WorldWideScience

Sample records for depositional setting structural

  1. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    Full Text Available Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1 an early stage of syn-sedimentary extensional deformation (D1 around 2715 Ma; (2 a second stage involving overprinting ductile folding (D2–4 and shearing (D5–6 events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3 a final stage of extensional deformation (D7 accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated

  2. Deposit3D: a tool for automating structure depositions to the Protein Data Bank

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J., E-mail: jbadger@active-sight.com; Hendle, J.; Burley, S. K.; Kissinger, C. R. [SGX Inc., 10505 Roselle Street, San Diego, CA 92121 (United States)

    2005-09-01

    This paper describes a Python script that may be used to gather all required structure-annotation information into an mmCIF file for upload through the RCSB PDB ADIT structure-deposition interface. Almost all successful protein structure-determination projects in the public sector culminate in a structure deposition to the Protein Data Bank (PDB). In order to expedite the deposition proces, Deposit3D has been developed. This command-line script calculates or gathers all the required structure-deposition information and outputs this data into a mmCIF file for subsequent upload through the RCSB PDB ADIT interface. Deposit3D might be particularly useful for structural genomics pipeline projects because it allows workers involved with various stages of a structure-determination project to pool their different categories of annotation information before starting a deposition session.

  3. Deposit3D: a tool for automating structure depositions to the Protein Data Bank

    International Nuclear Information System (INIS)

    Badger, J.; Hendle, J.; Burley, S. K.; Kissinger, C. R.

    2005-01-01

    This paper describes a Python script that may be used to gather all required structure-annotation information into an mmCIF file for upload through the RCSB PDB ADIT structure-deposition interface. Almost all successful protein structure-determination projects in the public sector culminate in a structure deposition to the Protein Data Bank (PDB). In order to expedite the deposition proces, Deposit3D has been developed. This command-line script calculates or gathers all the required structure-deposition information and outputs this data into a mmCIF file for subsequent upload through the RCSB PDB ADIT interface. Deposit3D might be particularly useful for structural genomics pipeline projects because it allows workers involved with various stages of a structure-determination project to pool their different categories of annotation information before starting a deposition session

  4. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  5. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  6. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  7. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  8. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  9. Analyzing regional geological setting of DS uranium deposit based on the extensional research of remote sensing information

    International Nuclear Information System (INIS)

    Liu Dechang; Ye Fawang; Zhao Yingjun

    2006-01-01

    Through analyzing remote sensing image, a special geological environment for uranium ore-formation in Dongsheng-Hangjinqi area consisting of fault-uplift, southern margin fault and annular structure is discovered in this paper. Then the extensional researches on fault-uplift, southern margin fault as well as annular structure are made by using the information-integrated technologies to overlap the remote sensing information with other geoscientific information such as geophysics, geology and so on. Finally, the unusual regional geological setting is analyzed in the view of uranium ore formation, and its influences on the occurrence of DS uranium deposit are also discussed. (authors)

  10. CANOPY STRUCTURE AND DEPOSITION EFFICIENCY OF VINEYARD SPRAYERS

    Directory of Open Access Journals (Sweden)

    Gianfranco Pergher

    2007-06-01

    Full Text Available A field study was performed to analyse how deposition efficiency from an axial-fan sprayer was affected by the canopy structure of vines trained to the High Cordon, Low Cordon and Casarsa systems, at beginning of flowering and beginning of berry touch growth stages. An empirical calibration method, providing a dose rate adjustment roughly proportional to canopy height, was used. The canopy structure was assessed using the Point Quadrat method, and determining the leaf area index (LAI and the leaf layer index (LLI. Spray deposits were measured by colorimetry, using a water soluble dye (Tartrazine as a tracer. Correlation between deposits and canopy parameters were analysed and discussed. Foliar deposits per unit leaf area were relatively constant, suggesting that empirical calibration can reduce deposit variability associated with different training systems and growth stages. Total foliar deposition ranged from 33.6% and 82.3% of total spray volume, and increased proportionally with the LLI up to LLI<4. Deposits on bunches significantly decreased with the LLI in the grape zone. The results suggest that sprayer efficiency is improved by a regular, symmetrical canopy, with few leaf layers in the grape zone as in Low Cordon. However, a LLI<3 over the whole canopy and >40% gaps in the foliage both reduced total deposition, and may increase the risk for larger drift losses.

  11. Lanthanoid titanate film structure deposited at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Kushkov, V.D.; Zaslavskij, A.M.; Mel'nikov, A.V.; Zverlin, A.V.; Slivinskaya, A.Eh.

    1991-01-01

    Influence of deposition temperature on the structure of lanthanoid titanate films, prepared by the method of high-rate vacuum condensation. It is shown that formation of crystal structure, close to equilibrium samples, proceeds at 1100-1300 deg C deposition temperatures. Increase of temperature in this range promotes formation of films with higher degree of structural perfection. Amorphous films of lanthanoid titanates form at 200-1000 deg C. Deposition temperature shouldn't exceed 1400 deg C to prevent the formation of perovskite like phases in films

  12. Composition and structure variation for magnetron sputtered tantalum oxynitride thin films, as function of deposition parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D.; Pătru, M.; Crisan, A.; Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crăciun, D. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR 5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Moura, C. [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Cunha, L., E-mail: lcunha@fisica.uminho.pt [Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-15

    Highlights: • Structural evolution from β-Ta, to fcc-Ta(O,N), to amorphous Ta{sub 2}O{sub 5} with increasing P(N{sub 2} + O{sub 2}). • The substrate bias influences the N content, but does not influence the O content of the films. • The structural features of the films appear at lower P(N{sub 2} + O{sub 2}) when produced with grounded substrate. - Abstract: Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited using a pure Ta target and a working atmosphere with a constant N{sub 2}/O{sub 2} ratio. The choice of this constant ratio limits the study concerning the influence of each reactive gas, but allows a deeper understanding of the aspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous. This work begins by analysing the data obtained directly from the film deposition stage, followed by the analysis of the morphology, composition and structure. For a better understanding regarding the influence of the deposition parameters, the analyses are presented by using the following criterion: the films were divided into two sets, one of them produced with grounded substrate holder and the other with a polarization of −50 V. Each one of these sets was produced with different partial pressure of the reactive gases P(N{sub 2} + O{sub 2}). All the films exhibited a O/N ratio higher than the N/O ratio in the deposition chamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increase of the O content is observed, associated to the strong decrease of the N content, when P(N{sub 2} + O{sub 2}) is higher than 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazing incidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-ray reflectivity studies found out that the density of the films depended on the deposition conditions: the higher the gas pressure, the

  13. Technique for large-scale structural mapping at uranium deposits i in non-metamorphosed sedimentary cover rocks

    International Nuclear Information System (INIS)

    Kochkin, B.T.

    1985-01-01

    The technique for large-scale construction (1:1000 - 1:10000), reflecting small amplitude fracture plicate structures, is given for uranium deposits in non-metamorphozed sedimentary cover rocks. Structure drill log sections, as well as a set of maps with the results of area analysis of hidden disturbances, structural analysis of iso-pachous lines and facies of platform mantle horizons serve as sour ce materials for structural mapplotting. The steps of structural map construction are considered: 1) structural carcass construction; 2) reconstruction of structure contour; 3) time determination of structure initiation; 4) plotting of an additional geologic load

  14. Structure, morphology and thermal stability of electrochemically obtained Ni-Co deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rafailovic, L.D. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Artner, W. [Centre of Electrochemical Surface Technology (CEST), Viktor-Kaplan-Strasse 2, A-2700 Wr. Neustadt (Austria); Nauer, G.E. [Centre of Electrochemical Surface Technology (CEST), Viktor-Kaplan-Strasse 2, A-2700 Wr. Neustadt (Austria); Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria); Minic, D.M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade (Serbia)

    2009-12-10

    Nanostructured nickel-cobalt alloy powder deposits were obtained electrochemically on Cu substrates in the current density range 40-400 mA cm{sup -2}. The influence of the current density and of the Ni{sup 2+}/Co{sup 2+} ratio in the bath on the microstructure and phase composition of the Ni-Co deposits was studied by SEM and X-ray diffraction methods. Both the bath composition and the current density strongly influence the deposit growth mechanism as well as the deposit composition, microstructure, grain size and surface morphology. If the concentration ratio in the electrolyte is Ni{sup 2+}/Co{sup 2+} = 4, the deposit has a cauliflower structure with mean grain size of 13 nm. In contrast, the particles deposited from the electrolyte with Ni{sup 2+}/Co{sup 2+} = 0.25 show platelet structure with preferred orientations and mean grain size of 20 nm. When electrodeposition was performed at high overpotentials, far from equilibrium conditions, face-centered cubic (FCC) solid solutions of Ni and Co were generated while at low overpotentials, as well as at higher content of cobalt in the electrolyte, hexagonal-close packed (HCP) Co was formed. The structure of nanocrystalline deposits exhibits a strong tendency to structural changes under annealing. DSC of the alloy deposits shows a stepwise process of structural changes in the temperature range from 393 to 823 K. It was found that under annealing, HCP {yields} FCC phase transformation occurs in nanocrystalline deposit obtained from electrolyte with a concentration ratio Ni{sup 2+}/Co{sup 2+} = 0.25.

