition, incubation of human monocytes with BDNF or with the supernatant of platelets activated with CSE increased TF activity by a Tropomyosin receptor kinase B (TrkB)-dependent mechanism. Finally, comparing serum and plasma samples of 12 male never smokers (NS) and 29 male active smokers (AS) we observed a significant increase in microparticle-associated TF activity (MP-TF) as well as BDNF in AS, while in serum, BDNF behaved oppositely. Taken together these findings suggest that platelet-derived BDNF is involved in the regulation of TF activity and that CS plays a role in this pathway by favoring a pro-atherothrombotic state.

  7. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  8. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  9. Platelet-derived growth factor mediates interleukin-13-induced ...

    Indian Academy of Sciences (India)

    2014-07-01

    4), September 2014, 693–700, * Indian Academy of Sciences. 693. Keywords. ... ence, France) were dissolved in 100% dimethyl sulfox- ide (DMSO) at ..... of China (81070045), the Key Clinical Project for Affiliated. Hospital of ...

  10. Multi-factor energy price models and exotic derivatives pricing

    Science.gov (United States)

    Hikspoors, Samuel

    The high pace at which many of the world's energy markets have gradually been opened to competition have generated a significant amount of new financial activity. Both academicians and practitioners alike recently started to develop the tools of energy derivatives pricing/hedging as a quantitative topic of its own. The energy contract structures as well as their underlying asset properties set the energy risk management industry apart from its more standard equity and fixed income counterparts. This thesis naturally contributes to these broad market developments in participating to the advances of the mathematical tools aiming at a better theory of energy contingent claim pricing/hedging. We propose many realistic two-factor and three-factor models for spot and forward price processes that generalize some well known and standard modeling assumptions. We develop the associated pricing methodologies and propose stable calibration algorithms that motivate the application of the relevant modeling schemes.

  11. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  12. Effects of transforming growth factor-beta1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing.

    Science.gov (United States)

    Hou, Yu; Mao, ZeBin; Wei, XueLei; Lin, Lin; Chen, LianXu; Wang, HaiJun; Fu, Xin; Zhang, JiYing; Yu, Changlong

    2009-07-01

    Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor 165 (VEGF(165)) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-beta1 cDNA (Ad-TGF-beta1), human VEGF(165) cDNA (Ad-VEGF(165)), or both (PIRES-TGF-beta1/VEGF(165)) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-beta1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-beta1 and TGF beta 1/VEGF(165) co-expression groups exhibited improved parameters compared with other groups, while the VEGF(165) expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF(165) were diminished by TGF-beta1, while the collagen synthesis effects of TGF-beta1 were unaltered by VEGF(165). Thus treatment with TGF-beta1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.

  13. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  14. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  15. Calculating second derivatives of population growth rates for ecology and evolution

    NARCIS (Netherlands)

    Shyu, E.; Caswell, H.

    2014-01-01

    Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way

  16. An immunologic approach to induction of epidermal growth factor deficiency

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) in pharmacologic doses is able to induce growth and development in the fetus and the newborn. To investigate the opposite situation, the effects of insufficient amounts of EGF during development, we wanted to establish an in vivo model with a state of EGF deficiency....

  17. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  18. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  19. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  20. [Associated factors in newborns with intrauterine growth retardation].

    Science.gov (United States)

    Thompson-Chagoyán, Oscar C; Vega-Franco, Leopoldo

    2008-01-01

    To identify the risk factors implicated in the intrauterine growth retardation (IUGR) of neonates born in a social security institution. Case controls design study in 376 neonates: 188 with IUGR (weight RCIU in the population.

  1. The effect of vascular endothelial growth factor-1 expression on ...

    African Journals Online (AJOL)

    Riyad Bendardaf

    2017-02-28

    Feb 28, 2017 ... The effect of vascular endothelial growth factor-1 expression on survival of ... Sharjah, Sharjah, United Arab Emirates; cFaculty of Medicine, Suez Canal University, ..... interleukin-6, and C-reactive protein level in colorectal.

  2. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... was quantified by means of western blot and immunohistochemistry technology. ... Key words: Vascular endothelial growth factor (VEGF), spinal cord injury, ... accordance with the National Institute of Health Guide for the Care.

  3. Transient expression of acidic fibroblast growth factor in pea (Pisum ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... a 100 W, long-wave UV lamp (Black Ray model B-100 AP; Ultra- ... frequency) was used to estimate the treatment efficiency during 15 days post .... Crystal structure of fibroblast growth factor receptor ectodomain bound to.

