WorldWideScience

Sample records for derived embryoid bodies

  1. File list: Pol.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.Embryoid_Bodies mm9 RNA polymerase Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.20.AllAg.Embryoid_Bodies.bed ...

  2. File list: DNS.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.Embryoid_Bodies.bed ...

  3. File list: Pol.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.Embryoid_Bodies mm9 RNA polymerase Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.50.AllAg.Embryoid_Bodies.bed ...

  4. File list: Pol.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.Embryoid_Bodies mm9 RNA polymerase Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.05.AllAg.Embryoid_Bodies.bed ...

  5. File list: DNS.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.Embryoid_Bodies.bed ...

  6. File list: DNS.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.Embryoid_Bodies.bed ...

  7. File list: DNS.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.Embryoid_Bodies mm9 DNase-seq Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.Embryoid_Bodies.bed ...

  8. File list: Pol.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.Embryoid_Bodies mm9 RNA polymerase Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.10.AllAg.Embryoid_Bodies.bed ...

  9. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    Science.gov (United States)

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. File list: Unc.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.Embryoid_Bodies mm9 Unclassified Pluripotent stem cell Embryoid Bodie...353849,SRX353851,SRX353852,SRX353850 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.Embryoid_Bodies.bed ...

  11. File list: His.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.Embryoid_Bodies mm9 Histone Pluripotent stem cell Embryoid Bodies ...SRX385956,SRX385955,SRX385958,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.AllAg.Embryoid_Bodies.bed ...

  12. File list: His.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.Embryoid_Bodies mm9 Histone Pluripotent stem cell Embryoid Bodies ...SRX385956,SRX385955,SRX385958,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.Embryoid_Bodies.bed ...

  13. File list: His.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.Embryoid_Bodies mm9 Histone Pluripotent stem cell Embryoid Bodies ...SRX385955,SRX385956,SRX385958,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.AllAg.Embryoid_Bodies.bed ...

  14. File list: Unc.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.AllAg.Embryoid_Bodies mm9 Unclassified Pluripotent stem cell Embryoid Bodie...203366,SRX203359,SRX353849,SRX353851 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.AllAg.Embryoid_Bodies.bed ...

  15. File list: Unc.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.Embryoid_Bodies mm9 Unclassified Pluripotent stem cell Embryoid Bodie...353851,SRX353849,SRX353852,SRX353850 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.Embryoid_Bodies.bed ...

  16. File list: Unc.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.Embryoid_Bodies mm9 Unclassified Pluripotent stem cell Embryoid Bodie...353852,SRX353850,SRX203366,SRX203357 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.Embryoid_Bodies.bed ...

  17. File list: ALL.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.Embryoid_Bodies mm9 All antigens Pluripotent stem cell Embryoid Bodie...X385956,SRX385955,SRX385958,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.05.AllAg.Embryoid_Bodies.bed ...

  18. File list: ALL.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.Embryoid_Bodies mm9 All antigens Pluripotent stem cell Embryoid Bodie...X385958,SRX385956,SRX385955,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.10.AllAg.Embryoid_Bodies.bed ...

  19. File list: ALL.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.Embryoid_Bodies mm9 All antigens Pluripotent stem cell Embryoid Bodie...X385956,SRX385955,SRX385958,SRX385957 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.50.AllAg.Embryoid_Bodies.bed ...

  20. File list: ALL.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.Embryoid_Bodies mm9 All antigens Pluripotent stem cell Embryoid Bodie...X385956,SRX385958,SRX385957,SRX353850 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.Embryoid_Bodies.bed ...

  1. File list: NoD.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.Embryoid_Bodies mm9 No description Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.10.AllAg.Embryoid_Bodies.bed ...

  2. File list: NoD.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.Embryoid_Bodies mm9 No description Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.Embryoid_Bodies.bed ...

  3. File list: NoD.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.Embryoid_Bodies mm9 No description Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.05.AllAg.Embryoid_Bodies.bed ...

  4. File list: NoD.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.Embryoid_Bodies mm9 No description Pluripotent stem cell Embryoid Bodie...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.20.AllAg.Embryoid_Bodies.bed ...

  5. File list: InP.PSC.05.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.Embryoid_Bodies mm9 Input control Pluripotent stem cell Embryoid Bodie...s SRX212083,SRX385954,SRX109458,SRX109456,SRX109460,SRX026526 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.05.AllAg.Embryoid_Bodies.bed ...

  6. File list: InP.PSC.10.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.Embryoid_Bodies mm9 Input control Pluripotent stem cell Embryoid Bodie...s SRX385954,SRX212083,SRX109456,SRX109460,SRX109458,SRX026526 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.10.AllAg.Embryoid_Bodies.bed ...

  7. File list: InP.PSC.50.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.Embryoid_Bodies mm9 Input control Pluripotent stem cell Embryoid Bodie...s SRX109460,SRX109458,SRX212083,SRX109456,SRX385954,SRX026526 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.50.AllAg.Embryoid_Bodies.bed ...

  8. File list: InP.PSC.20.AllAg.Embryoid_Bodies [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.20.AllAg.Embryoid_Bodies mm9 Input control Pluripotent stem cell Embryoid B...odies SRX109460,SRX109458,SRX212083,SRX109456,SRX385954,SRX026526 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.20.AllAg.Embryoid_Bodies.bed ...

  9. ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dominic C Y Phua

    Full Text Available The Zonula Occludens proteins ZO-1 and ZO-2 are cell-cell junction-associated adaptor proteins that are essential for the structural and regulatory functions of tight junctions in epithelial cells and their absence leads to early embryonic lethality in mouse models. Here, we use the embryoid body, an in vitro peri-implantation mouse embryogenesis model, to elucidate and dissect the roles ZO-1 and ZO-2 play in epithelial morphogenesis and de novo tight junction assembly. Through the generation of individual or combined ZO-1 and ZO-2 null embryoid bodies, we show that their dual deletion prevents tight junction formation, resulting in the disorganization and compromised barrier function of embryoid body epithelial layers. The disorganization is associated with poor microvilli development, fragmented basement membrane deposition and impaired cavity formation, all of which are key epithelial tissue morphogenetic processes. Expression of Podocalyxin, which positively regulates the formation of microvilli and the apical membrane, is repressed in embryoid bodies lacking both ZO-1 and ZO-2 and this correlates with an aberrant submembranous localization of Ezrin. The null embryoid bodies thus give an insight into how the two ZO proteins influence early mouse embryogenesis and possible mechanisms underlying the embryonic lethal phenotype.

  10. Physical passaging of embryoid bodies generated from human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Mi-Young Son

    Full Text Available Spherical three-dimensional cell aggregates called embryoid bodies (EBs, have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs. Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.

  11. Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies

    DEFF Research Database (Denmark)

    Stary, Martina; Schneider, Mikael; Sheikh, Søren P

    2006-01-01

    Cardiomyogenesis is influenced by factors secreted by anterior-lateral and extra-embryonic endoderm. Differentiation of embryonic stem cells in embryoid bodies allows to study the influence of growth factors on cardiomyogenesis. By these means SPARC was identified as a new factor enhancing cardio...

  12. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    Science.gov (United States)

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario

    Directory of Open Access Journals (Sweden)

    Diaz JA

    2012-01-01

    Full Text Available Jairo A Diaz, Mauricio F MurilloDepartment of Pathology, Hospital Departmental Villavicencio, Hospital Departmental Granada, Medicine School, University Cooperative of Colombia, Villavicencio, Meta, ColombiaAbstract: Cancer is, by definition, the uncontrolled growth of autonomous cells that eventually destroy adjacent tissues and generate architectural disorder. However, this concept cannot be totally true. In three well documented studies, we have demonstrated that cancer tissues produce order zones that evolve over time and generate embryoid body structures in a space-time interval. The authors decided to revise the macroscopic and microscopic material in well-developed malignant tumors in which embryoid bodies were identified to determine the phenotype characterization that serves as a guideline for easy recognition. The factors responsible for this morphogenesis are physical, bioelectric, and magnetic susceptibilities produced by crystals that act as molecular designers for the topographic gradients that guide the surrounding silhouette and establish tissue head-tail positional identities. The structures are located in amniotic-like cavities and show characteristic somite-like embryologic segmentation. Immunophenotypic study has demonstrated exclusion factor positional identity in relation to enolase-immunopositive expression of embryoid body and human chorionic gonadotropin immunopositivity exclusion factor expression in the surrounding tissues. The significance of these observations is that they can also be predicted by experimental image data collected by the Large Hadron Collider (LHC accelerator at the European Organization for Nuclear Research, in which two-beam subatomic collision particles in the resulting debris show hyperorder domains similar to those identified by us in intercellular cancer collisions. Our findings suggest that we are dealing with true reverse biologic system information in an activated collective cancer stem cell

  14. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation.

    Science.gov (United States)

    Moore, Robert; Cai, Kathy Q; Escudero, Diogo O; Xu, Xiang-Xi

    2009-09-01

    The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self-organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild-type or E-cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time-lapse video microscopy and confirmed by immunostaining. When undifferentiated wild-type and E-cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild-type cells surrounded by loosely associated E-cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm-like cells sorted to the surface to form a primitive endoderm layer irrespective of cell-adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. (c) 2009 Wiley-Liss, Inc.

  15. Effects of hanging drop culture conditions on embryoid body formation and neuronal cell differentiation using mouse embryonic stem cells: optimization of culture conditions for the formation of well-controlled embryoid bodies.

    Science.gov (United States)

    Ohnuki, Yoshitsugu; Kurosawa, Hiroshi

    2013-05-01

    Hanging drop (HD) cultures were carried out with a drop volume of either 20 or 30 μl. An incubation period of 3 days was determined to be appropriate for the formation of well-controlled embryoid bodies (EBs), and the initial cell number was identified as the most critical factor in the growth and neuronal cell differentiation of EBs. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. ROCK inhibitor is not required for embryoid body formation from singularized human embryonic stem cells.

    Science.gov (United States)

    Pettinato, Giuseppe; Vanden Berg-Foels, Wendy S; Zhang, Ning; Wen, Xuejun

    2014-01-01

    We report a technology to form human embryoid bodies (hEBs) from singularized human embryonic stem cells (hESCs) without the use of the p160 rho-associated coiled-coil kinase inhibitor (ROCKi) or centrifugation (spin). hEB formation was tested under four conditions: +ROCKi/+spin, +ROCKi/-spin, -ROCKi/+spin, and -ROCKi/-spin. Cell suspensions of BG01V/hOG and H9 hESC lines were pipetted into non-adherent hydrogel substrates containing defined microwell arrays. hEBs of consistent size and spherical geometry can be formed in each of the four conditions, including the -ROCKi/-spin condition. The hEBs formed under the -ROCKi/-spin condition differentiated to develop the three embryonic germ layers and tissues derived from each of the germ layers. This simplified hEB production technique offers homogeneity in hEB size and shape to support synchronous differentiation, elimination of the ROCKi xeno-factor and rate-limiting centrifugation treatment, and low-cost scalability, which will directly support automated, large-scale production of hEBs and hESC-derived cells needed for clinical, research, or therapeutic applications.

  17. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation

    Directory of Open Access Journals (Sweden)

    Díaz JA

    2011-05-01

    Full Text Available Jairo A Díaz, Mauricio F Murillo, Alvaro BarreroDepartment of Pathology, Hospital Departmental Villavicencio, Hospital Departmental Granada, Medicine School, University Cooperative of Colombia, Villavicencio, Meta, ColombiaAbstract: We have documented self-assembled geometric triangular chiral crystal complexes (GTCHC and a framework of collagen vascular invariant geometric attractors in cancer tissues. This article shows how this system evolves in time. These structures are incorporated together and evolve in different ways. When the geometric core is stable, and the tissue architecture collapses, fragmented components emerge, which reveal a hidden interior identifying how each molecule is reassembled into the original mold, using one common connection, ie, a fractal self-similarity that guided the system from the beginning. GTCHC complexes generate ejected crystal comet tail effects and produce strange helicity states that arise in the form of spin domain interactions. As the crystal growth vibration stage progresses, biofractal echo images converge in a master-built construction of embryoid bodies with enolase-selective immunopositivity in relation to clusters of triangular chiral cell organization. In our electro-optic collision model, we were able to predict and replicate all the characteristics of this complex geometry that connects a physical phenomenon with the signal patterns that generate biologic chaos. Intrinsically, fractal geometry makes spatial correction errors embrace the chaotic system in a way that permits new structures to emerge, and as a result, an ordered self-assembly of embryoid bodies with neural differentiation at the final stage of cancer development is a predictable process. We hope that further investigation of these structures will lead not only to a new way of thinking about physics and biology, but also to a rewarding area in cancer research.Keywords: embryoid bodies, cancer, electro-optic collision model

  18. Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum.

    Science.gov (United States)

    Jung, Kwang Bo; Son, Ye Seul; Lee, Hana; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2017-07-25

    Cardiomyocyte (CM) differentiation techniques for generating adult-like mature CMs remain imperfect, and the plausible underlying mechanisms remain unclear; however, there are a number of current protocols available. Here, to explore the mechanisms controlling cardiac differentiation, we analyzed the genome-wide transcription dynamics occurring during the differentiation of human pluripotent stem cells (hPSCs) into CMs using embryoid body (EB) formation. We optimized and updated the protocol to efficiently generate contracting CMs from hPSCs by adding fetal bovine serum (FBS) as a medium supplement, which could have a significant impact on the efficiency of cardiac differentiation. To identify genes, biological processes, and pathways involved in the cardiac differentiation of hPSCs, integrative and comparative analyses of the transcriptome profiles of differentiated CMs from hPSCs and of control CMs of the adult human heart (CM-AHH) were performed using gene ontology, functional annotation clustering, and pathway analyses. Several genes commonly regulated in the differentiated CMs and CM-AHH were enriched in pathways related to cell cycle and nucleotide metabolism. Strikingly, we found that current differentiation protocols did not promote sufficient expression of genes involved in oxidative phosphorylation to differentiate CMs from hPSCs compared to the expression levels in CM-AHH. Therefore, to obtain mature CMs similar to CM-AHH, these deficient pathways in CM differentiation, such as energy-related pathways, must be augmented prior to use for in vitro and in vivo applications. This approach opens up new avenues for facilitating the utilization of hPSC-derived CMs in biomedical research, drug evaluation, and clinical applications for patients with cardiac failure.

  19. Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Lina Dahl

    Full Text Available The molecular mechanisms regulating the expansion of the hematopoietic system including hematopoietic stem cells (HSCs in the fetal liver during embryonic development are largely unknown. The LIM-homeobox gene Lhx2 is a candidate regulator of fetal hematopoiesis since it is expressed in the fetal liver and Lhx2(-/- mice die in utero due to severe anemia. Moreover, expression of Lhx2 in embryonic stem (ES cell-derived embryoid bodies (EBs can lead to the generation of HSC-like cell lines. To further define the role of this transcription factor in hematopoietic regulation, we generated ES cell lines that enabled tet-inducible expression of Lhx2. Using this approach we observed that Lhx2 expression synergises with specific signalling pathways, resulting in increased frequency of colony forming cells in developing EB cells. The increase in growth factor-responsive progenitor cells directly correlates to the efficiency in generating HSC-like cell lines, suggesting that Lhx2 expression induce self-renewal of a distinct multipotential hematopoietic progenitor cell in EBs. Signalling via the c-kit tyrosine kinase receptor and the gp130 signal transducer by IL-6 is necessary and sufficient for the Lhx2 induced self-renewal. While inducing self-renewal of multipotential progenitor cells, expression of Lhx2 inhibited proliferation of primitive erythroid precursor cells and interfered with early ES cell commitment, indicating striking lineage specificity of this effect.

  20. Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Warren C Plaisted

    Full Text Available We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs derived from human embryonic stem cells (hESCs in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs. Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.

  1. RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies.

    Science.gov (United States)

    Mandal, Chanchal; Kim, Sun Hwa; Chai, Jin Choul; Oh, Seon Mi; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.

  2. Establishing clonal cell lines with endothelial-like potential from CD9(hi, SSEA-1(- cells in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Qizhou Lian

    Full Text Available BACKGROUND: Differentiation of embryonic stem cells (ESCs into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs. Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2 = 0.93 while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi, SSEA-1(- while ESCs are CD9(lo, SSEA-1(+. Isolation of CD9(hi, SSEA-1(- cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2 = 0.95 and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells

  3. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    Science.gov (United States)

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  4. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation

    Directory of Open Access Journals (Sweden)

    Huei-Wen Wu

    2016-07-01

    Full Text Available The conventional hanging drop technique is the most widely used method for embryoid body (EB formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  5. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation

    International Nuclear Information System (INIS)

    Díaz, Jairo A; Murillo, Mauricio F; Barrero, Alvaro

    2011-01-01

    We have documented self-assembled geometric triangular chiral crystal complexes (GTCHC) and a framework of collagen vascular invariant geometric attractors in cancer tissues. This article shows how this system evolves in time. These structures are incorporated together and evolve in different ways. When the geometric core is stable, and the tissue architecture collapses, fragmented components emerge, which reveal a hidden interior identifying how each molecule is reassembled into the original mold, using one common connection, ie, a fractal self-similarity that guided the system from the beginning. GTCHC complexes generate ejected crystal comet tail effects and produce strange helicity states that arise in the form of spin domain interactions. As the crystal growth vibration stage progresses, biofractal echo images converge in a master-built construction of embryoid bodies with enolase-selective immunopositivity in relation to clusters of triangular chiral cell organization. In our electro-optic collision model, we were able to predict and replicate all the characteristics of this complex geometry that connects a physical phenomenon with the signal patterns that generate biologic chaos. Intrinsically, fractal geometry makes spatial correction errors embrace the chaotic system in a way that permits new structures to emerge, and as a result, an ordered self-assembly of embryoid bodies with neural differentiation at the final stage of cancer development is a predictable process. We hope that further investigation of these structures will lead not only to a new way of thinking about physics and biology, but also to a rewarding area in cancer research

  6. Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures.

    Science.gov (United States)

    Cerdan, Chantal; Hong, Seok Ho; Bhatia, Mickie

    2007-10-01

    The in vitro aggregation of human embryonic stem cells (hESCs) into clusters termed embryoid bodies (EBs) allows for the spontaneous differentiation of cells representing endoderm, mesoderm, and ectoderm lineages. This stochastic process results however, in the generation of low numbers of differentiated cells, and can be enhanced to some extent by the addition of exogenous growth factors or overexpression of regulatory genes. In the authors' laboratory, the use of hematopoietic cytokines in combination with the mesoderm inducer bone morphogenetic protein-4 (BMP-4) was able to generate up to 90% of CD45(+) hematopoietic cells with colony-forming unit (CFU) activity. This unit describes two protocols that have been successfully applied in the authors' laboratory for the generation of EBs in (1) suspension and (2) hanging drop (HD) cultures from enzymatically digested clumps of undifferentiated hESC colonies.

  7. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Saik-Kia Goh

    Full Text Available Embryonic stem cells (ESCs have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively. Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared. The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications.

  8. Generating size-controlled embryoid bodies using laser direct-write

    International Nuclear Information System (INIS)

    Dias, A D; Corr, D T; Unser, A M; Xie, Y; Chrisey, D B

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to self-renew and differentiate into any specialized cell type. One common method to differentiate ESCs in vitro is through embryoid bodies (EBs), three-dimensional cellular aggregates that spontaneously self-assemble and generally express markers for the three germ layers, endoderm, ectoderm, and mesoderm. It has been previously shown that both EB size and 2D colony size each influence differentiation. We hypothesized that we could control the size of the EB formed by mouse ESCs (mESCs) by using a cell printing method, laser direct-write (LDW), to control both the size of the initial printed colony and the local cell density in printed colonies. After printing mESCs at various printed colony sizes and printing densities, two-way ANOVAs indicated that the EB diameter was influenced by printing density after three days (p = 0.0002), while there was no effect of the printed colony diameter on the EB diameter at the same timepoint (p = 0.74). There was no significant interaction between these two factors. Tukey's honestly significant difference test showed that high-density colonies formed significantly larger EBs, suggesting that printed mESCs quickly aggregate with nearby cells. Thus, EBs can be engineered to a desired size by controlling printing density, which will influence the design of future differentiation studies. Herein, we highlight the capacity of LDW to control the local cell density and colony size independently, at prescribed spatial locations, potentially leading to better stem cell maintenance and directed differentiation. (paper)

  9. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis.

    Science.gov (United States)

    Fuchs, Christiane; Scheinast, Matthias; Pasteiner, Waltraud; Lagger, Sabine; Hofner, Manuela; Hoellrigl, Alexandra; Schultheis, Martina; Weitzer, Georg

    2012-01-01

    Aggregation of embryonic stem cells gives rise to embryoid bodies (EBs) which undergo developmental processes reminiscent of early eutherian embryonic development. Development of the three germ layers suggests that gastrulation takes place. In vivo, gastrulation is a highly ordered process but in EBs only few data support the hypothesis that self-organization of differentiating cells leads to morphology, reminiscent of the early gastrula. Here we demonstrate that a timely implantation-like process is a prerequisite for the breaking of the radial symmetry of suspended EBs. Attached to a surface, EBs develop a bilateral symmetry and presumptive mesodermal cells emerge between the center of the EBs and a horseshoe-shaped ridge of cells. The development of an epithelial sheet of cells on one side of the EBs allows us to define an 'anterior' and a 'posterior' end of the EBs. In the mesodermal area, first cardiomyocytes (CMCs) develop mainly next to this epithelial sheet of cells. Development of twice as many CMCs at the 'left' side of the EBs breaks the bilateral symmetry and suggests that cardiomyogenesis reflects a local or temporal asymmetry in EBs. The asymmetric appearance of CMCs but not the development of mesoderm can be disturbed by ectopic expression of the muscle-specific protein Desmin. Later, the bilateral morphology becomes blurred by an apparently chaotic differentiation of many cell types. The absence of comparable structures in aggregates of cardiovascular progenitor cells isolated from the heart demonstrates that the self-organization of cells during a gastrulation-like process is a unique feature of embryonic stem cells. Copyright © 2011 S. Karger AG, Basel.

  10. Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.

    Science.gov (United States)

    Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras

    2016-12-01

    Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.

  11. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Taru Sharma, G., E-mail: gts553@gmail.com [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India); Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G. [Reproductive Physiology Laboratory, Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P. (India)

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  12. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    International Nuclear Information System (INIS)

    Taru Sharma, G.; Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G.

    2012-01-01

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: ► Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. ► Established 3D microenvironment for ES cells development and differentiation into three germ layers. ► Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to

  13. Effect of perfluorooctane sulfonate on pluripotency and differentiation factors in mouse embryoid bodies

    International Nuclear Information System (INIS)

    Xu, Bo; Ji, Xiaoli; Chen, Xiaojiao; Yao, Mengmeng; Han, Xiumei; Chen, Minjian; Tang, Wei; Xia, Yankai

    2015-01-01

    Perfluorooctane sulfonate (PFOS) poses potential risks to early development, but the molecular mechanisms how PFOS affects embryonic development are still unclear. Mouse embryoid bodies (mEBs) provide ideal models for testing safety or toxicity of chemicals in vitro. In this study, mEBs were exposed to PFOS up to 6 days and then their pluripotency and differentiation markers were evaluated. Our data showed that the mRNA and protein levels of pluripotency markers (Oct4, Sox2, Nanog) in mEBs were significantly increased following exposure to PFOS. Meanwhile, the expressions of miR-134, miR-145, miR-490-3p were decreased accordingly. PFOS reduced the mRNA levels of endodermal markers (Sox17, FOXA2), mesodermal markers (SMA, Brachyury) and ectodermal markers (Nestin, Fgf5) in mEBs. Meanwhile, PFOS increased the mRNA and protein levels of polycomb group (PcG) family members (Cbx4, Cbx7, Ezh2). Overall, our results showed that PFOS could increase the expression levels of pluripotency factors and decrease the differentiation markers

  14. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation

    Directory of Open Access Journals (Sweden)

    Li Wang

    2018-01-01

    Full Text Available Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF signaling pathway in early embryoid bodies (EBs. Gcn5−/− EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.

  15. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  16. Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform.

    Science.gov (United States)

    Sivalingam, Jaichandran; Lam, Alan Tin-Lun; Chen, Hong Yu; Yang, Bin Xia; Chen, Allen Kuan-Liang; Reuveny, Shaul; Loh, Yuin-Han; Oh, Steve Kah-Weng

    2016-08-01

    In vitro generation of red blood cells (RBCs) from human embryonic stem cells and human induced pluripotent stem cells appears to be a promising alternate approach to circumvent shortages in donor-derived blood supplies for clinical applications. Conventional methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) rely on embryoid body (EB) formation and/or coculture with xenogeneic cell lines. However, most current methods for hPSC expansion and EB formation are not amenable for scale-up to levels required for large-scale RBC generation. Moreover, differentiation methods that rely on xenogenic cell lines would face obstacles for future clinical translation. In this study, we report the development of a serum-free and chemically defined microcarrier-based suspension culture platform for scalable hPSC expansion and EB formation. Improved survival and better quality EBs generated with the microcarrier-based method resulted in significantly improved mesoderm induction and, when combined with hematopoietic differentiation, resulted in at least a 6-fold improvement in hematopoietic precursor expansion, potentially culminating in a 80-fold improvement in the yield of RBC generation compared to a conventional EB-based differentiation method. In addition, we report efficient terminal maturation and generation of mature enucleated RBCs using a coculture system that comprised primary human mesenchymal stromal cells. The microcarrier-based platform could prove to be an appealing strategy for future scale-up of hPSC culture, EB generation, and large-scale generation of RBCs under defined and xeno-free conditions.

  17. Influence of substrate composition on human embryonic stem cell differentiation and extracellular matrix production in embryoid bodies.

    Science.gov (United States)

    Laperle, Alex; Masters, Kristyn S; Palecek, Sean P

    2015-01-01

    Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM, which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers.

  18. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    Science.gov (United States)

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  19. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    Science.gov (United States)

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  20. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation

    International Nuclear Information System (INIS)

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Sun, Wei; Chen, Xi; Na, Jie

    2015-01-01

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies. (paper)

  1. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.

    Science.gov (United States)

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Chen, Xi; Na, Jie; Sun, Wei

    2015-11-04

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies.

  2. [Establishment of sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo].

    Science.gov (United States)

    Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong

    2008-10-14

    To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.

  3. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies.

    Science.gov (United States)

    Ng, Elizabeth S; Davis, Richard; Stanley, Edouard G; Elefanty, Andrew G

    2008-01-01

    In order to promote the uniform and reproducible differentiation of human embryonic stem cells (HESCs) in response to exogenously added growth factors, we have developed a method (spin embryoid bodies (EBs)) that uses a recombinant protein-based, animal product-free medium in which HESCs are aggregated by centrifugation to form EBs. In this protocol we describe the formulation of this medium, denoted APEL (Albumin Polyvinylalcohol Essential Lipids), and its use in spin EB differentiation of HESCs. We also describe a more economical variant, BPEL (Bovine Serum Albumin (BSA) Polyvinylalchohol Essential Lipids), in which BSA replaces the recombinant human albumin. The integration of a medium that includes only defined and recombinant components with a defined number of cells to initiate EB formation results in a generally applicable, robust platform for growth factor-directed HESC differentiation.

  4. Y-27632 enhances differentiation of blastocyst like cystic human embryoid bodies to endocrinologically active trophoblast cells on a biomimetic platform

    Directory of Open Access Journals (Sweden)

    Totey Satish M

    2009-09-01

    Full Text Available Abstract Trophoblast differentiation and formation of the placenta are important events linked to post-implantation embryonic development. Models mimicking the biology of trophoblast differentiation in a post-implantation maternal microenvironment are needed for understanding disorders like placental-ischemia or for applications in drug-screening, and would help in overcoming the ethical impasse on using human embryos for such research. Here we attempt to create such a model by using embryoid bodies (EBs and a biomimetic platform composed of a bilayer of fibronectin and gelatin on top of low-melting agarose. Using this model we test the hypothesis that cystic-EBs (day 30 that resemble blastocysts morphologically, are better sources as compared to noncytic EBs (day 10, for functional trophoblast differentiation; and that the Rho kinases inhibitor Y27632 can enhance this differentiation. Non/cytic EBs with/out Y27632 were grown on this platform for 28 days, and screened from secretion and expression of trophoblast and other lineage markers using ECLIA, RT-PCR, and Immunofluorescence. All EBs attached on this surface and rapidly proliferated into hCG and progesterone (P2 secreting functional trophoblast cells. However, the cells derived from cytic-EBs and cytic-EBs+ Y27632 showed the maximum secretion of these hormones and expressed IGF2, supporting our hypothesis. Also Y27632 reduced extraembryonic endoderm and trophoblast lineage differentiation from early noncystic-EBs, whereas, it specifically enhanced the induction of trophoblast and multinucleated syncitiotrophoblast differentiation from late cystic-EBs. In vivo trophoblast differentiation can be replicated in fibronectin based biomaterials, using cytic-EBs and by maneuvering the Rho-ROCK pathways. Response of EBs to a compound may vary temporally, and determination of their right stage is crucial for applications in directed-differentiation or drug-screening.

  5. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Angel [Department of Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States); Tsark, Walter [Department of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Holmes, Kathryn V. [Department of Microbiology, University of Colorado Health Sciences, Aurora, CO 80045 (United States); Shively, John E., E-mail: jshively@coh.org [Department of Immunology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010 (United States)

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  6. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    Science.gov (United States)

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  7. The Key Enzyme of the Sialic Acid Metabolism Is Involved in Embryoid Body Formation and Expression of Marker Genes of Germ Layer Formation

    Directory of Open Access Journals (Sweden)

    Annett Thate

    2013-10-01

    Full Text Available The bi-functional enzyme UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase (GNE is the key enzyme of the sialic acid biosynthesis. Sialic acids are negatively charged nine carbon amino sugars and are found on most glycoproteins and many glycolipids in terminal positions, where they are involved in a variety of biological important molecular interactions. Inactivation of the GNE by homologous recombination results in early embryonic lethality in mice. Here, we report that GNE-deficient embryonic stem cells express less differentiation markers compared to wild-type embryonic stem cells. As a result, GNE-deficient embryonic stem cells fail to form proper embryoid bodies (EB within the first day of culture. However, when culturing these cells in the presence of sialic acids for three days, also GNE-deficient embryonic stem cells form normal EBs. In contrast, when culturing these cells in sialic acid reduced medium, GNE-deficient embryonic stem cells proliferate faster and form larger EBs without any change in the expression of markers of the germ layers.

  8. VEGF and IHH rescue definitive hematopoiesis in Gata-4 and Gata-6-deficient murine embryoid bodies.

    Science.gov (United States)

    Pierre, Monique; Yoshimoto, Momoko; Huang, Lan; Richardson, Matthew; Yoder, Mervin C

    2009-09-01

    Murine embryonic stem cells can be differentiated into embryoid bodies (EBs), which serve as an in vitro model recapitulating many aspects of embryonic yolk sac hematopoiesis. Differentiation of embryonic stem cells deficient in either Gata-4 or Gata-6 results in EBs with disrupted visceral endoderm (VE). While lack of VE has detrimental effects on hematopoiesis in vivo, it is unclear whether lack of VE affects hematopoiesis in EBs. Therefore, we compared Gata-4 null (G4N) and Gata-6 null (G6N) EBs with wild-type EBs to assess their ability to commit to hematopoietic cells. EB VE formation was examined using cell-sorting techniques and analysis visceral endoderm gene expression. Hematopoietic progenitor potential of EBs cultured under various conditions was assessed using colony-forming assays. Definitive erythroid, granulocyte-macrophage, and mixed colonies were significantly reduced in G4N and G6N EBs compared to wild-type EBs. Vascular endothelial growth factor (VEGF) expression and secretion were also reduced in both G4N and G6N EBs, consistent with VE serving as a site of VEGF production. Addition of exogenous VEGF(165), to EB cultures completely rescued definitive colony-forming cells in G4N and G6N EBs. This rescue response could be blocked by addition of soluble Flk-1 Fc to EB cultures. Similarly, addition of exogenous Indian hedgehog to EB cultures also recovers the diminishment in definitive hematopoiesis in a reversible manner. These results suggest that the absence of VE in G4N and G6N EBs does not prevent emergence of definitive progenitors from EBs. However, the decreased level of VEGF and Indian hedgehog production in VE devoid G4N and G6N EBs attenuates definitive hematopoietic progenitor cell expansion.

  9. Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

    OpenAIRE

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C.

    2013-01-01

    This study developed a highly efficient serum-free pluripotent stem cell (PSC) neural induction medium that can induce human PSCs into primitive neural stem cells (NSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. This method of primitive NSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  10. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells.

    Science.gov (United States)

    Yan, Yiping; Shin, Soojung; Jha, Balendu Shekhar; Liu, Qiuyue; Sheng, Jianting; Li, Fuhai; Zhan, Ming; Davis, Janine; Bharti, Kapil; Zeng, Xianmin; Rao, Mahendra; Malik, Nasir; Vemuri, Mohan C

    2013-11-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time-consuming, labor-intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low-efficiency derivation of NSCs. In this study, we report a highly efficient serum-free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time-consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region-specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette-derived and human fetal-derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.

  11. Derivation and characterization of human embryonic stem cell lines from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Huimin Dai; Lei Qian; Qing Tian; Lei Xiao; Xiaojun Tan; Hui Li; Lingjun Rao; Lixiazi He; Lei Bao; Jing Liao; Chun Cui; Zhenyu Zuo; Qiao Li

    2011-01-01

    Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.

  12. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2007-07-01

    Full Text Available Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation.The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists.This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights into cannabinoid system involvement in ES cell

  13. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  14. Lymphoblast-derived integration-free ISRM-CON9 iPS cell line from a 75 year old female

    Directory of Open Access Journals (Sweden)

    Soraia Martins

    2018-01-01

    Full Text Available Human lymphoblast cells were used to generate integration-free induced pluripotent stem cells (iPSCs employing episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The derived iPSCs were defined as pluripotent based on (i expression of pluripotency-associated markers, (ii embryoid body-based differentiation into cell types representative of the three germ layers and (iii the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.95.

  15. Comparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4

    Directory of Open Access Journals (Sweden)

    Nehleh Zarei Fard

    2015-03-01

    Full Text Available Background: Activation of bone morphogenetic protein 4 (BMP4 signaling pathway in embryonic stem (ES cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, we investigated the role of two different exposure times to BMP4 in cell viability, embryoid body (EB, size, and cavitation of ES cells. Methods: Embryonic stem cells (R1 and B1 lines were released from the feeder cell layers and were cultured using EBs protocol by using the hanging drop method and monolayer culture system. The cells were cultured for 5 days with 100 ng/mL BMP4 from the beginning (++BMP4 or after 48 h (+BMP4 of culture and their cell number were counted by trypan blue staining. The data were analyzed using non-parametric two-tailed Mann-Whitney test. P<0.05 was considered as significant. Results: In EB culture protocol, cell number significantly decreased in +BMP4 culture condition with greater cavity size compared to the ++BMP4 condition at day 5 (P=0.009. In contrast, in monolayer culture system, there was no significant difference in the cell number between all groups (P=0.91. Conclusion: The results suggest that short-term exposure of BMP4 is required to promote cavitation in EBs according to lower cell number in +BMP4 condition. Different cell lines showed different behavior in cavitation formation.