  15. Structural and Optical Properties of Chemical Bath Deposited Silver Oxide Thin Films: Role of Deposition Time

    Directory of Open Access Journals (Sweden)

    A. C. Nwanya

    2013-01-01

    Full Text Available Silver oxide thin films were deposited on glass substrates at a temperature of 50°C by chemical bath deposition technique under different deposition times using pure AgNO3 precursor and triethanolamine as the complexing agent. The chemical analysis based on EDX technique shows the presence of Ag and O at the appropriate energy levels. The morphological features obtained from SEM showed that the AgxO structures varied as the deposition time changes. The X-ray diffraction showed the peaks of Ag2O and AgO in the structure. The direct band gap and the refractive index increased as the deposition time increased and was in the range of 1.64–1.95 eV and 1.02–2.07, respectively. The values of the band gap and refractive index obtained indicate possible applications in photovoltaic and photothermal systems.

  16. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  17. 12 CFR Appendix C to Part 360 - Deposit File Structure

    Science.gov (United States)

    2010-01-01

    .... • STATE = State government. • COMM = Commercial. • CORP = Corporate. • BANK = Bank Owned. • DUE TO = Other... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Deposit File Structure C Appendix C to Part 360... RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. C Appendix C to Part 360—Deposit File Structure This is the...

  18. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  19. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    International Nuclear Information System (INIS)

    Tynell, Tommi; Karppinen, Maarit

    2014-01-01

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline

  20. ZnO: Hydroquinone superlattice structures fabricated by atomic/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi

    2014-01-31

    Here we employ atomic layer deposition in combination with molecular layer deposition to deposit crystalline thin films of ZnO interspersed with single layers of hydroquinone in an effort to create hybrid inorganic–organic superlattice structures. The ratio of the ZnO and hydroquinone deposition cycles is varied between 199:1 and 1:1, and the structure of the resultant thin films is verified with X-ray diffraction and reflectivity techniques. Clear evidence of the formation of a superlattice-type structure is observed in the X-ray reflectivity patterns and the presence of organic bonds in the films corresponding to the structure of hydroquinone is confirmed with Fourier transform infrared spectroscopy measurements. We anticipate that hybrid superlattice structures such as the ones described in this work have the potential to be of great importance for future applications where the precise control of different inorganic and organic layers in hybrid superlattice materials is required. - Highlights: • Inorganic–organic superlattices can be made by atomic/molecular layer deposition. • This is demonstrated here for ZnO and hydroquinone (HQ). • The ratio of the ZnO and HQ layers is varied between 199:1 and 14:1. • The resultant thin films are crystalline.

  1. Effect of deposition angle on the structure and properties of pulsed-DC magnetron sputtered TiAlN thin films

    International Nuclear Information System (INIS)

    Shetty, A.R.; Karimi, A.; Cantoni, M.

    2011-01-01

    This article reports the comparison of structure and properties of titanium aluminum nitride (TiAlN) films deposited onto Si(100) substrates under normal and oblique angle depositions using pulsed-DC magnetron sputtering. The substrate temperature was set at room temperature, 400 o C and 650 o C, and the bias was kept at 0, - 25, - 50, and - 80 V for both deposition angles. The surface and cross-section of the films were observed by scanning electron microscopy. It was found that as the deposition temperature increases, films deposited under normal incidence exhibit distinct faceted crystallites, whereas oblique angle deposited (OAD) films develop a kind of 'tiles of a roof' or 'stepwise structure', with no facetted crystallites. The OAD films showed an inclined columnar structure, with columns tilting in the direction of the incident flux. As the substrate temperature was increased, the tilting of columns nearly approached the substrate normal. Both hardness and Young's modulus decreases when the flux angle was changed from α = 0 o to 45 o as measured by nanoindentation. This was attributed to the voids formed due to the shadowing effect. The crystallographic properties of these coatings were studied by θ-2θ scan and pole figure X-ray diffraction. Films deposited at α = 0 o showed a mixed (111) and (200) out-of-plane orientation with random in-plane alignment. On the other hand, films deposited at α = 45 o revealed an inclined texture with (111) orientation moving towards the incident flux direction and the (200) orientation approaching the substrate normal, showing substantial in-plane alignment.

  2. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  3. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cihan, Ebru [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Özoğul, Alper [Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey); Baykara, Mehmet Z., E-mail: mehmet.baykara@bilkent.edu.tr [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey)

    2015-11-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  4. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  5. Structural and Magnetic Properties of Mn doped ZnO Thin Film Deposited by Pulsed Laser Deposition

    KAUST Repository

    Baras, Abdulaziz

    2011-07-01

    Diluted magnetic oxide (DMO) research is a growing field of interdisciplinary study like spintronic devices and medical imaging. A definite agreement among researchers concerning the origin of ferromagnetism in DMO has yet to be reached. This thesis presents a study on the structural and magnetic properties of DMO thin films. It attempts to contribute to the understanding of ferromagnetism (FM) origin in DMO. Pure ZnO and Mn doped ZnO thin films have been deposited by pulsed laser deposition (PLD) using different deposition conditions. This was conducted in order to correlate the change between structural and magnetic properties. Structural properties of the films were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconducting quantum interference device (SQUID) was used to investigate the magnetic properties of these films. The structural characterizations showed that the quality of pure ZnO and Mn doped ZnO films increased as oxygen pressure (PO) increased during deposition. All samples were insulators. In Mn doped films, Mn concentration decreased as PO increased. The Mn doped ZnO samples were deposited at 600˚C and oxygen pressure from 50-500mTorr. All Mn doped films displayed room temperature ferromagnetism (RTFM). However, at 5 K a superparamagnetic (SPM) behavior was observed in these samples. This result was accounted for by the supposition that there were secondary phase(s) causing the superparamagnetic behavior. Our findings hope to strengthen existing research on DMO origins and suggest that secondary phases are the core components that suppress the ferromagnetism. Although RTFM and SPM at low temperature has been observed in other systems (e.g., Co doped ZnO), we are the first to report this behavior in Mn doped ZnO. Future research might extend the characterization and exploration of ferromagnetism in this system.

  6. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    Science.gov (United States)

    Díaz-Molina, Margarita; Kälin, Otto; Benito, M. Isabel; Lopez-Martinez, Nieves; Vicens, Enric

    2007-07-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface deposits include fine- to coarse-grained hybrid arenites and subordinate quartz-dominated conglomerates with ripple structures of wave and wave-current origin. Beachface deposits are mainly storm beach conglomerates, but parallel-laminated foreshore arenites locally occur. Backbarrier lagoon deposits comprise of washover sandy conglomerates that grade laterally into sandy lime mudstones, biomicrites and marls. Beach ridge sediment, wherein the bulk of dinosaur eggs and eggshell debris occurs, predominantly is a reddish hybrid arenite that has undergone a complex early diagenetic evolution, including marine and meteoric cementation followed by soil development. The reddish arenites overlie wave-dominated shoreface deposits and in places pass laterally into lagoonal deposits. They originally formed shore ridges, that became stabilized during progradational episodes by pedogenesis (beach ridge, sensu [Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83-108.]), which also affected the dinosaur eggs. The eggshell-bearing beach ridge arenites are typically preserved at the top of parasequences forming the systems tracts of a third-order sequence. Thick packages of this facies resulted from aggradation of barrier/beach ridge deposits, whose preservation below surfaces of transgressive erosion was favoured by incipient lithification.

  7. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.

    Science.gov (United States)

    Ali, M; Saeed, S; Sajjad, A

    2016-10-01

    In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2  = 0.74) than did the species richness (r 2  = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.

  8. Arching Structures in Granular Sedimentary Deposits

    Czech Academy of Sciences Publication Activity Database

    Kulaviak, Lukáš; Hladil, Jindřich; Růžička, Marek; Drahoš, Jiří; Saint-Lary, L.

    2013-01-01

    Roč. 246, SEP (2013), s. 269-277 ISSN 0032-5910 R&D Projects: GA ČR GA104/07/1110; GA AV ČR IAAX00130702; GA MŠk(CZ) LG11014 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : wet granulars * deposit * arching structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering; DB - Geology ; Mineralogy (GLU-S) Impact factor: 2.269, year: 2013

  9. Structure and texture of uranium ores in exogenous deposits

    International Nuclear Information System (INIS)

    Danchev, V.I.