  4. Factors that determine the evolution of high-growth businesses

    Directory of Open Access Journals (Sweden)

    Oriol Amat

    2013-09-01

    Full Text Available Objective: The study herein discusses research aimed at elucidating the factors that contribute to a business’ ability to maintain high growth. Design/Methodology/Perspective: The database from the Iberian Balance Sheet Analysis System (SABI, from its initials in Spanish was used to identify 250 industrial Catalonian businesses with high growth during 2004-2007. These companies participated in a survey on strategies and management practices; in 2013, they were re-analyzed to investigate the factors that contributed to continued growth for certain companies. Contributions: Through diverse statistical techniques, business policies related to quality, innovation, internationalization and finance were shown to influence business growth and sustainability over time. Limitations of the Research: This study focuses on industrial businesses at least ten years old in Catalonia; thus, the conclusions may differ in other geographic locations and economic sectors, as well as for smaller businesses. Practical Implications: Because growth is a measure of business success, identifying variables that contribute to high growth and its sustainability is helpful for businesses that seek to adopt effective policies. Social Implications: Generating employment is one of the primary contributions by high-growth businesses. For years with high unemployment, authorities may be interested in corporate policies that strengthen high-growth businesses. Originality/Added Value: High-growth businesses have been studied throughout the world, but this is the first study to investigate the evolution of businesses after a high-growth phase.

  5. Placental Growth Factor Promotes Cardiac Muscle Repair via Enhanced Neovascularization

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2015-06-01

    Full Text Available Background/Aims: Transplantation of mesenchymal stem cells (MSCs improves post-injury cardiac muscle repair using ill-defined mechanisms. Recently, we have shown that production and secretion of placental growth factor (PLGF by MSCs play a critical role in the MSCs-mediated post-injury cardiac muscle repair. In this study, we addressed the underlying molecular mechanisms, focusing specifically on the interactions between MSCs, macrophages and endothelial cells. Methods: We isolated macrophages (BM-MΦ from mouse bone-marrow derived cells based on F4/80 expression by flow cytometry. BM-MΦ were treated with different doses of PLGF. Cell number was analyzed by a MTT assay. Macrophage polarization was examined based on CD206 expression by flow cytometry. PLGF levels in macrophage subpopulations were analyzed by RT-qPCR and ELISA. Effects of macrophages on vascularization were evaluated by a collagen gel assay using Human umbilical vein endothelial cells (HUVECs co-cultured with PLGF-treated macrophages. Results: PLGF did not increase macrophage number, but dose-dependently polarized macrophages into a M2 subpopulation. M2 macrophages expressed high levels of PLGF. PLGF-polarized M2 macrophages significantly increased tubular structures in the collagen gel assay. Conclusion: Our data suggest that MSCs-derived PLGF may induce macrophage polarization into a M2 subpopulation, which in turn releases more PLGF to promote local neovascularization for augmenting post-injury cardiac muscle repair. This study thus sheds novel light on the role of PLGF in cardiac muscle regeneration.

  6. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  7. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    Science.gov (United States)

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  8. Local Delivery of Growth Factors Using Coated Suture Material

    Directory of Open Access Journals (Sweden)

    T. F. Fuchs

    2012-01-01

    Full Text Available The optimization of healing processes in a wide range of tissues represents a central point for surgical research. One approach is to stimulate healing processes with growth factors. These substances have a short half-life and therefore it seems useful to administer these substances locally rather than systemically. One possible method of local delivery is to incorporate growth factors into a bioabsorbable poly (D, L-lactide suspension (PDLLA and coat suture material. The aim of the present study was to establish a procedure for the local delivery of growth factors using coated suture material. Sutures coated with growth factors were tested in an animal model. Anastomoses of the colon were created in a rat model using monofilament sutures. These were either untreated or coated with PDLLA coating alone or coated with PDLLA incorporating insulin—like growth factor-I (IGF-I. The anastomoses were subjected to biomechanical, histological, and immunohistochemical examination. After 3 days the treated groups showed a significantly greater capacity to withstand biomechanical stress than the control groups. This finding was supported by the results of the histomorphometric. The results of the study indicate that it is possible to deliver bioactive growth factors locally using PDLLA coated suture material. Healing processes can thus be stimulated locally without subjecting the whole organism to potentially damaging high systemic doses.

  9. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  10. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    Science.gov (United States)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  11. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  12. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... explored whether BDNF plays a role in human glucose metabolism. Subjects and methods  We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...