  16. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  17. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    Science.gov (United States)

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and

  18. The Construction and Identification of Induced Pluripotent Stem Cells Derived from Acute Myelogenous Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liang-Fang Zhu

    2017-03-01

    Full Text Available Objective: The present study aimed to establish an induced pluripotent stem cell (iPSC line from acute myelogenous leukemia (AML cells in vitro and identify their biological characteristics. Methods: Cells from the AML-infiltrated skin from an M6 patient were infected with a lentivirus carrying OCT4, SOX2, KLF4 and C-MYC to induce iPSCs. The characteristics of the iPSCs were confirmed by alkaline phosphatase (ALP staining. The proliferation ability of iPSCs was detected with a CCK-8 assay. The expression of pluripotency markers was measured by immunostaining, and the expression of stem cell-related genes was detected by qRT-PCR; distortion during the induction process was detected by karyotype analysis; the differentiation potential of iPSCs was determined by embryoid body-formation and teratoma-formation assays. ALP staining confirmed that these cells exhibited positive staining and had the characteristics of iPSCs. Results: The CCK-8 assay showed that the iPSCs had the ability to proliferate. Immunostaining demonstrated that iPSC clones showed positive expression of NANOG, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. qRT-PCR results revealed that the mRNA expression of Nanog, Lin28, Cripto, FOX3, DNMT3b, DPPA2, and DPPA4 significantly increased in iPSCs. Karyotype analysis found no chromosome aberration in the iPSCs. The results of the embryoid body-formation and teratoma-formation assays indicated that the iPSCs had the potential to differentiate into all three germ layers. Conclusion: Our study provided evidence that an iPSC line derived from AML cells was successfully established.

  19. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.

    Science.gov (United States)

    Xie, Jingwei; Willerth, Stephanie M; Li, Xiaoran; Macewan, Matthew R; Rader, Allison; Sakiyama-Elbert, Shelly E; Xia, Younan

    2009-01-01

    Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.

  20. In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; König, Niclas; Abrahamsson, Ninnie

    2014-01-01

    nanoparticles could be effective for stem cell differentiation in vitro. Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells......Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous...... was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells...

  1. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing

    NARCIS (Netherlands)

    Nicolas, J.A.Y.; Hendriksen, P.J.M.; Haan, de L.H.J.; Koning, R.; Rietjens, I.M.C.M.; Bovee, T.F.H.

    2015-01-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on

  2. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  3. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    Science.gov (United States)

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  4. Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS).

    Science.gov (United States)

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    A skin biopsy was obtained from a 25-year-old female patient with autosomal recessive Alport syndrome (ARAS) with the homozygous COL4A3 mutation c.345delG, p.(P166Lfs*37). Dermal fibroblasts were derived and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53shRNA. The generated induced Pluripotent Stem Cell (iPSC) clone AS FiPS1 Ep6F-2 was free of genomically integrated reprogramming genes, had the specific homozygous mutation, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. This iPSC line offers a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm.

    Science.gov (United States)

    Kubo, Atsushi; Kim, Yon Hui; Irion, Stefan; Kasuda, Shogo; Takeuchi, Mitsuaki; Ohashi, Kazuo; Iwano, Masayuki; Dohi, Yoshiko; Saito, Yoshihiko; Snodgrass, Ralph; Keller, Gordon

    2010-02-01

    We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs.

  6. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  7. Generation of Hepatocyte-like Cells from Human Induced Pluripotent Stem (iPS) Cells By Co-culturing Embryoid Body Cells with Liver Non-parenchymal Cell Line TWNT-1

    International Nuclear Information System (INIS)

    Javed, M. S.; Yaqoob, N.; Iwamuro, M.; Kobayashi, N.; Fujiwara, T.

    2014-01-01

    Objective: To generate a homogeneous population of patient-specific hepatocyte-like cells (HLCs) from human iPS cells those show the morphologic and phenotypic properties of primary human hepatocytes. Study Design: An experimental study. Place and Duration of Study: Department of Surgery, Okayama University, Graduate School of Medicine, Japan, from April to December 2011. Methodology: Human iPS cells were generated and maintained on ES qualified matrigel coated plates supplemented with mTeSR medium or alternatively on mitotically inactivated MEF feeder layer in DMEM/F12 medium containing 20% KOSR, 4ng/ml bFGF-2, 1 x 10-4 M 2-mercaptoethanol, 1 mmol/L NEAA, 2mM L-glutamine and 1% penicillin-streptomycin. iPS cells were differentiated to HLCs by sequential culture using a four step differentiation protocol: (I) Generation of embryoid bodies (EBs) in suspension culture; (II) Induction of definitive endoderm (DE) from 2 days old EBs by growth in human activin-A (100 ng/ml) and basic fibroblasts growth factor (bFGF2) (100 ng/ml) on matrigel coated plates; (III) Induction of hepatic progenitors by co-culture with non-parenchymal human hepatic stellate cell line (TWNT-1); and (IV) Maturation by culture in dexamethasone. Characterization was performed by RT-PCR and functional assays. Results: The generated HLCs showed microscopically morphological phenotype of human hepatocytes, expressed liver specific genes (ASGPR, Albumin, AFP, Sox17, Fox A2), secreted human liver-specific proteins such as albumin, synthesized urea and metabolized ammonia. Conclusion: Functional HLCs were generated from human iPS cells, which could be used for autologus hepatocyte transplantation for liver failure and as in vitro model for determining the metabolic and toxicological properties of drug compounds. (author)

  8. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation.

    Science.gov (United States)

    Du, Vicard; Luciani, Nathalie; Richard, Sophie; Mary, Gaëtan; Gay, Cyprien; Mazuel, François; Reffay, Myriam; Menasché, Philippe; Agbulut, Onnik; Wilhelm, Claire

    2017-09-12

    The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body. This magnetic approach to embryoid body formation has no discernible impact on ESC differentiation pathways, as compared to the hanging drop method. It is also the base of the final magnetic device, composed of opposing magnetic attractors in order to form embryoid bodies in situ, then stretch them, and mechanically stimulate them at will. These stretched and cyclic purely mechanical stimulations were sufficient to drive ESCs differentiation towards the mesodermal cardiac pathway.The development of embryoid bodies that are responsive to external stimuli is of great interest in tissue engineering. Here, the authors culture embryonic stem cells with magnetic nanoparticles and show that the presence of magnetic fields could affect their aggregation and differentiation.

  9. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    Science.gov (United States)

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  10. Comparative study of P19 EC stem cell differentiation in between conventional hanging drop and the zebrafish chorion as a bio-derived material.

    Science.gov (United States)

    Dae Seok Na; Lee, Hwang; Sun Uk Kim; Chang Nam Hwang; Sang Ho Lee; Ji Yoon Kang; Jai Kyeong Kim; James Jungho Pak

    2008-07-01

    Various materials including glass and polymers have been widely used for stem cell culture due to their biocompatibility. However, the roles of these materials are fundamentally limited because they cannot realize or imitate the complex biological functions of living tissues, except in very simple cases. Here, the development of a bio-derived material suitable for stem cell culture and improvement of differentiation efficiency to specific cell lineages with no stimulating agents by using a chorion obtained from a fertilized zebrafish egg through the removal of the yolk and embryonic cell mass from the egg is reported. Mouse P19 EC stem cells introduced into the empty chorion form a uniform embryoid body (EB) without addition of any inducing agent. It is demonstrated that the zebrafish chorion with nanopores improves efficiencies greatly in the EB formation, cell proliferation, and lineage-specific differentiations compared to those of the conventional hanging drop culture method.

  11. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  12. Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Pørneki, Ann Dorte Storm; Floridon, Charlotte

    2007-01-01

    embryonic and fetal pancreas anlage in humans. Pdx1(+) cells are found in cell clusters also expressing Serpina1 and FABP1, suggesting activation of intestinal/liver developmental programs. Moreover, Activin B up-regulates Sonic Hedgehog (Shh) and its target Gli1, which during normal development...

  13. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    Science.gov (United States)

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  14. Dickkopf-3, a tissue-derived modulator of local T cell responses

    Directory of Open Access Journals (Sweden)

    Michael eMeister

    2015-02-01

    Full Text Available The adaptive immune system protects organisms from harmful environmental insults. In parallel, regulatory mechanisms control immune responses in order to assure preservation of organ integrity. Yet, molecules involved in the control of T cell responses in peripheral tissues are poorly characterized. Here, we investigated the function of Dickkopf-3 in the modulation of local T cell reactivity. Dkk3 is a secreted, mainly tissue derived protein with highest expression in organs considered as immune privileged such as the eye, embryo, placenta and brain. While T cell development and activation status in naïve Dkk3 deficient mice was comparable to littermate controls, we found that Dkk3 contributes to the immunosuppressive microenvironment that protects transplanted, class-I mismatched embryoid bodies from T cell mediated rejection. Moreover, genetic deletion or antibody mediated neutralization of Dkk3 led to an exacerbated experimental autoimmune encephalomyelitis (EAE. This phenotype was accompanied by a change of T cell polarization displayed by an increase of IFNγ producing T cells within in the CNS. In the wild type situation, Dkk3 expression in the brain was up-regulated during the course of EAE in an IFNγ dependent manner. In turn, Dkk3 decreased IFNγ activity and served as part of a negative feedback mechanism. Thus, our findings suggest that Dkk3 functions as a tissue-derived modulator of local CD4+ and CD8+ T cell responses.

  15. Plutonium fecal and urinary excretion functions: Derivation from a systematic whole-body retention function

    International Nuclear Information System (INIS)

    Sun, C.; Lee, D.

    1999-01-01

    Liver-bile secretion directly influences the content of plutonium in feces. To assess the reliability of plutonium metabolic models and to improve the accuracy of interpreting plutonium fecal data, the authors developed a compartmental model that simulates the metabolism of plutonium in humans. With this model, they can describe the transport of plutonium contaminants in the systemic organs and tissues of the body, including fecal and urine excretions, without using elaborate kinetic information. The parameter values of the models, which describe the translocation rates and recycling of plutonium in the body, can be derived from a multi-term exponential systemic function for whole-body retention. The analytical derivations and algorithms for solving translocation parameter values are established for the model and illustrated by applying them to the biokinetics and bioassay of plutonium. This study describes how to (1) design a physiological model for incorporating liver biliary secretion and for obtaining a fecal-excretion function, (2) develop an analytical solution for identifying the translocation-parameter values incorporating the recycling of plutonium in the body, and (3) derive a set of urinary and fecal excretion-functions from a published systemic whole-body retention function, generally acknowledged to be accurate, as a real and practical example

  16. Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.

    Science.gov (United States)

    Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2010-01-01

    Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.

  17. Body Mass Changes Associated With Hyper-Gravity are Independent of Adrenal Derived Hormones

    Science.gov (United States)

    Wade, Charles E.; Moran, Megan M.; Wang, Tommy J.; Baer, Lisa A.; Yuan, Fang; Fung, Cyra K.; Stein, T. Peter; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Exposure to hyper-gravity results in a number of metabolic changes associated with increases in catecholamines and corticosterone. These changes result in a loss of body and fat mass. To assess the role of hormones derived from the adrenal gland in the changes we studied sham operated (SO) and adrenalectomized (ADX) male rats exposed to hyper-gravity of 2 G for 14 days. Control groups at 1 G were also studied. Urinary epinephrine (EPI) and corticosterone (CORT) were reduced in ADX animals. In response to 2 G there was an increase in urinary EPI and CORT in SO rats, while levels were unchanged in ADX animals. Both groups of animals had similar increases in urinary norepinephrine levels. The reductions of body mass gain in response to 2 G were the same in both groups. The decrease in relative fat mass was greater in ADX. Energy intake and expenditure were not different between groups. In response of returning to 1 G for 24 hours and reexposure to hyper-gravity there were no differences between SO and ADX in the changes of food and water intake, body mass or activity. The changes in metabolism with exposure to hyper-gravity do not appear to require hormones derived from the adrenal gland. The increase in lypolysis and alterations body and fat mass appear to be modulated by sympathetically derived norepinehrine.

  18. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    OpenAIRE

    Hayato Fukusumi; Tomoko Shofuda; Yohei Bamba; Atsuyo Yamamoto; Daisuke Kanematsu; Yukako Handa; Keisuke Okita; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano; Yonehiro Kanemura

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPS...

  19. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  20. Equivalency of Buffalo (Bubalus Bubalis) Embryonic Stem Cells Derived From Fertilized, Parthenogenetic, and Hand-Made Cloned Embryos

    Science.gov (United States)

    Muzaffar, Musharifa; Selokar, Naresh L.; Singh, Karn P.; Zandi, Mohammad; Singh, Manoj K.; Shah, Riaz A.; Chauhan, Manmohan S.; Singla, Suresh K.; Palta, Prabhat

    2012-01-01

    Abstract This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (pcells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production. PMID:22582863

  1. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development

    DEFF Research Database (Denmark)

    Wu, Xunwei; Li, Shaohua; Chrostek-Grashoff, Anna

    2007-01-01

    To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhi......To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane...

  2. Two new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus.

    Science.gov (United States)

    Li, Jing; Wang, Xu-Li; Li, Guang; Xu, Ping-Sheng; Xu, Kang-Ping; Tan, Gui-Shan

    2017-11-01

    Two new isobenzofuranone derivatives erinaceolactones G and H (1 and 2) were isolated from the ethanolic extract of fruiting bodies of Hericium erinaceus. Their structures were characterized on the basis of spectroscopic evidences. Compound 2 was suggested to be racemic by specific rotation, which was resolved by chiral HPLC into enantiomers.

  3. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  4. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells.

    Science.gov (United States)

    Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2018-03-03

    Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.

  5. Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.

    Science.gov (United States)

    D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L

    2014-01-01

    Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.

  6. Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs, generation and characterization of HiPSC-derived neurons and astrocytes.

    Directory of Open Access Journals (Sweden)

    Yohannes Haile

    Full Text Available Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for "patient-matched" cellular therapies in neurodegenerative diseases. In this study, with the objective of establishing reliable tools to study neurodegenerative diseases, we reprogrammed human umbilical vein endothelial cells (HUVECs into iPSCs (HiPSCs. Using a novel and direct approach, HiPSCs were differentiated into cells of central nervous system (CNS lineage, including neuronal, astrocyte and glial cells, with high efficiency. HiPSCs expressed embryonic genes such as nanog, sox2 and Oct-3/4, and formed embryoid bodies that expressed markers of the 3 germ layers. Expression of endothelial-specific genes was not detected in HiPSCs at RNA or protein levels. HiPSC-derived neurons possess similar morphology but significantly longer neurites compared to primary human fetal neurons. These stem cell-derived neurons are susceptible to inflammatory cell-mediated neuronal injury. HiPSC-derived neurons express various amino acids that are important for normal function in the CNS. They have functional receptors for a variety of neurotransmitters such as glutamate and acetylcholine. HiPSC-derived astrocytes respond to ATP and acetylcholine by elevating cytosolic Ca2+ concentrations. In summary, this study presents a novel technique to generate differentiated and functional HiPSC-derived neurons and astrocytes. These cells are appropriate tools for studying the development of the nervous system, the pathophysiology of various neurodegenerative diseases and the development of potential

  7. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  8. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos

    DEFF Research Database (Denmark)

    Dunworth, William P; Cardona-Costa, Jose; Bozkulak, Esra Cagavi

    2014-01-01

    : Our aim was to delineate the role of bone morphogenetic protein (BMP) 2 signaling in lymphatic development. METHODS AND RESULTS: BMP2 signaling negatively regulates the formation of LECs. Developing LECs lack any detectable BMP signaling activity in both zebrafish and mouse embryos, and excess BMP2...... signaling in zebrafish embryos and mouse embryonic stem cell-derived embryoid bodies substantially decrease the emergence of LECs. Mechanistically, BMP2 signaling induces expression of miR-31 and miR-181a in a SMAD-dependent mechanism, which in turn results in attenuated expression of prospero homeobox...

  9. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  10. Pyrrolidin-2-one derivatives may reduce body weight in rats with diet-induced obesity.

    Science.gov (United States)

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Kazek, Grzegorz; Mordyl, Barbara; Głuch-Lutwin, Monika; Zaręba, Paula; Kulig, Katarzyna; Sapa, Jacek

    2016-04-05

    Obesity affects an increasing number of individuals in the human population and significant importance is attached to research leading to the discovery of drug which would effectively reduce weight. The search for new drugs with anorectic activity and acting within the adrenergic system has attracted the interest of researchers. This study concerns the experimental effects on body weight of α2-adrenoceptor antagonists from the group of pyrrolidin-2-one derivatives in rats with diet-induced obesity. The intrinsic activity of the test compounds at the α-adrenoreceptors was tested. Obesity in rats was obtained by the use of fatty diet and then the influence of the test compounds on body weight, food and water intakes, lipid and glucose profiles and glycerol and cortisol levels were determinated. The effects of the compounds on locomotor activity, body temperature, blood pressure and heart rate were tested. One of the test compounds (1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one) reduces the animal's body weight and the amount of peritoneal adipose tissue during chronic administration, at the same time it does not cause significant adverse effects on the cardiovascular system. This compound decreases temperature and elevates glycerol levels and does not change the locomotor activity and cortisol level at anti-obese dose. Some derivatives of pyrrolidin-2-one that act as antagonists of the α2-adrenoreceptor may reduce body weight. Reducing body weight for 1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one can be associated with decrease in food intake, body fat reduction, reduction of blood glucose, and increased thermogenesis and lipolysis. This effect cannot be the result of changes in spontaneous activity or stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    Science.gov (United States)

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  12. Pharmacokinetics and whole body distribution of elastase derived angiostatin (k1-3) in rats

    NARCIS (Netherlands)

    Molema, Grietje; van Veen-Hof, Ingrid; van Loenen - Weemaes, Anne-miek; Proost, Johannes; de Leij, Lou F.M.H.; Meijer, Dirk K.F.

    2001-01-01

    In the current study, we determined short-term pharmacokinetics and whole body distribution of elastase derived angiostatin [angiostatin((k1-3))] in rats after i.v. injection of radiolabelled protein. Since In gamma-camera studies, no tumor specific angiostatin((k1-3)) accumulation was observed,

  13. Spreading the cult body on YouTube: A case study of "Telephone" derivative videos

    Directory of Open Access Journals (Sweden)

    Agnese Vellar

    2012-03-01

    Full Text Available This case study of spreadability analyzes the Lady Gaga music video "Telephone," which has been appropriated and reworked by YouTube users sharing derivative works online. What properties of the music video stimulate user appropriation? What hybrid audiovisual forms are emerging from its reworking by users? In order to answer these questions, between January and August 2010, I conducted participant observation on Lady Gaga's official social network profiles and collected 70 "Telephone" derivative videos on YouTube. I identified three main categories of video creativity: (1 music (which includes covers, "me singing" videos, music mashups, and choreography; (2 parody (in which YouTube users and comedians humorously imitate Gaga, creating spoofs; and (3 fashion (in which makeup artists and amateurs appropriate the star's image to create makeup and hair tutorials. "Telephone" has become spreadable because it integrates dance music and choreography, costume changes, cinematic references, and product placements that work as textual hooks meaningful to different target markets: live music, dance, chick, and postmodern cinematic cultures. In particular, Gaga is a cult body that explicitly incorporates previous cinematic and pop music icons. Users are stimulated to reenact Gaga's cult body online. On YouTube, spreadability is thus strictly related to the appropriation of cult bodies. Fans, comedians, independent musicians, fashionistas, and pop stars construct their own cult bodies by deliberately borrowing characteristics from previous media icons and reenacting them in online videos in order to fulfill their expressive and professional needs.

  14. Three new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus.

    Science.gov (United States)

    Wang, Xu-Li; Gao, Jie; Li, Jing; Long, Hong-Ping; Xu, Ping-Sheng; Xu, Kang-Ping; Tan, Gui-Shan

    2017-02-01

    Three new isobenzofuranone derivatives erinaceolactones D-F (1-3), together with four known ones (4-7), were isolated from the fruiting bodies of Hericium erinaceus. Their structures were determined on the basis of comprehensive spectroscopic analyses including UV, 1D, 2D NMR and HR-TOF-MS. The absolute configuration of erinaceolactone D (1) and erinaceolactone E (2) were assigned by comparing their specific rotation with those of analogs in literatures. The four known compounds were isomers with each other and were isolated simultaneously for the first time.

  15. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Koehler Karl R

    2011-08-01

    Full Text Available Abstract Background The use of induced pluripotent stem cells (iPSCs for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC neural induction protocol to test whether iPSCs (1 have the competence to give rise to functional neurons with similar efficiency as ESCs and (2 whether the extent of neural differentiation could be altered or enhanced by increased passaging. Results Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs. Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable. Conclusions These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.

  16. Modulation of Hematopoietic Lineage Specification Impacts TREM2 Expression in Microglia-Like Cells Derived From Human Stem Cells.

    Science.gov (United States)

    Amos, Peter J; Fung, Susan; Case, Amanda; Kifelew, Jerusalem; Osnis, Leah; Smith, Carole L; Green, Kevin; Naydenov, Alipi; Aloi, Macarena; Hubbard, Jesse J; Ramakrishnan, Aravind; Garden, Gwenn A; Jayadev, Suman

    2017-01-01

    Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-β. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aβ peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.

  17. Efficient differentiation of steroidogenic and germ-like cells from epigenetically-related iPSCs derived from ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Raymond Anchan

    Full Text Available To explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs, we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs was verified by demonstrating embryonic stem cell (ESC antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs' gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2 than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4 and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1 more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs' epigenetic memory.

  18. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    EBs using BMP2 (bone morphogenic protein 2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold......Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  19. Generation of human-induced pluripotent stem cells from burn patient-derived skin fibroblasts using a non-integrative method.

    Science.gov (United States)

    Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming

    2018-01-01

    Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.

  20. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  1. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    Science.gov (United States)

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Fulltext PDF

    Indian Academy of Sciences (India)

    SEARCHU

    in combination with other cellular factors, influence differentiation ... the culture medium, ES cells spontaneously differentiate into embryoid bodies (EBs) that ..... Isolation of embryonic stem (ES) cells in media supplemented with recombinant ...

  3. A systemized approach to investigate Ca2+ synchronization in clusters of human induced pluripotent stem-cell derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Aled R Jones

    2016-01-01

    Full Text Available Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB versus ‘on plate’ culture on spontaneous activity and regional Ca2+ synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca2+ spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca2+ synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (> 2 weeks. The maintenance of all spontaneously active IPS-CM clusters under ‘on plate’ culture conditions promoted the progressive reduction in regional Ca2+ synchronization and the loss of spontaneous Ca2+ spiking. Raising the extracellular [Ca2+] surrounding these quiescent IPS-CM clusters from approximately 0.4 to 1.8 mM unmasked discrete behaviours typified by either a long-lasting Ca2+ elevation that returned to baseline or b persistent, large-amplitude Ca2+ oscillations around an increased cytoplasmic [Ca2+]. The different responses of IPS-CM to elevated extracellular [Ca2+] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.

  4. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    Science.gov (United States)

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  5. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  6. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    Science.gov (United States)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  7. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    Science.gov (United States)

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  8. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions.

    Directory of Open Access Journals (Sweden)

    Xinjian Qu

    Full Text Available Induced pluripotent stem cells (iPSCs can be generated from somatic cells by ectopic expression of defined transcription factors (TFs. However, the optimal cell type and the easy reprogramming approaches that minimize genetic aberrations of parent cells must be considered before generating the iPSCs. This paper reports a method to generate iPSCs from adult human adipose-derived stem cells (hADSCs without the use of a feeder layer, by ectopic expression of the defined transcription factors OCT4, SOX2, KLF4 and C-MYC using a polycistronic plasmid. The results, based on the expression of pluripotent marker, demonstrated that the iPSCs have the characteristics similar to those of embryonic stem cells (ESCs. The iPSCs differentiated into three embryonic germ layers both in vitro by embryoid body generation and in vivo by teratoma formation after being injected into immunodeficient mice. More importantly, the plasmid DNA does not integrate into the genome of human iPSCs as revealed by Southern blotting experiments. Karyotypic analysis also demonstrated that the reprogramming of hADSCs by the defined factors did not induce chromosomal abnormalities. Therefore, this technology provides a platform for studying the biology of iPSCs without viral vectors, and can hopefully overcome immune rejection and ethical concerns, which are the two important barriers of ESC applications.

  9. Glycogen synthase kinase 3 (GSK3) inhibitor 6-bromoindirubin-3 ...

    African Journals Online (AJOL)

    ... male germline stem cells (mGSCs) under serum- and feeder-free conditions. ... to maintain the pluripotency of human and mouse embryonic stem cells (ESCs). ... capacity of mGSC-induced embryoid bodies (EBs) were examined as well.

  10. Generation of “Off-the-Shelf” Natural Killer Cells from Peripheral Blood Cell-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jieming Zeng

    2017-12-01

    Full Text Available Summary: Current donor cell-dependent strategies can only produce limited “made-to-order” therapeutic natural killer (NK cells for limited patients. To provide unlimited “off-the-shelf” NK cells that serve many recipients, we designed and demonstrated a holistic manufacturing scheme to mass-produce NK cells from induced pluripotent stem cells (iPSCs. Starting with a highly accessible human cell source, peripheral blood cells (PBCs, we derived a good manufacturing practice-compatible iPSC source, PBC-derived iPSCs (PBC-iPSCs for this purpose. Through our original protocol that excludes CD34+ cell enrichment and spin embryoid body formation, high-purity functional and expandable NK cells were generated from PBC-iPSCs. Above all, most of these NK cells expressed no killer cell immunoglobulin-like receptors (KIRs, which renders them unrestricted by recipients' human leukocyte antigen genotypes. Hence, we have established a practical “from blood cell to stem cells and back with less (less KIRs” strategy to generate abundant “universal” NK cells from PBC-iPSCs for a wide range of patients. : To provide unlimited “off-the-shelf” NK cells that serve many recipients, Zeng and colleagues demonstrate a manufacturing scheme to mass-produce NK cells from peripheral blood cell-derived iPSCs (PBC-iPSCs. Through their original protocol, high-purity functional NK cells are generated from PBC-iPSCs. Most of these NK cells express no killer cell immunoglobulin-like receptors, which renders them unrestricted by recipients' HLA genotypes. Keywords: induced pluripotent stem cells, peripheral blood cells, natural killer cells, killer cell immunoglobulin-like receptors, cell therapy, immunotherapy, cancer, cytotoxicity

  11. Mechanical strain stimulates vasculogenesis and expression of angiogenesis guidance molecules of embryonic stem cells through elevation of intracellular calcium, reactive oxygen species and nitric oxide generation.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich

    2016-12-01

    Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    Science.gov (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  13. Generation of integration-free induced pluripotent stem cell lines derived from two patients with X-linked Alport syndrome (XLAS).

    Science.gov (United States)

    Kuebler, Bernd; Aran, Begoña; Miquel-Serra, Laia; Muñoz, Yolanda; Ars, Elisabet; Bullich, Gemma; Furlano, Monica; Torra, Roser; Marti, Merce; Veiga, Anna; Raya, Angel

    2017-12-01

    Skin biopsies were obtained from two male patients with X-linked Alport syndrome (XLAS) with hemizygous COL4A5 mutations in exon 41 or exon 46. Dermal fibroblasts were extracted and reprogrammed by nucleofection with episomal plasmids carrying OCT3/4, SOX2, KLF4 LIN28, L-MYC and p53 shRNA. The generated induced Pluripotent Stem Cell (iPSC) lines AS-FiPS2-Ep6F-28 and AS-FiPS3-Ep6F-9 were free of genomically integrated reprogramming genes, had the specific mutations, a stable karyotype, expressed pluripotency markers and generated embryoid bodies which were differentiated towards the three germ layers in vitro. These iPSC lines offer a useful resource to study Alport syndrome pathomechanisms and drug testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Lymphoblast-derived integration-free iPSC line AD-TREM2-1 from a 67 year-old Alzheimer's disease patient expressing the TREM2 p.R47H variant

    Directory of Open Access Journals (Sweden)

    Soraia Martins

    2018-05-01

    Full Text Available Human lymphoblast cells from a male diagnosed with Alzheimer's disease (AD expressing the TREM2 p.R47H variant were used to generate integration-free induced pluripotent stem cells (iPSCs by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. AD-TREM2–1 was defined as pluripotent based on (i expression of pluripotency-associated markers (ii embryoid body-based differentiation into cell types representative of the three germ layers and (iii the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.947.

  15. Derivation of a pion-rho exchange three-body force and application to the trinucleon system

    International Nuclear Information System (INIS)

    Robillota, M.R.; Isidro Filho, M.P.

    1982-12-01

    The pion-rho exchange three-body force is derived by means of Lagrangians which are approximately invariant under chiral and gauge transformations. The leading contribution to the potential arises from a seagull diagram, which corresponds to forces that are dominantly repulsive and comparable to those due to the exchange of two pions. The qualitative features of the results are analysed by means of plots of the energy of the trinucleon system. (Author) [pt

  16. Derivation of a pion-RHO exchange three-body force and application to the trinucleon system

    International Nuclear Information System (INIS)

    Robilotta, M.R.; Isidro Filho, M.P.

    1984-01-01

    The pion-rho exchange three-body force is derived by means of lagrangians which are approximately invariant under chiral and gauge transformations. The leading contribution to the potential arises from a seagull diagram, which corresponds to forces that are dominantly repulsive and comparable to those due to the exchange of two pions. The qualitative features of our results are analysed by means of plots of the energy of the trinucleon system. (orig.)

  17. Derivation of a configuration space Hamiltonian for heavy atoms: three body potentials

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1981-01-01

    A brief history of the difficulties associated with the derivation of a configuration space Hamiltonian is presented. One of the problems encountered is the definition of the projection operators which must occur. A variational definition is obtained and, with simplifying assumptions, the optimum projection operators are those which project onto Hartree-Fock orbitals. This puts many previously performed numerical calculations on a firm footing. The form of the two body interactions is discussed in the context of the gauge freedom. The Coulomb gauge is the favored one but it is pointed out that it has never been proven to be the best one. Finally a form for the relativistic three election potential is given and the possibility of its observation is discussed

  18. Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives

    Directory of Open Access Journals (Sweden)

    Hristov Jordan

    2012-01-01

    Full Text Available Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.

  19. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer.

    Science.gov (United States)

    Schmidkonz, Christian; Cordes, Michael; Schmidt, Daniela; Bäuerle, Tobias; Goetz, Theresa Ida; Beck, Michael; Prante, Olaf; Cavallaro, Alexander; Uder, Michael; Wullich, Bernd; Goebell, Peter; Kuwert, Torsten; Ritt, Philipp

    2018-05-03

    We aimed at evaluating the role of 68 Ga-PSMA-11 PET/CT-derived metabolic parameters for assessment of whole-body tumor burden and its capability to determine therapeutic response in patients with prostate cancer. A total of 142 patients with biochemical recurrence of prostate cancer underwent PET/CT with [ 68 Ga]Ga-PSMA-HBED-CC ( 68 Ga-PSMA-11). Quantitative assessment of all 641 68 Ga-PSMA-11-positive lesions in the field of view was performed to calculate PSMA-derived parameters, including whole-body PSMA tumor volume (PSMA-TV) and whole-body total lesion PSMA (TL-PSMA), as well as the established SUVmax and SUVmean values. All PET-derived parameters were tested for correlation with serum PSA levels and for association with Gleason scores. In 23 patients who underwent 68 Ga-PSMA-11 PET/CT before and after therapy with either external beam radiation, androgen deprivation, or docetaxel chemotherapy, SUVmax and TL-PSMA were compared to radiographic response assessment of CT images based on RECIST 1.1 criteria and to biochemical response determined by changes of serum PSA levels. PSMA-TV and TL-PSMA demonstrated a significant correlation with serum PSA levels (P PET and biochemical response was 87% (95% confidence interval, 0.66-0.97; Cohen's κ = 0.78; P PET and CT were most likely due to limitations of CT and RECIST in rating small lymph nodes as metastases, as well as bone involvement, which was sometimes not detectable in CT. 68 Ga-PSMA-11 PET/CT-derived metabolic tumor parameters showed promising results for evaluation of treatment response. Especially, TL-PSMA demonstrated higher agreement rates with biochemical response compared to SUVmax. Larger, ideally prospective trials are needed to help to reveal the full potential of metabolic parameters derived from PET imaging with 68 Ga-PSMA-11.

  20. Group theoretic derivation of angular functions for the non-relativistic A-body problem in the K-harmonics approach

    International Nuclear Information System (INIS)

    Alcaras, J.A.C.; Ferreira, J.L.

    1975-01-01

    A derivation of an angular basis for the A-body problem, suitable for the K-harmonics method, is presented. Those angular functions are obtained from homogeneous and harmonic polynomials, which are completely specified by labels associated to eigenvalues of the Casimir invariants of subgroups of the 3(A-1)-dimensional orthogonal group, among them, the total angular momentum and its z-projection [pt

  1. P-THER-20: Biliary derivation by endoscopic ultrasound from gastric body in a patient with subtotal gastrectomy by gastric cancer

    Science.gov (United States)

    Arango, L.; Diaz, C.

    2017-01-01

    We present a biliary derivation from the gastric body in a patient with subtotal gastrectomy and anastomosis type Billroth I. The patient had a tumor obstruction of distal coledoco. The patient was with ictericia and the examinations indicated obstructive patron. A gastric transluminal derivation is made to common hepatic. Steps are as given below: Endosonography that locates the tumor obstruction of the coledoco shows the dilated hepatic conduct;Doppler signals are made that discharge vessels in the puncture route;The punction was made in gastric body with endosonographic window direct to the dilated common hepatic conduct. The puncton is performed with Boston Scientific 19-gauge needle;Bile was aspirated and contrast was injected to delineate the anatomy;We pass a hydrophilic guide of W. Cook 0.035 mm and after introduce a cystotomy of 6 Fr;Dilated the track is passed an autoexpandible stent covered of 60/10 mm. Patient evolves satisfactorily.