    1977-01-01

    Structure and texture signs of uranium rock exogenous deposits have been systematized for the first time, taking into account the slaging of the ore-formation process, connected with formation and change of containing sedimentary rocks, starting with the sedimentogenesis stage and early sediment diagenesis and their subsequent transformation in katagenesis and metamorphism processes. The main features of uranium geochemistry in the exogenous process are considered. Suggested is the genetic classification of uranium exogenous deposits in rocks of sedimentary cover, made with respect to conjugation and various ore-forming productivity of the litogenesis stage. Described are the main combinations of various rock texture and structure properties, characteristic of deposits of genetic classes and groups of the above classification. Eight most frequently occuring textures (lamellar, concretion, oolitic, coagulate, crack, mixed and impregnated) and their types are described and illustrated. Materials of soviet and foreign authors have been used to compile the atlas

  10. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China

    Science.gov (United States)

    Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji

    2018-06-01

    The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.

  11. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  12. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  13. Handbook on surficial uranium deposits. Chapter 3. World distribution relative to climate and physical setting

    International Nuclear Information System (INIS)

    Carlisle, D.

    This chapter discusses regional controls which affect the world distribution of surficial chemogenic uranium deposits. The most important of these are (1) climate, (2) geomorphology, including physiographic and climatic stability, and (3) provenance, i.e., the weathering terrain from which uranium and associated substances are derived. The three economically important environments are the calcrete environment, simple evaporative environments and paludal environments. Of these three categories, the calcrete uranium environment is probably the most uniquely constrained in terms of regional climate, geomorphic setting, provenance (vanadium as well as uranium) and especially the need for long term stability of both climate and physiography. Purely evaporative deposits, though subject to some of the same kinds of constraints, can also reflect local circumstances and a wider range of climates, physiographic settings, and source terrains. The third category encompassing bogs, marshes and organic-rich playas can form under an even wider range of climates and settings provided only that organic materials accumulate in abundance and are contacted by uranium-bearing waters. For all of these reasons and also because of the great economic importance of the calcrete environment as well as its relative novelty and complexity the discussion in this chapter is focused on calcrete, dolocrete and gypcrete uranium deposits. Objective data are reviewed first follwed by inferences and suggestions. 13 figures

  14. Structural, optical and electrical properties of chemically deposited ...

    Indian Academy of Sciences (India)

    Structural, optical and electrical properties of chemically deposited nonstoichiometric copper ... One of these compounds, CuInSe2, with its optical absorption .... is clear from SEM images that the number of grains goes on increasing with the ...

  15. Fabrication of Nb/Pb structures through ultrashort pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, Francisco; Lorusso, Antonella, E-mail: antonella.lorusso@le.infn.it; Perrone, Alessio [Dipartimento di Matematica e Fisica “E. De Giorgi,” Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Klini, Argyro; Fotakis, Costas [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 100 N. Plastira St., GR 70013 Heraklion, Crete (Greece); Broitman, Esteban [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden)

    2016-07-15

    This work reports the fabrication of Nb/Pb structures with an application as photocathode devices. The use of relatively low energy densities for the ablation of Nb with ultrashort pulses favors the reduction of droplets during the growth of the film. However, the use of laser fluences in this ablation regime results in a consequent reduction in the average deposition rate. On the other hand, despite the low deposition rate, the films present a superior adherence to the substrate and an excellent coverage of the irregular substrate surface, avoiding the appearance of voids or discontinuities on the film surface. Moreover, the low energy densities used for the ablation favor the growth of nanocrystalline films with a similar crystalline structure to the bulk material. Therefore, the use of low ablation energy densities with ultrashort pulses for the deposition of the Nb thin films allows the growth of very adherent and nanocrystalline films with adequate properties for the fabrication of Nb/Pb structures to be included in superconducting radiofrequency cavities.

  16. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  17. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States); Bricogne, Gerard, E-mail: terwilliger@lanl.gov [Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX (United Kingdom); Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States)

    2014-10-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  18. Genetic-Structural relations in some types of spanish uranium deposits

    International Nuclear Information System (INIS)

    Alia Medina, M.

    1962-01-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs

  19. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  20. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  1. Micro- and nano-surface structures based on vapor-deposited polymers

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chen

    2017-07-01

    Full Text Available Vapor-deposition processes and the resulting thin polymer films provide consistent coatings that decouple the underlying substrate surface properties and can be applied for surface modification regardless of the substrate material and geometry. Here, various ways to structure these vapor-deposited polymer thin films are described. Well-established and available photolithography and soft lithography techniques are widely performed for the creation of surface patterns and microstructures on coated substrates. However, because of the requirements for applying a photomask or an elastomeric stamp, these techniques are mostly limited to flat substrates. Attempts are also conducted to produce patterned structures on non-flat surfaces with various maskless methods such as light-directed patterning and direct-writing approaches. The limitations for patterning on non-flat surfaces are resolution and cost. With the requirement of chemical control and/or precise accessibility to the linkage with functional molecules, chemically and topographically defined interfaces have recently attracted considerable attention. The multifunctional, gradient, and/or synergistic activities of using such interfaces are also discussed. Finally, an emerging discovery of selective deposition of polymer coatings and the bottom-up patterning approach by using the selective deposition technology is demonstrated.

  2. Structural and genetic characteristics of uranium phosphates metasomatic deposits in limestones

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, K G; Pigul' skij, V I; Prozorov, V G

    1985-01-01

    Voluminous literature on structural and genetic peculiarities of phosphorus-uranium deposits in Ordovician volcanogenic-sedimentary masses, is analyzed to clarify the reasons for their formation. On the basis of geologo-structural and mineralogo-geochemical research, it has been established that phosphorus-uranium mineralization is of metasomatic, postgeosyncline, intraorogenetic character. Mineralization is related to filtration of uprising fluids along rupture untrafolding violations. Formation of metasomatic ore bodies took place under hypabyssal conditions in closed structures by means of endogenous replacement of both carbonate and alumosilicate rocks, including intrusive volcanic and sedimentary complexes. The scale of phosphorus-uranium deposits depends on tectonic peculiarities of ore-containing medium much more than on lithological ones.

  3. The regional geological and structural setting of the uraniferous granitic provinces of Southern Africa

    International Nuclear Information System (INIS)

    Jacob, R.E.; Corner, B.; Brynard, H.J.

    1986-01-01

    Uranium-bearing granites, comprising both potentially economic deposits and source rocks for uranium deposits is duricrustal and sedimentary sequences, are confined chiefly to the mobile belts of Southern Africa and to the Cape granites emplaced during late Precambrian times. The direct uranium potential of the mobile belts, i.e. the Damara, Namaqua-Natal and Limpopo belts, decreases with an increase in the age of associated ensialic diastrophism. This review paper is thus mainly confined to the Damara Belt, although a brief discussion of the potential of the Namaqua Belt is presented. Aspects of the Damara Belt that are discussed in detail, with particular reference to the occurrence of uraniferous granite, include regional tectonic setting, stratigraphy, structure, metamorphism and the patterns and origin of the uranium mineralization. Initial concentrations of uranium in basement and Nosib rocks have led, through ultrametamorphism and fractionation, to uraniferous granites of both economic and sub-economic grade. These granites, in turn, have acted as source of secondary mineralization in overlying superficial calcareous and gypsiferous deposits. The Damara Belt thus provides a good example of multicyclic processes of ore formation. With regard to the uraniferous granites of Namaqualand it is concluded that the porphyroblastic gneisses and late-intrusive Concordia granites, although not of direct economic interest, represent major sources of uranium for secondary superficial deposits. Smaller bodies of late-phase differentiates associated with the Concordia granitic gneiss may themselves, however, represent potentially economically viable deposits

  4. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    Science.gov (United States)

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the

  5. BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Mading, Steve; Maziuk, Dimitri; Sojourner, Kassandra; Yin Lei; Zhu Jun; Markley, John L.; Ulrich, Eldon L.