  13. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML. © 2015 UICC.

  14. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  15. Risk Factors to Growth Retardation in Major Thalassemia

    Directory of Open Access Journals (Sweden)

    Riva Uda

    2011-03-01

    Full Text Available The increasing in the life span of patients with major thalassemia should be followed by increased quality of life. There are factors which can affect growth retardation in these patients. The aim of this study was to find out the risk factors for growth retardation in patients with major thalassemia. An analytical study with cross-sectional design was conducted at Pediatric Thalassemia Clinics of Dr.Hasan Sadikin Hospital, Bandung, in June to July 2006. The subjects of this study were patients with major thalassemia. Inclusion criteria’s were age under 14 years old, had no chronic diseases like tuberculosis, cerebral palsy with complete medical records. Risk factors were the timing of diagnosis, initial and dose of deferoxamine, volume of transfused blood, mean pretransfusion hemoglobin level, family income, and age. Antropometric measurement indices were used to assess the growth which expressed in Z score. Growth evaluated based on height/age (H/A and growth retardation if H/A <-2 SD. Risk factors for growth retardation were analyzed separately using chi-square test and odds ratio (OR with 95% confidence interval (CI. Then they were analyzed simultaneously with logistic regression method. Subjects consisted of 152 patients with major thalassemia. Seventy three thalassemia patients were stunted. Analysis showed that age (OR: 5.42, 95% CI:2.32–12.65, p <0.001, dosage of deferoxamine (OR: 4.0, 95% CI: 1.29–12.41, p: 0.016, and family income (OR: 2.32, 95% CI: 1.06–5.06, p: 0.036 were risks factors for growth retardation. Conclusion, risk factors for growth retardation in major thalassemia are age, dosage of deferoxamine, and family income.

  16. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2015-01-01

    Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.

  17. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  18. Export Growth and Factor Market Competition: Theory and Some Evidence

    NARCIS (Netherlands)

    J. Emami Namini (Julian); G. Facchini (Giovanni); R.A. Lopez (Ricrado)

    2011-01-01

    textabstractEmpirical evidence suggests that sectoral export growth decreases exporters' survival probability, whereas this is not true for non-exporters. Models with firm heterogeneity in total factor productivity (TFP) predict the opposite. To solve this puzzle, we develop a two{factor framework

  19. Instability restricts signaling of multiple fibroblast growth factors

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Chaloupková, R.; Zakrzewska, M.; Veselá, I.; Celá, Petra; Barathová, J.; Gudernová, I.; Zajíčková, R.; Trantírek, L.; Martin, J.; Kostas, M.; Otlewski, J.; Damborský, J.; Kozubík, Alois; Wiedlocha, A.; Krejčí, P.

    2015-01-01

    Roč. 72, č. 12 (2015), s. 2445-2459 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-31540S; GA ČR GBP302/12/G157 Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor * FGF * unstable Subject RIV: EA - Cell Biology Impact factor: 5.694, year: 2015

  20. Insulin-like growth factor system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Wilczak, N; de Keyser, J; Cianfarani, S; Clemmons, DR; Savage, MO

    2005-01-01

    Insulin-like growth factor-I (IGF-I) is a neurotrophic factor with insulin-like metabolic activities, and possesses potential clinical applications, particularly in neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is a chronic progressive devastating disorder of the central nervous

  1. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk.

    Directory of Open Access Journals (Sweden)

    Ruisong Li

    Full Text Available Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF, and glial cell line-derived neurotrophic factor (GDNF in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05. In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05. Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.

  2. Insulin-like growth factor-I in growth and metabolism

    DEFF Research Database (Denmark)

    Backeljauw, P; Bang, P; Dunger, D B

    2010-01-01

    Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more...

  3. Extremity Regeneration of Soft Tissue Injury Using Growth Factor-Impregnated Gels

    Science.gov (United States)

    2017-10-01

    vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Repeated injections of growth factor-alginate material are... Vascularized endothelial growth factor (VEGF) Insulin-like growth factor-1 (IGF-1) Alginate gel Ischemia-reperfusion Large animal model...operative complications including skin necrosis and seroma development. The IACUC protocol was reevaluated and modified thought multiple discussions

  4. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine

    2013-01-01

    in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised......Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction...... that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher...