  2. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  3. Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines I3, I6 and BG01V

    Directory of Open Access Journals (Sweden)

    Rao Mahendra S

    2009-06-01

    Full Text Available Abstract Background A unique and essential property of embryonic stem cells is the ability to self-renew and differentiate into multiple cell lineages. However, the possible differences in proliferation and differentiation capabilities among independently-derived human embryonic stem cells (hESCs are not well known because of insufficient characterization. To address this question, a side-by-side comparison of 1 the ability to maintain an undifferentiated state and to self-renew under standard conditions; 2 the ability to spontaneously differentiate into three primary embryonic germ lineages in differentiating embryoid bodies; and 3 the responses to directed neural differentiation was made between three NIH registered hES cell lines I3 (TE03, I6 (TE06 and BG01V. Lines I3 and I6 possess normal XX and a normal XY karyotype while BG01V is a variant cell line with an abnormal karyotype derived from the karyotypically normal cell line BG01. Results Using immunocytochemistry, flow cytometry, qRT-PCR and MPSS, we found that all three cell lines actively proliferated and expressed similar "stemness" markers including transcription factors POU5F1/Oct3/4 and NANOG, glycolipids SSEA4 and TRA-1-81, and alkaline phosphatase activity. All cell lines differentiated into three embryonic germ lineages in embryoid bodies and into neural cell lineages when cultured in neural differentiation medium. However, a profound variation in colony morphology, growth rate, BrdU incorporation, and relative abundance of gene expression in undifferentiated and differentiated states of the cell lines was observed. Undifferentiated I3 cells grew significantly slower but their differentiation potential was greater than I6 and BG01V. Under the same neural differentiation-promoting conditions, the ability of each cell line to differentiate into neural progenitors varied. Conclusion Our comparative analysis provides further evidence for similarities and differences between three h

  4. Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.

    Science.gov (United States)

    Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios

    2014-12-01

    Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.

  5. Glycoconjugates reveal diversity of human neural stem cells (hNSCs) derived from human induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Kandasamy, Majury; Roll, Lars; Langenstroth, Daniel; Brüstle, Oliver; Faissner, Andreas

    2017-06-01

    Neural stem cells (NSCs) have the ability to self-renew and to differentiate into various cell types of the central nervous system. This potential can be recapitulated by human induced pluripotent stem cells (hiPSCs) in vitro. The differentiation capacity of hiPSCs is characterized by several stages with distinct morphologies and the expression of various marker molecules. We used the monoclonal antibodies (mAbs) 487 LeX , 5750 LeX and 473HD to analyze the expression pattern of particular carbohydrate motifs as potential markers at six differentiation stages of hiPSCs. Mouse ESCs were used as a comparison. At the pluripotent stage, 487 LeX -, 5750 LeX - and 473HD-related glycans were differently expressed. Later, cells of the three germ layers in embryoid bodies (hEBs) and, even after neuralization of hEBs, subpopulations of cells were labeled with these surface antibodies. At the human rosette-stage of NSCs (hR-NSC), LeX- and 473HD-related epitopes showed antibody-specific expression patterns. We also found evidence that these surface antibodies could be used to distinguish the hR-NSCs from the hSR-NSCs stages. Characterization of hNSCs FGF-2/EGF derived from hSR-NSCs revealed that both LeX antibodies and the 473HD antibody labeled subpopulations of hNSCs FGF-2/EGF . Finally, we identified potential LeX carrier molecules that were spatiotemporally regulated in early and late stages of differentiation. Our study provides new insights into the regulation of glycoconjugates during early human stem cell development. The mAbs 487 LeX , 5750 LeX and 473HD are promising tools for identifying distinct stages during neural differentiation.

  6. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Mahmood, Amer

    2009-01-01

    of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1...... was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B......, a member of TGF-ss family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1(+) cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when...

  7. Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves

    Directory of Open Access Journals (Sweden)

    Joseph Minu

    2012-03-01

    Full Text Available Abstract Background The N-terminal proline-rich domain (Zera of the maize storage protein γ-zein, is able to induce the formation of endoplasmic reticulum (ER-derived protein bodies (PBs when fused to proteins of interest. This encapsulation enables a recombinant fused protein to escape from degradation and facilitates its recovery from plant biomass by gradient purification. The aim of the present work was to evaluate if induced PBs encapsulate additional proteins jointly with the recombinant protein. The exhaustive analysis of protein composition of PBs is expected to facilitate a better understanding of PB formation and the optimization of recombinant protein purification approaches from these organelles. Results We analysed the proteome of PBs induced in Nicotiana benthamiana leaves by transient transformation with Zera fused to a fluorescent marker protein (DsRed. Intact PBs with their surrounding ER-membrane were isolated on iodixanol based density gradients and their integrity verified by confocal and electron microscopy. SDS-PAGE analysis of isolated PBs showed that Zera-DsRed accounted for around 85% of PB proteins in term of abundance. Differential extraction of PBs was performed for in-depth analysis of their proteome and structure. Besides Zera-DsRed, 195 additional proteins were identified including a broad range of proteins resident or trafficking through the ER and recruited within the Zera-DsRed polymer. Conclusions This study indicates that Zera-protein fusion is still the major protein component of the new formed organelle in tobacco leaves. The analysis also reveals the presence of an unexpected diversity of proteins in PBs derived from both the insoluble Zera-DsRed polymer formation, including ER-resident and secretory proteins, and a secretory stress response induced most likely by the recombinant protein overloading. Knowledge of PBs protein composition is likely to be useful to optimize downstream purification of

  8. Few-body correlations in many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Marcus

    2015-12-01

    In this thesis, various systems are analyzed in parameter regimes where the few-body aspects are dominant over the many-body behavior. Using the Operator Product Expansion from Quantum Field Theory, exact relations for observables of the electron gas as well as two-dimensional Fermi gases are derived. In addition, properties of both two-dimensional and three-dimensional cold quantum gases at small to moderate degeneracy are determined by means of a diagrammatic virial expansion.

  9. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  10. VGF-derived peptide, TLQP-21, regulates food intake and body weight in Siberian hamsters.

    Science.gov (United States)

    Jethwa, Preeti H; Warner, Amy; Nilaweera, Kanishka N; Brameld, John M; Keyte, John W; Carter, Wayne G; Bolton, Neil; Bruggraber, Michael; Morgan, Peter J; Barrett, Perry; Ebling, Francis J P

    2007-08-01

    The Siberian hamster survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. VGF gene expression is photoperiodically regulated in the hypothalamus with significantly higher expression in lean Siberian hamsters. The aim of this study was to investigate the role of VGF in regulating these seasonal cycles by determining the effects of a VGF-derived peptide (TLQP-21) on food intake and body weight. Acute intracerebroventricular administration of TLQP-21 decreased food intake, and chronic treatment caused a sustained reduction in food intake and body weight and decreased abdominal fat depots. Behavioral analysis revealed that TLQP-21 reduced meal size but not the frequency of feeding bouts, suggesting a primary action on satiety. Hamsters treated with TLQP-21 lost a similar amount of weight as a pair-fed group in which food intake was matched to that of the TLQP-21-treated group. Central or peripheral treatment with TLQP-21 did not produce a significant effect on resting metabolic rate. We conclude that the primary action of TLQP-21 is to decrease food intake rather than increase energy expenditure. TLQP-21 treatment caused a decrease in UCP-1 mRNA in brown adipose tissue, but hypothalamic expression of orexigenic and anorexigenic neuropeptide genes remained unchanged after TLQP-21 treatment, although compensatory increases in NPY and AgRP mRNA were observed in the pair-fed hamsters. The effects of TLQP-21 administration are similar to those in hamsters in short days, suggesting that increased VGF activity may contribute to the hypophagia that underlies the seasonal catabolic state.

  11. A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes

    Directory of Open Access Journals (Sweden)

    Iwamuro Masaya

    2012-12-01

    Full Text Available Abstract Background Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells. Methods Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope. Results At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture

  12. Assessing reprogramming by chimera formation and tetraploid complementation.

    Science.gov (United States)

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi

    2015-01-01

    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  13. Signaling through the PI 3-K, Akt and SGK Pathway in Breast Cancer Progression

    Science.gov (United States)

    2013-12-01

    Moritz A, Li Y, Guo A, Villen J, Wang Y, MacNeill J, et al. Akt-RSK-S6 Kinase 552 Signaling Networks Activated by Oncogenic Receptor Tyrosine Kinases. Sci...polarity by afadin during the formation of embryoid bodies. Genes Cells. 2008;13:79– 570 90. 571 23. Su L, Hattori M, Moriyama M, Murata N, Harazaki M

  14. 76 FR 10591 - Notice of Availability; Recommended Use of Body Weight3∕4 as the Default Method in Derivation of...

    Science.gov (United States)

    2011-02-25

    ... Use of Body Weight[bds3][bdsol][bds4] as the Default Method in Derivation of the Oral Reference Dose... the Oral Reference Dose'' (referred to hereafter as BW 3/4 ). This document was developed as part of... exposure. The reader is encouraged to read the document carefully, however, in order to fully understand...

  15. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    Science.gov (United States)

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P immunological function in response to Bacillus Calmette

  16. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies

    International Nuclear Information System (INIS)

    Racine, Etienne; Flanagan, Eanna E.

    2005-01-01

    We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body's current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived

  17. Embryonic stem cells in pig and cattle

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul; Wolf, Xenia Asbæk; Rasmussen, Mikkel Aabech

    2007-01-01

    Porcine and bovine cell lines derived from the inner cell mass (ICM) or epiblasts of blastocysts have been maintained over extended periods of time and characterized by morphology, identification of some stem cell markers and, in few cases, by production of chimaeric offspring. However, germ line...... transmission in chimaeras has never been obtained. Due to this incomplete characterization of the cell lines, the expression embryonic stem (ES)-like cells is presently used in pig and cattle. The ICM or epiblast can be isolated from the blastocyst by whole blastocyst culture, mechanical isolation......, or immunosurgery, and they are generally cultured on feeder cells. The resulting ES-like cells may be differentiated in vivo by chimaera and teratoma formation or in vitro by embryoid body formation and monolayer induction. It is likely that more well characterized and stable porcine and bovine ES cell lines...

  18. Higher-derivative generalization of conformal mechanics

    Science.gov (United States)

    Baranovsky, Oleg

    2017-08-01

    Higher-derivative analogs of multidimensional conformal particle and many-body conformal mechanics are constructed. Their Newton-Hooke counterparts are derived by applying appropriate coordinate transformations.

  19. Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: Method development and application in the Danube River

    International Nuclear Information System (INIS)

    Inostroza, Pedro A.; Wicht, Anna-Jorina; Huber, Thomas; Nagy, Claudia; Brack, Werner; Krauss, Martin

    2016-01-01

    While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g −1 (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g −1 (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River. - Highlights: • A method based on pulverised liquid extraction/QuEChERS for organic micropollutants in invertebrates was developed. • The method is applicable in assessing target environmental pollutants in invertebrates by LC-MS/MS. • The method allows for a nontarget screening of extracts by LC-HRMS. • First body burden analysis of pesticides and wastewater-derived pollutants in invertebrates in the Danube River is reported. - Capsule: A multi

  20. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies

    Science.gov (United States)

    Racine, Étienne; Flanagan, Éanna É.

    2005-02-01

    We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body’s current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived.

  1. Stemcell Information: SKIP000679 [SKIP Stemcell Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ren's Hospital Boston Immune Disease Institute, Program in Cellular and Molecular Medicine, Children... Only Immune Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston Immun...e Disease Institute, Program in Cellular and Molecular Medicine, Children's Hospital Boston ... 20888316 10... embryoid body formation ... Yes qRT-PCR ... Yes ... Immune Disease Institute, Program in Cellular and Molecular Medicine, Child

  2. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    Science.gov (United States)

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons

  3. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Tsunao Kishida

    2015-10-01

    Full Text Available Brown adipocytes (BAs play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs. Moreover, normal human fibroblasts were directly converted into BAs (dBAs by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus.

  4. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.

    Science.gov (United States)

    Kishida, Tsunao; Ejima, Akika; Yamamoto, Kenta; Tanaka, Seiji; Yamamoto, Toshiro; Mazda, Osam

    2015-10-13

    Brown adipocytes (BAs) play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs). Moreover, normal human fibroblasts were directly converted into BAs (dBAs) by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Exact many-body dynamics with stochastic one-body density matrix evolution

    International Nuclear Information System (INIS)

    Lacroix, D.

    2004-05-01

    In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)

  6. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    Science.gov (United States)

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  7. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  8. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  9. Evaluating the Effect of Sarconesiopsis magellanica (Diptera: Calliphoridae Larvae-Derived Haemolymph and Fat Body Extracts on Chronic Wounds in Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Jennifher Góngora

    2015-01-01

    Full Text Available We evaluated extracts taken from S. magellanica third instar larvae fat body and haemolymph using a diabetic rabbit model and compared this to the effect obtained with the same substances taken from Lucilia sericata larvae. Alloxan (a toxic glucose analogue was used to induce experimental diabetes in twelve rabbits. Dorsal wounds were made in each animal and they were infected with Staphylococcus aureus and Pseudomonas aeruginosa. They were then treated with haemolymph and lyophilized extracts taken from the selected blowflies’ larvae fat bodies. Each wound was then evaluated by using rating scales and histological analysis. More favourable scores were recorded on the PUSH and WBS scales for the wounds treated with fat body derived from the larvae of both species compared to that obtained with haemolymph; however, wounds treated with the substances taken from S. magellanica had better evolution. Histological analysis revealed that treatment led to tissue proliferation and more effective neovascularisation in less time with both species’ fat body extracts compared to treatment with just haemolymph. The results suggest the effectiveness of the substances evaluated and validate them in the animal model being used here as topical agents in treating chronic wounds.

  10. Evaluating the Effect of Sarconesiopsis magellanica (Diptera: Calliphoridae) Larvae-Derived Haemolymph and Fat Body Extracts on Chronic Wounds in Diabetic Rabbits

    Science.gov (United States)

    Góngora, Jennifher; Díaz-Roa, Andrea; Ramírez-Hernández, Alejandro; Cortés-Vecino, Jesús A.; Gaona, María A.; Patarroyo, Manuel A.

    2015-01-01

    We evaluated extracts taken from S. magellanica third instar larvae fat body and haemolymph using a diabetic rabbit model and compared this to the effect obtained with the same substances taken from Lucilia sericata larvae. Alloxan (a toxic glucose analogue) was used to induce experimental diabetes in twelve rabbits. Dorsal wounds were made in each animal and they were infected with Staphylococcus aureus and Pseudomonas aeruginosa. They were then treated with haemolymph and lyophilized extracts taken from the selected blowflies' larvae fat bodies. Each wound was then evaluated by using rating scales and histological analysis. More favourable scores were recorded on the PUSH and WBS scales for the wounds treated with fat body derived from the larvae of both species compared to that obtained with haemolymph; however, wounds treated with the substances taken from S. magellanica had better evolution. Histological analysis revealed that treatment led to tissue proliferation and more effective neovascularisation in less time with both species' fat body extracts compared to treatment with just haemolymph. The results suggest the effectiveness of the substances evaluated and validate them in the animal model being used here as topical agents in treating chronic wounds. PMID:25866825

  11. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model

    OpenAIRE

    Takagi, Ryoji; Ishimaru, Junko; Sugawara, Ayaka; Toyoshima, Koh-ei; Ishida, Kentaro; Ogawa, Miho; Sakakibara, Kei; Asakawa, Kyosuke; Kashiwakura, Akitoshi; Oshima, Masamitsu; Minamide, Ryohei; Sato, Akio; Yoshitake, Toshihiro; Takeda, Akira; Egusa, Hiroshi

    2016-01-01

    The integumentary organ system is a complex system that plays important roles in waterproofing, cushioning, protecting deeper tissues, excreting waste, and thermoregulation. We developed a novel in vivo transplantation model designated as a clustering-dependent embryoid body transplantation method and generated a bioengineered three-dimensional (3D) integumentary organ system, including appendage organs such as hair follicles and sebaceous glands, from induced pluripotent stem cells. This bio...

  12. On the nomenclature of coelom-derived body cavities.

    Science.gov (United States)

    Knospe, C

    2008-06-01

    A rationalization of terms about the body cavities is urgently needed. Students and practitioners have difficulty in understanding the contradictory terms prevalent at present. For many years, the International Committee on Veterinary Gross Anatomical Nomenclature has failed to bring it off; therefore some proposals for the anatomical instruction until the next edition of the Nomina Anatomica Veterinaria are made.

  13. Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2).

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2004-10-01

    Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6-7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.

  14. Efficient and Cost-Effective Generation of Mature Neurons From Human Induced Pluripotent Stem Cells

    OpenAIRE

    Badja , Cherif; Maleeva , Galyna; El-Yazidi , Claire; Barruet , Emilie; Lasserre , Manon; Tropel , Philippe; Binetruy , Bernard; Bregestovski , Piotr; Magdinier , Frédérique

    2014-01-01

    The authors describe a feeder-free method of generating induced pluripotent stem cells by relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. This specific and efficient single-step strategy allows the production of mature neurons in 20–40 days with multiple applications, especially for modeling human pathologies.

  15. Influence of acute consumption of caffeine vs. placebo over Bia-derived measurements of body composition: a randomized, double-blind, crossover design.

    Science.gov (United States)

    Williamson, Cassie M; Nickerson, Brett S; Bechke, Emily E; McLester, Cherilyn N; Kliszczewicz, Brian M

    2018-01-01

    Bioelectrical impedance analysis (BIA) is often used to estimate total body water (TBW), intracellular body water (ICW), extracellular body water (ECW), and body fat percentage (BF%). A common restriction for BIA analysis is abstinence from caffeine 12-h prior to testing. However, research has yet to determine whether the consumption of caffeine influences BIA testing results. The purpose of this study was to determine if the consumption of caffeine influences BIA-derived BF% and body water values in habitual caffeine users. Twenty apparently healthy males (26.6 ± 4.1 years) identified as habitual caffeine consumers (≥ one 95 mg serving per day ≥ four days per week) participated in this study. Participants came to the lab on three occasions, the first visit serving as the control (CON) with no supplementation. The remaining two visits were performed in a randomized double-blind, cross-over fashion. Participants consumed 200 mg of dextrose (PLA) or caffeine (CAF) in capsule form. During each visit, seven multi-frequency BIA measurements were conducted before (PRE) and after (15-min, 30-min, 45-min, 60-min, 75-min, 90-min) consumption. Repeated measures ANOVA revealed BF% for CAF was lower than the CON and PLA conditions at PRE and 15-min ( p  Caffeine consumption in habitual users produced trivial changes in TBW, ECW, ICW, or BF%. Therefore, the pre-testing guidelines for caffeine consumption may not be necessary in habitual caffeine consumers.

  16. Investigation into the relationship between body surface area and total body potassium using Monte Carlo and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.A. [Medical Physics and Imaging, Queen Elizabeth Hospital, Birmingham (United Kingdom)]. E-mail: jane.rogers@university-b.wmids.nhs.uk; Blake-James, M. [School of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom); Green, S.; Beddoe, A.H. [Medical Physics and Imaging, Queen Elizabeth Hospital, Birmingham (United Kingdom)

    2002-03-07

    The use of body surface area (BSA) as a means of indexing chemotherapy doses is widespread even though the value of this practice is uncertain. In principle, the body cell mass (BCM) more closely represents the body's metabolic size and this is investigated here as an alternative to BSA; since 98% of body potassium is intracellular the derivation of total body potassium (TBK) via the measurement of {sup 40}K in a whole body counter (WBC) will provide a useful normalizing index for metabolic size, potentially avoiding toxicity and underdosing. The Queen Elizabeth Hospital WBC has been used in this study, initially involving single geometrical phantoms and then combinations of these to simulate human body habitus. Monte Carlo N-particle (MCNP) codes were constructed to model the phantoms and simulate the measurements made in the WBC. Efficiency corrections were derived by comparing measurement and modelled data for each detector separately. A method of modelling a person in the WBC as a series of ellipsoids was developed. Twenty-four normal males and 24 females were measured for their {sup 40}K emissions. Individual MCNP codes were constructed for each volunteer and the results used in conjunction with the measurements to derive TBK, correcting for body habitus effects and detector efficiencies. An estimate of the component of error arising from sources other than counting statistics was included by analysing data from the measurement of phantoms. The total residual errors (expressed as coefficients of variation) for males and females were 10.1% and 8.5% respectively. The measurement components were determined to be 2.4% and 2.5%, implying that the biological components were 9.8% and 8.1% respectively. These results suggest that the use of BSA for indexing chemotherapy doses is likely to give rise to clinically significant under- or overdosing. (author)

  17. Minimal coupling schemes in N-body reaction theory

    International Nuclear Information System (INIS)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1982-01-01

    A new derivation of the N-body equations of Bencze, Redish, and Sloan is obtained through the use of Watson-type multiple scattering techniques. The derivation establishes an intimate connection between these partition-labeled N-body equations and the particle-labeled Rosenberg equations. This result yields new insight into the implicit role of channel coupling in, and the minimal dimensionality of, the partition-labeled equations

  18. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Humpolíček, P.; Pacherník, J.; Stejskal, Jaroslav; Lindfors, T.

    2015-01-01

    Roč. 5, č. 62 (2015), s. 50328-50335 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  19. Influence functionals and black body radiation

    OpenAIRE

    Anglin, J. R.

    1993-01-01

    The Feynman-Vernon formalism is used to obtain a microscopic, quantum mechanical derivation of black body radiation, for a massless scalar field in 1+1 dimensions, weakly coupled to an environment of finite size. The model exhibits the absorption, thermal equilibrium, and emission properties of a canonical black body, but shows that the thermal radiation propagates outwards from the body, with the Planckian spectrum applying inside a wavefront region of finite thickness. The black body enviro...

  20. Production of haploid plant of 'Banpeiyu' pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen

    International Nuclear Information System (INIS)

    Yahata, Masaki; Yasuda, Kiichi; Kunitake, Hisato; Nagasawa, Kohji; Harusaki, Seiichi; Komatsu, Haruki

    2010-01-01

    To induce haploid plants in Citrus maxima (Burm.) Merr. 'Banpeiyu', we evaluated the effect of pollination with soft X-ray-irradiated pollen on fruit set and seed development, and carried out ovule culture. When 'Banpeiyu' pummelo pistils were pollinated with X-ray-irradiated pollen of 'Fukuhara' sweet orange [C. sinensis (L.) Osbeck], the exposure doses affected the fruit set. The number of seeds per fruit was also affected by the exposure dose, and tended to decrease as the dose increased; however, all developed seeds obtained from these crosses were diploid. In the ovule culture of 'Banpeiyu' pummelo, six embryoids shown haploidy were obtained in all treatments. One haploid plantlet with 9 chromosomes was regenerated from an embryoid in a culture of ovules established 40 days after pollination with 400 Gray (Gy)-irradiated pollen of 'Tosa-buntan' pummelo (C. maxima). This haploid was suggested to be derived from 'Banpeiyu' pummelo by random amplified polymorphic DNA (RAPD) and cleaved amplified polymorphic sequence (CAPS) analysis. (author)

  1. Numerical estimation of aircrafts' unsteady lateral-directional stability derivatives

    Directory of Open Access Journals (Sweden)

    Maričić N.L.

    2006-01-01

    Full Text Available A technique for predicting steady and oscillatory aerodynamic loads on general configuration has been developed. The prediction is based on the Doublet-Lattice Method, Slender Body Theory and Method of Images. The chord and span wise loading on lifting surfaces and longitudinal bodies (in horizontal and vertical plane load distributions are determined. The configuration may be composed of an assemblage of lifting surfaces (with control surfaces and bodies (with circular cross sections and a longitudinal variation of radius. Loadings predicted by this method are used to calculate (estimate steady and unsteady (dynamic lateral-directional stability derivatives. The short outline of the used methods is given in [1], [2], [3], [4] and [5]. Applying the described methodology software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21B and HA21D from [4]. In the first example (HA21B, the jet transport wing (BAH wing is steady rolling and lateral stability derivatives are determined. In the second example (HA21D, lateral-directional stability derivatives are calculated for forward- swept-wing (FSW airplane in antisymmetric quasi-steady maneuvers. Acceptable agreement is achieved comparing the results from [4] and DERIV.

  2. Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Forrester Jeff

    2009-09-01

    Full Text Available Abstract Background Neural differentiation of embryonic stem (ES cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming. Results Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of Oct4 and NANOG and increased expression of nestin. ES cells containing a GFP gene under the control of the Sox1 regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents. Conclusion Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.

  3. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    Science.gov (United States)

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  4. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage

    DEFF Research Database (Denmark)

    Li, Shaohua; Bordoy, Randi; Stanchi, Fabio

    2005-01-01

    PINCH1 is composed of 5 LIM domains, binds integrin-linked kinase (ILK) and locates to integrin-mediated adhesion sites. In order to investigate PINCH1 function we generated mice and embryonic stem (ES) cell-derived embryoid bodies (EBs) lacking the PINCH1 gene. Similar to mice lacking beta1...... integrin or Ilk, loss of PINCH1 arrested development at the peri-implantation stage. In contrast to beta1 integrin or Ilk mutants, however, disruption of the PINCH1 gene produced implantation chambers with visible cell clumps even at embryonic day 9.5. In order to define the phenotype leading to the peri...... not observed in beta1 integrin- or ILK-deficient mice or EBs, included abnormal cell-cell adhesion of endoderm and epiblast as well as the presence of apoptotic cells in the endodermal cell layer. Although ILK and PINCH1 were shown to be involved in the phosphorylation of serine-473 of PKB/Akt, immunostaining...

  6. Generation of tooth-periodontium complex structures using high-odontogenic potential dental epithelium derived from mouse embryonic stem cells.

    Science.gov (United States)

    Zhang, Yancong; Li, Yongliang; Shi, Ruirui; Zhang, Siqi; Liu, Hao; Zheng, Yunfei; Li, Yan; Cai, Jinglei; Pei, Duanqing; Wei, Shicheng

    2017-06-08

    A number of studies have shown that tooth-like structures can be regenerated using induced pluripotent stem cells and mouse embryonic stem (mES) cells. However, few studies have reported the regeneration of tooth-periodontium complex structures, which are more suitable for clinical tooth transplantation. We established an optimized approach to induce high-odontogenic potential dental epithelium derived from mES cells by temporally controlling bone morphogenic protein 4 (BMP4) function and regenerated tooth-periodontium complex structures in vivo. First, immunofluorescence and quantitative reverse transcription-polymerase chain reaction were used to identify the watershed of skin and the oral ectoderm. LDN193189 was then used to inhibit the BMP4 receptor around the watershed, followed by the addition of exogenous BMP4 to promote BMP4 function. The generated dental epithelium was confirmed by western blot analysis and immunofluorescence. The generated epithelium was ultimately combined with embryonic day 14.5 mouse mesenchyme and transplanted into the renal capsules of nude mice. After 4 weeks, the tooth-periodontium complex structure was examined by micro-computed tomography (CT) and hematoxylin and eosin (H&E) staining. Our study found that the turning point of oral ectoderm differentiation occurred around day 3 after the embryoid body was transferred to a common culture plate. Ameloblastin-positive dental epithelial cells were detected following the temporal regulation of BMP4. Tooth-periodontium complex structures, which included teeth, a periodontal membrane, and alveolar bone, were formed when this epithelium was combined with mouse dental mesenchyme and transplanted into the renal capsules of nude mice. Micro-CT and H&E staining revealed that the generated tooth-periodontium complex structures shared a similar histological structure with normal mouse teeth. An optimized induction method was established to promote the differentiation of mES cells into dental

  7. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  8. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination.

    Directory of Open Access Journals (Sweden)

    Alireza Pouya

    Full Text Available BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.

  9. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors.

    Science.gov (United States)

    Liu, Ning; Ouyang, Anli; Li, Yan; Yang, Shang-Tian

    2013-01-01

    The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells. © 2013 American Institute of Chemical Engineers.

  10. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  11. Laws of motion and precession for black holes and other bodies

    International Nuclear Information System (INIS)

    Thorne, K.S.; Hartle, J.B.

    1985-01-01

    Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (''isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through post/sup 1.5/-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets

  12. Production of solid mutants in citrus, utilizing new approaches and techniques

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Kochba, J.

    1975-01-01

    Conditions for embryoid differentiation in Shamouti orange ovular callus were studied. Lines differing in embryogenic capacity were established. Ageing of callus prior to subculture enhanced embryoid development. A pronounced habituation effect has been found in most cultures. Protoplasts have been obtained from callus after treatment with cellolytic enzymes. Irradiation of any embryogenic line of callus with 12-20 kR seemed to promote embryoid formation, after a time lag in their appearance. Transferrence of embryoids into agar+sucrose and GA 3 and a further transfer into agar+sucrose, GA 3 and adenine sulphate gave best results as to rooting of embryoids and plant survival. The technique of using decapitated nucellar seedlings for mutagenic treatment was developed further with Shamouti orange and Marsh grapefruit. Irradiation 48-72 hours after decapitation with 2 kR resulted in shoot neoformation and survival not much below that of control, while 6 kR impeded de novo shoot formation in Marsh grapefruit. A tendency towards mutants with earlier fruit maturity was found in mV 2 plants from material originating from irradiation with the 8-kR dose. (author)

  13. A four-body potential in multiquark states

    International Nuclear Information System (INIS)

    Warner, R.C.; Joshi, G.C.

    1980-01-01

    A detailed analysis is presented of the first member of a previously derived hierarchy of instanton generated many-body potentials for multiquark states. Comparison with two-body instanton generated potential in the heavy quark framework is made in the T-baryonium system

  14. Many body calculations in atomic physics

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1985-01-01

    The use of the many-body perturbation theory for atomic calculations are reviewed. The major emphasis is on the use of the linked-cluster many-body perturbation theory derived by Brueckner and Goldstone. Applications of many-body theory to calculations of hyperfine structure are examined. Auger rates and parity violation are discussed. Photoionization is reviewed, and the authors show how many-body perturbation theory can be applied to problems ranging from structural properties such as correlation energies and hyperfine structure to dynamical properties such as transitions induced by weak neutral currents and photoionization cross sections

  15. Differences in body image between anorexics and in-vitro-fertilization patients - a study with Body Grid

    Science.gov (United States)

    Borkenhagen, Ada; Klapp, Burghard F.; Schoeneich, Frank; Brähler, Elmar

    2005-01-01

    Objectives: The purpose of the investigation was to explore the body image disturbance of anorexics and in-vitro-fertilization patients (IvF-patients) with Body Grid and Body Identity Plot. Methods: The paper reports on an empirical study conducted with 32 anorexic patients and 30 IvF-patients. The structure of the body image was derived from the Body Grid, an idiographic approach following the Role Repertory Grid developed by George A. Kelly [17]. The representation of the body image and the degree of body-acceptance is represented graphically. Results: By the Body Grid and Body Identity Plot measures we were able to identify important differences in body image between anorexics and IvF-patients. Conclusion: The tendencies of dissociation in the body image of anorexics which we found must be seen in the sense of a specific body image disturbance which differs significantly from the body-experience profile of IvF-patients. With the grid approach it was possible to elicit the inner structure of body image and determine the acceptance of the body and integration of single body parts. PMID:19742059

  16. The Development of Sex Category Representation in Infancy: Matching of Faces and Bodies

    Science.gov (United States)

    Hock, Alyson; Kangas, Ashley; Zieber, Nicole; Bhatt, Ramesh S.

    2015-01-01

    Sex is a significant social category, and adults derive information about it from both faces and bodies. Research indicates that young infants process sex category information in faces. However, no prior study has examined whether infants derive sex categories from bodies and match faces and bodies in terms of sex. In the current study,…

  17. Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: Method development and application in the Danube River.

    Science.gov (United States)

    Inostroza, Pedro A; Wicht, Anna-Jorina; Huber, Thomas; Nagy, Claudia; Brack, Werner; Krauss, Martin

    2016-07-01

    While environmental risk assessment is typically based on toxicant concentrations in water and/or sediment, awareness is increasing that internal concentrations or body burdens are the key to understand adverse effects in organisms. In order to link environmental micropollutants as causes of observed effects, there is an increasing demand for methods to analyse these chemicals in organisms. Here, a multi-target screening method based on pulverised liquid extraction (PuLE) and a modified QuEChERS approach with an additional hexane phase was developed. It is capable to extract and quantify organic micropollutants of diverse chemical classes in freshwater invertebrates. The method was tested on gammarids from the Danube River (within the Joint Danube Survey 3) and target compounds were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, a non-target screening using high resolution-tandem mass spectrometry (LC-HRMS/MS) was conducted. A total of 17 pollutants were detected and/or quantified in gammarids at low concentrations. Pesticide concentrations ranged from 0.1 to 6.52 ng g(-1) (wet weight), those of wastewater-derived pollutants from 0.1 to 2.83 ng g(-1) (wet weight). The presence of wastewater-derived pollutants was prominent at all spots sampled. Using non-target screening, we could successfully identify several chlorinated compounds. These results demonstrate for the first time the presence of pesticides and wastewater-derived pollutants in invertebrates of the Danube River. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Male Body Practices.

    Science.gov (United States)

    Lefkowich, Maya; Oliffe, John L; Hurd Clarke, Laura; Hannan-Leith, Madeline

    2017-03-01

    The pressure on boys and men to engage in extensive body practices (e.g., closely monitored eating and exercise habits) and achieve ideal male bodies has grown significantly over the past 20 years. Central to the depiction of ideal male bodies and body practices are both the pursuit and achievement of lean and well-defined muscles. The labels "pitches," "purchases," and "performativities" were inductively derived from the literature, and used to describe the multifaceted connections between masculinities, muscularity, and idealized male body practices. "Pitches" distil how popular culture posture norms of masculinity, and manly bodies and behaviors attainable and necessary. "Purchases" refer to men's diverse buy-in to dominant discourses about acceptable male bodies and practices. "Performativities" chronicle how men embody and navigate gender norms as they evaluate their own bodies, behaviors, and eating habits and those of their peers. Based on findings from the current scoping review, future research could benefit from fully linking masculinities with the drive for muscularity to address health and social risks associated with the pursuit of the idealized male body. In highlighting the plurality of masculinities and the complexity of men's diverse identities, health care providers can better reach and support men. Focusing on, and celebrating, a wider range of male bodies could help recenter dominant discourses about how and whose bodies and experiences are idealized. The current scoping review article offers an overview of how masculinities and muscularity have been linked to male body practices, and recommendations to advance this emergent field.

  19. Three-body forces for electrons by the S-matrix method

    International Nuclear Information System (INIS)

    Margaritelli, R.

    1989-01-01

    A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt

  20. Radiation-reaction force on a small charged body to second order

    Science.gov (United States)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  1. Assessment of body fat in the pony: part II. Validation of the deuterium oxide dilution technique for the measurement of body fat.