    2003-01-01

    Experimental constraints associated with NMR structures are available from the Protein Data Bank (PDB) in the form of 'Magnetic Resonance' (MR) files. These files contain multiple types of data concatenated without boundary markers and are difficult to use for further research. Reported here are the results of a project initiated to annotate, archive, and disseminate these data to the research community from a searchable resource in a uniform format. The MR files from a set of 1410 NMR structures were analyzed and their original constituent data blocks annotated as to data type using a semi-automated protocol. A new software program called Wattos was then used to parse and archive the data in a relational database. From the total number of MR file blocks annotated as constraints, it proved possible to parse 84% (3337/3975). The constraint lists that were parsed correspond to three data types (2511 distance, 788 dihedral angle, and 38 residual dipolar couplings lists) from the three most popular software packages used in NMR structure determination: XPLOR/CNS (2520 lists), DISCOVER (412 lists), and DYANA/DIANA (405 lists). These constraints were then mapped to a developmental version of the BioMagResBank (BMRB) data model. A total of 31 data types originating from 16 programs have been classified, with the NOE distance constraint being the most commonly observed. The results serve as a model for the development of standards for NMR constraint deposition in computer-readable form. The constraints are updated regularly and are available from the BMRB web site (http://www.bmrb.wisc.edu)

  6. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA

    Science.gov (United States)

    Dunagan, S.P.; Turner, C.E.

    2004-01-01

    During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic

  7. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data.

    Science.gov (United States)

    Terwilliger, Thomas C; Bricogne, Gerard

    2014-10-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  8. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  9. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2015-05-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films.

  10. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bass, K.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium sulphide (CdS) thin films were deposited by two different processes, chemical bath deposition (CBD), and pulsed DC magnetron sputtering (PDCMS) on fluorine doped-tin oxide coated glass to assess the potential advantages of the pulsed DC magnetron sputtering process. The structural, optical and morphological properties of films obtained by CBD and PDCMS were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, spectroscopic ellipsometry and UV-Vis spectrophotometry. The as-grown films were studied and comparisons were drawn between their morphology, uniformity, crystallinity, and the deposition rate of the process. The highest crystallinity is observed for sputtered CdS thin films. The absorption in the visible wavelength increased for PDCMS CdS thin films, due to the higher density of the films. The band gap measured for the as-grown CBD-CdS is 2.38 eV compared to 2.34 eV for PDCMS-CdS, confirming the higher density of the sputtered thin film. The higher deposition rate for PDCMS is a significant advantage of this technique which has potential use for high rate and low cost manufacturing. - Highlights: • Pulsed DC magnetron sputtering (PDCMS) of CdS films • Chemical bath deposition of CdS films • Comparison between CdS thin films deposited by chemical bath and PDCMS techniques • High deposition rate deposition for PDCMS deposition • Uniform, pinhole free CdS thin films

  11. Uranium deposits of the world. Europe

    Energy Technology Data Exchange (ETDEWEB)

    Dahlkamp, Franz J.

    2016-07-01

    Uranium Deposits of the World, in three volumes, comprises an unprecedented compilation of data and descriptions of the uranium regions in Asia, USA, Latin America and Europe structured by countries. With this third, the Europe volume, Uranium Deposits of the World presents the most extensive data collection of the set. It covers about 140 uranium regions in more than 20 European countries with nearly 1000 mentioned uranium deposits. Each country and region receives an analytical overview followed by the geologically- and economically-relevant synopsis of the individual regions and fields. The presentations are structured in three major sections: (a) location and magnitude of uranium regions, districts, and deposits, (b) principal features of regions and districts, and (c) detailed characteristics of selected ore fields and deposits. This includes sections on geology, alteration, mineralization, shape and dimensions of deposits, isotopes data, ore control and recognition criteria, and metallogenesis. Beside the main European uranium regions, for example in the Czech Republic, Eastern Germany, France, the Iberian Peninsula or Ukraine, also small regions an districts to the point of singular occurrences of interest are considered. This by far the most comprehensive presentation of European uranium geology and mining would not be possible without the author's access to extensive information covering the countries of the former Eastern Bloc states, which was partly not previously available. Abundantly illustrated with information-laden maps and charts throughout, this reference work is an indispensable tool for geologists, mining companies, government agencies, and others with an interest in European key natural resources. A great help for the reader's orientation are the substantial bibliography of uranium-related publications and the indices, latter containing about 3900 entries in the geographical part alone. The three volumes of Uranium Deposits of the

  12. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.J., E-mail: lixj@alum.imr.ac.cn [College of Material Science and Engineering, Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun, 130012 (China); He, L.L., E-mail: llhe@imr.ac.cn [Shenyang National Lab of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Y.S. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon S7N 5A9, SK (Canada); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada)

    2017-01-15

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  13. Strain-induced ordered structure of titanium carbide during depositing diamond on Ti alloy substrate

    International Nuclear Information System (INIS)

    Li, X.J.; He, L.L.; Li, Y.S.; Yang, Q.; Hirose, A.

    2017-01-01

    During the deposition of diamond films on Ti alloy substrates, titanium carbide is a common precipitated phase, preferentially formed at the interfacial region. However, in this case, the precipitation of an ordered structure of titanium carbide has not been reported. In our work, a long periodic ordered structure of TiC has been observed at the deposited diamond film/Ti alloy interface by high resolution transmission electron microscopy (HRTEM). The long periodic ordered structure is identified as 6H-type. The formation mechanism is revealed by comparative studies on the different structures of TiC precipitated under different diamond deposition conditions in terms of deposition time, atmosphere and temperature. A large number of carbon vacancies in the interfacial precipitated TiC phase are verified through electron energy loss spectroscopy (EELS) quantification analysis. However, an ordered arrangement of these carbon vacancies occurs only when the interfacial stress is large enough to induce the precipitation of 6H-type TiC. The supplementary analysis by X-ray diffraction (XRD) further confirms that additional diffraction peaks presented in the XRD patterns are corresponding to the precipitation of 6H-type TiC. - Highlights: •Different structures of TiC are observed during deposited diamond on Ti alloy. •One is common NaCl structure, the other is periodic structure. •The periodic structure is identified as 6H-type by HRTEM. •Carbon vacancies are verified to always exist in the TiC phase. •The precipitation of 6H-type TiC is mainly affected by interfacial stress.

  14. Deposit Insurance and Risk Shifting in a Strong Regulatory Environment

    DEFF Research Database (Denmark)

    Bartholdy, Jan; Justesen, Lene Gilje

    This study provides empirical evidence on the moral hazard implications of introducing deposit insurance into a strong regulatory environment. Denmark offers a unique setting because commercial banks and savings banks have different ownership structures, but are subject to the same set...... of regulations. The ownership structure in savings banks implies that they have no incentive to increase risk after the implementation of a deposit insurance scheme whereas commercial banks have. Also, at the time of introduction, Denmark had high capital requirements and a strict closure policy. Using...... a difference-in-difference framework we show that commercial banks did not increase their risk compared to savings banks when deposit insurance was introduced. The results also hold for large commercial banks, indicating that the systemic risk did not increase either. Thus for a system with high capital...

  15. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  16. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-01-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  17. IMPROVING DEPOSIT POLICY BANK ON THE BASIS OF ANALYSIS OF THE INFLUENCE OF DEPOSIT PORTFOLIO STRUCTURE ON FORMATION OF INVESTMENT RESOURCE

    Directory of Open Access Journals (Sweden)

    Viadrova I.

    2018-01-01

    Full Text Available Introduction. The banking system as a part of the national economy contributes to the development of various branches of economy and trade, enabling the realization of economic interests of economic entities. One of the important tasks of the monetary system is the accumulation of financial resources necessary for the implementation of credit and investment projects and their further distribution. This task is performed by banking institutions by attracting funds from individuals and legal entities. The size of the bank’s resource base and the scale of its operations depend on the operations of attraction of funds. The priority task of the banking institution is the predominance of attracting long-term investments over short-term ones. That is why the problem that exists in the disproportion of the maturity of borrowed funds, the prevalence of short-term deposits over long-term and the minimum amount of long-term resources in the bank’s deposit portfolio is particularly relevant. Purpose. The purpose of the work is to generalize the theoretical aspects of bank deposit activity and to determine the optimal structure of the deposit portfolio for carrying out of credit and investment activity. Results. The article summarizes the essence of the concept of “deposit policy”, identifies the peculiarities of its formation and analyzes the main external and internal factors that have an impact on the deposit policy of domestic banks. The analysis of the dynamics and structure of deposit operations of banks at the state level was carried out and the analysis of deposit policy of a bank of foreign bank groups – PJSC “Ukrsotsbank” for 2010-2017 was provided. In this work, the factors of influence are investigated: external and internal, which determine the ways of formation of deposit policy by banks of Ukraine. The influence of the structure of the deposit portfolio of Ukrainian banks on the formation of the investment resource is analyzed

  18. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    Science.gov (United States)

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  19. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  20. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  1. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  2. 12 CFR Appendix G to Part 360 - Deposit-Customer Join File Structure

    Science.gov (United States)

    2010-01-01

    ..._Code Relationship CodeThe code indicating how the customer is related to the account. Possible values... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Deposit-Customer Join File Structure G Appendix... GENERAL POLICY RESOLUTION AND RECEIVERSHIP RULES Pt. 360, App. G Appendix G to Part 360—Deposit-Customer...