  5. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elias G., E-mail: george.elias@medstar.net; Hasskamp, Joanne H.; Sharma, Bhuvnesh K. [Maryland Melanoma Center, Weinberg Cancer Institute, Franklin Square Hospital Center, Baltimore, MD (United States)

    2010-05-07

    Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  6. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  7. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    Science.gov (United States)

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of

  8. Immunohistochemical expression of Insulin-like growth factor-1, Transforming growth factor-beta1, and Vascular endothelial growth factor in parathyroid adenoma and hyperplasia

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2014-01-01

    Full Text Available Background: Insulin-like growth factor (IGF, transforming growth factor-beta1 (TGF-β1, and vascular endothelial growth factor (VEGF are commonly studied growth factors, but little data are available on the immunohistochemical expression of these factors in parathyroid lesions. Materials and Methods: Tissue specimens from 36 patients with primary hyperparathyroidism (P-HPT (26 adenomas and 10 primary hyperplasias were examined. Normal parathyroid tissue adjacent to the adenoma or area of hyperplasia was used as control tissue. Preoperative laboratory testing [serum Ca and P, creatinine and parathormone levels (PTH] which led to the diagnosis of P-HPT had been performed, the size and weight of the parathyroid glands measured, and postoperative serum PTH levels determined. Paraffin-embedded parathyroid tissue specimens were stained with antibodies to IGF-1, VEGF, and TGF-β1 using standard immunohistochemical procedures. Results: IGF-1 immunoreactivity was seen in 50% of hyperplasia and in 46% of adenoma samples, but in 87% of normal parathyroid tissue in the vicinity of the adenomas (P = 0.005. TGF-β1 immunoreactivity was observed in 90% of hyperplasia, in 92% of adenoma samples, and in 95% of normal tissues around adenomas. VEGF immunoreactivity was observed in 70% of hyperplastic and 65% of adenomatous tissues, as well as in 54% of normal tissues in the vicinity of the adenoma. No significant differences in the expression of IGF-1, TGF-β1, and VEGF were observed between primary adenomas compared to hyperplasia samples (P > 0.05. Conclusions: Parathyroid tissue is clearly a site for production of IGF-1, TGF-β1, and VEGF. IGF-1 receptor activity was higher in normal parathyroid tissue compared to hyperplastic and adenomatous tissue.

  9. Quinones are growth factors for the human gut microbiota.

    Science.gov (United States)

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  10. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  11. Factors responsible for the growth of small business

    Directory of Open Access Journals (Sweden)

    JA Döckel

    2015-01-01

    Full Text Available Entrepreneurial conduct holds the key to economic growth. Thus those business that show growth and development are considered entrepreneurial, implying that SMME policy initiatives should focus on businesses with growth potential, and not the small business sector as a whole.  The success of a small business seems to depend on the intentions of the owner, together with factors associated with the ability of, and opportunity for, the specific business to grow.  The aim of this article is to make use of a multiple linear regression model to determine the variables that impact positively on business growth.  In addition to demand factors, it was established that smaller and younger businesses are the ones that grow faster. A successful business also shows a positive correlation between business management skills and entrepreneurial conduct.

  12. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  13. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Science.gov (United States)

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  14. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  15. Insulin-like growth factor-I and the liver

    DEFF Research Database (Denmark)

    Bonefeld, Karen; Møller, Søren

    2011-01-01

    Insulin-like growth factors (IGFs) play an essential role in growth and development, as well as in the overall cellular regulation and metabolism in the human body. In chronic liver disease, IGF levels are decreased, and the circulating levels correlate to the extent of hepatocellular dysfunction...... consequences in cirrhosis are only partly understood. Disruption of the growth hormone (GH)-IGF-I axis seems to be closely associated with the development of liver disease, and treatment with recombinant human IGF (rhIGF)-I has been shown to halt, and even reverse, the fibrotic degeneration. IGF-I in itself...

  16. ANALYSIS OF FACTORS WHICH AFFECTING THE ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Suparna Wijaya

    2017-03-01

    Full Text Available High economic growth and sustainable process are main conditions for sustainability of economic country development. They are also become measures of the success of the country's economy. Factors which tested in this study are economic and non-economic factors which impacting economic development. This study has a goal to explain the factors that influence on macroeconomic Indonesia. It used linear regression modeling approach. The analysis result showed that Tax Amnesty, Exchange Rate, Inflation, and interest rate, they jointly can bring effect which amounted to 77.6% on economic growth whereas the remaining 22.4% is the influenced by other variables which not observed in this study. Keywords: tax amnesty, exchange rates, inflation, SBI and economic growth

  17. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  18. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  19. Brain-derived neurotrophic factor enhances conditioned taste aversion retention.