    Science.gov (United States)

    Dugdale, A H A; Curtis, G C; Milne, E; Harris, P A; Argo, C Mc

    2011-09-01

    Excessive accumulations or depletions of body fat have been associated with increased morbidity and mortality in horses and ponies. An objective, minimally-invasive method to accurately quantify body fat in living animals is required to aid nutritional management and define welfare/performance limits. To compare deuterium oxide (D(2) O) dilution-derived estimates of total body water (TBW) and body fat with values obtained by 'gold standard' proximate analysis and cadaver dissection. D(2) O dilution offers a valid method for the determination of TBW and body fat in equids. Seven mature (mean ± s.e. 13 ± 3 years, 212 ± 14 kg, body condition scores 1.25-7/9), healthy, Welsh Mountain pony mares, destined for euthanasia (for nonresearch purposes) were used. Blood samples were collected before and 4 h after D(2) O (0.11-0.13 g/kg bwt, 99.8 atom percent excess) administration. Plasma was analysed by gas isotope ratio mass spectrometry following filtration and zinc reduction. After euthanasia, white adipose tissue (WAT) mass was recorded before all body tissues were analysed by proximate chemical analyses. D(2) O-derived estimates of TBW and body fat were strongly associated with proximate analysis- and dissection-derived values (all r(2) >0.97, P≤0.0001). Bland-Altman analyses demonstrated good agreements between methods. D(2) O dilution slightly overestimated TBW (0.79%, limits of agreement (LoA) -3.75-2.17%) and underestimated total body lipid (1.78%, LoA -0.59-4.15%) and dissected WAT (0.72%, LoA -2.77-4.21%). This study provides the first validation of the D(2) O dilution method for the minimally-invasive, accurate, repeatable and objective measurement of body water and fat in living equids. © 2011 EVJ Ltd.

  2. EZ spheres: a stable and expandable culture system for the generation of pre-rosette multipotent stem cells from human ESCs and iPSCs

    OpenAIRE

    Ebert, A.; Shelley, B.; Hurley, A.; Onorati, M.; Castiglioni, V.; Patitucci, T.; Svendsen, S.; Mattis, V.; Mcgivern, J.; Schwab, A.; Sareen, D.; Kim, H.; Cattaneo, E.; Svendsen, C.

    2013-01-01

    We have developed a simple method to generate and expand multipotent, self-renewing pre-rosette neural stem cells from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs) without utilizing embryoid body formation, manual selection techniques, or complex combinations of small molecules. Human ESC and iPSC colonies were lifted and placed in a neural stem cell medium containing high concentrations of EGF and FGF-2. Cell aggregates (termed EZ spheres) could be...

  3. Body composition and wages.

    Science.gov (United States)

    Wada, Roy; Tekin, Erdal

    2010-07-01

    This paper examines the relationship between body composition and wages in the United States. We develop measures of body composition--body fat (BF) and fat-free mass (FFM)--using data on bioelectrical impedance analysis (BIA) that are available in the National Health and Nutrition Examination Survey III and estimate wage models for respondents in the National Longitudinal Survey of Youth 1979. Previous research uses body size or BMI as measures of obesity despite a growing concern that they do not distinguish between body fat and fat-free body mass or adequately control for non-homogeneity inside the human body. Therefore, measures presented in this paper represent a useful alternative to BMI-based proxies of obesity. Our results indicate that BF is associated with decreased wages for both males and females among whites and blacks. We also present evidence suggesting that FFM is associated with increased wages. We show that these results are not the artifacts of unobserved heterogeneity. Finally, our findings are robust to numerous specification checks and to a large number of alternative BIA prediction equations from which the body composition measures are derived. 2010 Elsevier B.V. All rights reserved.

  4. Beyond velocity and acceleration: jerk, snap and higher derivatives

    Science.gov (United States)

    Eager, David; Pendrill, Ann-Marie; Reistad, Nina

    2016-11-01

    The higher derivatives of motion are rarely discussed in the teaching of classical mechanics of rigid bodies; nevertheless, we experience the effect not only of acceleration, but also of jerk and snap. In this paper we will discuss the third and higher order derivatives of displacement with respect to time, using the trampolines and theme park roller coasters to illustrate this concept. We will also discuss the effects on the human body of different types of acceleration, jerk, snap and higher derivatives, and how they can be used in physics education to further enhance the learning and thus the understanding of classical mechanics concepts.

  5. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  6. Monitoring scanner calibration using the image-derived arterial blood SUV in whole-body FDG-PET.

    Science.gov (United States)

    Maus, Jens; Hofheinz, Frank; Apostolova, Ivayla; Kreissl, Michael C; Kotzerke, Jörg; van den Hoff, Jörg

    2018-05-15

    The current de facto standard for quantification of tumor metabolism in oncological whole-body PET is the standardized uptake value (SUV) approach. SUV determination requires accurate scanner calibration. Residual inaccuracies of the calibration lead to biased SUV values. Especially, this can adversely affect multicenter trials where it is difficult to ensure reliable cross-calibration across participating sites. The goal of the present work was the evaluation of a new method for monitoring scanner calibration utilizing the image-derived arterial blood SUV (BSUV) averaged over a sufficiently large number of whole-body FDG-PET investigations. Data of 681 patients from three sites which underwent routine 18 F-FDG PET/CT or PET/MR were retrospectively analyzed. BSUV was determined in the descending aorta using a three-dimensional ROI concentric to the aorta's centerline. The ROI was delineated in the CT or MRI images and transferred to the PET images. A minimum ROI volume of 5 mL and a concentric safety margin to the aortic wall was observed. Mean BSUV, standard deviation (SD), and standard error of the mean (SE) were computed for three groups of patients at each site, investigated 2 years apart, respectively, with group sizes between 53 and 100 patients. Differences of mean BSUV between the individual groups and sites were determined. SD (SE) of BSUV in the different groups ranged from 14.3 to 20.7% (1.7 to 2.8%). Differences of mean BSUV between intra-site groups were small (1.1-6.3%). Only one out of nine of these differences reached statistical significance. Inter-site differences were distinctly larger (12.6-25.1%) and highly significant (PPET investigations is a viable approach for ensuring consistent scanner calibration over time and across different sites. We propose this approach as a quality control and cross-calibration tool augmenting established phantom-based procedures.

  7. The computationalist reformulation of the mind-body problem.

    Science.gov (United States)

    Marchal, Bruno

    2013-09-01

    Computationalism, or digital mechanism, or simply mechanism, is a hypothesis in the cognitive science according to which we can be emulated by a computer without changing our private subjective feeling. We provide a weaker form of that hypothesis, weaker than the one commonly referred to in the (vast) literature and show how to recast the mind-body problem in that setting. We show that such a mechanist hypothesis does not solve the mind-body problem per se, but does help to reduce partially the mind-body problem into another problem which admits a formulation in pure arithmetic. We will explain that once we adopt the computationalist hypothesis, which is a form of mechanist assumption, we have to derive from it how our belief in the physical laws can emerge from *only* arithmetic and classical computer science. In that sense we reduce the mind-body problem to a body problem appearance in computer science, or in arithmetic. The general shape of the possible solution of that subproblem, if it exists, is shown to be closer to "Platonist or neoplatonist theology" than to the "Aristotelian theology". In Plato's theology, the physical or observable reality is only the shadow of a vaster hidden nonphysical and nonobservable, perhaps mathematical, reality. The main point is that the derivation is constructive, and it provides the technical means to derive physics from arithmetic, and this will make the computationalist hypothesis empirically testable, and thus scientific in the Popperian analysis of science. In case computationalism is wrong, the derivation leads to a procedure for measuring "our local degree of noncomputationalism". Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Utilization of BIA-Derived Bone Mineral Estimates Exerts Minimal Impact on Body Fat Estimates via Multicompartment Models in Physically Active Adults.

    Science.gov (United States)

    Nickerson, Brett S; Tinsley, Grant M

    2018-03-21

    The purpose of this study was to compare body fat estimates and fat-free mass (FFM) characteristics produced by multicompartment models when utilizing either dual energy X-ray absorptiometry (DXA) or single-frequency bioelectrical impedance analysis (SF-BIA) for bone mineral content (BMC) in a sample of physically active adults. Body fat percentage (BF%) was estimated with 5-compartment (5C), 4-compartment (4C), 3-compartment (3C), and 2-compartment (2C) models, and DXA. The 5C-Wang with DXA for BMC (i.e., 5C-Wang DXA ) was the criterion. 5C-Wang using SF-BIA for BMC (i.e., 5C-Wang BIA ), 4C-Wang DXA (DXA for BMC), 4C-Wang BIA (BIA for BMC), and 3C-Siri all produced values similar to 5C-Wang DXA (r > 0.99; total error [TE] FFM characteristics (i.e., FFM density, water/FFM, mineral/FFM, and protein/FFM) for 5C-Wang DXA and 5C-Wang BIA were each compared with the "reference body" cadavers of Brozek et al. 5C-Wang BIA FFM density differed significantly from the "reference body" in women (1.103 ± 0.007 g/cm 3 ; p FFM and mineral/FFM were significantly lower in men and women when comparing 5C-Wang DXA and 5C-Wang BIA with the "reference body," whereas protein/FFM was significantly higher (all p ≤ 0.001). 3C-Lohman BIA and 3C-Lohman DXA produced error similar to 2C models and DXA and are therefore not recommended multicompartment models. Although more advanced multicompartment models (e.g., 4C-Wang and 5C-Wang) can utilize BIA-derived BMC with minimal impact on body fat estimates, the increased accuracy of these models over 3C-Siri is minimal. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Selenium- or tellurium- containing bile acids and derivatives thereof

    International Nuclear Information System (INIS)

    Monks, R.; Riley, A.L.M.

    1981-01-01

    This invention relates to the preparation of selenium and tellurium derivatives, particularly γ-emitting radioactive derivatives of bile acids and bile salts. Such compounds are valuable in the examination of body function, especially small bowel function. (author)

  10. Neural Differentiation Is Inhibited through HIF1 alpha/ beta-Catenin Signaling in Embryoid Bodies

    Czech Academy of Sciences Publication Activity Database

    Veceřa, J.; Kudová, Jana; Kučera, J.; Kubala, Lukáš; Pachernik, J.

    2017-01-01

    Roč. 2017, č. 2017 (2017), č. článku 8715798. ISSN 1687-966X Institutional support: RVO:68081707 Keywords : stem- cell fate * hypoxia * oxygen Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.540, year: 2016

  11. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  12. A new method of body habitus correction for total body potassium measurements

    International Nuclear Information System (INIS)

    O'Hehir, S; Green, S; Beddoe, A H

    2006-01-01

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use

  13. A new method of body habitus correction for total body potassium measurements

    Energy Technology Data Exchange (ETDEWEB)

    O' Hehir, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Green, S [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom); Beddoe, A H [University Hospital Birmingham Foundation NHS Trust, Birmingham (United Kingdom)

    2006-09-07

    This paper describes an accurate and time-efficient method for the determination of total body potassium via a combination of measurements in the Birmingham whole body counter and the use of the Monte Carlo n-particle (MCNP) simulation code. In developing this method, MCNP has also been used to derive values for some components of the total measurement uncertainty which are difficult to quantify experimentally. A method is proposed for MCNP-assessed body habitus corrections based on a simple generic anthropomorphic model, scaled for individual height and weight. The use of this model increases patient comfort by reducing the need for comprehensive anthropomorphic measurements. The analysis shows that the total uncertainty in potassium weight determination by this whole body counting methodology for water-filled phantoms with a known amount of potassium is 2.7% (SD). The uncertainty in the method of body habitus correction (applicable also to phantom-based methods) is 1.5% (SD). It is concluded that this new strategy provides a sufficiently accurate model for routine clinical use.

  14. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  15. Understanding Kaula's Rule for Small Bodies

    Science.gov (United States)

    McMahon, J.; Scheeres, D. J.; Farnocchia, D.; Chesley, S.

    2015-12-01

    Kaula's rule gives a bound on the RMS of the gravity coefficients of each order as a power law K/n^2, where n is the degree. Kaula derived the value of K for Earth as 10-5. This rule has been used as an a priori information bound on the gravity coefficients of other planetary bodies before their gravity fields are measured by spacecraft. To apply Kaula's rule to other bodies, the simple scaling based on the relative gravity of each body is used - (gEarth/gPlanet)2. This scaling was successfully used even for Vesta, where K = 0.011. However, if Kaula's rule is applied to very small bodies, such as the OSIRIS-REx target asteroid Bennu, the scaling results in un-useable bounds. In this case, K ~ 105. This fact has motivated further investigation into the derivation and application of a Kaula-like power rule to bound the gravity field of small bodies. Our initial investigation focuses on the specific application to Bennu. This study is enabled by the fact that a fairly accurate shape model of Bennu has been derived based on three Earth-based radar apparitions along with a constrained bulk density based on astrometry and thermal measurements. Thus we investigated varying the Bennu topography within the expected accuracy of the shape model as well as the density distribution. Several interesting facts were discovered through this analysis. First, the top shape of Bennu, common to a number of near-Earth asteroids, results in the even zonal coefficients being larger than the odd zonal of one lower degree. Second, the zonals in general are significantly larger than the coefficients with order > 1, so that the zonals will dominate any fitting of K to a power law. This encourages us to have one K for the absolute value of the zonals (K=0.087), and a separate value for the RMS of the other coefficients (K=0.026). Third, variation in the topography within this uncertainty dominates the variation in the gravity field coefficients over basic inhomogenous density distribution

  16. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    International Nuclear Information System (INIS)

    Blagojevic, N.; Allen, B.J.; Baur, L.; Gaskin, K.

    1988-01-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value

  17. In-vivo determination of total body water and lean body mass in subjects by deuterium dilution

    Energy Technology Data Exchange (ETDEWEB)

    Blagojevic, N; Allen, B J; Baur, L; Gaskin, K

    1988-12-01

    Total body water (TBW) estimation is one of a number of basic techniques required for the determination of body composition in normal and malnourished subjects. When combined with total body nitrogen (TBN) analysis by prompt gamma neutron activation, an accurate compartmental model of in vivo body composition can be formed, providing valuable nutritional and other data. This study examines the role of TBW on its own in evaluating lean body mass. Total body water was studied in six male and five female subjects using deuterium oxide and a Fourier transform infrared spectrometer. The lean body mass calculated from the results was compared with the lean body mass deduced from established total body nitrogen measurements. A four-compartment model was also used to calculate lean body mass. Excellent agreement was shown between lean body mass derived from TBW, the four-compartment model and TBN. Hence, TBW can provide a fast, cost-efficient method for evaluating normal subjects. However, for disease-induced malnutrition, or highly developed athletes, both TBN and TBW measurements are essential to establish an accurate picture of their body composition. TBW measurements alone can monitor the hydration state of patients and as such have a useful diagnostic value.

  18. an empirical study exploring body perception and apparel fit

    African Journals Online (AJOL)

    user

    3D rotational point cloud surface image derived from 3D body scans ... Furthermore, recent advances in technology, such as 3D ... up-to-date and, accessible apparel sizing or body dimension ... manufacturing companies and retailers, and not.

  19. Application of real-time global media monitoring and 'derived questions' for enhancing communication by regulatory bodies: the case of human papillomavirus vaccines.

    Science.gov (United States)

    Bahri, Priya; Fogd, Julianna; Morales, Daniel; Kurz, Xavier

    2017-05-02

    The benefit-risk balance of vaccines is regularly debated by the public, but the utility of media monitoring for regulatory bodies is unclear. A media monitoring study was conducted at the European Medicines Agency (EMA) concerning human papillomavirus (HPV) vaccines during a European Union (EU) referral procedure assessing the potential causality of complex regional pain syndrome (CRPS) and postural orthostatic tachycardia syndrome (POTS) reported to the authorities as suspected adverse reactions. To evaluate the utility of media monitoring in real life, prospective real-time monitoring of worldwide online news was conducted from September to December 2015 with inductive content analysis, generating 'derived questions'. The evaluation was performed through the validation of the predictive capacity of these questions against journalists' queries, review of the EMA's public statement and feedback from EU regulators. A total of 4230 news items were identified, containing personal stories, scientific and policy/process-related topics. Explicit and implicit concerns were identified, including those raised due to lack of knowledge or anticipated once more information would be published. Fifty derived questions were generated and categorised into 12 themes. The evaluation demonstrated that providing the media monitoring findings to assessors and communicators resulted in (1) confirming that public concerns regarding CRPS and POTS would be covered by the assessment; (2) meeting specific information needs proactively in the public statement; (3) predicting all queries from journalists; and (4) altering the tone of the public statement with respectful acknowledgement of the health status of patients with CRSP or POTS. The study demonstrated the potential utility of media monitoring for regulatory bodies to support communication proactivity and preparedness, intended to support trusted safe and effective vaccine use. Derived questions seem to be a familiar and effective

  20. HLA engineering of human pluripotent stem cells.

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-06-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I-negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8(+) T cell responses were reduced in class I-negative cells that had undergone differentiation in embryoid bodies. These B2M(-/-) ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines.

  1. HLA Engineering of Human Pluripotent Stem Cells

    Science.gov (United States)

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  2. Obtaining a new variety of rape by biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z H; Cun, S X; Zhang, Z Z; Wang, W F; Zhang, T H; Li, W B; Zhang, L H [Institute of Genetics, Chinese Academy of Sciences, Beijing (China); [Laboratory of Genetic Engineering, Yunnan Academy of Agricultural Sciences, Kunming (China)

    1990-01-01

    Full text: High-frequency induction of pollen embryoids and plantlets of rape was obtained by stepped float anther culture. In addition, somatic embryoids and plantlets were induced with a high frequency from several species by cell suspension culture. The erucic acid (EA) content of embryoids was analysed by a micro-analysis technique and a semi-micro-analysis of glucosinolates (GS) content in culture was used. A new variety 'H86-166' with low EA and low GS content was selected by these techniques. It gave a yield of 3169 kg/ha and has been released for commercial production on about 1000 ha in Yunnan Province. (author)

  3. Dynamics of the nuclear one-body density: small amplitude regime

    International Nuclear Information System (INIS)

    Nemes, M.C.; Toledo Piza, A.F.R. de.

    1984-01-01

    A microscopic treatment for the small amplitude limite of the equations of motion for the nuclear one-body density is presented. These were derived previously by means of projection techniques, and allow for the explicit separation of mean-field and collision effects which result from the dynamics of many-body correlations. The form of the nuclear response in the presence of collision effects is derived. An illustrative application to a soluble model is discussed. (Author) [pt

  4. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  5. [Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope].

    Science.gov (United States)

    Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia

    2012-07-01

    To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.

  6. Properties of three-body decay functions derived with time-like jet calculus beyond leading order

    International Nuclear Information System (INIS)

    Sugiura, Tetsuya

    2002-01-01

    Three-body decay functions in time-like parton branching are calculated using the jet calculus to the next-to-leading logarithmic (NLL) order in perturbative quantum chromodynamics (QCD). The phase space contributions from each of the ladder diagrams and interference diagrams are presented. We correct part of the results for the three-body decay functions calculated previously by two groups. Employing our new results, the properties of the three-body decay functions in the regions of soft partons are examined numerically. Furthermore, we examine the contribution of the three-body decay functions modified by the restriction resulting from the kinematical boundary of the phase space for two-body decay in the parton shower model. This restriction leads to some problems for the parton shower model. For this reason, we propose a new restriction introduced by the kinematical boundary of the phase space for two-body decay. (author)

  7. A Numerical Method for Calculating the Wave Drag of a Configuration from the Second Derivative of the Area Distribution of a Series of Equivalent Bodies of Revolution

    Science.gov (United States)

    Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.

    1959-01-01

    A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.

  8. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  9. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  11. Aspects of the motion of extended bodies in the post-Newtonian approximation to general relativity

    Science.gov (United States)

    Racine, Etienne

    We give a surface integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The explicit form of these translational equations of motion has not been previously derived. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak-field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular black holes are not excluded. The derivation extends previous results due to Damour, Soffel and Xu (DSX) for weakly self-gravitating bodies in which the post-1- Newtonian field equations are satisfied everywhere. We also give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion. As part of the computational method, new explicit expansions of general solutions of post-2-Newtonian vacuum field equations are derived. These expansions can serve as foundation for future work in a number of directions, including for example conserved quantities at post- 2-Newtonian order, definitions of angular momentum and studies of gauge invariance of tidal heating. As an astrophysical application of the translational equations of motion, we study gravitomagnetic resonant tidal excitations of r -modes in neutron star binary coalescence. We show that the effect of the resonance on the phase of the binary can be parametrized by a single number. We compute this number explicitly and discuss the detectability of this effect from its imprint on the gravitational wave signal emitted by the binary.

  12. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  13. Prediction of body lipid change in pregnancy and lactation.

    Science.gov (United States)

    Friggens, N C; Ingvartsen, K L; Emmans, G C

    2004-04-01

    A simple method to predict the genetically driven pattern of body lipid change through pregnancy and lactation in dairy cattle is proposed. The rationale and evidence for genetically driven body lipid change have their basis in evolutionary considerations and in the homeorhetic changes in lipid metabolism through the reproductive cycle. The inputs required to predict body lipid change are body lipid mass at calving (kg) and the date of conception (days in milk). Body lipid mass can be derived from body condition score and live weight. A key assumption is that there is a linear rate of change of the rate of body lipid change (dL/dt) between calving and a genetically determined time in lactation (T') at which a particular level of body lipid (L') is sought. A second assumption is that there is a linear rate of change of the rate of body lipid change (dL/dt) between T' and the next calving. The resulting model was evaluated using 2 sets of data. The first was from Holstein cows with 3 different levels of body fatness at calving. The second was from Jersey cows in first, second, and third parity. The model was found to reproduce the observed patterns of change in body lipid reserves through lactation in both data sets. The average error of prediction was low, less than the variation normally associated with the recording of condition score, and was similar for the 2 data sets. When the model was applied using the initially suggested parameter values derived from the literature the average error of prediction was 0.185 units of condition score (+/- 0.086 SD). After minor adjustments to the parameter values, the average error of prediction was 0.118 units of condition score (+/- 0.070 SD). The assumptions on which the model is based were sufficient to predict the changes in body lipid of both Holstein and Jersey cows under different nutritional conditions and parities. Thus, the model presented here shows that it is possible to predict genetically driven curves of body

  14. Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera

    Directory of Open Access Journals (Sweden)

    Sang-Goo Lee

    2017-11-01

    Full Text Available Naked mole rats (NMRs are exceptionally long-lived, cancer-resistant rodents. Identifying the defining characteristics of these traits may shed light on aging and cancer mechanisms. Here, we report the generation of induced pluripotent stem cells (iPSCs from NMR fibroblasts and their contribution to mouse-NMR chimeric embryos. Efficient reprogramming could be observed under N2B27+2i conditions. The iPSCs displayed a characteristic morphology, expressed pluripotent markers, formed embryoid bodies, and showed typical differentiation patterns. Interestingly, NMR embryonic fibroblasts and the derived iPSCs had propensity for a tetraploid karyotype and were resistant to forming teratomas, but within mouse blastocysts they contributed to both interspecific placenta and fetus. Gene expression patterns of NMR iPSCs were more similar to those of human than mouse iPSCs. Overall, we uncovered unique features of NMR iPSCs and report a mouse-NMR chimeric model. The iPSCs and associated cell culture systems can be used for a variety of biological and biomedical applications.

  15. Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law

    Science.gov (United States)

    Greffet, Jean-Jacques; Bouchon, Patrick; Brucoli, Giovanni; Marquier, François

    2018-04-01

    The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at different temperatures, and (iii) spontaneous emission by semiconductors under optical (photoluminescence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.

  16. An investigation into the potassium body burden in humans with the help of a whole-body counter

    International Nuclear Information System (INIS)

    Selzer, A.

    1981-01-01

    The purpose of this study was to examine the available information concerning the potassium body burden of a large number of adults and to find a correlation with other easily measurable body parameters such as mass, height and age so that a normal expected body potassium may be predicted for patients with potassium abnormalities who are also referred to the whole-body counter. The calibration of the whole-body counter to make provision for the differences in geometry and absorption in various body sizes was carried out by injecting a number of people with a small dose of potassium-42 and calculating a correction factor for the potassium standard which is in use daily. All measurements of body potassium were corrected with the calculated correction factor. Fatty tissue in the body contains very little potassium in comparison with muscle tissue and a better correction should therefore be obtained between body potassium and lean body mass. Although it is not possible to predict the smaller potassium abnormalities even when lean body mass is used, the derived regression equation in which lean body mass and age are used, may be viewed as a good first approach in the advance estimation of body potassium

  17. KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes.

    Directory of Open Access Journals (Sweden)

    Veera R Konda

    Full Text Available AIMS/HYPOTHESIS: We developed KDT501, a novel substituted 1,3-cyclopentadione chemically derived from hop extracts, and evaluated it in various in vitro and in vivo models of diabetes and insulin sensitivity. METHODS: KDT501 was evaluated for anti-inflammatory effects in monocyte/macrophage cells; agonistic activity for peroxisome proliferator-activated receptors (PPAR; lipogenesis and gene expression profile in human subcutaneous adipocytes. Body composition, glucose, insulin sensitivity, and lipids were assessed in diet-induced obesity (DIO mice and Zucker Diabetic Fatty (ZDF rats after oral administration. RESULTS: KDT501 mediated lipogenesis in 3T3L1 and human subcutaneous adipocytes; however, the gene expression profile of KDT501 differed from that of the full PPARγ agonist rosiglitazone, suggesting that KDT501 has pleiotropic biological activities. In addition, KDT501 showed only modest, partial PPARγ agonist activity and exhibited anti-inflammatory effects in monocytes/macrophages that were not observed with rosiglitazone. In a DIO mouse model, oral administration of KDT501 significantly reduced fed blood glucose, glucose/insulin AUC following an oral glucose bolus, and body fat. In ZDF rats, oral administration of KDT501 significantly reduced fed glucose, fasting plasma glucose, and glucose AUC after an oral glucose bolus. Significant, dose-dependent reductions of plasma hemoglobin A1c, weight gain, total cholesterol, and triglycerides were also observed in animals receiving KDT501. CONCLUSION: These results indicate that KDT501 produces a unique anti-diabetic profile that is distinct in its spectrum of pharmacological effects and biological mechanism from both metformin and pioglitazone. KDT501 may thus constitute a novel therapeutic agent for the treatment of Type 2 diabetes and associated conditions.

  18. Unitarity relations for the four-body scattering amplitude

    International Nuclear Information System (INIS)

    Matsui, Y.

    1988-01-01

    A formal derivation of the general unitarity relation for the four-particle transition operator is given by generalizing the three-body formalism of Karlson and Zeiger to the four-body case. From this operator relation the on-shell unitarity relations for the amplitudes that describe elastic/rearrangement, partial breakup, and full breakup scattering processes are obtained

  19. Effective two-body equations for the four-body problem with exact treatment of (2+2)-subsystem contributions

    International Nuclear Information System (INIS)

    Haberzettl, H.; Sandhas, W.

    1981-01-01

    Effective two-body equations for the four-body problem are derived within the general N-body theory of Alt, Grassberger, and Sandhas. In contrast to usual treatments, the final expressions do not require separable (2+2) subamplitudes but incorporate these exactly. All four-body amplitudes can be calculated from the solution of a single integral equation for the reaction (3+1)→(3+1). With single-term separable approximations for the two-particle and the (3+1) subsystem amplitudes the driving terms of the final equations are seen to reduce to those of the field-theoretical model by Fonseca and Shanley. Since our results are based on an exact and complete N-body theory, the investigation of subsystem reaction mechanisms is facilitated. As a consequence, we are led to a three-particle propagator which has the right pole behavior and includes exchange effects

  20. On isochronous derivatives of the first and second order in space dynamics tasks

    Science.gov (United States)

    Bakshiyan, B. T.; Sukhanov, A. A.

    1979-01-01

    The first and second isochronous derivatives are calculated from the vector of state of dynamic system using its initial value. Use is made of the method of finding a fundamental solution of conjugate variational equations. This solution and the corresponding universal relationship for isochronous derivatives are found for the two-body problem in a form which is simple and suitable for computer programming. The form of these relationships was obtained for motion which differs from parabolic motion. Formulas are given for isochronous derivatives using the gravitational parameter in the two-body problem.

  1. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    Energy Technology Data Exchange (ETDEWEB)

    Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  2. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    International Nuclear Information System (INIS)

    Dhou, S; Williams, C; Ionascu, D; Lewis, J

    2016-01-01

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  3. Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis.

    Science.gov (United States)

    Johnston, J L; Leong, M S; Checkland, E G; Zuberbuhler, P C; Conger, P R; Quinney, H A

    1988-12-01

    Body density and skinfold thickness at four sites were measured in 140 normal boys, 168 normal girls, and 6 boys and 7 girls with cystic fibrosis, all aged 8-14 y. Prediction equations for the normal boys and girls for the estimation of body-fat content from skinfold measurements were derived from linear regression of body density vs the log of the sum of the skinfold thickness. The relationship between body density and the log of the sum of the skinfold measurements differed from normal for the boys and girls with cystic fibrosis because of their high body density even though their large residual volume was corrected for. However the sum of skinfold measurements in the children with cystic fibrosis did not differ from normal. Thus body fat percent of these children with cystic fibrosis was underestimated when calculated from body density and invalid when calculated from skinfold thickness.

  4. Integral bounds for N-body total cross sections

    International Nuclear Information System (INIS)

    Osborn, T.A.; Bolle, D.

    1979-01-01

    We study the behavior of the total cross sections in the three- and N-body scattering problem. Working within the framework of the time-dependent two-Hilbert space scattering theory, we give a simple derivation of integral bounds for the total cross section for all processes initiated by the collision of two clusters. By combining the optical theorem with a trace identity derived by Jauch, Sinha, and Misra, we find, roughly speaking, that if the local pairwise interaction falls off faster than r -3 , then sigma/sub tot/(E) must decrease faster than E/sup -1/2/ at high energy. This conclusion is unchanged if one introduces a class of well-behaved three-body interactions

  5. Coupled-channel equations and off-shell transformations in many-body scattering

    International Nuclear Information System (INIS)

    Cattapan, G.; Vanzani, V.

    1977-01-01

    The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel

  6. Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Greffet

    2018-04-01

    Full Text Available The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i thermal emission by nonisothermal finite-size bodies, (ii thermal emission by bodies with carriers at different temperatures, and (iii spontaneous emission by semiconductors under optical (photoluminescence or electrical pumping (electroluminescence. Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.

  7. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  8. Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation

    OpenAIRE

    Xu, Jiafeng; Halse, Karl Henning

    2016-01-01

    In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...

  9. Classical and quantum-mechanical axioms with the higher time derivative formalism

    International Nuclear Information System (INIS)

    Kamalov, Timur

    2013-01-01

    A Newtonian mechanics model is essentially the model of a point body in an inertial reference frame. How to describe extended bodies in non-inertial (vibration) reference frames with the random initial conditions? One of the most generalized ways of descriptions (known as the higher derivatives formalism) consists in taking into account the infinite number of the higher temporal derivatives of the coordinates in the Lagrange function. Such formalism describing physical objects in the infinite dimensions space does not contradict to the quantum mechanics and infinite dimensions Hilbert space.

  10. How culture shapes the body: cultural consonance and body mass in urban Brazil.

    Science.gov (United States)

    Dressler, William W; Oths, Kathryn S; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2012-01-01

    The aim of this article is to develop a model of how culture shapes the body, based on two studies conducted in urban Brazil. Research was conducted in 1991 and 2001 in four socioeconomically distinct neighborhoods. First, cultural domain analyses were conducted with samples of key informants. The cultural domains investigated included lifestyle, social support, family life, national identity, and food. Cultural consensus analysis was used to confirm shared knowledge in each domain and to derive measures of cultural consonance. Cultural consonance assesses how closely an individual matches the cultural consensus model for each domain. Second, body composition, cultural consonance, and related variables were assessed in community surveys. Multiple regression analysis was used to examine the association of cultural consonance and body composition, controlling for standard covariates and competing explanatory variables. In 1991, in a survey of 260 individuals, cultural consonance had a curvilinear association with the body mass index that differed for men and women, controlling for sociodemographic and dietary variables. In 2001, in a survey of 267 individuals, cultural consonance had a linear association with abdominal circumference that differed for men and women, controlling for sociodemographic and dietary variables. In general, as cultural consonance increases, body mass index and abdominal circumference decline, more strongly for women than men. As individuals, in their own beliefs and behaviors, more closely approximate shared cultural models in socially salient domains, body composition also more closely approximates the cultural prototype of the body. Copyright © 2012 Wiley Periodicals, Inc.

  11. Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders.

    Science.gov (United States)

    di Giuseppe, Romina; Plachta-Danielzik, Sandra; Koch, Manja; Nöthlings, Ute; Schlesinger, Sabrina; Borggrefe, Jan; Both, Marcus; Müller, Hans-Peter; Kassubek, Jan; Jacobs, Gunnar; Lieb, Wolfgang

    2018-02-14

    The association of complex dietary patterns with circulating selenoprotein P (SELENOP) levels in humans is unknown. In a general population sample, we aimed to identify a dietary pattern explaining inter-individual variation in circulating SELENOP concentrations and to study this pattern in relation to prevalent diabetes, metabolic syndrome (MetS), MRI-determined total volumes of visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, and liver signal intensity/fatty liver disease. In this cross-sectional study, serum SELENOP levels were measured in 853 individuals. In a subsample of 553 participants, whole-body MRI was performed to assess body fat distribution and liver fat. Dietary intake was assessed by a self-administered food frequency questionnaire and the dietary pattern identified using reduced-rank regression (RRR). Multivariable linear and logistic regressions were used to investigate associations between dietary pattern score and metabolic traits. Characterized by high intake of fruit, vegetables and antioxidant beverages, the RRR-derived dietary pattern displayed inverse associations with VAT, SAT, MetS, and prevalent diabetes in multivariable-adjusted restricted cubic splines. Each unit increase in dietary pattern score was associated with 31% higher SELENOP levels, 12% lower VAT (95% CI: - 19%; - 5%), 13% (95% CI: - 20%; - 6%) lower SAT values and 46% (95% CI: 27%; 60%) and 53% (95% CI: 22%; 72%) lower odds of having MetS or diabetes, respectively. No meaningful relations were observed between the dietary pattern and liver traits. Our observations propose diet-related regulation in SELENOP levels and that the identified dietary pattern is inversely related to VAT, SAT, MetS, and prevalent diabetes.

  12. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    Science.gov (United States)

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.

  13. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  14. Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Yu Weihua

    2010-06-01

    Full Text Available Abstract Background Embryonic stem (ES cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. Results Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. Conclusions The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.

  15. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  16. N-3 polyunsaturated fatty acids, body fat and inflammation

    DEFF Research Database (Denmark)

    Lund, Anne-Sofie Quist; Hasselbalch, Ann Louise; Gamborg, Michael

    2013-01-01

    BACKGROUND: Based on animal studies, n-3 polyunsaturated fatty acids (PUFAs) have been suggested to lower the risk of obesity and inflammation. We aimed to investigate if, among humans, intake of n-3 PUFAs was associated with i) total body fat, ii) body fat distribution and iii) obesity...... in relation to outcomes were performed and adjusted for potential confounders. RESULTS: Absolute n-3 PUFA intake, but not n-3/n-6, was inversely associated with the different measures of body fat. Among n-3 PUFA derivatives, only α-linolenic acid (ALA) was inversely associated with body fat measures...