  3. Structural surprises in friction-deposited films of poly(tetrafluoroethylene)

    DEFF Research Database (Denmark)

    Breiby, Dag Werner; Sølling, Theis Ivan; Bunk, Oliver

    2005-01-01

    Thin films of poly(tetrafluoroethylene) (PTFE) produced by friction deposition were studied using grazing incidence X-ray diffraction as the principal tool. The structure of the deposited thin films was compared with that of the surface of the PTFE bar used for depositing the films. Both exhibited...... the 15/7 helix conformation characteristic of crystal PTFE phase IV. A high degree of biaxial orientation was found for the highly crystalline thin films. Whereas the unit cell of the bar surface material appeared to be single-stem hexagonal, the film displayed diffraction characteristics consistent...... the possibility of a continuous transition between the low-order single-stem hexagonal and the multistem high-order unit cell. The degree of chain orientation was much lower at the surface of the bar than in the thin film. A modification of the commonly accepted mechanism for the transfer of material from the bar...

  4. Structural and spectroscopic analysis of hot filament decomposed ethylene deposited at low temperature on silicon surface

    International Nuclear Information System (INIS)

    Tung, F.-K.; Perevedentseva, E.; Chou, P.-W.; Cheng, C.-L.

    2005-01-01

    The deposition of decomposed ethylene on silicon wafer at lower temperature using hot filament chemical vapor deposition (HFCVD) method was applied to compose thin film of carbon and its compounds with silicon and hydrocarbon structures. The films were analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy with elemental microanalysis by energy dispersive X-ray spectrometer. The structure and morphology of the early stage of the film deposition was analyzed. The obtaining of SiC as well as diamond-like structure with this method and catalytic influence of chemical admixtures on the film structure and properties are discussed

  5. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  6. Structural transformations in MoOx thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Escobar-Alarcon, L.

    2004-01-01

    In this work, laser-induced crystallization in MoO x thin films (1.8≤x≤2.1) is reported. This transformation involves a MoO x oxidation and subsequently a crystallization process from amorphous MoO 3 to crystalline αMoO 3 . For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO x to the thermodynamically stable αMoO 3 crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO x to a mixture of αMoO 3 and the thermodynamically unstable βMoO 3 crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  7. Vacuum deposition and pulsed modification of Ge thin films on Si. Structure and photoluminescence

    International Nuclear Information System (INIS)

    Batalov, R.I.; Bayazitov, R.M.; Novikov, G.A.; Shustov, V.A.; Bizyaev, D.A.; Gajduk, P.I.; Ivlev, G.D.; Prokop'ev, S.L.

    2013-01-01

    Vacuum deposition of Ge thin films onto Si substrates by magnetron sputtering was studied. During deposition sputtering time and substrate temperature were varied. Nanosecond pulsed annealing of deposited films by powerful laser or ion beams was performed. The dependence of the structure and optical properties of Ge/Si films on parameters of pulsed treatments was investigated. Optimum parameters of deposition and pulsed treatments resulting into light emitting monocrystalline Ge/Si layers are determined. (authors)

  8. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells

    International Nuclear Information System (INIS)

    Avellaneda, David; Delgado, Guadalupe; Nair, M.T.S.; Nair, P.K.

    2007-01-01

    Chemically deposited SnS thin films possess p-type electrical conductivity. We report a photovoltaic structure: SnO 2 :F-CdS-SnS-(CuS)-silver print, with V oc > 300 mV and J sc up to 5 mA/cm 2 under 850 W/m 2 tungsten halogen illumination. Here, SnO 2 :F is a commercial spray-CVD (Pilkington TEC-8) coating, and the rest deposited from different chemical baths: CdS (80 nm) at 333 K, SnS (450 nm) and CuS (80 nm) at 293-303 K. The structure may be heated in nitrogen at 573 K, before applying the silver print. The photovoltaic behavior of the structure varies with heating: V oc ∼ 400 mV and J sc 2 , when heated at 423 K in air, but V oc decreases and J sc increases when heated at higher temperatures. These photovoltaic structures have been found to be stable over a period extending over one year by now. The overall cost of materials, simplicity of the deposition process, and possibility of easily varying the parameters to improve the cell characteristics inspire further work. Here we report two different baths for the deposition of SnS thin films of about 500 nm by chemical deposition. There is a considerable difference in the nature of growth, crystalline structure and chemical stability of these films under air-heating at 623-823 K or while heating SnS-CuS layers, evidenced in XRF and grazing incidence angle XRD studies. Heating of SnS-CuS films results in the formation of SnS-Cu x SnS y . 'All-chemically deposited photovoltaic structures' involving these materials are presented

  9. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  10. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  11. The role and origin of dilatant structural environments in the spatial control of geo-economic deposits

    International Nuclear Information System (INIS)

    Rosello, E.

    2010-01-01

    A major controlling the geometry, size and spatial location of the mineralization is the tectonic structure. This control is indeed essential in epigenetic deposits, where the structure is the main factor to determine the circulation, precipitation, and in many cases the generation of hydrothermal solutions associated with mineral deposits and / or alterations. Therefore, learning the type of structural control that a particular deposit is charged on a particular aspect and of fundamental importance not only in yacimientología to contribute to the genetic knowledge but also in economic terms to provide ideas and guidance in tasks prospecting, exploration and mineral exploitation

  12. Mineralization mechanism and geodynamic setting of No. 337 deposit in Xiazhuang uranium orefield

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Wu Jianhua; Liu Shuai; Hua Renmin

    2009-01-01

    Uranium deposit No.337 in Xiazhuang uranium orefield has been regarden as a representative of the earliest forming, relatively high temperature and short time gap between the formation of pluton and the mineralization. But the latest study revealed that the formation age of the Maofeng pluton, which is the most important uranium host granite in Xiazhuang uranium orefield, is 206-238.2 Ma by LA-ICP-MS zircon dating, while the secondary origin muscovite in Maofeng pluton has the age of 131-136 Ma by 40 Ar/ 39 Ar dating which correspond to the main mineralization age of 130.3-138 Ma in uranium deposit No.337. In Guidong granitic complex, Maofeng pluton shown some unique characteristics. It has the Al 2 O 3 /TiO 2 ratio that infers the lowest forming temperature, the lowest ΣREE and it is the only pluton which presents typical tetrad effects of REE, it is also shown a varying δ 18 O values and the lowest( 87 Sr/ 86 Sr) i values. According to the above findings, a concept model of uranium mineralization and geodynamic setting for No.337 uranium deposit might be presented: in late or post-collision stage of Indosinian orogeny, strongly peraluminous granite of Maofeng pluton formed from partial melting of uranium rich formations. Intrusion of maficdyke in late Yanshanian Period(<140 Ma), caused large fluid movement. Uranium was reactivated and extracted from the altered granite,and precipitated in some favorite places to form uranium ore bodies. Uranium deposit No.337 is the typical representative of the first stage uranium mineralization in Xiazhuang uranium orefield. (authors)

  13. Structure and properties of TiC, VC, and TiC/VC thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1996-01-01

    A study has been conducted on the mechanical, tribological and chemical properties of pulsed laser deposited (PLD) TiC, VC and TiC/VC thin films. The TiC films were deposited at 375 C and 5 mTorr Ar, while the TiC/VC films were deposited from a composite target at 475 C at pressures of base vacuum and 50 mTorr Ar. XRD analysis revealed the films had the expected B1 structure, although XPS analysis showed a significant oxygen content. Tribological studies were conducted using a ball-on-disk test, and the wear behavior depended on the surface condition and film composition. One TiC/VC film exhibited little wear but caused significant ball wear, indicating mixed carbide films are promising candidates for wear-resistant coatings

  14. Discussion on geochemical characteristics and tectonic setting of Maofeng pluton

    International Nuclear Information System (INIS)

    Wu Yi; Ruan Kun; Cai Jiajia; Liu Jing; Li Haidong; Zhang Lu; Wang Xiaona

    2014-01-01

    Xiazhuang granite type uranium deposit is the most important one in South China. The closest relation with Xiazhuang uranium mineralization is Maofeng granite pluton. To expound the relationship of granite and uranium mineralization, the paper studied Maofeng granite pluton which is the host granite of the deposit in petrogeochemistry, its structure and geodynamic setting. (authors)

  15. Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Stokan, Edward; Brown, Peter

    2018-01-01

    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement.

  16. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  17. Omental deposits surveillance in gynecological malignancies at first setting follow up: 18F-FDG PET/CT compared to CT

    OpenAIRE

    Tamer W. Kassem

    2017-01-01

    Objective: The aim of this study was to compare the diagnostic performance of positron emission tomography/computed tomography (PET/CT) scan and CT scan in follow up of proven gynecological malignancies omental deposits in first setting follow up after treatment. Patients and methods: 60 female patients having proven omental deposits from gynecological malignancies underwent PET/CT examination following a preset protocol as baseline study. 34 cases of them had a second PET/CT examination f...