    Science.gov (United States)

    Castillo, Diana V; Figueroa-Guzmán, Yazmín; Escobar, Martha L

    2006-01-05

    Brain-derived neurotrophic factor (BDNF) has recently emerged as one of the most potent molecular mediators of not only central synaptic plasticity, but also behavioral interactions between an organism and its environment. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the IC, previous to CTA training, enhances the retention of this task. Recently, we found that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the Bla-IC projection of adult rats in vivo. In this work, we present experimental data showing that intracortical microinfusion of BDNF previous to CTA training enhances the retention of this task. These findings support the concept that BDNF may contribute to memory-related functions performed by a neocortical area, playing a critical role in long-term synaptic plasticity.

  20. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  1. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    Science.gov (United States)

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end-stage PAD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Insulin-like growth factor I (IGF-1 Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Directory of Open Access Journals (Sweden)

    Werner Schlegel

    Full Text Available Human insulin-like growth factor 1 Ec (IGF-1Ec, also called mechano growth factor (MGF, is a splice variant of insulin-like growth factor 1 (IGF-1, which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  3. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Science.gov (United States)

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  4. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  5. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  6. Cow placenta extract promotes murine hair growth through enhancing the insulin - like growth factor-1

    Directory of Open Access Journals (Sweden)

    Dongliang Zhang

    2011-01-01

    Full Text Available Background: Hair loss is seen as an irreversible process. Most research concentrates on how to elongate the anagen, reduce the negative factors of obstructing hair growth and improve the hair number and size. Aim: In our experiment, we tried to prove that the cow placenta extract can promote hair growth by elongating hair shaft and increasing hair follicle number. Materials and Methods: Cow placenta extract (CPE, water and minoxidil applied separately on the back of depilated B57CL/6 mice for the case, negative and positive control respectively. We checked the proliferation of cells which are resident in hair sheath, and the expression of a few growth factors which stimulate hair growth. Results: Result shows that placenta extract more efficiently accelerates cell division and growth factor expression, by raising the insulin-like growth factor (IGF-1 mRNA and protein level to increase HF size and hair length. Conclusions: The extract is not a purified product; so, it is less effective than minoxidil, which is approved by the US FDA for the treatment of male pattern baldness. If refinement is done, the placenta extract would be a good candidate medicine for hair loss.

  7. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line

    OpenAIRE

    Toulouse, André; Collins, Grace C.; Sullivan, Aideen M.

    2012-01-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on ne...

  8. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    Science.gov (United States)

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool

  9. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    Science.gov (United States)

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    Science.gov (United States)

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  11. Growth of Logarithmic Derivatives and Their Applications in Complex Differential Equations

    Directory of Open Access Journals (Sweden)

    Zinelâabidine Latreuch

    2014-01-01

    of their logarithmic derivatives. We also give an estimate of the growth of the quotient of two differential polynomials generated by solutions of the equation f″+A(zf′+B(zf=0, where A(z and B(z are entire functions.

  12. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well...

  13. Formation and growth of sulfur derived particles in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Wexler, A; Hillamo, R [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Aerosol particles modify the Earth`s radiation balance directly by scattering and absorbing solar radiation, and indirectly via their influence on cloud properties. The indirect climate forcing due to aerosols probably dominates over that of the direct forcing over global scale, and is induced primary by sulfate originating from both natural and anthropogenic sources. A large portion of the global sulfur flux is due to dimethylsulfide (DMS) released from the ocean surface, where it is produced in large quantities by various biogenic processes. DMS is believed to be the primary particulate precursor over vast oceanic regions, hence having a potential to modify aerosol climatic effects over a major portion of the Earth`s surface. The connection between marine DMS emissions and the resulting climate forcing involves several steps still not properly quantified. Among the open questions related to this system, perhaps the most critical ones are when and where the DMS-derived particles are formed in the atmosphere, and how these particles grow into sizes where they are able to alter cloud properties, such as cloud albedos, lifetimes and precipitation efficiencies, that are relevant to climate. In this work, production and growth of sulfur particles has been examined using a simple, yet realistic model that simulates the processes taking place in a remote marine boundary layer. The specific questions examined include: (1) what is the role of boundary layer dynamics in affecting the condensation nuclei (CN) and cloud condensation nuclei (CCN) production in this system, (2) what are the factors controlling the growth of fresh CN into CCN, and (3) how does the presence of boundary layer clouds interact with CN/CCN production