  17. The derivation of the general form of kinematics with the universal reference system

    Directory of Open Access Journals (Sweden)

    Karol Szostek

    2018-03-01

    Full Text Available In the article, the whole class of time and position transformations was derived. These transformations were derived based on the analysis of the Michelson-Morley experiment and its improved version, that is the Kennedy-Thorndike experiment. It is possible to derive a different kinematics of bodies based on each of these transformations. In this way, we demonstrated that the Special Theory of Relativity is not the only theory explaining the results of experiments with light. There is the whole continuum of the theories of kinematics of bodies which correctly explain the Michelson-Morley experiment and other experiments in which the velocity of light is measured. Based on the derived transformations, we derive the general formula for the velocity of light in vacuum measured in any inertial reference system. We explain why the Michelson-Morley and Kennedy-Thorndike experiments could not detect the ether. We present and discuss three examples of specific transformations. Finally, we explain the phenomenon of anisotropy of the cosmic microwave background radiation by means of the presented theory. The theory derived in this work is called the Special Theory of Ether – with any transverse contraction. The entire article contains only original research conducted by its authors. Keywords: Kinematics of bodies, Universal frame of reference, Transformation of time and position, One-way speed of light, Anisotropy of cosmic microwave background

  18. Software development for subsonic aircraft’s unsteady longitudinal stability derivatives calculation

    Directory of Open Access Journals (Sweden)

    Maričić Nikola

    2005-01-01

    Full Text Available Subsonic general configuration aircrafts’ unsteady longitudinal aerodynamic stability derivatives can be estimated using finite element methodology based on the Doublet Lattice Method (DLM, the Slender Body Theory (SBT and the Method of Images (MI. Applying this methodology, software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21A and HA75H. A good agreement is achieved.

  19. Unraveling gravity beyond Einstein with extended test bodies

    International Nuclear Information System (INIS)

    Puetzfeld, Dirk; Obukhov, Yuri N.

    2013-01-01

    The motion of test bodies in gravity is tightly linked to the conservation laws. This well-known fact in the context of General Relativity is also valid for gravitational theories which go beyond Einstein's theory. Here we derive the equations of motion for test bodies for a very large class of gravitational theories with a general nonminimal coupling to matter. These equations form the basis for future systematic tests of alternative gravity theories. Our treatment is covariant and generalizes the classic Mathisson–Papapetrou–Dixon result for spinning (extended) test bodies. The equations of motion for structureless test bodies turn out to be surprisingly simple, despite the very general nature of the theories considered.

  20. Affective Body Movements (for Robots) Across Cultures

    DEFF Research Database (Denmark)

    Rehm, Matthias

    2018-01-01

    Humans are very good in expressing and interpreting emotions from a variety of different sources like voice, facial expression, or body movements. In this article, we concentrate on body movements and show that those are not only a source of affective information but might also have a different i...... with a study on creating an affective knocking movement for a humanoid robot and give details about a co-creation experiment for collecting a cross-cultural database on affective body movements and about the probabilistic model derived from this data....... interpretation in different cultures. To cope with these multiple viewpoints in generating and interpreting body movements in robots, we suggest a methodological approach that takes the cultural background of the developer and the user into account during the development process. We exemplify this approach...

  1. The Boltzmann-Langevin Equation derived from the real-time path formalism

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    We derive the Boltzmann-Langevin equation using Green's functions techniques in the real-time path formalism. We start from the Martin-Schwinger hierarchy and close it approximately at the two-body level. A careful discussion of the initial conditions for the free two-body Green's function provides the flexibility to recover the discarded correlations as fluctuations leading to the Langevin force. The derivation is generalized to the T-matrix approach which allows to prove that one can use the same effective interaction in the mean-field as well as in the collision term and Langevin force

  2. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function.

    Science.gov (United States)

    Nicholson, J R; Peter, J-C; Lecourt, A-C; Barde, Y-A; Hofbauer, K G

    2007-12-01

    In the present study, we aimed to investigate the neuromodulatory role played by hypothalamic brain-derived neurotrophic factor (BDNF) in the regulation of acute cardiovascular and feeding responses to melanocortin-4 receptor (MC4R) activation. In vitro, a selective MC4R agonist, MK1, stimulated BDNF release from isolated rat hypothalami and this effect was blocked by preincubation with the MC3/4R antagonist SHU-9119. In vivo, peripheral administration of MK1 decreased food intake in rats and this effect was blocked by pretreatment with an anti-BDNF antibody administered into the third ventricle. When anorexia was induced with the cannabinoid-1 receptor (CB1R) antagonist AM251, the anti-BDNF antibody did not prevent the reduction in food intake. Peripheral administration of MK1 also increased mean arterial pressure, heart rate and body temperature. These effects were prevented by pretreatment with the anti-BDNF antibody whereas the intracerebroventricular administration of BDNF caused changes similar to those of MK1. These findings demonstrate for the first time that activation of MC4R leads to an acute release of BDNF in the hypothalamus. This release is a prerequisite for MC4R-induced effects on appetite, body temperature and cardiovascular function. By contrast, CB1R antagonist-mediated anorexia is independent of the MC4R/BDNF pathway. Overall, these results show that BDNF is an important downstream mediator of the MC4R pathway.

  3. Nonlocality in many-body quantum systems detected with two-body correlators

    Energy Technology Data Exchange (ETDEWEB)

    Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)

    2015-11-15

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.

  4. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  5. Oligodendroglioma of the ciliary body: a unique case report and the review of literature

    International Nuclear Information System (INIS)

    Guo, Qing; Hao, Jie; Sun, Shou bin; Xu, Shou ping; Yang, Qian; Guo, Qi liang; Cui, Guo dong

    2010-01-01

    To date, there is no report in the international literature of an oligodendroglioma of the ciliary body, nor is there an analysis of the possible origins of this lesion. Here we report on a 52-year-old man admitted to our hospital with a ciliary body tumor revealed by clinical examination and ultrasound, computed tomography and magnetic resonance imaging studies. Following enucleation, pathological and immunohistochemical analyses were performed. Postoperative histopathological staining results included OLIGO-2(+) and GFAP(-), leading to a pathological diagnosis of oligodendroglioma of the ciliary body in the right eye (WHO grade II). Since malignant gliomas derive from transformed neural stem cells, the presence of oligodendroglioma in the ciliary body supports the hypothesis that gliomas can occur wherever neural stem cells exist. Tumors of the ciliary body derived from oligodendrocytes are difficult to diagnose; pathological analyses are essential

  6. "The good into the pot, the bad into the crop!"--a new technology to free stem cells from feeder cells.

    Directory of Open Access Journals (Sweden)

    Annette Schneider

    Full Text Available A variety of embryonic and adult stem cell lines require an initial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers. Complete and reproducible separation of feeder and embryonic stem cells was accomplished by adaptation of an automated cell selection system that resulted in the aspiration of distinct cell colonies or fraction of colonies according to predefined physical parameters. Analyzing neuronal differentiation we demonstrated feeder-freed stem cells to exhibit differentiation potentials comparable to embryonic stem cells differentiated under standard conditions. However, embryoid body growth as well as differentiation of stem cells into cardiomyocytes was significantly enhanced in feeder-freed cells, indicating a feeder cell dependent modulation of lineage differentiation during early embryoid body development. These findings underline the necessity to separate stem and feeder cells before the initiation of in vitro differentiation. The complete separation of stem and feeder cells by this new technology results in pure stem cell populations for translational approaches. Furthermore, a more detailed analysis of the effect of feeder cells on stem cell differentiation is now possible, that might facilitate the identification and development of new optimized human or genetically modified feeder cell lines.

  7. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

    Science.gov (United States)

    Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang

    2015-05-01

    The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.

  9. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  10. Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies

    Science.gov (United States)

    Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.

    2010-01-01

    Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069

  11. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    Science.gov (United States)

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  12. A comprehensive treatment of electromagnetic interactions and the three-body spectator equations

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Adam; Jay Van Orden

    2004-10-01

    We present a general derivation the three-body spectator (Gross) equations and the corresponding electromagnetic currents. As in previous paper on two-body systems, the wave equations and currents are derived from those for Bethe-Salpeter equation with the help of algebraic method using a concise matrix notation. The three-body interactions and currents introduced by the transition to the spectator approach are isolated and the matrix elements of the e.m. current are presented in detail for system of three indistinguishable particles, namely for elastic scattering and for two and three body break-up. The general expressions are reduced to the one-boson-exchange approximation to make contact with previous work. The method is general in that it does not rely on introduction of the electromagnetic interaction with the help of the minimal replacement. It would therefore work also for other external fields.

  13. Derivation of the scan time requirement for maintaining a consistent PET image quality

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-01-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (F TS ) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ⋅ body weight 0.3 and NECR = 421.36 (body weight) −0.84 . The equation derived for F TS was 0.01⋅ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics

  14. OUT-OF-BODY EXPERIENCE, PURE BEING AND METAPHYSICS

    Directory of Open Access Journals (Sweden)

    I. V. Karivets

    2016-12-01

    Full Text Available Purpose. The author will show that metaphysical concepts and the concepts of empirical sciences derive from experience. The only difference is that metaphysical concepts derive from unusual experience, i.e. out-of-body experience, while empirical sciences – from usual one. The example set metaphysical concept of pure being. Methodology. In order to obtain this goal the author uses two methods. The first one is comparative method. With the help of this method the stories of men who experienced clinical death and returned to life are compared with the famous philosophers’ metaphysical statements (Plato, Descartes, and Bonaventura. The second one is transpersonal method. It helps to study the peculiarities of the extraordinary experience in the state of clinical death or mystical ecstasy. Such experience lies in experience of transcendence, pure being as light, ultimate awareness of truth, which are identical to the metaphysical statements of philosophers and mystics. These ultimate experiences belong to different people, who lived and grown in different cultures, but nevertheless metaphysical statements of philosophers or mystics and statements of the ordinary people who experienced clinical death are the same. Therefore we can say that out-of-body experience is transpersonal. Originality. Metaphysics is neither speculative nor withdrawn from experience of a human being sphere. It arises from out-of-body experience while empirical sciences – from usual experience. Therefore, metaphysical concepts, in particular, pure being, are empirical, because they are based also on (extraordinary experience. In general, metaphysics becomes possible on the basis of out-of-body experience. Conclusions. In this article the author argues that the concepts of metaphysics are not a priori because they originate from out-of-body experience that is from the experience of the distinction between body and soul or body and mind. As a result of such experience

  15. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  16. Universal equation for estimating ideal body weight and body weight at any BMI.

    Science.gov (United States)

    Peterson, Courtney M; Thomas, Diana M; Blackburn, George L; Heymsfield, Steven B

    2016-05-01

    Ideal body weight (IBW) equations and body mass index (BMI) ranges have both been used to delineate healthy or normal weight ranges, although these 2 different approaches are at odds with each other. In particular, past IBW equations are misaligned with BMI values, and unlike BMI, the equations have failed to recognize that there is a range of ideal or target body weights. For the first time, to our knowledge, we merged the concepts of a linear IBW equation and of defining target body weights in terms of BMI. With the use of calculus and approximations, we derived an easy-to-use linear equation that clinicians can use to calculate both IBW and body weight at any target BMI value. We measured the empirical accuracy of the equation with the use of NHANES data and performed a comparative analysis with past IBW equations. Our linear equation allowed us to calculate body weights for any BMI and height with a mean empirical accuracy of 0.5-0.7% on the basis of NHANES data. Moreover, we showed that our body weight equation directly aligns with BMI values for both men and women, which avoids the overestimation and underestimation problems at the upper and lower ends of the height spectrum that have plagued past IBW equations. Our linear equation increases the sophistication of IBW equations by replacing them with a single universal equation that calculates both IBW and body weight at any target BMI and height. Therefore, our equation is compatible with BMI and can be applied with the use of mental math or a calculator without the need for an app, which makes it a useful tool for both health practitioners and the general public. © 2016 American Society for Nutrition.

  17. On PHY and MAC Performance in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Higgins Henry

    2009-01-01

    Full Text Available Abstract This paper presents an empirical investigation on the performance of body implant communication using radio frequency (RF technology. In body implant communication, the electrical properties of the body influence the signal propagation in several ways. We use a Perspex body model (30 cm diameter, 80 cm height and 0.5 cm thickness filled with a liquid that mimics the electrical properties of the basic body tissues. This model is used to observe the effects of body tissue on the RF communication. We observe best performance at 3cm depth inside the liquid. We further present a simulation study of several low-power MAC protocols for an on-body sensor network and discuss the derived results. Also, the traditional preamble-based TMDA protocol is extended towards a beacon-based TDMA protocol in order to avoid preamble collision and to ensure low-power communication.

  18. On PHY and MAC Performance in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sana Ullah

    2009-01-01

    Full Text Available This paper presents an empirical investigation on the performance of body implant communication using radio frequency (RF technology. In body implant communication, the electrical properties of the body influence the signal propagation in several ways. We use a Perspex body model (30 cm diameter, 80 cm height and 0.5 cm thickness filled with a liquid that mimics the electrical properties of the basic body tissues. This model is used to observe the effects of body tissue on the RF communication. We observe best performance at 3cm depth inside the liquid. We further present a simulation study of several low-power MAC protocols for an on-body sensor network and discuss the derived results. Also, the traditional preamble-based TMDA protocol is extended towards a beacon-based TDMA protocol in order to avoid preamble collision and to ensure low-power communication.

  19. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    Science.gov (United States)

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  20. The use of bioelectrical impedance analysis for body composition in epidemiological studies

    DEFF Research Database (Denmark)

    Böhm, A; Heitmann, B L

    2013-01-01

    BACKGROUND/OBJECTIVES: Bioelectrical impedance analysis (BIA) is a relatively simple, inexpensive and non-invasive technique to measure body composition and is therefore suitable in field studies and larger surveys. SUBJECTS/METHODS: We performed an overview of BIA-derived body fat percentages (BF......%) from 55 published studies of healthy populations aged 6-80 years. In addition, the relationship between body mass index (BMI) and body composition is documented in the context of BIA as a good alternative to closely differentiate which composition of the body better relates to the risk...

  1. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  2. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  3. Spectral sum rules for the three-body problem

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1982-01-01

    This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers

  4. Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.

    Science.gov (United States)

    Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron

    2017-12-01

    To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Total body neutron activation analysis of calcium: calibration and normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, N S.J.; Eastell, R; Ferrington, C M; Simpson, J D; Strong, J A [Western General Hospital, Edinburgh (UK); Smith, M A; Tothill, P [Royal Infirmary, Edinburgh (UK)

    1982-05-01

    An irradiation system has been designed, using a neutron beam from a cyclotron, which optimises the uniformity of activation of calcium. Induced activity is measured in a scanning, shadow-shield whole-body counter. Calibration has been effected and reproducibility assessed with three different types of phantom. Corrections were derived for variations in body height, depth and fat thickness. The coefficient of variation for repeated measurements of an anthropomorphic phantom was 1.8% for an absorbed dose equivalent of 13 mSv (1.3 rem). Measurements of total body calcium in 40 normal adults were used to derive normalisation factors which predict the normal calcium in a subject of given size and age. The coefficient of variation of normalised calcium was 6.2% in men and 6.6% in women, with the demonstration of an annual loss of 1.5% after the menopause. The narrow range should make single measurements useful for diagnostic purposes.

  6. Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC

    Directory of Open Access Journals (Sweden)

    Khodadad Khodadadi

    2012-01-01

    Full Text Available Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors using OCT4, SOX2, and KLF4 in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months and characterized. The equine iPS (EiPS cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression of OCT4, SOX2 NANOG, and STAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers both in vitro by embryoid bodies (EBs formation and in vivo by teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.

  7. Establishment of new murine embryonic stem cell lines for the generation of mouse models of human genetic diseases

    Directory of Open Access Journals (Sweden)

    M.A. Sukoyan

    2002-05-01

    Full Text Available Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.

  8. Use of tritiated water for estimating body composition in grazing ewes

    International Nuclear Information System (INIS)

    Russel, A.J.F.; Foot, J.Z.; McFarlane, D.M.

    1982-01-01

    Tritiated water was used to estimate total body water, body composition and water turnover of non-pregnant, pregnant, non-lactating and lactating grazing sheep. Body composition was estimated from equilibrated and extrapolated values of tritiated water space. These methods both overestimated the total body water measured directly. Body fat could be predicted satisfactorily from tritiated water space within the physiological states of ewes, i.e. lactating, pregnant, etc., although for lactating ewes the error of prediction is greater. It appears inadvisable at this stage to use equations derived from all classes of ewes to estimate body fat in ewes of any one physiological state. Water turnover varied, with the physiological state being highest for lactating ewes. (author)

  9. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    Science.gov (United States)

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  10. Genetic Transformation of Metroxylon sagu (Rottb. Cultures via Agrobacterium-Mediated and Particle Bombardment

    Directory of Open Access Journals (Sweden)

    Evra Raunie Ibrahim

    2014-01-01

    Full Text Available Sago palm (Metroxylon sagu is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L. Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.

  11. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  12. Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles.

    Science.gov (United States)

    Otsuka, Kurataka; Yamamoto, Yusuke; Matsuoka, Ryosuke; Ochiya, Takahiro

    2018-01-01

    During the last decade, it has been uncovered that microRNAs (miRNAs), a class of small non-coding RNAs, are related to many diseases including cancers. With an increase in reports describing the dysregulation of miRNAs in various tumor types, it has become abundantly clear that miRNAs play significant roles in the formation and progression of cancers. Intriguingly, miRNAs are present in body fluids because they are packed in exosomes/extracellular vesicles and released from all types of cells. The miRNAs in the fluids are measured in a relatively simple way and the profile of miRNAs is likely to be an indicator of health condition. In recent years, various studies have demonstrated that some naturally occurring compounds can control tumor-suppressive and oncogenic miRNAs in a positive manner, suggesting that food-derived compounds could maintain the expression levels of miRNAs and help maintain good health. Therefore, our daily food and compounds in food are of great interest. In addition, exogenous diet-derived miRNAs have been indicated to function in the regulation of target mammalian transcripts in the body. These findings highlight the possibility of diet for good health through the regulation of miRNAs, and we also discuss the perspective of food application and health promotion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Total Body Opacification 'Technique Neonatal Adrenal Haemorrhage

    African Journals Online (AJOL)

    1971-12-11

    Dec 11, 1971 ... A case is reported illustrating the possible usefulness of total body opacification in the diagnosis of neonatal adrenal haemorrhage. To derive maximum benefit from this principle, the routine use of an early film coupled with high dosage is urged whenever an intravenous pyelogram is performed for ...

  14. The derivation of the general form of kinematics with the universal reference system

    Science.gov (United States)

    Szostek, Karol; Szostek, Roman

    2018-03-01

    In the article, the whole class of time and position transformations was derived. These transformations were derived based on the analysis of the Michelson-Morley experiment and its improved version, that is the Kennedy-Thorndike experiment. It is possible to derive a different kinematics of bodies based on each of these transformations. In this way, we demonstrated that the Special Theory of Relativity is not the only theory explaining the results of experiments with light. There is the whole continuum of the theories of kinematics of bodies which correctly explain the Michelson-Morley experiment and other experiments in which the velocity of light is measured. Based on the derived transformations, we derive the general formula for the velocity of light in vacuum measured in any inertial reference system. We explain why the Michelson-Morley and Kennedy-Thorndike experiments could not detect the ether. We present and discuss three examples of specific transformations. Finally, we explain the phenomenon of anisotropy of the cosmic microwave background radiation by means of the presented theory. The theory derived in this work is called the Special Theory of Ether - with any transverse contraction. The entire article contains only original research conducted by its authors.

  15. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  16. Discrepancy between body surface area and body composition in cancer.

    Science.gov (United States)

    Stobäus, Nicole; Küpferling, Susanne; Lorenz, Marie-Luise; Norman, Kristina

    2013-01-01

    Calculation of cytostatic dose is typically based on body surface area (BSA) regardless of body composition. The aim of this study was to assess the discrepancy between BSA and low fat-free mass (FFM) by investigating the prevalence of low FFM with regard to BSA in 630 cancer patients. First, BSA was calculated according to DuBois and DuBois. Patients were divided into 6 categories with respect to their BSA. Each BSA category was further divided into 3 groups according to FFM: low (FFM), normal (-0.99 and 0.99 SD of mean FFM) or high (>1 SD of mean FFM), which was derived through bioelectric impedance analysis. FFM was reduced in 15.7% of patients, 69% had normal and 15.2% had high FFM. In patients with low FFM (i.e., more than-1 SD lower than the mean FFM within their BSA group), body mass index and fatigue were higher whereas functional status was reduced. Moreover, in the subcohort of patients receiving chemotherapy, absolute FFM [Hazard ratio (HR) = 0.970, P = 0.026] as well as the allocation to the low FFM group (HR = 1.644, P = 0.025) emerged as predictors of increased 1-yr mortality. In conclusion, there was a large discrepancy between FFM and BSA. Particularly women were affected by low FFM.

  17. Body Fat and Breast Cancer Risk in Postmenopausal Women: A Longitudinal Study

    International Nuclear Information System (INIS)

    Rohan, T. E.; Heo, M.; Kamensky, V.; Kabat, G. C.

    2013-01-01

    Associations between anthropometric indices of obesity and breast cancer risk may fail to capture the true relationship between excess body fat and risk. We used dual-energy-X-ray-absorptiometry- (DXA-) derived measures of body fat obtained in the Women’s Health Initiative to examine the association between body fat and breast cancer risk; we compared these risk estimates with those for conventional anthropometric measurements. The study included 10,960 postmenopausal women aged 50-79 years at recruitment, with baseline DXA measurements and no history of breast cancer. During followup (median: 12.9 years), 503 incident breast cancer cases were diagnosed. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazards models. All baseline DXA-derived body fat measures showed strong positive associations with breast cancer risk. The multivariable-adjusted HR for the uppermost quintile level (versus lowest) ranged from 1.53 (95% CI 1.14-2.07) for fat mass of the right leg to 2.05 (1.50-2.79) for fat mass of the trunk. Anthropometric indices (categorized by quintiles) of obesity (BMI (1.97, 1.45-2.68), waist circumference (1.97, 1.46-2.65), and waist-: hip ratio (1.91, 1.41-2.58)) were all strongly, positively associated with risk and did not differ from DXA-derived measures in prediction of risk.

  18. Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells.

    Science.gov (United States)

    Fu, Qiuli; Qin, Zhenwei; Jin, Xiuming; Zhang, Lifang; Chen, Zhijian; He, Jiliang; Ji, Junfeng; Yao, Ke

    2017-01-01

    The pathological mechanisms underlying cataract formation remain largely unknown on account of the lack of appropriate in vitro cellular models. The aim of this study is to develop a stable in vitro system for human lens regeneration using pluripotent stem cells. Isolated human urinary cells were infected with four Yamanaka factors to generate urinary human induced pluripotent stem cells (UiPSCs), which were induced to differentiate into lens progenitor cells and lentoid bodies (LBs). The expression of lens-specific markers was examined by real-time PCR, immunostaining, and Western blotting. The structure and magnifying ability of LBs were investigated using transmission electron microscopy and observing the magnification of the letter "X," respectively. We developed a "fried egg" differentiation method to generate functional LBs from UiPSCs. The UiPSC-derived LBs exhibited crystalline lens-like morphology and a transparent structure and expressed lens-specific markers αA-, αB-, β-, and γ-crystallin and MIP. During LB differentiation, the placodal markers SIX1, EYA1, DLX3, PAX6, and the specific early lens markers SOX1, PROX1, FOXE3, αA-, and αB-crystallin were observed at certain time points. Microscopic examination revealed the presence of lens epithelial cells adjacent to the lens capsule as well as both immature and mature fiber-like cells. Optical analysis further demonstrated the magnifying ability (1.7×) of the LBs generated from UiPSCs. Our study provides the first evidence toward generating functional LBs from UiPSCs, thereby establishing an in vitro system that can be used to study human lens development and cataractogenesis and perhaps even be useful for drug screening.

  19. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  20. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  1. Understanding PSA and its derivatives in prediction of tumor volume: Addressing health disparities in prostate cancer risk stratification.

    Science.gov (United States)

    Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N

    2017-03-28

    To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives' ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer.

  2. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development.

    Directory of Open Access Journals (Sweden)

    Giang D Nguyen

    Full Text Available H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs depleted of H1c, H1d and H1e subtypes (H1-KO ESCs by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.

  3. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  4. Anti-synchronization of the rigid body exhibiting chaotic dynamics ...

    African Journals Online (AJOL)

    Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.

  5. Classical many-body theory with retarded interactions: Dynamical irreversibility and determinism without probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.Yu., E-mail: Anatoly.Zakharov@novsu.ru; Zakharov, M.A., E-mail: ma_zakharov@list.ru

    2016-01-28

    The exact equations of motion for microscopic density of classical many-body system with account of inter-particle retarded interactions is derived. It is shown that interactions retardation leads to irreversible behavior of many-body systems. - Highlights: • A new form of equation of motion of classical many-body system is proposed. • Interactions retardation as one of the mechanisms of many-body system irreversibility. • Irreversibility and determinism without probabilities. • The possible way to microscopic foundation of thermodynamics.

  6. Joints and Strings: Body and Object in Performance

    Directory of Open Access Journals (Sweden)

    Esa Kirkkopelto

    2016-07-01

    Full Text Available This article concerns the ontological status of the performing body. What if it were not considered derivative in relation to any kind of discursive construction or any kind of pre-existent materiality or force? What if it were taken as a starting point of our attempts to understand the linguistic and material aspects of our bodily co-existence? If so, our ideas of what a body can do while performing, and what it consists of, have to change radically. The anatomy of the performing body is studied through a series of scenic experiments and practical examples, and the argumentation rests on the evidence thus provided. On the philosophical level the discussion focuses on ’object-oriented ontology’ and its representatives. The indications are that our understanding of objects, objectivity and things in general is based on our understanding of bodies as linguistic entities. Becoming a performing body means becoming a linguistic body, and vice versa. This does not take us back to ‘transcendentalism’ or ‘correlationism’, however. The equality of all things, claimed by ‘ooo’ proponents, can only be achieved via the medium of the performing body as an equalizing instance.

  7. Miocene small-bodied ape from Eurasia sheds light on hominoid evolution.

    Science.gov (United States)

    Alba, David M; Almécija, Sergio; DeMiguel, Daniel; Fortuny, Josep; Pérez de los Ríos, Miriam; Pina, Marta; Robles, Josep M; Moyà-Solà, Salvador

    2015-10-30

    Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines—hominoids (apes and humans) and Old World monkeys—and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans). Copyright © 2015, American Association for the Advancement of Science.

  8. Validation of the Ejike-Ijeh equations for the estimation of body fat ...

    African Journals Online (AJOL)

    The Ejike-Ijeh equations for the estimation of body fat percentage makes it possible for the body fat content of individuals and populations to be determined without the use of costly equipment. However, because the equations were derived using data from a young-adult (18-29 years old) Nigerian population, it is important ...

  9. Biodistribution, Uptake and Effects Caused by Cancer-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Lilite Sadovska

    2015-03-01

    Full Text Available Extracellular vesicles (EVs have recently emerged as important mediators of intercellular communication. They are released in the extracellular space by a variety of normal and cancerous cell types and have been found in all human body fluids. Cancer-derived EVs have been shown to carry lipids, proteins, mRNAs, non-coding and structural RNAs and even extra-chromosomal DNA, which can be taken up by recipient cells and trigger diverse physiological and pathological responses. An increasing body of evidence suggests that cancer-derived EVs mediate paracrine signalling between cancer cells. This leads to the increased invasiveness, proliferation rate and chemoresistance, as well as the acquisition of the cancer stem cell phenotype. This stimulates angiogenesis and the reprogramming of normal stromal cells into cancer-promoting cell types. Furthermore, cancer-derived EVs contribute to the formation of the pre-metastatic niche and modulation of anti-tumour immune response. However, as most of these data are obtained by in vitro studies, it is not entirely clear which of these effects are recapitulated in vivo . In the current review, we summarize studies that assess the tissue distribution, trafficking, clearance and uptake of cancer-derived EVs in vivo and discuss the impact they have, both locally and systemically.

  10. Many-body localization proximity effects in platforms of coupled spins and bosons

    Science.gov (United States)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  11. On the use of Monte Carlo-derived dosimetric data in the estimation of patient dose from CT examinations

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Tzedakis, Antonis; Damilakis, John

    2008-01-01

    The purpose of this work was to investigate the applicability and appropriateness of Monte Carlo-derived normalized data to provide accurate estimations of patient dose from computed tomography (CT) exposures. Monte Carlo methodology and mathematical anthropomorphic phantoms were used to simulate standard patient CT examinations of the head, thorax, abdomen, and trunk performed on a multislice CT scanner. Phantoms were generated to simulate the average adult individual and two individuals with different body sizes. Normalized dose values for all radiosensitive organs and normalized effective dose values were calculated for standard axial and spiral CT examinations. Discrepancies in CT dosimetry using Monte Carlo-derived coefficients originating from the use of: (a) Conversion coefficients derived for axial CT exposures, (b) a mathematical anthropomorphic phantom of standard body size to derive conversion coefficients, and (c) data derived for a specific CT scanner to estimate patient dose from CT examinations performed on a different scanner, were separately evaluated. The percentage differences between the normalized organ dose values derived for contiguous axial scans and the corresponding values derived for spiral scans with pitch=1 and the same total scanning length were up to 10%, while the corresponding percentage differences in normalized effective dose values were less than 0.7% for all standard CT examinations. The normalized organ dose values for standard spiral CT examinations with pitch 0.5-1.5 were found to differ from the corresponding values derived for contiguous axial scans divided by the pitch, by less than 14% while the corresponding percentage differences in normalized effective dose values were less than 1% for all standard CT examinations. Normalized effective dose values for the standard contiguous axial CT examinations derived by Monte Carlo simulation were found to considerably decrease with increasing body size of the mathematical phantom

  12. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  13. Three-body ΛNN force due to Λ-Σ coupling

    International Nuclear Information System (INIS)

    Myint, Khin Swe; Akaishi, Yoshinori

    2003-01-01

    The ΛNN three - body force due to coherent Λ - Σ Coupling effect was derived from realistic Nijmegen model D potential. Repulsive and attractive three - body ΛNN forces were reconcilably accounted. For 5 He, within one - channel description, ΛNN force is largely repulsive and its origin comes from Pauli forbidden terms. Within two - channel description, attractive Pauli allowed terms exist and resulting three - body force is always attractive. Large attractive ΛNN force effect due to coherent Λ - Σ coupling effect is predicted in neutron - rich nuclei. The attractive coherent Λ - Σ coupling effect is largely enhanced at high density neutron matter. The attractive three - body ΛNN force effect is essential dynamics of Λ - Σ coupling while the repulsive Nogami three - body effect arises from Pauli forbidden diagrams. (Y. Kazumata)

  14. Body fluid derived exosomes as a novel template for clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Janssen Johannes WG

    2011-06-01

    Full Text Available Abstract Background Exosomes are small membrane vesicles with a size of 40-100 nm that are released by different cell types from a late endosomal cellular compartment. They can be found in various body fluids including plasma, malignant ascites, urine, amniotic fluid and saliva. Exosomes contain proteins, miRNAs and mRNAs (exosome shuttle RNA, esRNA that could serve as novel platform for diagnosis. Method We isolated exosomes from amniotic fluid, saliva and urine by differential centrifugation on sucrose gradients. Marker proteins were identified by Western blot and FACS analysis after adsorption of exosomes to latex beads. We extracted esRNA from exosomes, carried out RT-PCR, and analyzed amplified products by restriction length polymorphism. Results Exosomes were positive for the marker proteins CD24, CD9, Annexin-1 and Hsp70 and displayed the correct buoyant density and orientation of antigens. In sucrose gradients the exosomal fractions contained esRNA that could be isolated with sufficient quantity for further analysis. EsRNAs were protected in exosomes from enzymatic degradation. Amniotic fluid esRNA served as template for the typing of the CD24 single nucleotide polymorphism (rs52812045. It also allowed sex determination of the fetus based on the detection of the male specific ZFY gene product. Conclusions Our data demonstrate that exosomes from body fluids carry esRNAs which can be analyzed and offers access to the transcriptome of the host organism. The exosomal lipid bilayer protects the genetic information from degradation. As the isolation of exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostics.

  15. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  16. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  17. Energy Analysis in the Elliptic Restricted Three-body Problem

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  18. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    International Nuclear Information System (INIS)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M

    2010-01-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  19. Measurement of the body composition of living gray seals by hydrogen isotope dilution

    International Nuclear Information System (INIS)

    Reilly, J.J.; Fedak, M.A.

    1990-01-01

    The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by 2 H or 3 H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both 2 HHO and 3 HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with 3 H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) and from the equation of Pace and Rathbun, which has been reported to be generally applicable to mammals

  20. General expression for spectrum of magnetic anomaly due to long tabular body and its characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, D.C.; Murthy, K.S.R.; Rao, T.C.S.

    A general expression for spectrum of magnetic anomalies-vertical, horizontal and total intensity - due to a long tabular body is derived which is used to estimate the body parameters. The analysis is extended to a marine magnetic anomaly recorded...

  1. Simplified derivation of stopping power ratio in the human body from dual-energy CT data.

    Science.gov (United States)

    Saito, Masatoshi; Sagara, Shota

    2017-08-01

    The main objective of this study is to propose an alternative parameterization for the empirical relation between mean excitation energies (I-value) and effective atomic numbers (Z eff ) of human tissues, and to present a simplified formulation (which we called DEEDZ-SPR) for deriving the stopping power ratio (SPR) from dual-energy (DE) CT data via electron density (ρ e ) and Z eff calibration. We performed a numerical analysis of this DEEDZ-SPR method for the human-body-equivalent tissues of ICRU Report 46, as objects of interest with unknown SPR and ρ e . The attenuation coefficients of these materials were calculated using the XCOM photon cross-sections database. We also applied the DEEDZ-SPR conversion to experimental DECT data available in the literature, which was measured for the tissue-characterization phantom using a dual-source CT scanner at 80 kV and 140 kV/Sn. It was found that the DEEDZ-SPR conversion enables the calculation of SPR simply by means of the weighted subtraction of an electron-density image and a low- or high-kV CT image. The simulated SPRs were in excellent agreement with the reference values over the SPR range from 0.258 (lung) to 3.638 (bone mineral-hydroxyapatite). The relative deviations from the reference SPR were within ±0.6% for all ICRU-46 human tissues, except for the thyroid that presented a -1.1% deviation. The overall root-mean-square error was 0.21%. Application to experimental DECT data confirmed this agreement within the experimental accuracy, which demonstrates the practical feasibility of the method. The DEEDZ-SPR conversion method could facilitate the construction of SPR images as accurately as a recent DECT-based calibration procedure of SPR parameterization based directly on the CT numbers in a DECT data set. © 2017 American Association of Physicists in Medicine.