  18. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  19. Synthesis of LSM films deposited by dip-coating on YSZ substrate

    International Nuclear Information System (INIS)

    Conceicao, Leandro da; Souza, Mariana M.V.M.; Ribeiro, Nielson F.P.

    2010-01-01

    The dip-coating process was used to deposit films of La 0.7 Sr 0. 3MnO 3 (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 μm, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  20. Timely deposition of macromolecular structures is necessary for peer review

    International Nuclear Information System (INIS)

    Joosten, Robbie P.; Soueidan, Hayssam; Wessels, Lodewyk F. A.; Perrakis, Anastassis

    2013-01-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature

  1. Timely deposition of macromolecular structures is necessary for peer review

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Soueidan, Hayssam; Wessels, Lodewyk F. A. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam (Netherlands); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  2. Structural level set inversion for microwave breast screening

    International Nuclear Information System (INIS)

    Irishina, Natalia; Álvarez, Diego; Dorn, Oliver; Moscoso, Miguel

    2010-01-01

    We present a new inversion strategy for the early detection of breast cancer from microwave data which is based on a new multiphase level set technique. This novel structural inversion method uses a modification of the color level set technique adapted to the specific situation of structural breast imaging taking into account the high complexity of the breast tissue. We only use data of a few microwave frequencies for detecting the tumors hidden in this complex structure. Three level set functions are employed for describing four different types of breast tissue, where each of these four regions is allowed to have a complicated topology and to have an interior structure which needs to be estimated from the data simultaneously with the region interfaces. The algorithm consists of several stages of increasing complexity. In each stage more details about the anatomical structure of the breast interior is incorporated into the inversion model. The synthetic breast models which are used for creating simulated data are based on real MRI images of the breast and are therefore quite realistic. Our results demonstrate the potential and feasibility of the proposed level set technique for detecting, locating and characterizing a small tumor in its early stage of development embedded in such a realistic breast model. Both the data acquisition simulation and the inversion are carried out in 2D

  3. Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Gates, S. M.; Neumayer, D. A.; Sherwood, M. H.; Grill, A.; Wang, X.; Sankarapandian, M.

    2007-01-01

    The preparation of ultralow dielectric constant porous silicon, carbon, oxygen, hydrogen alloy dielectrics, called 'pSiCOH', using a production 200 mm plasma enhanced chemical vapor deposition tool and a thermal treatment is reported here. The effect of deposition temperature on the pSiCOH film is examined using Fourier transform infrared (FTIR) spectroscopy, dielectric constant (k), and film shrinkage measurements. For all deposition temperatures, carbon in the final porous film is shown to be predominantly Si-CH 3 species, and lower k is shown to correlate with increased concentration of Si-CH 3 . NMR and FTIR spectroscopies clearly detect the loss of a removable, unstable, hydrocarbon (CH x ) phase during the thermal treatment. Also detected are increased cross-linking of the Si-O skeleton, and concentration changes for three distinct structures of carbon. In the as deposited films, deposition temperature also affects the hydrocarbon (CH x ) content and the presence of C=O and C=C functional groups

  4. Lipschitz equivalence of self-similar sets with touching structures

    International Nuclear Information System (INIS)

    Ruan, Huo-Jun; Wang, Yang; Xi, Li-Feng

    2014-01-01

    Lipschitz equivalence of self-similar sets is an important area in the study of fractal geometry. It is known that two dust-like self-similar sets with the same contraction ratios are always Lipschitz equivalent. However, when self-similar sets have touching structures the problem of Lipschitz equivalence becomes much more challenging and intriguing at the same time. So far, all the known results only cover self-similar sets in R with no more than three branches. In this study we establish results for the Lipschitz equivalence of self-similar sets with touching structures in R with arbitrarily many branches. Key to our study is the introduction of a geometric condition for self-similar sets called substitutable. (paper)

  5. Structural evolution of Ge-rich Si1−xGex films deposited by jet-ICPCVD

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-11-01

    Full Text Available Amorphous Ge-rich Si1−xGex films with local Ge-clustering were deposited by dual-source jet-type inductively coupled plasma chemical-vapor deposition (jet-ICPCVD. The structural evolution of the deposited films annealed at various temperatures (Ta is investigated. Experimental results indicate that the crystallization occurs to form Ge and Si clusters as Ta = 500 °C. With raising Ta up to 900 °C, Ge clusters percolate together and Si diffuses and redistributes to form a Ge/SiGe core/shell structure, and some Ge atoms partially diffuse to the surface as a result of segregation. The present work will be helpful in understanding the structural evolution process of a hybrid SiGe films and beneficial for further optimizing the microstructure and properties.

  6. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  7. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    International Nuclear Information System (INIS)

    Laatar, F.; Harizi, A.; Smida, A.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E_o), dispersion energy (E_d), and static refractive index (n_o) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ_e) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  8. Localized zinc distribution in shark vertebrae suggests differential deposition during ontogeny and across vertebral structures.

    Science.gov (United States)

    Raoult, Vincent; Howell, Nicholas; Zahra, David; Peddemors, Victor M; Howard, Daryl L; de Jonge, Martin D; Buchan, Benjamin L; Williamson, Jane E

    2018-01-01

    The development of shark vertebrae and the possible drivers of inter- and intra-specific differences in vertebral structure are poorly understood. Shark vertebrae are used to examine life-history traits related to trophic ecology, movement patterns, and the management of fisheries; a better understanding of their development would be beneficial to many fields of research that rely on these calcified structures. This study used Scanning X-ray Fluorescence Microscopy to observe zinc distribution within vertebrae of ten shark species from five different orders. Zinc was mostly localised within the intermedialis and was generally detected at levels an order of magnitude lower in the corpus calcareum. In most species, zinc concentrations were higher pre-birth mark, indicating a high rate of pre-natal zinc deposition. These results suggest there are inter-specific differences in elemental deposition within vertebrae. Since the deposition of zinc is physiologically-driven, these differences suggest that the processes of growth and deposition are potentially different in the intermedialis and corpus calcareum, and that caution should be taken when extrapolating information such as annual growth bands from one structure to the other. Together these results suggest that the high inter-specific variation in vertebral zinc deposition and associated physiologies may explain the varying effectiveness of ageing methodologies applied to elasmobranch vertebrae.

  9. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    Science.gov (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  10. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    Science.gov (United States)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  11. Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hone, Fekadu Gashaw, E-mail: fekeye@gmail.com [Hawassa University, Department of Physics, Hawassa (Ethiopia); Ampong, Francis Kofi [Kwame Nkrumah University of Science and Technology, Department of Physics, Kumasi (Ghana)

    2016-11-01

    Lead selenide (PbSe) nanocrystalline thin films have been deposited on silica glass substrates by the chemical bath deposition technique. The samples were deposited at the bath temperatures of 60, 75 and 90 °C respectively and characterized by a variety of techniques. The XRD results revealed that the PbSe thin film deposited at 60 °C was amorphous in nature. Films deposited at higher temperatures exhibited sharp and intense diffraction peaks, indicating an improvement in crystallinety. The deposition temperature also had a strong influence on the preferred orientation of the crystallites as well as other structural parameters such as microstrain and dislocation density. From the SEM study it was observed that film deposited at 90 °C had well defined crystallites, uniformly distributed over the entire surface of the substrate. The EDAX study confirmed that the samples deposited at the higher temperature had a better stoichiometric ratio. The optical band gap varied from 2.26 eV to 1.13 eV with increasing deposition temperature. - Highlights: • The crystallinety of the films improved as the deposition temperature increased. • The deposition temperature strongly influenced the preferred orientations. • Microstrain and dislocation density are decreased linearly with deposition temperature. • Band gap decreased from 2.26 eV to 1.13 eV as the deposition temperature increased.