  14. Formation and growth of sulfur derived particles in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Wexler, A.; Hillamo, R. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Aerosol particles modify the Earth`s radiation balance directly by scattering and absorbing solar radiation, and indirectly via their influence on cloud properties. The indirect climate forcing due to aerosols probably dominates over that of the direct forcing over global scale, and is induced primary by sulfate originating from both natural and anthropogenic sources. A large portion of the global sulfur flux is due to dimethylsulfide (DMS) released from the ocean surface, where it is produced in large quantities by various biogenic processes. DMS is believed to be the primary particulate precursor over vast oceanic regions, hence having a potential to modify aerosol climatic effects over a major portion of the Earth`s surface. The connection between marine DMS emissions and the resulting climate forcing involves several steps still not properly quantified. Among the open questions related to this system, perhaps the most critical ones are when and where the DMS-derived particles are formed in the atmosphere, and how these particles grow into sizes where they are able to alter cloud properties, such as cloud albedos, lifetimes and precipitation efficiencies, that are relevant to climate. In this work, production and growth of sulfur particles has been examined using a simple, yet realistic model that simulates the processes taking place in a remote marine boundary layer. The specific questions examined include: (1) what is the role of boundary layer dynamics in affecting the condensation nuclei (CN) and cloud condensation nuclei (CCN) production in this system, (2) what are the factors controlling the growth of fresh CN into CCN, and (3) how does the presence of boundary layer clouds interact with CN/CCN production

  15. Fetal effects of epidermal growth factor deficiency induced in rats by autoantibodies against epidermal growth factor

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Jørgensen, P E

    1995-01-01

    , the amount of surfactant protein-A was decreased, suggesting a delayed lung maturation. The offspring of EGF-immunized rats had dry and wrinkled skin. The skin was thin and the hair follicles were immature. This suggests a role for EGF in the growth and development of the skin. The liver/body weight ratio...

  16. Growth/differentiation factor-15: prostate cancer suppressor or promoter?

    Czech Academy of Sciences Publication Activity Database

    Vaňhara, P.; Hampl, A.; Kozubík, Alois; Souček, Karel

    2012-01-01

    Roč. 15, č. 4 (2012), s. 320-328 ISSN 1365-7852 R&D Projects: GA MZd NS9600; GA MZd NS9956 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : MACROPHAGE-INHIBITORY CYTOKINE-1 * GROWTH-DIFFERENTIATION FACTOR-15 * TGF-BETA SUPERFAMILY Subject RIV: BO - Biophysics Impact factor: 2.811, year: 2012

  17. Neoplastic progression of rat tracheal epithelial cells involves resistance to transforming growth factor beta

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Thomassen, D.G.

    1988-01-01

    Primary, transformed, and tumor-derived rat tracheal epithelial (RTE) cells were grown in serum-free medium containing 0 to 300 pg/mL transforming growth factor beta (TGFβ) markedly inhibited the growth of primary RTE cells with a 50% drop in the efficiency of colony formation seen at TGFβ concentrations between 10 and 30 pg/ mL. The effect of TGFβ on preneoplastic RTE cells was similar to the effect on normal primary RTE cells. Cell lines established from tumors produced by inoculation of transformed RTE cells into nude mice were relatively resistant to -TGFβ-induced growth inhibition. Resistance to TGFβ-induced growth inhibition, therefore, appears to be a late event in the development of neoplasia. (author)

  18. Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function

    International Nuclear Information System (INIS)

    Marshman, Emma; Streuli, Charles H

    2002-01-01

    Insulin-like growth factor (IGF)-mediated proliferation and survival are essential for normal development in the mammary gland during puberty and pregnancy. IGFs interact with IGF-binding proteins and regulate their function. The present review focuses on the role of IGFs and IGF-binding proteins in the mammary gland and describes how modulation of their actions occurs by association with hormones, other growth factors and the extracellular matrix. The review will also highlight the involvement of the IGF axis in breast cancer

  19. More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Hu, Ming-Chuan; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chu, Chun-Hsien; Lin, Shih-Hsien; Li, Chia-Ling; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Huang, San-Yuan; Tzeng, Nian-Sheng; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2017-11-01

    Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (pdisorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Factors affecting growth and pigmentation of Penicillium caseifulvum

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Haasum, I.; Steenstrup, L.D.

    2002-01-01

    Color formation, metabolite production and growth of Penicillium caseifulvum were studied in order to elucidate factors contributing to. yellow discoloration of Blue Cheese caused by the mold. A screening experiment was set up to study the effect of pH, concentration of salt (NaCl), P, K, N, S, Mg...