  2. Body Fat and Breast Cancer Risk in Postmenopausal Women: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Thomas E. Rohan

    2013-01-01

    Full Text Available Associations between anthropometric indices of obesity and breast cancer risk may fail to capture the true relationship between excess body fat and risk. We used dual-energy-X-ray-absorptiometry- (DXA- derived measures of body fat obtained in the Women’s Health Initiative to examine the association between body fat and breast cancer risk; we compared these risk estimates with those for conventional anthropometric measurements. The study included 10,960 postmenopausal women aged 50–79 years at recruitment, with baseline DXA measurements and no history of breast cancer. During followup (median: 12.9 years, 503 incident breast cancer cases were diagnosed. Hazard ratios (HR and 95% confidence intervals (CI were estimated using Cox proportional hazards models. All baseline DXA-derived body fat measures showed strong positive associations with breast cancer risk. The multivariable-adjusted HR for the uppermost quintile level (versus lowest ranged from 1.53 (95% CI 1.14–2.07 for fat mass of the right leg to 2.05 (1.50–2.79 for fat mass of the trunk. Anthropometric indices (categorized by quintiles of obesity (BMI (1.97, 1.45–2.68, waist circumference (1.97, 1.46–2.65, and waist : hip ratio (1.91, 1.41–2.58 were all strongly, positively associated with risk and did not differ from DXA-derived measures in prediction of risk.

  3. Exploring point-cloud features from partial body views for gender classification

    Science.gov (United States)

    Fouts, Aaron; McCoppin, Ryan; Rizki, Mateen; Tamburino, Louis; Mendoza-Schrock, Olga

    2012-06-01

    In this paper we extend a previous exploration of histogram features extracted from 3D point cloud images of human subjects for gender discrimination. Feature extraction used a collection of concentric cylinders to define volumes for counting 3D points. The histogram features are characterized by a rotational axis and a selected set of volumes derived from the concentric cylinders. The point cloud images are drawn from the CAESAR anthropometric database provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. This database contains approximately 4400 high resolution LIDAR whole body scans of carefully posed human subjects. Success from our previous investigation was based on extracting features from full body coverage which required integration of multiple camera images. With the full body coverage, the central vertical body axis and orientation are readily obtainable; however, this is not the case with a one camera view providing less than one half body coverage. Assuming that the subjects are upright, we need to determine or estimate the position of the vertical axis and the orientation of the body about this axis relative to the camera. In past experiments the vertical axis was located through the center of mass of torso points projected on the ground plane and the body orientation derived using principle component analysis. In a natural extension of our previous work to partial body views, the absence of rotational invariance about the cylindrical axis greatly increases the difficulty for gender classification. Even the problem of estimating the axis is no longer simple. We describe some simple feasibility experiments that use partial image histograms. Here, the cylindrical axis is assumed to be known. We also discuss experiments with full body images that explore the sensitivity of classification accuracy relative to displacements of the cylindrical axis. Our initial results provide the basis for further

  4. Age-related variations in the body composition of patients in maintenance hemodialysis

    International Nuclear Information System (INIS)

    Fueloep, T.; Worum, I.; Csongor, J.; Szabo, T.

    1986-01-01

    Total body water (tritiated water), extracellular fluid volume (radiosulfate), exchangeable sodium, ( 22 Na), and plasma volume, ( 131 I) were determined in 96 patients with end-stage renal disease treated on maintenance hemodialysis. The study was aimed at getting objective information about the patient's excess fluids and nutritional state. Intracellular and interstitial fluid volume, red blood cell mass, total blood volume, lean body mass, total body fat, and dry body weight were derived from the measured values. 25 healthy young and 45 healthy elderly volunteers served as control. They were found healthy in a health screening program

  5. A New Nonlinear Model of Body Resistance in Nanometer PD SOI MOSFETs

    Directory of Open Access Journals (Sweden)

    Arash Daghighi

    2011-01-01

    Full Text Available In this paper, a nonlinear model for the body resistance of a 45nm PD SOI MOSFET is developed. This model verified on the base of the small signal three-dimensional simulation results. In this paper by using the three-dimensional simulation of ISE-TCAD software, the indicating factors of body resistance in nanometer transistors and then are shown, using the surface potential model. A mathematical relation to calculat the body resistance incorporating device width and body potential was derived. Excellent agreement was obtained by comparing the model outputs and three-dimensional simulation results.

  6. Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient

    Directory of Open Access Journals (Sweden)

    Yamin Zhang

    2017-12-01

    Full Text Available Skin fibroblasts and tumor fibroblasts were extracted from a 64-year old male patient clinically diagnosed with laryngeal carcinoma. Control and tumor specific induced pluripotent stem cells were reprogrammed with 5 reprogramming factors, Klf-4, c-Myc, Oct-4, Sox-2, and Lin-28, using the messenger RNA reprogramming system. The transgene-free iPSC lines showed pluripotency, confirmed by immunofluorescence staining. The iPSC lines also showed normal karyotype, and could form embryoid bodies in vitro and differentiate into the 3 germ layers in vivo. This in vitro cellular model can be used to study the oncogenesis and pathogenesis of laryngeal carcinoma.

  7. Generation of human iPSC line from a patient with laterality defects and associated congenital heart anomalies carrying a DAND5 missense alteration

    Directory of Open Access Journals (Sweden)

    Fernando Cristo

    2017-12-01

    Full Text Available A human iPSC line was generated from exfoliated renal epithelial (ERE cells of a patient affected with Congenital Heart Disease (CHD and Laterality Defects carrying tshe variant p.R152H in the DAND5 gene. The transgene-free iPSCs were generated with the human OSKM transcription factor using the Sendai-virus reprogramming system. The established iPSC line had the specific heterozygous alteration, a stable karyotype, expressed pluripotency markers and generated embryoid bodies that can differentiate towards the three germ layers in vitro. This iPSC line offers a useful resource to study the molecular mechanisms of cardiomyocyte proliferation, as well as for drug testing.

  8. Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method.

    Science.gov (United States)

    Chen, Ming; Lin, Yong-Qing; Xie, Shuang-Lun; Wu, Hong-Fu; Wang, Jing-Feng

    2011-04-01

    Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.

  9. Transformation of Elastic Wave Energy to the Energy of Motion of Bodies

    Science.gov (United States)

    Vesnitskiĭ, A. I.; Lisenkova, E. E.

    2002-01-01

    The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.

  10. Distribution functions of sections and projections of convex bodies

    OpenAIRE

    Kim, Jaegil; Yaskin, Vladyslav; Zvavitch, Artem

    2015-01-01

    Typically, when we are given the section (or projection) function of a convex body, it means that in each direction we know the size of the central section (or projection) perpendicular to this direction. Suppose now that we can only get the information about the sizes of sections (or projections), and not about the corresponding directions. In this paper we study to what extent the distribution function of the areas of central sections (or projections) of a convex body can be used to derive ...

  11. Validity of Standing Posture Eight-electrode Bioelectrical Impedance to Estimate Body Composition in Taiwanese Elderly

    Directory of Open Access Journals (Sweden)

    Ling-Chun Lee

    2014-09-01

    Conclusion: The results of this study showed that the impedance index and LST in the whole body, upper limbs, and lower limbs derived from DXA findings were highly correlated. The LST and BF% estimated by BIA8 in whole body and various body segments were highly correlated with the corresponding DXA results; however, BC-418 overestimates the participants' appendicular LST and underestimates whole body BF%. Therefore, caution is needed when interpreting the results of appendicular LST and whole body BF% estimated for elderly adults.

  12. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo.

    Science.gov (United States)

    Wei, Ruxue; Zhao, Xueming; Hao, Haisheng; Du, Weihua; Zhu, Huabin

    2016-11-01

    The rabbit is considered an important model animal from which to obtain embryonic stem cells because of the utility of this animal in physiology and reproductive research. Here, we derived rabbit ES-like (rES-like) cells from blastocysts of superovulated Japanese white rabbits using culture medium containing 10 -7  M melatonin, 10 ng/mL basic fibroblast growth factor, and 1,000 IU/mL human leukemia inhibitory factor. This concentration of melatonin had the most significant positive effects on the proliferation inner cell mass-derived cells (improving rates from 19.97% to 34.57%) and the longevity of passaging rES-like cells. Melatonin also enhanced the expression of pluripotent genes-including alkaline phosphatase, Pou5f1, Sox2, Klf4, c-Myc, Nanog, Line28a, and surface marker proteins-in fifth-passage rES-like cells. In vitro, these rES-like cells could spontaneously differentiate into some somatic cells, such as beating cardiomyocytes; formed embryoid bodies; expressed markers of the three germ layers after differentiation; and formed teratomas after injection into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice. Thus, melatonin helped coax ES-like cells from rabbit blastocysts, which raises intriguing questions about the relationship between pluripotency and proliferation in rabbit embryonic stem cells. Mol. Reprod. Dev. 83: 1003-1014, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Generalized derivation of the added-mass and circulatory forces for viscous flows

    Science.gov (United States)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  14. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study.

    Directory of Open Access Journals (Sweden)

    Susan Hetz

    Full Text Available Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH. For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu and immunohistochemistry (PGP9.5, GFAP, SMA. In addition, we determined nitric oxide synthase (NOS-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via 'bystander' mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be

  15. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  16. Three-body unitarity in the finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2017-12-15

    The physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativistic 3 → 3 amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. The corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated. (orig.)

  17. Spectrum of lesions derived from branchial arches occurring in the thyroid: from solid cell nests to tumors.

    Science.gov (United States)

    Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej

    2017-09-01

    There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.

  18. Explicit treatment of N-body correlations within a density-matrix formalism

    International Nuclear Information System (INIS)

    Shun-Jin, W.; Cassing, W.

    1985-01-01

    The nuclear many-body problem is reformulated in the density-matrix approach such that n-body correlations are separated out from the reduced density matrix rho/sub n/. A set of equations for the time evolution of the n-body correlations c/sub n/ is derived which allows for physically transparent truncations with respect to the order of correlations. In the stationary limit (c/sub n/ = 0) a restriction to two-body correlations yields a generalized Bethe-Goldstone equation a restriction to body correlations yields generalized Faddeev equations in the density-matrix formulation. Furthermore it can be shown that any truncation of the set of equations (c/sub n/ = 0, n>m) is compatible with conservation laws, a quality which in general is not fulfilled if higher order correlations are treated perturbatively

  19. A monequillibrium mary-body systems IV: Respouse function theory

    International Nuclear Information System (INIS)

    Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.

    1987-01-01

    A response function theory for many-body systems arbitrarily away from equilibrium is presented. It is based on the nonequilibrium statistical operator method fully described in a previous article. A formal theory is presented evaluation of transition probabilties and the average values of dynamical quantities in far-from-equilibrium many-body systems under the action of external perturbations. A nonequilibrium thermodynamic Green's function algorithn appropriate for the calculation of response functions and scattering cross sections in terms of a generalized fluctuation-dissipation theorem for far-from-equilibrium systems is also derived. (author) [pt

  20. Body and motion in early modern philosophy of nature

    DEFF Research Database (Denmark)

    Frølund, Sune

    2009-01-01

    Descartes rejects the concept of force or power any role in explaining movement. His argument is, that such concepts are derived from the experience of our deliberate movements of our own body. Such experiences does not yield epistemic access to nature, according to Descartes. Descartes......' alternative is a geometrisation of movement, which makes the difference between movement and rest due to (only) external relations of the relevant body. In one of his preparational studies to his Principia Mathamatica Newton levels a severe critique of Descartes' kinematics and epistemology. Newton argues...

  1. The relationship between doses to human body organs and exposure in a cloud of gamma emitting nuclides

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1976-10-01

    Monte Carlo computer techniques were recently developed in USA to derive the photon spectrum in a semi-infinite cloud of monoenergetic photon source of uniform concentration and the dose to human body organs was estimated computationally using further Monte Carlo techniques. These results are used here to derive the exposure to be expected from a cloud emitting monoenergetic photons at discrete energies between 0.01 and 4 MeV. The exposure contributions from scattered and unscattered photon fluxes are identified at each energy and the total exposure is related to doses in a range of human body organs. It is intended to use these values of rads per Roentgen to convert the exposures calculated by the reactor safety analysis code WEERIE and those derived from environmental measurements of known airborne discharges (e.g. 41 Ar, 85 Kr, 133 Xe) into doses to human body organs. (author)

  2. How our body influences our perception of the world

    Directory of Open Access Journals (Sweden)

    Laurence Roy Harris

    2015-06-01

    Full Text Available Incorporating the fact that the senses are embodied is necessary for an organism to interpret sensory information. Before a unified perception of the world can be formed, sensory signals must be processed with reference to body representation. The various attributes of the body such as shape, proportion, posture, and movement can be both derived from the various sensory systems and can affect perception of the world (including the body itself. In this review we examine the relationships between sensory and motor information, body representations, and perceptions of the world and the body. We provide several examples of how the body affects perception (including but not limited to body perception. First we show that body orientation effects visual distance perception and object orientation. Also, visual-auditory crossmodal-correspondences depend on the orientation of the body: audio high frequencies correspond to a visual up defined by both gravity and body coordinates. Next, we show that perceived locations of touch is affected by the orientation of the head and eyes on the body, suggesting a visual component to coding body locations. Additionally, the reference-frame used for coding touch locations seems to depend on whether gaze is static or moved relative to the body during the tactile task. The perceived attributes of the body such as body size, affect tactile perception even at the level of detection thresholds and two-point discrimination. Next, long-range tactile masking provides clues to the posture of the body in a canonical body schema. Finally, ownership of seen body parts depends on the orientation and perspective of the body part in view. Together, all of these findings demonstrate how sensory and motor information, body representations, and perceptions (of the body and the world are interdependent.

  3. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Zong Zhaowen; Ren Yongchuan; Shen Yue; Chen Yonghua; Ran Xinze; Shi Chunmeng; Cheng Tianmin

    2011-01-01

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 10 5 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×10 5 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  4. Medical Imaging of Mummies and Bog Bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2010-01-01

    Mummies are human remains with preservation of non-bony tissue. Mummification by natural influences results in so-called natural mummies, while mummification induced by active (human) intervention results in so-called artificial mummies, although many cultures practiced burial rites which to some...... and bog bodies could be studied non-destructively. This article describes the history of mummy radiography and CT scanning, and some of the problems and opportunities involved in applying these techniques, derived for clinical use, on naturally and artificially preserved ancient human bodies. Unless...... severely degraded, bone is quite readily visualized, but accurate imaging of preserved soft tissues, and pathological lesions therein, may require considerable post-image capture processing of CT data....

  5. Whole-body adipose tissue and lean muscle volumes and their distribution across gender and age: MR-derived normative values in a normal-weight Swiss population.

    Science.gov (United States)

    Ulbrich, Erika J; Nanz, Daniel; Leinhard, Olof Dahlqvist; Marcon, Magda; Fischer, Michael A

    2018-01-01

    To determine age- and gender-dependent whole-body adipose tissue and muscle volumes in healthy Swiss volunteers in Dixon MRI in comparison with anthropometric and bioelectrical impedance (BIA) measurements. Fat-water-separated whole-body 3 Tesla MRI of 80 healthy volunteers (ages 20 to 62 years) with a body mass index (BMI) of 17.5 to 26.2 kg/m 2 (10 men, 10 women per decade). Age and gender-dependent volumes of total adipose tissue (TAT), visceral adipose tissue (VAT), total abdominal subcutaneous adipose tissue (ASAT) and total abdominal adipose tissue (TAAT), and the total lean muscle tissue (TLMT) normalized for body height were determined by semi-automatic segmentation, and correlated with anthropometric and BIA measurements as well as lifestyle parameters. The TAT, ASAT, VAT, and TLMT indexes (TATi, ASATi, VATi, and TLMTi, respectively) (L/m 2  ± standard deviation) for women/men were 6.4 ± 1.8/5.3 ± 1.7, 1.6 ± 0.7/1.2 ± 0.5, 0.4 ± 0.2/0.8 ± 0.5, and 5.6 ± 0.6/7.1 ± 0.7, respectively. The TATi correlated strongly with ASATi (r > 0.93), VATi, BMI and BIA (r > 0.70), and TAATi (r > 0.96), and weak with TLMTi for both genders (r > -0.34). The VAT was the only parameter showing an age dependency (r > 0.32). The BMI and BIA showed strong correlation with all MR-derived adipose tissue volumes. The TAT mass was estimated significantly lower from BIA than from MRI (both genders P muscle volumes might serve as normative values. The estimation of adipose tissue volumes was significantly lower from anthropometric and BIA measurements than from MRI. Magn Reson Med 79:449-458, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Monte Carlo efficiency calibration of a neutron generator-based total-body irradiator

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2009-01-01

    Many body composition measurement systems are calibrated against a single-sized reference phantom. Prompt-gamma neutron activation (PGNA) provides the only direct measure of total body nitrogen (TBN), an index of the body's lean tissue mass. In PGNA systems, body size influences neutron flux attenuation, induced gamma signal distribution, and counting efficiency. Thus, calibration based on a single-sized phantom could result in inaccurate TBN values. We used Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) in order to map a system's response to the range of body weights (65-160 kg) and body fat distributions (25-60%) in obese humans. Calibration curves were constructed to derive body-size correction factors relative to a standard reference phantom, providing customized adjustments to account for differences in body habitus of obese adults. The use of MCNP-generated calibration curves should allow for a better estimate of the true changes in lean tissue mass that many occur during intervention programs focused only on weight loss. (author)

  7. Small-bodied humans from Palau, Micronesia.

    Directory of Open Access Journals (Sweden)

    Lee R Berger

    Full Text Available UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.

  8. Motion-oriented 3D analysis of body measurements

    Science.gov (United States)

    Loercher, C.; Morlock, S.; Schenk, A.

    2017-10-01

    The aim of this project is to develop an ergonomically based and motion-oriented size system. New concepts are required in order to be able to deal competently with complex requirements of function-oriented workwear and personal protective equipment (PPE). Body dimensions change through movement, which are basis for motion optimized clothing development. This affects fit and ergonomic comfort. The situation has to be fundamentally researched in order to derive well-founded anthropometric body data, taking into account kinematic requirements of humans and to define functional dimensions for clothing industry. Research focus shall be on ergonomic design of workwear and PPE. There are huge differences in body forms, proportions and muscle manifestations between genders. An improved basic knowledge can be provided as a result, supporting development as well as sales of motion-oriented clothing with perfect fit for garment manufacturers.

  9. Dynamics of body protein deposition and changes in body composition after sudden changes in amino acid intake: I. Barrows.

    Science.gov (United States)

    Martínez-Ramírez, H R; Jeaurond, E A; de Lange, C F M

    2008-09-01

    A study was conducted to evaluate the extent and dynamics of whole body protein deposition and changes in chemical and physical body composition after a period of AA intake restriction in growing barrows with medium lean tissue growth potentials. Forty Yorkshire barrows (initial BW 14.4 +/- 1.6 kg) were scale-fed at 75% of estimated voluntary daily DE intake up to 35 kg of BW and assigned to 1 of 2 diets: AA adequate (AA+; 20% above requirements; NRC, 1998) and AA deficient (AA-; 40% below requirements; restriction phase). Thereafter (re-alimentation phase), pigs from both dietary AA levels were scale-fed or fed ad libitum diets that were not limiting in AA. Body weight gain and body composition, based on serial slaughter, were monitored during the 34-d re-alimentation phase. During the restriction phase AA intake restriction reduced BW gains (556 vs. 410 g/d; P alimentation phase (P > 0.10). Throughout the re-alimentation phase, there were no interactive effects of time, feeding level, and previous AA intake level on growth performance, body protein, and body lipid content (P > 0.10). During the re-alimentation phase, body protein deposition, derived from the linear regression analysis of body protein content vs. time, was not affected by feeding level and previous AA intake level (P > 0.10; 156 g/d for AA- vs. 157 g/d for AA+). Based on BW and body protein content, it can be concluded that no compensatory body protein deposition occurred in barrows, with medium lean tissue growth potential after AA intake restriction between 15 and 35 kg of BW. It is suggested that the upper limit to body protein deposition was the main factor that limited the extent of compensatory body protein deposition in this population of pigs. The concept of an upper limit to body protein deposition may be used to explain why compensatory growth is observed in some studies and not in others.

  10. Structure of the many-body wavefunction for scattering

    International Nuclear Information System (INIS)

    L'Huillier, M.; Redish, E.F.; Tandy, P.C.

    1978-01-01

    We show that the scattered part of the many-body wavefunction initiated by two incoming clusters is given by a fully connected operator acting on the initial channel state. The structure of this operator suggests a division of the full wavefunction into two-cluster components. A set of coupled equations in both the differential and integral form is then derived for these components. These equations have structure and properties similar to the three-body equations of Faddeev. We demonstrate that each component has outgoing waves in a unique two-cluster partition. The transition amplitude for any final arrangement can therefore be extracted directly from the outgoing waves in the relevant components

  11. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor

    Directory of Open Access Journals (Sweden)

    Andreas J. Dietz

    2017-01-01

    Full Text Available The assessment of water body dynamics is not only in itself a topic of strong demand, but the presence of water bodies is important information when it comes to the derivation of products such as land surface temperature, leaf area index, or snow/ice cover mapping from satellite data. For the TIMELINE project, which aims to derive such products for a long time series of Advanced Very High Resolution Radiometer (AVHRR data for Europe, precise water masks are therefore not only an important stand-alone product themselves, they are also an essential interstage information layer, which has to be produced automatically after preprocessing of the raw satellite data. The respective orbit segments from AVHRR are usually more than 2000 km wide and several thousand km long, thus leading to fundamentally different observation geometries, including varying sea surface temperatures, wave patterns, and sediment and algae loads. The water detection algorithm has to be able to manage these conditions based on a limited amount of spectral channels and bandwidths. After reviewing and testing already available methods for water body detection, we concluded that they cannot fully overcome the existing challenges and limitations. Therefore an extended approach was implemented, which takes into account the variations of the reflectance properties of water surfaces on a local to regional scale; the dynamic local threshold determination will train itself automatically by extracting a coarse-scale classification threshold, which is refined successively while analyzing subsets of the orbit segment. The threshold is then interpolated by fitting a minimum curvature surface before additional steps also relying on the brightness temperature are included to reduce possible misclassifications. The classification results have been validated using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS data and proven an overall accuracy of 93.4%, with the majority of

  12. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis.

    Directory of Open Access Journals (Sweden)

    Kamila Rosiak

    Full Text Available The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1 gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability.Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot.Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells.Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust

  13. On the derivation of thermodynamic restrictions for materials with internal state variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1987-07-01

    Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de

  14. Optimization of the variational basis in the three body problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Pushkash, O.M.; Bestuzheva, A.B.

    1995-01-01

    The procedure of variational oscillator basis optimization is proposed to the calculation the energy spectra of three body systems. The hierarchy of basis functions is derived and energies of ground and excited states for three gravitating particles is obtained with high accuracy. 12 refs

  15. Scattering of acoustic and electromagnetic waves by small impedance bodies of arbitrary shapes applications to creating new engineered materials

    CERN Document Server

    Ramm, Alexander G

    2013-01-01

    The behavior of acoustic or electromagnetic waves reflecting off, and scattering from, intercepted bodies of any size and kind can make determinations about the materials of those bodies and help in better understanding how to manipulate such materials for desired characteristics. This book offers analytical formulas which allow you to calculate acoustic and electromagnetic waves, scattered by one and many small bodies of an arbitrary shape under various boundary conditions. Equations for the effective (self-consistent) field in media consisting of many small bodies are derived. These results and formulas are new and not available in the works of other authors. In particular, the theory developed in this book is different from the classical work of Rayleigh on scattering by small bodies: not only analytical formulas are derived for the waves scattered by small bodies of an arbitrary shape, but the amplitude of the scattered waves is much larger, of the order O(a 2-k), than in Rayleigh scattering, where the or...

  16. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture.

    Science.gov (United States)

    Dahlmann, Julia; Awad, George; Dolny, Carsten; Weinert, Sönke; Richter, Karin; Fischer, Klaus-Dieter; Munsch, Thomas; Leßmann, Volkmar; Volleth, Marianne; Zenker, Martin; Chen, Yaoyao; Merkl, Claudia; Schnieke, Angelika; Baraki, Hassina; Kutschka, Ingo; Kensah, George

    2018-01-01

    The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.

  17. Gene expression analysis of embryonic stem cells expressing VE-cadherin (CD144 during endothelial differentiation

    Directory of Open Access Journals (Sweden)

    Libermann Towia

    2008-05-01

    Full Text Available Abstract Background Endothelial differentiation occurs during normal vascular development in the developing embryo. This process is recapitulated in the adult when endothelial progenitor cells are generated in the bone marrow and can contribute to vascular repair or angiogenesis at sites of vascular injury or ischemia. The molecular mechanisms of endothelial differentiation remain incompletely understood. Novel approaches are needed to identify the factors that regulate endothelial differentiation. Methods Mouse embryonic stem (ES cells were used to further define the molecular mechanisms of endothelial differentiation. By flow cytometry a population of VEGF-R2 positive cells was identified as early as 2.5 days after differentiation of ES cells, and a subset of VEGF-R2+ cells, that were CD41 positive at 3.5 days. A separate population of VEGF-R2+ stem cells expressing the endothelial-specific marker CD144 (VE-cadherin was also identified at this same time point. Channels lined by VE-cadherin positive cells developed within the embryoid bodies (EBs formed by differentiating ES cells. VE-cadherin and CD41 expressing cells differentiate in close proximity to each other within the EBs, supporting the concept of a common origin for cells of hematopoietic and endothelial lineages. Results Microarray analysis of >45,000 transcripts was performed on RNA obtained from cells expressing VEGF-R2+, CD41+, and CD144+ and VEGF-R2-, CD41-, and CD144-. All microarray experiments were performed in duplicate using RNA obtained from independent experiments, for each subset of cells. Expression profiling confirmed the role of several genes involved in hematopoiesis, and identified several putative genes involved in endothelial differentiation. Conclusion The isolation of CD144+ cells during ES cell differentiation from embryoid bodies provides an excellent model system and method for identifying genes that are expressed during endothelial differentiation and that

  18. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  19. Tests of the discretized-continuum method in three-body dipole strengths

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)

    2011-08-15

    We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.

  20. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    Science.gov (United States)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained

  1. Analytical treatment of Coriolis coupling for three-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Bill

    2005-01-31

    In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.

  2. The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis

    Science.gov (United States)

    Marsden, David; Navratil, Petr; Barrett, Bruce

    2000-09-01

    A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)

  3. Normal levels of total body sodium and chlorine by neutron activation analysis

    International Nuclear Information System (INIS)

    Kennedy, N.S.J.; Eastell, R.; Smith, M.A.; Tothill, P.

    1983-01-01

    In vivo neutron activation analysis was used to measure total body sodium and chlorine in 18 male and 18 female normal adults. Corrections for body size were developed. Normalisation factors were derived which enable the prediction of the normal levels of sodium and chlorine in a subject. The coefficient of variation of normalised sodium was 5.9% in men and 6.9% in women, and of normalised chlorine 9.3% in men and 5.5% in women. In the range examined (40-70 years) no significant age dependence was observed for either element. Total body sodium was correlated with total body chlorine and total body calcium. Sodium excess, defined as the amount of body sodium in excess of that associated with chlorine, also correlated well with total body calcium. In females there was a mean annual loss of sodium excess of 1.2% after the menopause, similar to the loss of calcium. (author)

  4. Influence of effective three-body force on the spectroscopy of 19O

    International Nuclear Information System (INIS)

    Haung, W.; Song, H.; Wang, Z.; Kuo, T.T.S.

    1983-01-01

    The purpose of the present paper is to investigate the influence of effective three-body force on the spectroscopy of 19 O. The model space was chosen as the configuration space which consists of the j-j coupling states of three valence neutrons in the s-d shell. The effective interaction including two- and three-body forces was then derived in the framework of the folded diagram method (FDM). Besides two traditional three-body terms, there is another kind of three-body force, the folded one constructed with two two-body diagrams, in FDM. The G-matrix elements of soft core Reid force were used in the numerical calculations. In the case of lacking the G-matrix elements, we adopted the matrix elements of M-3Y force as the equivalents. The results show that the influence of the effective three-body forces on the spectrum of 19 O is not of importance, but the part coming from the folded three-body term is worth noting

  5. Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-03-01

    Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.

  6. Dietary intakes and body mass indices of non-pregnant, non ...

    African Journals Online (AJOL)

    Data were collected using various methods namely intervieweradministered socio-demographic questionnaire, 24hr dietary recall records, with data collected on one working and one non-working day within a week, and a 1-week food frequency questionnaire. Body mass index was derived from height and weight ...

  7. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  8. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  9. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot

    Science.gov (United States)

    Lei, Jingtao; Yu, Huangying; Wang, Tianmiao

    2016-01-01

    The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depends on the mechanical properties of the body mechanism. It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiffness, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving force of PAM is determined. The experiment of body bending is conducted, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18°. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.

  10. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to

  11. Motion Of Bodies And Its Stability In The General Relativity Theory

    International Nuclear Information System (INIS)

    Ryabushko, Anton P.; Zhur, Tatyana A.; Nemanova, Inna T.

    2010-01-01

    This paper reviews the works by the Belarusian school investigators on relativistic motion and its stability for a system of bodies, each of which may have its own rotation, charge, and magnetic field of the dipole type. The corresponding Lagrangian and conservation laws are derived, several secular effects are predicted. For motion of bodies in the medium the secular effect of the periastron reverse shift is predicted as compared to the Mercury perihelion shift. The cause for the Pioneer anomaly is explained.

  12. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  13. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.).

    Science.gov (United States)

    Liu, J R; Cantliffe, D J

    1984-06-01

    Leaf, shoot-tip, stem, and root explants of sweet potato (Ipomea batatas Poir.) gave rise to two kinds of callus on nutrient agar medium containing 0.5 to 2.0 mg/l 2,4-D. One callus, bright- to pale-yellow, was compact and organized, while the other was dull-yellow and friable. The former callus gave rise to numerous globular and heart-shaped embryoids. When transferred onto hormone-free medium, the embryoids readily developed into a torpedo-shape before germination. The plantlets were transplanted to soil where they flowered and formed storage roots at maturity.

  14. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  15. Epidemiology of inclusion body myositis in the Netherlands : A nationwide study

    NARCIS (Netherlands)

    Badrising, UA; Maat-Schieman, M; van Duinen, SG; Breedveld, F; van Doorn, P; van Engelen, B; van den Hoogen, F; Hoogendijk, J; Howeler, C; de Jager, A; Jennekens, F; Koehler, P; van der Leeuw, H; de Visser, M; Verschuuren, JJ; Wintzen, AR

    2000-01-01

    Epidemiologic data on inclusion body myositis (IBM) are scarce, and possibly biased, because they are derived from larger neuromuscular centers. The present nationwide collaborative cross-sectional study, which culminated on July 1, 1999, resulted in identification of 76 patients with IBM and the

  16. A semiclassical approach to many-body interference in Fock-space

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Thomas

    2015-11-01

    Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.

  17. Sensitivity to Change of Objectively-Derived Measures of Sedentary Behavior

    Science.gov (United States)

    Chastin, Sebastien F. M.; Winkler, Elisabeth A. H.; Eakin, Elizabeth G.; Gardiner, Paul A.; Dunstan, David W.; Owen, Neville; Healy, Genevieve N.

    2015-01-01

    The aim of this study was to examine the sensitivity to change of measures of sedentary behavior derived from body worn sensors in different intervention designs. Results from two intervention studies: "Stand up for Your Health" (pre-post home-based study with older adults not in paid employment) and "Stand Up Comcare"…

  18. [Food habits and body composition of Spanish elite athletes in combat sports].

    Science.gov (United States)

    Ubeda, N; Palacios Gil-Antuñano, N; Montalvo Zenarruzabeitia, Z; García Juan, B; García, A; Iglesias-Gutiérrez, E

    2010-01-01

    There is a scarcity of information about the dietary intake and food selection of combat sport people. Optimizing nutritional status, body weight, and body composition are key factors for their performance. The assessment of dietary intake, food habits, and body composition in elite combat sport people. 22 sportsmen were recruited from the Spanish National Teams of Tae kwon do, Judo, and Boxing. Food intake (FFQ), food habits and body composition (DXA and Bioimpedance) were analyzed. Weight and body composition of the individuals assessed were similar to that previously described, although almost half of them were moderately over their desired competition weight. A lower than the recommended intake of vegetables (77% of individuals), cereals, bread, rice, potatoes, and pasta (73%), while red meat and derivatives intake exceeded the recommendations. Their main preferences were pasta, meat, and cereals. Legumes, vegetables, and fish were their main dislikes. A statistically significant relationship between food preferences and intakes was only observed for legumes, yogurt, and nuts. The athletes reported that reducing the intake of biscuits and confectionery (68% of individuals), high-fat foods (36%), and/or bread (27%) would be a good dietetic strategy for losing weight. None of them reported that voluntary dehydration would be a good strategy for this purpose. food offer to which this sport people have access and their choices are adequate, although the intake of some food groups (vegetables, red meat and derivatives) does not follow the recommendations. Their body weight slightly exceeds their competition weight, what it is frequently found in these sports. Nevertheless, their knowledge about nutrition and dietetics applied to exercise are acceptable.

  19. Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data

    Science.gov (United States)

    Van Den Eeckhaut, Miet; Kerle, Norman; Poesen, Jean; Hervás, Javier

    2012-11-01

    In contrast to the many studies that use expert-based analysis of LiDAR derivatives for landslide mapping in forested terrain, only few studies have attempted to develop (semi-)automatic methods for extracting landslides from LiDAR derivatives. While all these studies are pixel-based, it has not yet been tested whether object-oriented analysis (OOA) could be an alternative. This study investigates the potential of OOA using only single-pulse LiDAR derivatives, such as slope gradient, roughness and curvature to map landslides. More specifically, the focus is on both LiDAR data segmentation and classification of slow-moving landslides in densely vegetated areas, where spectral data do not allow accurate landslide identification. A multistage procedure has been developed and tested in the Flemish Ardennes (Belgium). The procedure consists of (1) image binarization and multiresolution segmentation, (2) classification of landslide parts (main scarps and landslide body segments) and non-landslide features (i.e. earth banks and cropland fields) with supervised support vector machines at the appropriate scale, (3) delineation of landslide flanks, (4) growing of a landslide body starting from its main scarp, and (5) final cleaning of the inventory map. The results obtained show that OOA using LiDAR derivatives allows recognition and characterization of profound morphologic properties of forested deep-seated landslides on soil-covered hillslopes, because more than 90% of the main scarps and 70% of the landslide bodies of an expert-based inventory were accurately identified with OOA. For mountainous areas with bedrock, on the other hand, creation of a transferable model is expected to be more difficult.

  20. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...

  1. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  2. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  3. Deriving Einstein-Podolsky-Rosen steering inequalities from the few-body Abner Shimony inequalities

    Science.gov (United States)

    Zhou, Jie; Meng, Hui-Xian; Jiang, Shu-Han; Xu, Zhen-Peng; Ren, Changliang; Su, Hong-Yi; Chen, Jing-Ling

    2018-04-01

    For the Abner Shimony (AS) inequalities, the simplest unified forms of directions attaining the maximum quantum violation are investigated. Based on these directions, a family of Einstein-Podolsky-Rosen (EPR) steering inequalities is derived from the AS inequalities in a systematic manner. For these inequalities, the local hidden state (LHS) bounds are strictly less than the local hidden variable (LHV) bounds. This means that the EPR steering is a form of quantum nonlocality strictly weaker than Bell nonlocality.