  12. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    Science.gov (United States)

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  13. Effect of annealing on the structural properties of electron beam deposited CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, M. [Department of Electronics, Erode Arts College, Erode (India)], E-mail: prabhu7737@yahoo.com; Kannan, M.D.; Jayakumar, S.; Balasundaraprabhu, R. [Thin Film Center, PSG College of Technology, Coimbatore (India); Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore (India)

    2008-08-30

    CIGS bulk compound of three different compositions CuIn{sub 0.85}Ga{sub 0.15}Se{sub 2}, CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} and CuIn{sub 0.75}Ga{sub 0.25}Se{sub 2} have been prepared by direct reaction of elemental copper, indium, gallium and selenium. CIGS thin films of the three compositions have been deposited onto glass and silicon substrates using the prepared bulk by electron beam deposition method. The structural properties of the deposited films have been studied using X-ray diffraction technique. The as-deposited CIGS films have been found to be amorphous in nature. To study the effect of annealing on the structural properties, the films have been annealed in vacuum of the order of 10{sup -5} Torr. The X-ray diffractograms of the annealed CIGS films exhibited peaks revealing that the annealed films are crystalline in nature with tetragonal chalcopyrite structure. The (112) peak corresponding to the chalcopyrite structure has been observed to be the dominating peak in all the annealed films. The position of the (112) peak and other peaks in the X-ray diffraction pattern has been observed to shift to higher values of 2{theta} with the increase of gallium concentration. The lattice parameter values 'a' and 'c' have been calculated and they are found to be dependent on the concentration of gallium in the films. The FWHM in the X-ray diffraction pattern is found to decrease with an increase in annealing temperature indicating that the crystalline nature of the CIGS improves with increase in annealing temperature. The films grown on silicon substrates have been found to be of better crystalline quality than those deposited on glass substrates. The micro structural parameters like grain size, dislocation density and strain have been evaluated. The chemical constituents present in the deposited CIGS films have been identified using energy dispersive X-ray analysis. The surface topographical study on the films has been performed by AFM. The

  14. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  15. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  16. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  17. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  18. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  19. Effect of PECVD deposition parameters on structural and optoelectronics properties of hydrogenated polymorphous silicon thin films deposited by dichlorosilane for implementation in solar cells

    International Nuclear Information System (INIS)

    Álvarez-Macías, C.; Hernández González, Oscar Daniel; Barrera Calva, Enrique; Gómez González, L.; Santana, G.

    2015-01-01

    Hydrogenated polymorphous silicon (pm-Si: H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD) using SiH2Cl2 as precursor gas. We examine the effect of deposition pressure (250 y 500 mTorr) and H2 dilution (flow rates 25, 50, 75 y 100 sccm) on the structural and optoelectronics properties. The nano-structural properties was confirmed by Raman spectroscopy studies in terms of the changes in crystallite sizes and their volume fractions. On the other hand, by FTIR analysis we notice bond configurations associated to photostability of the nanostructures, which was confirmed by Light soaking experiments during 250h. We found a tunable band gap and important behaviors on the electronic transport properties measurements for samples with high and low incorporation of oxygen whose compositions were determined by XPS measurements. Understanding structural and chemical properties of pm- Si: H thin films is key towards optimizing their electrical and optical properties for applications in solar cells. (full text)

  20. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.

    2014-02-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass-ITO substrates without the intermediate of metal catalyst, template or chemical etching. Kinetic of growth and effects of gas pressure and substrate temperature were studied by depositing ZnO films on P type Si (1 0 0) substrates with different deposition parameters. The optimized growth parameters were found as: 10 mTorr oxygen pressure, 600 C substrate temperature, and deposition duration equal or higher than 10 min. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Photoluminescence (PL) measurements were used to investigate structural, microstructural and optical properties of ZnO Nanowall networks produced. They exhibit a non-uniform size high quality honeycomb structure with low deep level defects. © 2013 Elsevier B.V.

  1. Avoidable errors in deposited macromolecular structures: an impediment to efficient data mining

    Directory of Open Access Journals (Sweden)

    Zbigniew Dauter

    2014-05-01

    Full Text Available Whereas the vast majority of the more than 85 000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available, have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely

  2. Structural properties of WO{sub 3} dependent of the annealing temperature deposited by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flores M, J. E. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, 72570 Puebla (Mexico); Diaz R, J. [IPN, Centro de Investigacion en Biotecnologia Aplicada, Ex-Hacienda de San Molino Km 1.5 Tepetitla, 90700 Tlaxcala (Mexico); Balderas L, J. A., E-mail: eflores@ece.buap.mx [IPN, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto s/n, Col. Barrio la Laguna, 07340 Mexico D. F. (Mexico)

    2012-07-01

    In this work presents a study of the effect of the annealing temperature on structural and optical properties of WO{sub 3} that has been grown by hot-filament metal oxide deposition. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy. By X-ray diffraction obtained that the as-deposited WO{sub 3} films present mainly monoclinic crystalline phase. WO{sub 3} optical band gap energy can be varied from 2.92 to 3.15 eV obtained by transmittance measurements by annealing WO{sub 3} from 100 to 500 C. The Raman spectrum of the as-deposited WO{sub 3} film shows four intense peaks that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that corresponds to the stretching vibrations of the bridging oxygen that are assigned to W-O stretching ({upsilon}) and W-O bending ({delta}) modes, respectively, which enhanced and increased their intensity with the annealing temperature. (Author)

  3. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  4. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Novotný, M; Bulíř, J; Lančok, J; Čížek, J; Kužel, R; Connolly, J; McCarthy, E; Krishnamurthy, S; Mosnier, J-P; Anwand, W; Brauer, G

    2012-01-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ∼ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ∼ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate. (paper)

  5. Stress analysis, structure and magnetic properties of sputter deposited Ni-Mn-Ga ferromagnetic shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Annadurai, A. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India); Manivel Raja, M., E-mail: mraja@dmrl.drdo.in [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabahar, K.; Kumar, Atul [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Kannan, M.D.; Jayakumar, S. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India)

    2011-11-15

    The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 deg. C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm{sup 3} and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature. - Highlights: > Compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. > Annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. > The highest Curie transition in the films was observed at 365 K. > The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.

  6. In situ deposition of poly(1,8-diaminonaphthalene): from thin films to nanometer-sized structures

    International Nuclear Information System (INIS)

    Tagowska, Magdalena; PaIys, Barbara; Mazur, Maciej; Skompska, Magdalena; Jackowska, Krystyna

    2005-01-01

    Chemical in situ deposition of poly(1,8-diaminonaphthalene) (p(1,8-DAN)) on conductive supports in aqueous and acetonitrile solutions was investigated using electrochemical quartz crystal microbalance (EQCM) and UV-vis spectroscopy. The resulting deposits were examined by the means of cyclic voltammetry (CV), FT-IR and Raman spectroscopy. P(1,8-DAN) was also deposited via chemical polymerization onto a porous polycarbonate membrane (PC) which served as a template for synthesis of nanometer-sized structures. The deposits of p(1,8-DAN) on PC substrate were imaged by atomic force microscopy (AFM) and the nanostructures obtained by dissolution of the template were visualized by scanning electron microscopy (SEM). The EQCM and UV-vis studies indicated that the polymer is formed both on the surface of the substrate and in the bulk of the polymerization solution. However, polymerization of 1,8-DAN in solution is delayed in comparison with deposition on the substrate. Electrochemical and spectroscopic properties of p(1,8-DAN) formed chemically closely resemble the properties of the electrosynthesized polymer. Furthermore, SEM images of p(1,8-DAN) nanostructures revealed that the polymer nanowires are formed in aqueous solutions, whereas two types of structures: nanowires and round shaped structures, not fitting to the pore size, can be obtained by chemical polymerization in the acetonitrile medium

  7. Localized zinc distribution in shark vertebrae suggests differential deposition during ontogeny and across vertebral structures.

    Directory of Open Access Journals (Sweden)

    Vincent Raoult

    Full Text Available The development of shark vertebrae and the possible drivers of inter- and intra-specific differences in vertebral structure are poorly understood. Shark vertebrae are used to examine life-history traits related to trophic ecology, movement patterns, and the management of fisheries; a better understanding of their development would be beneficial to many fields of research that rely on these calcified structures. This study used Scanning X-ray Fluorescence Microscopy to observe zinc distribution within vertebrae of ten shark species from five different orders. Zinc was mostly localised within the intermedialis and was generally detected at levels an order of magnitude lower in the corpus calcareum. In most species, zinc concentrations were higher pre-birth mark, indicating a high rate of pre-natal zinc deposition. These results suggest there are inter-specific differences in elemental deposition within vertebrae. Since the deposition of zinc is physiologically-driven, these differences suggest that the processes of growth and deposition are potentially different in the intermedialis and corpus calcareum, and that caution should be taken when extrapolating information such as annual growth bands from one structure to the other. Together these results suggest that the high inter-specific variation in vertebral zinc deposition and associated physiologies may explain the varying effectiveness of ageing methodologies applied to elasmobranch vertebrae.

  8. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  9. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    Energy Technology Data Exchange (ETDEWEB)

    Laatar, F., E-mail: fakher8laatar@gmail.com [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Harizi, A. [Photovoltaic and Semiconductor Materials Laboratory, Engineering Industrial Department, ENIT, Tunis El Manar University, BP 37, Le Belvédère, 1002 Tunis (Tunisia); Smida, A. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphology and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.