  4. Constructing high-quality bounding volume hierarchies for N-body computation using the acceptance volume heuristic

    Science.gov (United States)

    Olsson, O.

    2018-01-01

    We present a novel heuristic derived from a probabilistic cost model for approximate N-body simulations. We show that this new heuristic can be used to guide tree construction towards higher quality trees with improved performance over current N-body codes. This represents an important step beyond the current practice of using spatial partitioning for N-body simulations, and enables adoption of a range of state-of-the-art algorithms developed for computer graphics applications to yield further improvements in N-body simulation performance. We outline directions for further developments and review the most promising such algorithms.

  5. A new body shape index predicts mortality hazard independently of body mass index.

    Directory of Open Access Journals (Sweden)

    Nir Y Krakauer

    Full Text Available Obesity, typically quantified in terms of Body Mass Index (BMI exceeding threshold values, is considered a leading cause of premature death worldwide. For given body size (BMI, it is recognized that risk is also affected by body shape, particularly as a marker of abdominal fat deposits. Waist circumference (WC is used as a risk indicator supplementary to BMI, but the high correlation of WC with BMI makes it hard to isolate the added value of WC.We considered a USA population sample of 14,105 non-pregnant adults (age ≥ 18 from the National Health and Nutrition Examination Survey (NHANES 1999-2004 with follow-up for mortality averaging 5 yr (828 deaths. We developed A Body Shape Index (ABSI based on WC adjusted for height and weight: ABSI ≡ WC/(BMI(2/3height(1/2. ABSI had little correlation with height, weight, or BMI. Death rates increased approximately exponentially with above average baseline ABSI (overall regression coefficient of +33% per standard deviation of ABSI [95% confidence interval: +20%-+48%, whereas elevated death rates were found for both high and low values of BMI and WC. 22% (8%-41% of the population mortality hazard was attributable to high ABSI, compared to 15% (3%-30% for BMI and 15% (4%-29% for WC. The association of death rate with ABSI held even when adjusted for other known risk factors including smoking, diabetes, blood pressure, and serum cholesterol. ABSI correlation with mortality hazard held across the range of age, sex, and BMI, and for both white and black ethnicities (but not for Mexican ethnicity, and was not weakened by excluding deaths from the first 3 yr of follow-up.Body shape, as measured by ABSI, appears to be a substantial risk factor for premature mortality in the general population derivable from basic clinical measurements. ABSI expresses the excess risk from high WC in a convenient form that is complementary to BMI and to other known risk factors.

  6. A rigorous derivation of gravitational self-force

    International Nuclear Information System (INIS)

    Gralla, Samuel E; Wald, Robert M

    2008-01-01

    There is general agreement that the MiSaTaQuWa equations should describe the motion of a 'small body' in general relativity, taking into account the leading order self-force effects. However, previous derivations of these equations have made a number of ad hoc assumptions and/or contain a number of unsatisfactory features. For example, all previous derivations have invoked, without proper justification, the step of 'Lorenz gauge relaxation', wherein the linearized Einstein equation is written in the form appropriate to the Lorenz gauge, but the Lorenz gauge condition is then not imposed-thereby making the resulting equations for the metric perturbation inequivalent to the linearized Einstein equations. (Such a 'relaxation' of the linearized Einstein equations is essential in order to avoid the conclusion that 'point particles' move on geodesics.) In this paper, we analyze the issue of 'particle motion' in general relativity in a systematic and rigorous way by considering a one-parameter family of metrics, g ab (λ), corresponding to having a body (or black hole) that is 'scaled down' to zero size and mass in an appropriate manner. We prove that the limiting worldline of such a one-parameter family must be a geodesic of the background metric, g ab (λ = 0). Gravitational self-force-as well as the force due to coupling of the spin of the body to curvature-then arises as a first-order perturbative correction in λ to this worldline. No assumptions are made in our analysis apart from the smoothness and limit properties of the one-parameter family of metrics, g ab (λ). Our approach should provide a framework for systematically calculating higher order corrections to gravitational self-force, including higher multipole effects, although we do not attempt to go beyond first-order calculations here. The status of the MiSaTaQuWa equations is explained

  7. Non unitarity effects in the time evolution of one body observables

    International Nuclear Information System (INIS)

    Nemes, M.C.; Toledo Piza, A.F.R. de

    1982-01-01

    We present a formal derivation of the exact dynamics of the one body density matrix. Its essential ingredients are shown to be: a) a mean field unitary time evolution, b) irreducible non unitary corrections to it (collision effects) and c) the time evolution of initial state correlations (which contributes to both a) and b). The qualitative importance of collision effects to the expectation value of one body operators is discussed and a quantitative study is carried out within the framework of an exactly soluble model, the non unitary contributions vary from 10% to over 100%

  8. The potential of tumor-derived exosomes for noninvasive cancer monitoring.

    Science.gov (United States)

    Whiteside, Theresa L

    2015-01-01

    Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.

  9. The Brain Derived Neurotrophic Factor and Personality

    OpenAIRE

    Christian Montag

    2014-01-01

    The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF) in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF...

  10. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2016-05-01

    Full Text Available Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  11. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis

    Science.gov (United States)

    Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.

    2002-01-01

    Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184

  12. Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression.

    Science.gov (United States)

    Bojnordi, Maryam Nazm; Azizi, Hossein; Skutella, Thomas; Movahedin, Mansoureh; Pourabdolhossein, Fereshteh; Shojaei, Amir; Hamidabadi, Hatef Ghasemi

    2017-09-01

    Transplantation of embryonic stem cells (ESCs) is a promising therapeutic approach for the treatment of neurodegenerative diseases. However, ESCs are not usable clinically due to immunological and ethical limitations. The identification of an alternative safe cell source opens novel options via autologous transplantation in neuro-regeneration circumventing these problems. Here, we examined the neurogenic capacity of embryonic stem-like cells (ES-like cells) derived from the testis using neural growth factor inducers and utilized them to generate functional mature neurons. The neuronal differentiation of ES-like cells is induced in three stages. Stage 1 is related to embryoid body (EB) formation. To induce neuroprogenitor cells, EBs were cultured in the presence of retinoic acid, N 2 supplement and fibroblast growth factor followed by culturing in a neurobasal medium containing B 27 , N 2 supplements for additional 10 days, to allow the maturation and development of neuronal progenitor cells. The neurogenic differentiation was confirmed by immunostaining for markers of mature neurons. The differentiated neurons were positive for Tuj1 and Tau1. Real-time PCR dates indicated the expression of Nestin and Neuro D (neuroprogenitor markers) in induced cells at the second stage of the differentiation protocol. The differentiated mature neurons exhibited the specific neuron markers Map2 and β-tubulin. The functional maturity of neurons was confirmed by an electrophysiological analysis of passive and active neural membrane properties. These findings indicated a differentiation capacity of ES-like cells derived from the testis to functionally mature neurons, which proposes them as a novel cell source for neuroregenerative medicine.

  13. Modified Kepler's law, escape speed, and two-body problem in modified Newtonian dynamics-like theories

    International Nuclear Information System (INIS)

    Zhao Hongsheng; Li Baojiu; Bienayme, Olivier

    2010-01-01

    We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler's law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.

  14. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. © 2016 Elsevier Inc. All rights reserved.

  15. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.

    Science.gov (United States)

    Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M Antonio

    2012-01-01

    Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far

  16. Rigid body displacement fields of an in-plane-deformable curved beam based on conventional strain definition

    International Nuclear Information System (INIS)

    Moon, Won Joo; Min, Oak Key; Kim, Yong Woo

    1998-01-01

    To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory

  17. Body contact and body language

    DEFF Research Database (Denmark)

    Winther, Helle

    2008-01-01

    and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the ques­tion is whether conscious and experimental work with body contact and body language in move......­ment psychology and education provide potential for intense personal develop­ment as well as for social and cultural learning processes. This performative research project originates from the research project entitled, Movement Psy­chol­ogy: The Language of the Body and the Psy­chol­ogy of Movement based......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experi­ence of themselves...

  18. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    Directory of Open Access Journals (Sweden)

    Alizé Lacoste Jeanson

    2017-05-01

    Full Text Available Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT and lean tissue (LT in such material. An intra-class correlation coefficient (ICC was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS linear regressions and support vector machine regression (SVMR. Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5 and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77 than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08 for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  19. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  20. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  1. Few-Body Techniques Using Coordinate Space for Bound and Continuum States

    Science.gov (United States)

    Garrido, E.

    2018-05-01

    These notes are a short summary of a set of lectures given within the frame of the "Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.

  2. Equilibrium and nonequilibrium many-body perturbation theory: a unified framework based on the Martin-Schwinger hierarchy

    International Nuclear Information System (INIS)

    Van Leeuwen, Robert; Stefanucci, Gianluca

    2013-01-01

    We present a unified framework for equilibrium and nonequilibrium many-body perturbation theory. The most general nonequilibrium many-body theory valid for general initial states is based on a time-contour originally introduced by Konstantinov and Perel'. The various other well-known formalisms of Keldysh, Matsubara and the zero-temperature formalism are then derived as special cases that arise under different assumptions. We further present a single simple proof of Wick's theorem that is at the same time valid in all these flavors of many-body theory. It arises simply as a solution of the equations of the Martin-Schwinger hierarchy for the noninteracting many-particle Green's function with appropriate boundary conditions. We further discuss a generalized Wick theorem for general initial states on the Keldysh contour and derive how the formalisms based on the Keldysh and Konstantinov-Perel'-contours are related for the case of general initial states.

  3. Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction

    Directory of Open Access Journals (Sweden)

    M. V. Michaylyuk

    2016-01-01

    Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.

  4. Quantum mechanics of a generalised rigid body

    International Nuclear Information System (INIS)

    Gripaios, Ben; Sutherland, Dave

    2016-01-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)

  5. [Perspectives on body: embodiment and body image].

    Science.gov (United States)

    Chang, Shiow-Ru; Chao, Yu-Mei Yu

    2007-06-01

    "Body" is a basic concept of both the natural and human sciences. This extensive review of the literature explores the various philosophical approaches to the body, including empiricism, idealism, existentialism and phenomenology, as well as the relationship between body and mind. Embodiment and body image are the two main concepts of body addressed in this article. Merleau-Ponty's perspective on embodiment, an important new area of theory development, emphasizes that embodiment research must focus on life experiences, such as the study of body image. Using Schilder's framework of psychosocialology, this article provides a comprehensive understanding of the concept of body image and women's perspectives on the "body" in both Western culture and Eastern cultures. Body size and shape significantly influence the self-image of women. Body image is something that develops and changes throughout one's life span and is continually being constructed, destructed, and reconstructed. Personal body image has important psychological effects on the individual, especially women. This integrative review can make a significant contribution to knowledge in this area and, consequently, to related practice and research.

  6. The phraseological potential of body part terms jezik, uho/uvo, mozak and obraz in Serbian

    Directory of Open Access Journals (Sweden)

    Štrbac Gordana R.

    2017-01-01

    Full Text Available This article focuses on the human body as the source domain in the conceptualization of different activities in various target domains. The paper examines the role of body part terms jezik, uho/uvo, mozak and obraz in the development of phraseological meaning. The corpus for the research includes 211 idioms collected from the phraseological and other dictionaries (for example, držati jezik za zubima, nemati dlake na jeziku, puniti kome uši, govoriti gluvim ušima, imati mozga u glavi, puniti kome mozak, imati obraz kao đon, čovek crna obraza, etc.. The analysis shows that the phraseological potential of body part terms depends on their conceptual, semantic and derivational potential, i.e. body part terms which have a rich derivational and semantic network also have numerous idioms. The phraseological meaning is often motivated by the functional seme in the sememe of the body part term, so the metonymy BODY PART FOR ITS FUNCTION is the most common pattern of semantic change. The idioms with lexemes jezik, uho/uvo, mozak and obraz mainly denote actions that are peculiar to these parts of the body. These meanings are based on metaphorical mental images in which the body parts have some qualities, or operate as the subject, object or instrument of a physical action. The existence of the same semantic patterns in other languages confirms the universality of bodily experience in the conceptualization of emotions, knowledge and reasoning, speaking, hearing, etc. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 178004: Standardni srpski jezik: sintaksička, semantička i pragmatička istraživanja

  7. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  8. Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.

    Science.gov (United States)

    Page, Leland; Maswadi, Saher; Glickman, Randolph D

    2013-01-01

    Optoacoustic imaging is an emerging medical technology that uniquely combines the absorption contrast of optical imaging and the penetration depth of ultrasound. While it is not currently employed as a clinical imaging modality, the results of current research strongly support the use of optoacoustic-based methods in medical imaging. One such application is the diagnosis of the presence of soft tissue foreign bodies. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, laser-induced optoacoustic imaging could be advantageous for the detection of such objects. Common foreign bodies have been scanned over a range of visible and near infrared wavelengths by using an optoacoustic method to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. The derived optical absorption spectra compared quite closely to the absorption spectra generated when using a conventional spectrophotometer. By using the probe-beam deflection technique, a novel, pressure-wave detection method, we successfully generated optoacoustic spectroscopic plots of a wooden foreign body embedded in a tissue phantom, which closely resembled the spectrum of the same object obtained in isolation. A practical application of such spectra is to assemble a library of spectroscopic data for radiolucent materials, from which specific characteristic wavelengths can be selected for use in optimizing imaging instrumentation and provide a basis for the identification of the material properties of particular foreign bodies.

  9. Sources of variation in estimates of lean body mass by creatinine kinetics and by methods based on body water or body mass index in patients on continuous peritoneal dialysis.

    Science.gov (United States)

    Tzamaloukas, Antonios H; Murata, Glen H; Piraino, Beth; Raj, Dominic S C; VanderJagt, Dorothy J; Bernardini, Judith; Servilla, Karen S; Sun, Yijuan; Glew, Robert H; Oreopoulos, Dimitrios G

    2010-03-01

    We identified factors that account for differences between lean body mass computed from creatinine kinetics (LBM(cr)) and from either body water (LBM(V)) or body mass index (LBM(BMI)) in patients on continuous peritoneal dialysis (CPD). We compared the LBM(cr) and LBM(V) or LBM(BMI) in hypothetical subjects and actual CPD patients. We studied 439 CPD patients in Albuquerque, Pittsburgh, and Toronto, with 925 clearance studies. Creatinine production was estimated using formulas derived in CPD patients. Body water (V) was estimated from anthropometric formulas. We calculated LBM(BMI) from a formula that estimates body composition based on body mass index. In hypothetical subjects, LBM values were calculated by varying the determinants of body composition (gender, diabetic status, age, weight, and height) one at a time, while the other determinants were kept constant. In actual CPD patients, multiple linear regression and logistic regression were used to identify factors associated with differences in the estimates of LBM (LBM(cr)LBM(V), or LBM(cr)LBM(BMI)). We sought predictors of the differences LBM(V) - LBM(cr) and LBM(BMI) - LBM(cr). Both LBM(V) (regardless of formula used to estimate V) and LBM(BMI) exceeded LBM(cr) in hypothetical subjects with average body compositions. The sources of differences between LBM estimates in this group involved differences in the coefficients assigned to gender, age, height, weight, presence or absence of diabetes, and serum creatinine concentration. In CPD patients, mean LBM(V) or LBM(BMI) exceeded mean LBM(cr) by 6.2 to 6.9 kg. For example, the LBM(V) obtained from one anthropometric formula was 50.4+/-10.4 kg and the LBM(cr) was 44.1+/-13.6 kg (P LBM(cr)>LBM(V). The differences in determinants of body composition between groups with high versus low LBM(cr) were similar in hypothetical and actual CPD patients. Multivariate analysis in actual CPD patients identified serum creatinine, height, age, gender, weight, and body mass

  10. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging

    Science.gov (United States)

    Jochimsen, Thies H.; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama

    2015-06-01

    This study explores the possibility of using simultaneous positron emission tomography—magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of 18F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41  ± 10% which is comparable to the reduction by the PET-CT method (35  ± 10%). The reduction of the predictive LBM method was 29  ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.

  11. Seasonal variations in growth and body composition of 8-11-year-old Danish children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    BACKGROUND: Earlier studies on seasonality in growth reported the largest height gains during spring and largest body weight gains during autumn. We examined seasonality in height, body weight, BMI, fat mass index (FMI) and fat-free mass index (FFMI) among contemporary Danish 8-11-year......-olds. METHODS: 760 children from the OPUS School Meal Study provided >2200 measurements on height, body weight and composition between September-June. Average velocities were calculated using change-score analyses based on three-month intervals. As a complementary analysis, point velocities derived from...... suggest seasonality in growth and body composition of Danish children. We recovered the well-known height velocity peak during spring time, but unlike earlier studies we found coincident peaks in body weight, BMI, and FFMI velocities.Pediatric Research (2015); doi:10.1038/pr.2015.206....

  12. Spin and energy evolution equations for a wide class of extended bodies

    International Nuclear Information System (INIS)

    Racine, Etienne

    2006-01-01

    We give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion scheme. The bodies can be arbitrarily shaped and can be strongly self-gravitating. The effects of all mass and current multipoles are taken into account. As part of the computation one of the 2PN potentials parametrizing the metric is obtained. The formulae obtained here for spin and energy evolution coincide with those obtained by Damour, Soffel and Xu for the case of weakly self-gravitating bodies. By combining an Einstein-Infeld-Hoffman-type surface integral approach with multipolar expansions we extend the domain of validity of these evolution equations to a wide class of strongly self-gravitating bodies. This paper completes in a self-contained way a previous work by Racine and Flanagan on translational equations of motion for compact objects

  13. Analytical Solution of Interface Effect on the Strength of Combined Model Composed of Different Geologic Bodies

    Directory of Open Access Journals (Sweden)

    Zeng-hui Zhao

    2014-01-01

    Full Text Available According to the special combined structure of surrounding rock in western mining area of China, a micromechanical model with variable parameters containing contact interface was proposed firstly. Then, the derived stresses in coal and rock near the interface were analyzed on the basis of the harmonized strain relation, and the analytical solutions with respect to stress states near the interface were drawn up. The triaxial compressive strength of coal and rock was further determined in case the contact interface was in the horizontal position. Moreover, effects of stiffness ratio, interface angle, and stress level on the strength of two bodies near the contact area were expounded in detail. Results indicate that additional stresses which have significant effect on the strength of combined model are derived due to the adhesive effect of contact interface and lithological differences between geologic bodies located on both sides. The interface effect on the strength of combined body is most associated with the stiffness, interface angle, and the stress level. These conclusions are also basically valid for three-body model and even for the multibody model and lay important theory foundation to guide the stability study of soft strata composed of different geologic bodies.

  14. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.

    Science.gov (United States)

    Burnham, Jon M; Shults, Justine; Semeao, Edisio; Foster, Bethany; Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B

    2004-12-01

    Whole body BMC was assessed in 104 children and young adults with CD and 233 healthy controls. CD was associated with significant deficits in BMC and lean mass, relative to height. Adjustment for lean mass eliminated the bone deficit in CD. Steroid exposure was associated with short stature but not bone deficits relative to height. Children with Crohn disease (CD) have multiple risk factors for impaired bone accrual. The confounding effects of poor growth and delayed maturation limit the interpretation of prior studies of bone health in CD. The objective of this study was to assess BMC relative to growth, body composition, and maturation in CD compared with controls. Whole body BMC and lean mass were assessed by DXA in 104 CD subjects and 233 healthy controls, 4-26 years of age. Multivariable linear regression models were developed to sequentially adjust for differences in skeletal size, pubertal maturation, and muscle mass. BMC-for-height z scores were derived to determine CD-specific covariates associated with bone deficits. Subjects with CD had significantly lower height z score, body mass index z score, and lean mass relative to height compared with controls (all p BMC in CD relative to controls was significantly reduced in males (0.86; 95% CI, 0.83, 0.94) and females (0.91; 95% CI, 0.85, 0.98) with CD. Adjustment for pubertal maturation did not alter the estimate; however, addition of lean mass to the model eliminated the bone deficit. Steroid exposure was associated with short stature but not bone deficits. This study shows the importance of considering differences in body size and composition when interpreting DXA data in children with chronic inflammatory conditions and shows an association between deficits in muscle mass and bone in pediatric CD.

  15. Bell Correlations in a Many-Body System with Finite Statistics

    Science.gov (United States)

    Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel

    2017-10-01

    A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

  16. Study of melt produced bodies observed at Henbury crater region

    International Nuclear Information System (INIS)

    Hopper, V.D.; Sewell, D.K.B.; Aitken, D.K.

    1989-01-01

    Spherical and non spherical bodies derived from target rock and meteorite components have been found in samples of soil in the Henbury crater region. From a study of the composition of these bodies, the compositions of the meteorite and the target rock, it has been possible to separate the bodies into three groups showing differing degrees of volatilization of various oxides. The composition of a number of the soil samples were measured using X-ray fluorescence. A selected number were then examined by a scanning electron microscope fitted with an energy dispersive X-ray analyzer. Where Ni was definitely identified, it was examined by an electron microprobe X-ray analyzer. A major finding was the depletion of SiO 2 in the production of both Group 1 and Group 3 bodies. Group 3 bodies are not volatilized to the same extent as Group 1. With no reference to the target rock , the general order of volatility appears to be Na 2 O>MgO>K 2 O>TiO 2 , SiO 2 and Al 2 O 3 , the significant change being the place of SiO2. 13 refs., 7 figs., 5 tabs

  17. Energy intake functions and energy budgets of ectotherms and endotherms derived from their ontogenetic growth in body mass and timing of sexual maturation.

    Science.gov (United States)

    Werner, Jan; Sfakianakis, Nikolaos; Rendall, Alan D; Griebeler, Eva Maria

    2018-05-07

    Ectothermic and endothermic vertebrates differ not only in their source of body temperature (environment vs. metabolism), but also in growth patterns, in timing of sexual maturation within life, and energy intake functions. Here, we present a mathematical model applicable to ectothermic and endothermic vertebrates. It is designed to test whether differences in the timing of sexual maturation within an animal's life (age at which sexual maturity is reached vs. longevity) together with its ontogenetic gain in body mass (growth curve) can predict the energy intake throughout the animal's life (food intake curve) and can explain differences in energy partitioning (between growth, reproduction, heat production and maintenance, with the latter subsuming any other additional task requiring energy) between ectothermic and endothermic vertebrates. With our model we calculated from the growth curves and ages at which species reached sexual maturity energy intake functions and energy partitioning for five ectothermic and seven endothermic vertebrate species. We show that our model produces energy intake patterns and distributions as observed in ectothermic and endothermic species. Our results comply consistently with some empirical studies that in endothermic species, like birds and mammals, energy is used for heat production instead of growth, and with a hypothesis on the evolution of endothermy in amniotes published by us before. Our model offers an explanation on known differences in absolute energy intake between ectothermic fish and reptiles and endothermic birds and mammals. From a mathematical perspective, the model comes in two equivalent formulations, a differential and an integral one. It is derived from a discrete level approach, and it is shown to be well-posed and to attain a unique solution for (almost) every parameter set. Numerically, the integral formulation of the model is considered as an inverse problem with unknown parameters that are estimated using a

  18. Total body calcium by neutron activation analysis. Reference data for children

    International Nuclear Information System (INIS)

    Ellis, K.J.; Shypailo, R.J.

    2001-01-01

    There is a paucity of data on the chemical composition of the human body during growth. Total body calcium (TBCa) has been reported for only one male child, aged 41/2 yr. TBCa values for 25 children and 27 young women using in vivo neutron activation analysis have been obtained. TBCa results were lower than those reported for the one male cadaver, as well as the estimates derived for the 'Reference Man' model. It was concluded that the reference values for TBCa may need to be adjusted to appropriately describe skeletal mineralization of contemporary children. (author)

  19. Quasiparticle many-body dynamics of the Anderson model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1996-01-01

    The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs

  20. Explicit solution to the N-body Calogero problem

    Energy Technology Data Exchange (ETDEWEB)

    Brink, L [Inst. of Theoretical Physics, CTH, Goeteborg (Sweden); Hansson, T H [Inst. of Theoretical Physics, Univ. Stockholm (Sweden); Vasiliev, M A [Dept. of Theoretical Physics, P.N. Lebedev Physical Inst., Moscow (Russia)

    1992-07-23

    We solve the N-body Calogero problem, i.e., N particles in one dimension subject to a two-body interaction of the form 1/2 {Sigma}{sub i,j} ((x{sub i}-x{sub j}){sup 2}+g/(x{sub i}-x{sub j}){sup 2}), by constructing annihilation and creation operators of the form a{sub i}{sup -+}=(1/{radical}2)(x{sub i}{+-}ip{sub i}) where p{sub i} is a modified momentum operator obeying Heisenberg-type commutation relations with x{sub i}, involving explicitly permutation operators. On the other hand, D{sub j}=ip{sub j} can be interpreted as a covariant derivative corresponding to a flat connection. The relation to fractional statistics in 1+1 dimensions and anyons in a strong magnetic field is briefly discussed. (orig.).

  1. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules.SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  2. Deoxynivalenol. Derivation of concentration limits in wheat and wheat containing food products

    NARCIS (Netherlands)

    Pieters MN; Fiolet DCM; Baars AJ; CSR

    1999-01-01

    The mycotoxin deoxynivalenol (DON) produced by fungi of the Fusarium genus may occur in various cereal crops. A provisional TDI of 1.1 ug per kg body weight was derived to calculate concentration limits for the mycotoxin, deoxynivalenol (DON), in wheat and wheat food products. Children (1-4 years

  3. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  4. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    International Nuclear Information System (INIS)

    Sala, A.; Webber, C.E.; Morrison, J.; Beaumont, L.F.; Barr, R.D.

    2007-01-01

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  5. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    OpenAIRE

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies ...

  6. Universal Properties of Many-Body Delocalization Transitions

    Directory of Open Access Journals (Sweden)

    Andrew C. Potter

    2015-09-01

    Full Text Available We study the dynamical melting of “hot” one-dimensional many-body localized systems. As disorder is weakened below a critical value, these nonthermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow subdiffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics. We discuss experimentally testable signatures of the predicted scaling properties.

  7. Heart rates in hospitalized children by age and body temperature.

    Science.gov (United States)

    Daymont, Carrie; Bonafide, Christopher P; Brady, Patrick W

    2015-05-01

    Heart rate (HR) is frequently used by clinicians in the hospital to assess a patient's severity of illness and make treatment decisions. We sought to develop percentiles that characterize the relationship of expected HR by age and body temperature in hospitalized children and to compare these percentiles with published references in both primary care and emergency department (ED) settings. Vital sign data were extracted from electronic health records of inpatients temperature measurement pairs from each admission. Measurements from 60% of patients were used to derive the percentile curves, with the remainder used for validation. We compared our upper percentiles with published references in primary care and ED settings. We used 60,863 observations to derive the percentiles. Overall, an increase in body temperature of 1°C was associated with an increase of ∼ 10 beats per minute in HR, although there were variations across age and temperature ranges. For infants and young children, our upper percentiles were lower than in primary care and ED settings. For school-age children, our upper percentiles were higher. We characterized expected HR by age and body temperature in hospitalized children. These percentiles differed from references in primary care and ED settings. Additional research is needed to evaluate the performance of these percentiles for the identification of children who would benefit from further evaluation or intervention for tachycardia. Copyright © 2015 by the American Academy of Pediatrics.

  8. High-energy gravitational scattering and the general relativistic two-body problem

    Science.gov (United States)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  9. Dean vortex membrane microfiltration and diafiltration of rBDNF E. coli inclusion bodies

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Rupp, R.; Wideman, J.; Belfort, G.

    2002-01-01

    Cross-flow microfiltration (CMF) and diafiltration were used to concentrate and purify recombinant Brain-Derived Neutrophic Factor (rBDNF) inclusion bodies from an E. coli cell suspension and a homogenized E. coli cell suspension (homogenate/lysate). Although these processes have been tested

  10. Few-body problem in terms of correlated Gaussians

    Science.gov (United States)

    Silvestre-Brac, Bernard; Mathieu, Vincent

    2007-10-01

    In their textbook, Suzuki and Varga [Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)] present the stochastic variational method with the correlated Gaussian basis in a very exhaustive way. However, the Fourier transform of these functions and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulas. We also give a derivation for formulations concerning central potentials.

  11. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  12. Two derivations of the master equation of quantum Brownian motion

    International Nuclear Information System (INIS)

    Halliwell, J J

    2007-01-01

    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model

  13. Two derivations of the master equation of quantum Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, J J [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2007-03-23

    Central to many discussion of decoherence is a master equation for the reduced density matrix of a massive particle experiencing scattering from its surrounding environment, such as that of Joos and Zeh. Such master equations enjoy a close relationship with spontaneous localization models, like the GRW model. The aim of this paper is to present two derivations of the master equation. The first derivation is a pedagogical model designed to illustrate the origins of the master equation as simply as possible, focusing on physical principles and without the complications of S-matrix theory. This derivation may serve as a useful tutorial example for students attempting to learn this subject area. The second is the opposite: a very general derivation using non-relativistic many-body field theory. It reduces to the equation of the type given by Joos and Zeh in the one-particle sector, but correcting certain numerical factors which have recently become significant in connection with experimental tests of decoherence. This master equation also emphasizes the role of local number density as the 'preferred basis' for decoherence in this model.

  14. Mutagenesis and haploid culture for disease resistance in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M V; Ahmad, I; Ingram, D S [Botany School, University of Cambridge, Cambridge (United Kingdom)

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M{sub 1} and M{sub 2} progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  15. Mutagenesis and haploid culture for disease resistance in Brassica napus

    International Nuclear Information System (INIS)

    MacDonald, M.V.; Ahmad, I.; Ingram, D.S.

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M 1 and M 2 progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  16. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    Science.gov (United States)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  17. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150 Nd

  18. Theory of many-body localization in periodically driven systems

    International Nuclear Information System (INIS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-01-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  19. Bilateral carotid body tumor resection in a female patient

    Directory of Open Access Journals (Sweden)

    Alfred Burgess

    Full Text Available Introduction: Carotid body tumors also called carotid paragangliomas are rare neuroendocrine neoplasms derived from neural crest cells, approximately 3% of all paragangliomas occur in the head and neck area (Xiao and She, 2015; although they represent 65% of the head and neck paragangliomas (Georgiadis et al., 2008. Presentation of case: We present the therapeutic management of a 65-year-old woman with bilateral carotid body tumors. The patient presented to medical clinic for unrelated signs and symptoms of weight loss, dyspepsia, and epigastric pain. Physical examination showed bilateral non-tender neck masses for which imaging studies were ordered resulting in the diagnosis of bilateral carotid tumor. Surgical resection was staged with one week of distance between each tumor resection. Discussion: Carotid Body Tumors can arise from the paraganglia located within the adventitia of the medial aspect of the carotid bifurcation.Resection is the only curative treatment. Carotid body tumors resection represents a special challenge due to potential neurovascular complications. Conclusions: Surgical resection of carotid body tumors represents a special challenge to the surgeon because of the complex anatomical location of the tumor, including close relationship with the cranial nerves, involvement of the carotid vessels and large vascularization of the tumor. With the advance of diagnosis and improvement in surgical techniques as well as the understanding of biological behavior of tumors, surgical treatment has become a safer alternative for treating these tumors. Keywords: Carotid body tumor, Bilateral, Paraganglioma, Resection

  20. Two-body loss rates for reactive collisions of cold atoms

    Science.gov (United States)

    Cop, C.; Walser, R.

    2018-01-01

    We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.

  1. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    Science.gov (United States)

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  2. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    Science.gov (United States)

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.

  3. Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis

    Directory of Open Access Journals (Sweden)

    Shouli Wang

    2017-12-01

    Full Text Available Gravity plays an important role in normal tissue maintenance. The ability of stem cells to repair tissue loss in space through regeneration and differentiation remains largely unknown. To investigate the impact of microgravity on blood vessel formation from pluripotent stem cells, we employed the embryoid body (EB model for vasculogenesis and simulated microgravity by clinorotation. We first differentiated mouse embryonic stem cells into cystic EBs containing two germ layers and then analyzed vessel formation under clinorotation. We observed that endothelial cell differentiation was slightly reduced under clinorotation, whereas vascular branch morphogenesis was markedly enhanced. EB-derived endothelial cells migrated faster, displayed multiple cellular processes, and had higher Cdc42 and Rac1 activity when subjected to clinorotation. Genetic analysis and rescue experiments demonstrated that Cdc42 but not Rac1 is required for microgravity-induced vascular branch morphogenesis. Furthermore, affinity pull-down assay and mass spectrometry identified Rap1GDS1 to be a Cdc42 guanine nucleotide exchange factor, which was upregulated by clinorotation. shRNA-mediated knockdown of Rap1GDS1 selectively suppressed Cdc42 activation and inhibited both baseline and microgravity-induced vasculogenesis. This was rescued by ectopic expression of constitutively active Cdc42. Taken together, these results support the notion that simulated microgravity activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis.

  4. Assessment of the Potential of CDK2 Inhibitor NU6140 to Influence the Expression of Pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    2014-01-01

    Full Text Available As cyclin-dependent kinases (CDKs regulate cell cycle progression and RNA transcription, CDKs are attractive targets for creating cancer cell treatments. In this study we investigated the effects of the small molecular agent NU6140 (inhibits CDK2 and cyclin A interaction on human embryonic stem (hES cells and embryonal carcinoma-derived (hEC cells via the expression of transcription factors responsible for pluripotency. A multiparameter flow cytometric method was used to follow changes in the expression of NANOG, OCT4, and SOX2 together in single cells. Both hES and hEC cells responded to NU6140 treatment by induced apoptosis and a decreased expression of NANOG, OCT4, and SOX2 in surviving cells. A higher sensitivity to NU6140 application in hES than hEC cells was detected. NU6140 treatment arrested hES and hEC cells in the G2 phase and inhibited entry into the M phase as evidenced by no significant increase in histone 3 phosphorylation. When embryoid bodies (EBs formed from NU6104 treated hES cells were compared to EBs from untreated hES cells differences in ectodermal, endodermal, and mesodermal lineages were found. The results of this study highlight the importance of CDK2 activity in maintaining pluripotency of hES and hEC cells and in differentiation of hES cells.

  5. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    DEFF Research Database (Denmark)

    Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian

    2017-01-01

    to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario...

  6. Model many-body Stoner Hamiltonian for binary FeCr alloys

    Science.gov (United States)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  7. Histology of two rice bodies isolated from the stifle of an adult draught horse stallion.

    Science.gov (United States)

    Schneider, Nicole; Heimann, Marianne; Lejeune, Jean-Philippe; Verwilghen, Denis R V G; Deby-Dupont, Ginette P; Serteyn, Didier A

    2006-03-01

    In the human and equine species, different kinds of free floating intra-articular particles are related to certain disorders. Osteochondral fragments formed during osteochondrosis dissecans are the most common finding in the equine species, whereas in humans rice bodies due to rheumatoid arthritis are more frequent. Herein we report a third type of floating body inside the stifle of an adult draught horse stallion, in macroscopic appearance similar to articular rice bodies known in humans. As revealed by histologic examination, the two particles consist of polypoid degenerated structures derived from synovial villi. Their formation was probably induced by ischemia.

  8. Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem

    International Nuclear Information System (INIS)

    Kopeikin, Sergei; Vlasov, Igor

    2004-01-01

    Post-Newtonian relativistic theory of astronomical reference frames based on Einstein's general theory of relativity was adopted by General Assembly of the International Astronomical Union in 2000. This theory is extended in the present paper by taking into account all relativistic effects caused by the presumable existence of a scalar field and parametrized by two parameters, β and γ, of the parametrized post-Newtonian (PPN) formalism. We use a general class of the scalar-tensor (Brans-Dicke type) theories of gravitation to work out PPN concepts of global and local reference frames for an astronomical N-body system. The global reference frame is a standard PPN coordinate system. A local reference frame is constructed in the vicinity of a weakly self-gravitating body (a sub-system of the bodies) that is a member of the astronomical N-body system. Such local inertial frame is required for unambiguous derivation of the equations of motion of the body in the field of other members of the N-body system and for construction of adequate algorithms for data analysis of various gravitational experiments conducted in ground-based laboratories and/or on board of spacecrafts in the solar system.We assume that the bodies comprising the N-body system have weak gravitational field and move slowly. At the same time we do not impose any specific limitations on the distribution of density, velocity and the equation of state of the body's matter. Scalar-tensor equations of the gravitational field are solved by making use of the post-Newtonian approximations so that the metric tensor and the scalar field are obtained as functions of the global and local coordinates. A correspondence between the local and global coordinate frames is found by making use of asymptotic expansion matching technique. This technique allows us to find a class of the post-Newtonian coordinate transformations between the frames as well as equations of translational motion of the origin of the local frame

  9. “Ava’s body is a good one”: (DisEmbodiment in Ex Machina

    Directory of Open Access Journals (Sweden)

    Henke Jennifer

    2017-12-01

    Full Text Available This article discusses the role of the body in Alex Garland’s film Ex Machina (2015. It focuses on Ava’s female cyborg body against the backdrop of both classic post-humanist theories and current reflections from scholars in the field of body studies. I argue that Ex Machina addresses but also transcends questions of gender and feminism. It stresses the importance of the body for social interaction both in the virtual as well as the real world. Ava’s lack of humanity results from her mind that is derived from the digital network Blue Book in which disembodied communication dominates. Moreover, the particular construction of Nathan’s progeny demonstrates his longing for a docile sex toy since he created Ava with fully functional genitals but without morals. Ex Machina further exhibits various network metaphors both on the visual and the audio level that contribute to the (reacknowledgement that we need a body in order to be human.

  10. Standardization of calibration method of whole-body counter. 1. Calibration by using anthropometric phantoms

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Matsumoto, Masaki; Uchiyama, Masafumi; Kobayashi, Sadayoshi; Mizushita, Seiichi.

    1995-01-01

    To standardize the calibration methods of whole-body counters, three anthropometric phantoms were manufactured based on dozens of Japanese average value of body size data. Using these phantoms, the calibrations of some whole-body counters were carried out and the comparison of counting efficiency between anthropometric phantoms and block phantoms, which used to be used for the calibration of whole-body counters generally, was implemented. Five whole-body counters, one scanning system, two stationary systems and two chair systems, were used for this study. The following results were derived: As an example, in NIRS scanning system, the counting efficiency of anthropometric phantom of 162cm height was 12.7% greater than that of block phantom of the same height. This means 137 Cs body burdens in adult men used to be estimated with the excess of about 10%. Body burdens tended to be estimated excessively in adult because the difference of counting efficiency between anthropometric phantom and block phantom increases with increase of height. To standardize body burden data measured with various whole-body counters, the calibration of each whole-body counter should be conducted using anthropometric phantoms and phantoms which used to be used for the calibration of that whole-body counter. (author)

  11. Role of adult fat body and milk gland in larval nourishment of Glossina morsitans

    International Nuclear Information System (INIS)

    Langley, P.A.; Bursell, E.

    1980-01-01

    The Glossina larva is nourished entirely in utero by 'milk' composed of equal parts lipid and protein or protein-derivatives, produced by the adult female accessory gland or milk gland. A series of experiments in which activities of the female fat body and milk gland were studied separately, showed that during early pregnancy fat body synthesized and stored triglyceride and, to a lesser extent, protein, utilizing either 14 C leucine or 14 C palmitate in the process. Late in the pregnancy cycle, synthetic activity of the fat body was reduced whereas that of the milk gland increased, both lipid and protein synthesis being conspicuous at this time. There was apparently a switch in mid-pregnancy at which time the milk gland became the dominant organ for synthesis of nutrient substances. Results support the hypothesis that the adult fat body provides the major store, derived from blood meals ingested during early pregnancy, from which the milk gland obtains the lipid component of the milk. The gland itself synthesizes the bulk of the protein components from digested blood meals ingested during the latter half of pregnancy. Control of the processes identified, and their cyclical nature, suggests a neuroendocrine involvement. Identification of this involvement, and the underlying control mechanisms for hormone synthesis and degradation, may well lead to more specific methods of vector control acting through disruption of larval nutrition. (author)

  12. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies

    International Nuclear Information System (INIS)

    Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishii, Kenji; Nariai, Tadashi; Ishiwata, Kiichi

    2013-01-01

    We investigated the whole-body biodistributions and radiation dosimetry of five 11 C-labeled and one 18 F-labeled radiotracers in human subjects, and compared the results to those obtained from murine biodistribution studies. The radiotracers investigated were 11 C-SA4503, 11 C-MPDX, 11 C-TMSX, 11 C-CHIBA-1001, 11 C-4DST, and 18 F-FBPA. Dynamic whole-body positron emission tomography (PET) was performed in three human subjects after a single bolus injection of each radiotracer. Emission scans were collected in two-dimensional mode in five bed positions. Regions of interest were placed over organs identified in reconstructed PET images. The OLINDA program was used to estimate radiation doses from the number of disintegrations of these source organs. These results were compared with the predicted human radiation doses on the basis of biodistribution data obtained from mice by dissection. The ratios of estimated effective doses from the human-derived data to those from the mouse-derived data ranged from 0.86 to 1.88. The critical organs that received the highest absorbed doses in the human- and mouse-derived studies differed for two of the six radiotracers. The differences between the human- and mouse-derived dosimetry involved not only the species differences, including faster systemic circulation of mice and differences in the metabolism, but also measurement methodologies. Although the mouse-derived effective doses were roughly comparable to the human-derived doses in most cases, considerable differences were found for critical organ dose estimates and pharmacokinetics in certain cases. Whole-body imaging for investigation of radiation dosimetry is desirable for the initial clinical evaluation of new PET probes prior to their application in subsequent clinical investigations. (author)

  13. A new formula for estimation of standard liver volume using computed tomography-measured body thickness.

    Science.gov (United States)

    Ma, Ka Wing; Chok, Kenneth S H; Chan, Albert C Y; Tam, Henry S C; Dai, Wing Chiu; Cheung, Tan To; Fung, James Y Y; Lo, Chung Mau

    2017-09-01

    The objective of this article is to derive a more accurate and easy-to-use formula for finding estimated standard liver volume (ESLV) using novel computed tomography (CT) measurement parameters. New formulas for ESLV have been emerging that aim to improve the accuracy of estimation. However, many of these formulas contain body surface area measurements and logarithms in the equations that lead to a more complicated calculation. In addition, substantial errors in ESLV using these old formulas have been shown. An improved version of the formula for ESLV is needed. This is a retrospective cohort of consecutive living donor liver transplantations from 2005 to 2016. Donors were randomly assigned to either the formula derivation or validation groups. Total liver volume (TLV) measured by CT was used as the reference for a linear regression analysis against various patient factors. The derived formula was compared with the existing formulas. There were 722 patients (197 from the derivation group, 164 from the validation group, and 361 from the recipient group) involved in the study. The donor's body weight (odds ratio [OR], 10.42; 95% confidence interval [CI], 7.25-13.60; P Liver Transplantation 23 1113-1122 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  14. Platelet-Derived Microvesicles in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria T. K. Zaldivia

    2017-11-01

    Full Text Available Microvesicles (MVs circulating in the blood are small vesicles (100–1,000 nm in diameter derived from membrane blebs of cells such as activated platelets, endothelial cells, and leukocytes. A growing body of evidence now supports the concept that platelet-derived microvesicles (PMVs, the most abundant MVs in the circulation, are important regulators of hemostasis, inflammation, and angiogenesis. Compared with healthy individuals, a large increase of circulating PMVs has been observed, particularly in patients with cardiovascular diseases. As observed in MVs from other parent cells, PMVs exert their biological effects in multiple ways, such as triggering various intercellular signaling cascades and by participating in transcellular communication by the transfer of their “cargo” of cytoplasmic components and surface receptors to other cell types. This review describes our current understanding of the potential role of PMVs in mediating hemostasis, inflammation, and angiogenesis and their consequences on the pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, and venous thrombosis. Furthermore, new developments of the therapeutic potential of PMVs for the treatment of cardiovascular diseases will be discussed.

  15. Pitching motion control of a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  16. The scattering matrix element of the three body reactive collision

    International Nuclear Information System (INIS)

    Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.

    1980-08-01

    The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)

  17. Relativistic three-body model of pion-deuton elasic scattering

    International Nuclear Information System (INIS)

    Giraud, Noel.

    1978-01-01

    The Aaron-Amado-Young equations for the relativistic three-body problem are derived following the Blauckenbecker - Sugar method. The angular momentum reduction is carried out using suitable relative momenta. The pion-deuteron elastic scattering is calculated using the equations in which relativistic kinematics are retained only for the pion. After a general study of the observables in the energy range 25 to 256 MeV, detailed calculations are performed at 142 MeV [fr

  18. Adipogenic Differentiation of Muscle Derived Cells is Repressed by Inhibition of GSK-3 Activity

    Directory of Open Access Journals (Sweden)

    Zoe Redshaw

    2018-06-01

    Full Text Available Intramuscular fat is important in large animal livestock species in regard to meat quality and in humans is of clinical significance in particular in relation to insulin resistance. The canonical Wnt signalling pathway has been implicated at a whole body level in regulating relative levels of adiposity versus lean body mass. Previously we have shown that pig muscle cells can undergo adipogenic differentiation to a degree that is dependent upon the specific muscle source. In this work we examine the role of the canonical Wnt pathway which acts through inactivation of glycogen synthase kinase-3 (GSK-3 in the regulation of adipogenic differentiation in muscle cells derived from the pig semimembranosus muscle.The application of lithium chloride to muscle derived cells significantly increased the phosphorylation of GSK-3β and thus inhibited its activity thus mimicking Wnt signaling. This was associated with a significant decrease in the expression of the adipogenic transcription factor PPARγ and an almost complete inhibition of adipogenesis in the cells. The data also suggest that GSK-3α plays, at most, a small role in this process.Studies in vivo have suggested that the Wnt pathway is a major regulator of whole body adiposity. In this study we have shown that the ability of cells derived from porcine skeletal muscle to differentiate along an adipogenic lineage, in vitro, is severely impaired by mimicking the action of this pathway. This was done by inactivation of GSK-3β by the use of Lithium Chloride.

  19. Communication Challenges in on-Body and Body-to-Body Wearable Wireless Networks—A Connectivity Perspective

    Directory of Open Access Journals (Sweden)

    Dhafer Ben Arbia

    2017-07-01

    Full Text Available Wearable wireless networks (WWNs offer innovative ways to connect humans and/or objects anywhere, anytime, within an infinite variety of applications. WWNs include three levels of communications: on-body, body-to-body and off-body communication. Successful communication in on-body and body-to-body networks is often challenging due to ultra-low power consumption, processing and storage capabilities, which have a significant impact on the achievable throughput and packet reception ratio as well as latency. Consequently, all these factors make it difficult to opt for an appropriate technology to optimize communication performance, which predominantly depends on the given application. In particular, this work emphasizes the impact of coarse-grain factors (such as dynamic and diverse mobility, radio-link and signal propagation, interference management, data dissemination schemes, and routing approaches directly affecting the communication performance in WWNs. Experiments have been performed on a real testbed to investigate the connectivity behavior on two wireless communication levels: on-body and body-to-body. It is concluded that by considering the impact of above-mentioned factors, the general perception of using specific technologies may not be correct. Indeed, for on-body communication, by using the IEEE 802.15.6 standard (which is specifically designed for on-body communication, it is observed that while operating at low transmission power under realistic conditions, the connectivity can be significantly low, thus, the transmission power has to be tuned carefully. Similarly, for body-to-body communication in an indoor environment, WiFi IEEE 802.11n also has a high threshold of end-to-end disconnections beyond two hops (approximatively 25 m. Therefore, these facts promote the use of novel technologies such as 802.11ac, NarrowBand-IoT (NB-IoT etc. as possible candidates for body-to-body communications as a part of the Internet of humans concept.

  20. A second-order shock-expansion method applicable to bodies of revolution near zero lift

    Science.gov (United States)

    1957-01-01

    A second-order shock-expansion method applicable to bodies of revolution is developed by the use of the predictions of the generalized shock-expansion method in combination with characteristics theory. Equations defining the zero-lift pressure distributions and the normal-force and pitching-moment derivatives are derived. Comparisons with experimental results show that the method is applicable at values of the similarity parameter, the ratio of free-stream Mach number to nose fineness ratio, from about 0.4 to 2.

  1. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.

    Science.gov (United States)

    Deng, Zhongliang; Fu, Xiao; Wang, Hanhua

    2018-01-20

    Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

  2. Universal algorithms and programs for calculating the motion parameters in the two-body problem

    Science.gov (United States)

    Bakhshiyan, B. T.; Sukhanov, A. A.

    1979-01-01

    The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.

  3. Motion of small bodies in classical field theory

    International Nuclear Information System (INIS)

    Gralla, Samuel E.

    2010-01-01

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  4. Organic thermometry for chondritic parent bodies

    Science.gov (United States)

    Cody, G. D.; Alexander, C. M. O'D.; Yabuta, H.; Kilcoyne, A. L. D.; Araki, T.; Ade, H.; Dera, P.; Fogel, M.; Militzer, B.; Mysen, B. O.

    2008-07-01

    A unique spectroscopic feature has been identified in a study of twenty-five different samples of meteoritic insoluble organic matter (IOM) spanning multiple chemical classes, groups, and petrologic types, using carbon X-ray Absorption Near Edge Structure (XANES) spectroscopy. The intensity of this feature, a 1s - σ* exciton, appears to provide a precise measure of parent body metamorphism. The intensity of this exciton is also shown to correlate well with a large negative paramagnetic shift observed through solid state 13C NMR. Experiments reveal that upon heating primitive IOM is transformed into material that is indistinguishable from that in thermally processed chondrites, including the development of the 1s - σ* exciton. A thermo-kinetic expression is derived from the experimental data that allows the intensity of the 1s - σ* exciton to be used to estimated the effective temperature integrated over time. A good correlation is observed between the intensity of the 1s - σ* exciton and previously published microRaman spectral data. These data provide a self-consistent organic derived temperature scale for the purpose of calibrating Raman based thermometric expressions.

  5. Semiclassical approximations for a momentum dependent one-body potential

    International Nuclear Information System (INIS)

    Dworzecka, M.; Moszkowski, S.A.

    1976-08-01

    Recently a semiclassical approximation was applied by Jennings, et al., for a system of noninteracting fermions in a local one-body potential. This is a way to calculate shell corrections alternative to Strutinsky's method. This method was generalized to a spherical but a momentum dependent potential of the form, V(r) + 1 / 2 (p 2 W(r) + W(r)p 2 ). Explicit expressions are developed for the number of particles and the smooth sum of single particle energies in terms of the Fermi energy and the one-body potential and its first two derivatives. They are calculated for selected values of the parameters and compared with the sum of single particle energies obtained by numerical solution of the Schroedinger equation. The difference between the two is evidently the shell correction

  6. Aging, body image, and body shape.

    Science.gov (United States)

    Ferraro, F Richard; Muehlenkamp, Jennifer J; Paintner, Ashley; Wasson, Kayla; Hager, Tracy; Hoverson, Fallon

    2008-10-01

    Participants were 25 older men (M age = 72 years, SD = 10 years) and 27 older women (M age = 71 years, SD = 8 years) who examined multiple line-drawing figures of babies, children, young adults, middle-aged adults, and older adults. Participants picked a number on a Likert-type scale ranging from 1 (very thin) to 9 (very obese) in response to questions including "Which is the most attractive?" and "Which figure would you most like to look like?" They also completed questionnaires about their body image and body shape. In response to the age-specific line drawings (e.g., those depicting older men and older women), older women endorsed thinner figures (e.g., picked smaller numbers) than did men. Likewise, older women reported thinking more about their body shape and appearance than did men and perceived their body image as "a little too big" in comparison with the older men who perceived their body image as "just the right size." However, a breakdown of normal and overweight women in this sample revealed that for some overweight elderly women, obesity could become a satisfactory way of life. Much as with college-aged women, the endorsement of a thinner body image by many of the older adult female participants appeared to persist into late adulthood and suggests that research into body image issues with older adults is relevant and necessary.

  7. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  8. Proposed derivation of skin contamination and skin decontamination limits

    International Nuclear Information System (INIS)

    Schieferdecker, H.; Koelzer, W.; Henrichs, K.

    1986-01-01

    From the primary dose limits for the skin, secondary dose limits were derived for skin contamination which can be used in practical radiation protection work. Analogous to the secondary dose limit for the maximum permissible body burden in the case of incorporation, dose limits for the 'maximum permissible skin burden' were calculated, with the help of dose factors, for application in the case of skin contamination. They can be derived from the skin dose limit values. For conditions in which the skin is exposed to temporary contamination, a limit of skin contamination was derived for immediately removable contamination and for one day of exposure. For non-removable contamination a dose limit of annual skin contamination was defined, taking into account the renewal of the skin. An investigation level for skin contamination was assumed, as a threshold, above which certain measures must be taken; these to include appropriate washing not more than three times, with the subsequent procedure determined by the level of residual contamination. The dose limits are indicated for selected radionuclides. (author)

  9. Long term survey of body composition in hemodialysis patients using the Body Composition Monitor® (BCM

    Directory of Open Access Journals (Sweden)

    Stanislas Trolonge

    2012-06-01

    Full Text Available Since 2 years all 265 incident patients in self-dialysis units were included in a prospective study. Every 6-months, clinical and biological nutritional evaluation was associated to a BCM measure. 205 pts have a complete set of data at start (age 60±16 years, BMI 25±5 kg/m2, albumin 37±4 g/L, prealbumin 0.32±0.1 g/L, CRP median 5 mg/L, 135 pts at 6 mo and 56 pts at 2 years. Measures were performed before HD session to ensure stability and reproducibility of body fluid compartments by the same examiner. Lean and fat masses (lean tissue index: LTI, fat tissue index: FTI were normalized by square body height and compared with a reference range derived from 2000 healthy controls, according to gender and age. 28% of pts had values of LTI below the 10th percentile. A linear correlation exists (p<0.001 between pre-dialysis creatinine level and LTI. Albumin or prealbumin were not predictive of sarcopenia. Prescribed post dialysis BW was underestimated in 25% of pts and 16% remain overhydrated. In stable patients repeated measures analysis reveal no significant variation of LTI even in case of reevaluation of BW and gain of BW is associated with fat mass increase. BCM is a simple tool in clinical practice to evaluate body composition and hydratation status and help to guide nutritional support.

  10. Computational anatomy based on whole body imaging basic principles of computer-assisted diagnosis and therapy

    CERN Document Server

    Masutani, Yoshitaka

    2017-01-01

    This book deals with computational anatomy, an emerging discipline recognized in medical science as a derivative of conventional anatomy. It is also a completely new research area on the boundaries of several sciences and technologies, such as medical imaging, computer vision, and applied mathematics. Computational Anatomy Based on Whole Body Imaging highlights the underlying principles, basic theories, and fundamental techniques in computational anatomy, which are derived from conventional anatomy, medical imaging, computer vision, and applied mathematics, in addition to various examples of applications in clinical data. The book will cover topics on the basics and applications of the new discipline. Drawing from areas in multidisciplinary fields, it provides comprehensive, integrated coverage of innovative approaches to computational anatomy. As well,Computational Anatomy Based on Whole Body Imaging serves as a valuable resource for researchers including graduate students in the field and a connection with ...

  11. iiv vito estimation of body composition in cattle with tritium and urea

    African Journals Online (AJOL)

    evaluate the tritium and urea dilution techniques for accurate predictron of body composition. Approximately l,l - 1,4 g ut"u/W9:]5 ... live aninral and the carcass, and to evaluate their accuracy in cornparison to those derived from ... to be infused, was carefully weighed into 20 and 50 ml sterilized disposable syringes which.

  12. Simplified calibration and evaluation procedures for improvised whole body gamma spectrometry in emergency situations

    International Nuclear Information System (INIS)

    Malatova, I.; Bucina, I.; Drabova, D.; Cespirova, I.

    2000-01-01

    A semiconductor gamma spectrometer could be used for the rapid estimation of internal contamination of the people in cases of accidents even when no special calibration for whole body counting is prepared. Generic transfer factors for calculation of the whole body detection efficiency from the 25 cm distant point source detection efficiency are presented. Generic dependence of parameters of power function describing the detector efficiency for point source in 25 cm on the detector relative efficiency given by producer was derived from calibration of 18 detectors with relative efficiency from 1.4% to 62%. Minimum detectable activity for various backgrounds and the uncertainty of the estimate of whole body retention are presented, too. (author)

  13. Radio frequency absorption and penetration depth limits in whole body MR imaging

    International Nuclear Information System (INIS)

    Roschmann, P.

    1986-01-01

    There is a continual debate over the ultimate limits to MR imaging at higher field strengths owing to the problems of increasing radio frequency (RF) power deposition and decreasing depth of B/sub 1/ field penetration in the patient. The authors present experimental results of RF absorption and penetration studies in humans for frequencies (f) of 30 to 220 MHz. Results were mostly derived from RF measurements of the effects of loading different types of head, body, and surface coils during imaging of volunteers and metal phantoms. Imaging at 2 T (85 MHz) does not exhibit significant RF problems; the local SAR amounts to 0.06 W/kg for a π-pulse of 1 msec and a TR of 1 sec. RF measurements of coil loading yield SAR -- f/sup 2.2/. The derived effective penetration depth drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging appears possible up to 220 MHz (5 T). Body and surface coil imaging is subjected to increasing limitations in size or depth above 100 MHz

  14. Innocent Body-Shadow Mimics Physical Body

    Directory of Open Access Journals (Sweden)

    Kenri Kodaka

    2017-04-01

    Full Text Available The paradigm of the rubber hand illusion was applied to a shadow to determine whether the body-shadow is a good candidate for the alternative belonging to our body. Three kinds of shadows, a physical hand, a hand-shaped cloth, and a rectangle cloth, were tested for this purpose. The questionnaire results showed that both anatomical similarity and visuo-proprioception correlation were effective in enhancing illusory ownership of the shadow. According to the proprioceptive drift measurement, whether the shadow purely originated from the physical body was a critical factor in yielding the significantly positive drift. Thus, results demonstrated that the shadow can distort illusory ownership with the rubber hand illusion paradigm, but the proprioception was clearly distorted only when the body-shadow was purely applied. This implies the presence of special cognitive processing to discriminate the self-body shadow from the others.

  15. The Body as a Frontier: Paolo Volponi and Tiziano Scarpa

    Directory of Open Access Journals (Sweden)

    Francesca Negro

    2011-06-01

    Full Text Available This paper proposes an analysis of some texts by Paolo Volponi and Tiziano Scarpa in which the body reveals the alienation of the protagonist. By the analysis of the texts we reflect on the concept of the Persona as the complex concept of human being in which the physical body, the juridical essence and the sensible entity are unified. The body is a porous barrier, a threshold that the authors use to discover the points of contact and separation with the external world, it’s man’s first space and his first language. In the age of the Body fabrication” some concepts as “the senses feast” by Kristeva, and as the one of Somatisation derive from a recent analysis of the human body and of its relations with the representation of human sensibility. These works describe cases of alienation by mean of a sort of body language, activated by the illness or other specific circumstances, the paper then tries to reconstruct the last changes related to the body concept and to analyse the literary examples in relation to recent theories on fragmentation and dissociative disorders (corps sans organes- Deleuze Guattari The description of this fragmented condition reveals the necessity to rebuild a human integrity, to construct a new concept of human physiology based on an organic vision of the human being. The current dilatation and deflagration of the intimacy then seems to be a strategy to overpass the limits of conscious communication, to impose a new holistic concept of human sensibility

  16. Can mixed ligand therapy completely remove plutonium from the body

    Energy Technology Data Exchange (ETDEWEB)

    Volf, V [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie von Spaltstoffen

    1980-08-01

    Results of experiments to determine the effects of mixed ligand chelate treatment on tissue levels of /sup 238/Pu in rats after injection of /sup 238/Pu citrate are presented and discussed. It is concluded that when attempting to remove Pu from the body there seems to be no reason for combining Ca-DTPA, the present chelate of choice, with catechol or Tiron, or with salicylate and its derivatives.

  17. On nonequilibrium many-body systems III: nonlinear transport theory

    International Nuclear Information System (INIS)

    Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.

    1986-01-01

    A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt

  18. Higher time derivatives of the generalized Liapunov function

    International Nuclear Information System (INIS)

    Schieve, W.C.; Bulsara, A.R.

    1975-01-01

    Using the generalized N-body expression for a Liapunov functional developed by Prigogine and coworkers, a condition is obtained whereby the successive time derivatives of this function alternate in sign for weakly coupled systems. This generalized Liapunov function contains contributions from the diagonal as well as off-diagonal (correlation) components of the density matrix. The alternating sign condition is applied (and seen to hold true) for the cases of elastic phonon scattering in a lattice, three-phonon scattering (the anharmonic lattice), and the quantum electron gas. It is also proved simply for the Friedrichs model

  19. Azadirachtin derivatives from seed kernels of Azadirachta excelsa.

    Science.gov (United States)

    Kanokmedhakul, Somdej; Kanokmedhakul, Kwanjai; Prajuabsuk, Thirada; Panichajakul, Sanha; Panyamee, Piyanan; Prabpai, Samran; Kongsaeree, Palangpon

    2005-07-01

    Three new azadirachtin derivatives, named azadirachtins O-Q (1-3), along with the known azadirachtin B (4), azadirachtin L (5), azadirachtin M (6) 11alpha-azadirachtin H (7), 11beta-azadirachtin H (8), and azadirachtol (9) were isolated from seed kernels of Azadirachta excelsa. Their structures were established by spectroscopic techniques, and the structure of 3 was confirmed by X-ray analysis. Compounds 1-7 and 9 exhibited toxicity to the diamondback moth (Plutella xylostella) with an LD50 of 0.75-1.92 microg/g body weight, in 92 h.

  20. Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold; Roelink, Henk

    The hedgehog (Hh) pathway is required for many developmental processes,. as well as for adult homeostasis. Although all known effects of Hh signaling affecting patterning and differentiation are mediated by members of the Gli family of zinc ringer transcription factors, we demonstrate that the

  1. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  2. Many-body theory of effective mass in degenerate semiconductors

    Science.gov (United States)

    Tripathi, G. S.; Shadangi, S. K.

    2018-03-01

    We derive the many-body theory of the effective mass in the effective mass representation (EMR). In the EMR, we need to solve the equation of motion of an electron in the presence of electron-electron interactions, where the wavefunction is expanded over a complete set of Luttinger-Kohn wavefunctions. We use the Luttinger-Ward thermodynamic potential and the Green’s function perturbation to derive an expression for the band effective mass by taking into account the electron-electron interactions. Both quasi-particle and the correlation contributions are considered. We show that had we considered only the quasi-particle contribution, we would have missed important cancellations. Thus the correlated motion of electrons has important effects in the renormalization of the effective mass. Considering the exchange self-energy in the band model, we derive a tractable expression for the band effective mass. We apply the theory to n-type degenerate semiconductors, PbTe and SnTe, and analyze the impact of the theory on the anisotropic effective mass of the conduction bands in these systems.

  3. Evaluation of Body Composition of Human Subjects by Means of Visual Appraisal.

    Science.gov (United States)

    1976-05-01

    Attempts to rank total body fat content (without relation to distribution) as indicated by fat pads, rolls, or general appearance of soft structures... chancre in I/change in cm ; ecti, t r Ptlidual Iuno Volume = 1.250 1 4.P’il and 4. - ,rf conver,;1,,n factors derived by Allen et- i (l9&)) [or (co

  4. Fluctuations of one-body observables. Comparison between exact predictions and numerical simulation

    International Nuclear Information System (INIS)

    Burgio, G.F.; Benhassine, B.; Remaud, B.; Sebille, F.

    1994-01-01

    Within the framework of a stochastic transport equation, we discuss a theoretical approach in order to derive the general covariance matrix of phase-space fluctuations and the dispersion of one-body variables at equilibrium. We compare with the independently obtained numerical results of Chomaz, Burgio and Randrup. The analysis proves the validity of the general approach. (orig.)

  5. Fluctuations of one-body observables. Comparison between exact predictions and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.F. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Benhassine, B. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Remaud, B. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France)); Sebille, F. (Lab. de Physique Nucleaire/CNRS and Univ. de Nantes, 44 Nantes (France))

    1994-01-24

    Within the framework of a stochastic transport equation, we discuss a theoretical approach in order to derive the general covariance matrix of phase-space fluctuations and the dispersion of one-body variables at equilibrium. We compare with the independently obtained numerical results of Chomaz, Burgio and Randrup. The analysis proves the validity of the general approach. (orig.)

  6. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.

    Science.gov (United States)

    Medders, Gregory R; Paesani, Francesco

    2015-03-10

    Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.

  7. Genetic basis for body size variation between an anadromous and two derived lacustrine populations of threespine stickleback Gasterosteus aculeatus in southwest Alaska.

    Science.gov (United States)

    Bowles, Ella; Johnston, Rebecca A; Vanderzwan, Stevi L; Rogers, Sean M

    2016-02-01

    Body size is a highly variable trait among geographically separated populations. Size-assortative reproductive isolation has been linked to recent adaptive radiations of threespine stickleback ( Gasterosteus aculeatus ) into freshwater, but the genetic basis of the commonly found size difference between anadromous and derived lacustrine sticklebacks has not been tested. We studied the genetic basis of size differences between recently diverging stickleback lineages in southwest Alaska using a common environment experiment. We crossed stickleback within one anadromous (Naknek River) and one lake (Pringle Lake) population and between the anadromous and two lake populations (Pringle and JoJo Lakes), and raised them in a salinity of 4-6 ppt. The F1 anadromous and freshwater forms differed significantly in size, whereas hybrids were intermediate or exhibited dominance toward the anadromous form. Additionally, the size of freshwater F1s differed from their wild counterparts, with within-population F1s from Pringle Lake growing larger than their wild counterparts, while there was no size difference between lab-raised and wild anadromous fish. Sexual dimorphism was always present in anadromous fish, but not in freshwater, and not always in the hybrid crosses. These results, along with parallel changes among anadromous and freshwater forms in other regions, suggest that this heritable trait is both plastic and may be under divergent and/or sexual selection.

  8. Body Hair

    Science.gov (United States)

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  9. The neural basis of body form and body action agnosia.

    Science.gov (United States)

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  10. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Directory of Open Access Journals (Sweden)

    Mary-Ellen Brierley

    Full Text Available The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range, with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  11. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Science.gov (United States)

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  12. Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Glazier, Douglas S.; Atkinson, David

    2014-01-01

    Metabolism fuels all of life’s activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether...... the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because...... these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area...

  13. Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)

    2017-07-15

    In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.

  14. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2018-01-01

    Full Text Available Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS. Wireless positioning signals have a considerable attenuation in received signal strength (RSS when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

  15. Ninety-day oral toxicity study of rice-derived γ-oryzanol in Sprague-Dawley rats.

    Science.gov (United States)

    Moon, Seol-Hee; Kim, Duyeol; Shimizu, Norihito; Okada, Tadashi; Hitoe, Shoketsu; Shimoda, Hiroshi

    2017-01-01

    A 90-day oral toxicity study of γ-oryzanol, a rice-derived triterpenoid ferulate, was performed by oral gavage administration to male and female Sprague-Dawley rats at doses of 0, 1000, and 2000 mg/kg body weight/day. All rats administered γ-oryzanol survived throughout the study period. Both male and female rats showed no toxicologically significant changes of the general signs, examination findings, body weight, food consumption, functional observational battery results, ophthalmological findings, urinalysis, hematology tests, clinical chemistry tests, organ weights, and necropsy findings. Moreover, there were no histopathological changes related to administration of γ-oryzanol in males and females from the 2000 mg/kg body weight/day group. In conclusion, the no observed adverse effect level (NOAEL) of γ-oryzanol exceeded 2000 mg/kg body weight/day for both male and female rats under the conditions of this study.

  16. Renormalization in few body nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Tomio, L.; Biswas, R. [Instituto de Fisica Teorica, UNESP, 01405-900 Sao Paulo (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminenese, Niteroi (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, CTA 12228-900 Sao Jose dos Campos (Brazil)

    2001-09-01

    Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the {sup 3}S{sub l} -{sup 3} D{sub 1} states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three-body

  17. Renormalization in few body nuclear physics

    International Nuclear Information System (INIS)

    Tomio, L.; Biswas, R.; Delfino, A.; Frederico, T.

    2001-01-01

    Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the 3 S l - 3 D 1 states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three-body halo nuclei is also

  18. Heat balance model for a human body in the form of wet bulb globe temperature indices.

    Science.gov (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi

    2018-01-01

    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Three-body vertices with two-body techniques

    International Nuclear Information System (INIS)

    Mitra, A.N.; Sharma, V.K.

    1976-01-01

    It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)

  20. A review of whole-body counting techniques appropriate to the study of gastrointestinal absorption

    International Nuclear Information System (INIS)

    Boddy, K.

    1976-01-01

    The wide range of whole-body counters in use for, or applicable to, the study of gastrointestinal absorption is reviewed. Shielded-room or high-sensitivity shadow-shield counters will generally be required only when there is a separate need to measure total body potassium or in studies involving pregnancy or children. For measuring gastrointestinal absorption per se, it is concluded that very simple whole-body counters of the shadow-shield or partial-shield type are usually satisfactory. These systems are of lower cost, and an economic justification for their use is derived by comparing their costs with those of hospitalizing patients for alternative investigations of gastrointestinal absorption. A resume of the general methodology is presented and some operational features and precautions are described. (author)