  10. Characteristics and model of sandstone type uranium deposit in south of Songliao basin

    International Nuclear Information System (INIS)

    Yu Wenbin; Yu Zhenqing

    2010-01-01

    Through analyzing the uranium deposit tectonic environment, upper cretaceous sequence stratigraphy, depositional system, evolutionary characteristics of sand bodies, the effect of subsequent transformation and the characteristic of uranium deposit, the sandstone type uranium deposit in southern basin is different from typical interlayer oxidation zone sandstone type uranium deposit. The formation and evolution of sandstone-type uranium deposit are controlled by structure fensters; the favorable sedimentary facies type is braided river facies, and the ore body is braided river sand body. The size of uranium deposits is controlled by the local oxidation zone with the characteristics of sandstone type uranium deposit in partial oxidation zone. Uranium ore bodies which distribute in the roof wings of structure fenstes, and occur in gray layers between the upper and lower oxidation zone, showing tabular, and the plate of uranium ore body is controlled by the local oxidation zone. Based on the geological features of sandstone-type uranium deposits, the metallogenic model of local oxidation zones sandstone-type uranium deposits has been set up in the south of Songliao Baisn. (authors)

  11. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  12. LSMO-STO(110) multilayered structure grown by metalorganic aerosol deposition

    International Nuclear Information System (INIS)

    Sapoval, Oleg; Belenchuk, Alexander; Canter, Valeriu; Zasavitsky, Efim; Moshnyaga, Vasily

    2013-01-01

    La 0.67 Sr 0.33 MnO 3 -SrTiO 3 multilayered structure was grown on SrTiO 3 (110) substrates by metalorganic aerosol deposition technique. The crystal structure was examined by X-ray analysis including simulation of diffraction and reflection patterns. The magneto transport properties of superlattice are presented. The critical thickness of (110)-oriented LSMO layers is lower than 7 perovskite unite cells. The oxygen stoichiometry provided due to high gas pressure conditions is responsible for reducing of critical thickness of LSMO layers at LSMO-STO(110) interfaces. (authors)

  13. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  14. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com [Damascus University Faculty of Science, Department of physics, Homs (Syrian Arab Republic); Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com [Al –Mustansiriyah University, College of Education, Department of physics, Baghdad (Iraq)

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  15. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  16. Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampril, J.J.

    2001-01-01

    Nanostructured coatings consisting of mixed carbide phases can provide a potential means to developing superhard coatings. Heterogeneous nanostructured coatings can be obtained by either deposition of multilayer structures or by depositing film compositions that undergo a natural phase separation due to thermodynamic immiscibility. In the present work, we have taken the latter approach, and deposited films by radio frequency cosputtering from dual carbide targets. We have examined a number of ternary carbide systems, and here we report the results obtained on Ti-Si-C films with a nominal (Ti 1-x Si x )C stoichiometry and with x≤0.31. It was found that the nanoindentation hardness increased with Si content, and the maximum hardness achieved was nearly twice that of sputter-deposited TiC. We further analyzed these films using high-resolution transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction. Since cubic SiC has an x-ray pattern almost identical to that of TiC, the extent of phase separation could not be determined by that method. However, XRD did demonstrate a general disordering of the films with increasing SiC content. In addition, a mottled structure was observed in high-resolution TEM images of the Si-containing films, confirming microstructural effects due to the Si additions

  17. Supramolecular structure of a perylene derivative in thin films deposited by physical vapor deposition

    International Nuclear Information System (INIS)

    Fernandes, Jose D.; Aoki, Pedro H.B.; Constantino, Carlos J.J.; Junior, Wagner D.M.; Teixeira, Silvio R.

    2014-01-01

    Full text: Thin films of a perylene derivative, the bis butylimido perylene (BuPTCD), were produced using thermal evaporation (PVD, physical vapor deposition). The main objective is to investigate the supramolecular structure of the BuPTCD in these PVD films, which implies to control the thickness and to determine the molecular organization, morphology at micro and nanometer scales and crystallinity. This supramolecular structure is a key factor in the optical and electrical properties of the film. The ultraviolet-visible absorption revealed an uniform growth of the PVD films. The optical and atomic force microscopy images showed a homogeneous surface of the film at micro and nanometer scales. A preferential orientation of the molecules in the PVD films was determined via infrared absorption. The X-ray diffraction showed that both powder and PVD film are in the crystalline form. (author)

  18. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics

    Science.gov (United States)

    Kumar, K. Deva Arun; Valanarasu, S.; Rosario, S. Rex; Ganesh, V.; Shkir, Mohd.; Sreelatha, C. J.; AlFaify, S.

    2018-04-01

    Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10-3(Ω cm) and 3.53 × 1018 cm-3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10-3(Ω/sq)- 1 is suggested for an optoelectronic device.

  19. Hollow Nodules Gas Escape Sedimentary Structures in Lacustrine Deposits on Earth and Gale Crater

    Science.gov (United States)

    Bonaccorsi, R.; Willson, D.; Fairen, A. G.; Baker, L.; McKay, C.; Zent, A.; Mahaffy, P. R.

    2015-12-01

    Curiosity's Mastcam and MAHLI instruments in Gale Crater (GC) imaged mm-sized circular rimmed hollow nodules (HNs) (Figure 1A), pitting the Sheepbed mudstone of Yellowknife Bay Formation [1,2]. HNs are significantly smaller than the solid nodules within the outcrop, with an external mean diameter of 1.2 mm and an interior one of 0.7 mm [2] Several formation mechanisms of HNs have been discussed, such as: (1) Diagenetic dissolution of soluble mineral phases; or, (2) Gas bubbles released shortly after sediment deposition [1-3]. In an ephemeral pond in Ubehebe Crater (Death Valley, CA) we observed the formation of hollow nodule sedimentary structures produced by gas bubbles (Figure 1C) preserved in smectite-rich mud that are strikingly similar to those imaged in GC (Figure 1A). This finding supports the gas bubble hypothesis [2]. Ubehebe Crater (UC) surface sediment hollow nodules were sampled, imaged, and their internal diameter measured (200 hollow structures) showing similar shape, distribution, and composition to those imaged by Curiosity in GC. UC in-situ observations suggest the gas bubbles were generated within the slightly reducing ephemerally submerged mud. These intra-crater deposits remain otherwise extremely dry year round, i.e., Air_rH ~2-5%; ground H2O wt%: 1-2%; Summer air/ground T: 45-48ºC/67-70ºC [4-5]. Data from the Sample Analysis at Mars (SAM), CheMin, and ChemCam instruments onboard the rover revealed that HNs-bearing mudstone are rich in smectite clay e.g., ~18-20% [6,7] deposited in a neutral to mildly alkaline environment, capturing a period when the surface was potentially habitable [1]. The UC HNs-hosting deposits are also rich in smectite clays (~30%) and occur in an ephemeral shallow freshwater setting [4-5]. If present, surface hollow nodules are easy to find in dry clay-rich mud in lacustrine sediments, so they could represent a new indicator of ephemeral but habitable/inhabited environments on both Earth and early Mars. References: [1

  20. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  1. Mechanistic study of aerosol dry deposition on vegetated canopies

    International Nuclear Information System (INIS)

    Petroff, A.

    2005-04-01

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  2. World Distribution of Uranium Deposits (UDEPO) with uranium deposit classification. 2009 ed

    International Nuclear Information System (INIS)

    2009-10-01

    The World Distribution of Uranium Deposits (UDEPO) database provides general, technical and geological information, including references, about the worldwide uranium deposits. UDEPO has been published on the internet which allows the users to register freely and to work with datasets (http://www-nfcis.iaea.org). The UDEPO web site is designed to allow users to retrieve data sets on a variety of deposit related topics ranging from specific information on individual uranium deposits to statistical information on uranium deposits worldwide. The basic building blocks for the UDEPO database are the more than 900 individual deposits for which information is available in the database. The database is arranged in a relational database format which has one main table and a number of associated tables. Structured nature of the database allows filtering and querying the database in more systematic way. The web site provides filtering and navigation to the data from the database. It has also a statistical tool which provides summary information on number of deposits and uranium resources by type and status, and by country and status. In this respect and with regard to the data presented, the UDEPO database is a unique database which provides freely accessible information on worldwide uranium deposits. Although a great effort is spent to have complete and accurate database, the users should take into consideration that there still might be missing or outdated data for individual deposits due to the rapid changes in the uranium industry due to the new exploration works which are ongoing everyday. This document and its supplementary CD-ROM represent a snapshot of the status of the database as of the end of 2008. However, the database is being continuously updated and the latest updates and additions can be accessed from the database web site (http://wwwnfcis.iaea.org)

  3. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)

    Science.gov (United States)

    Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-10-01

    This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.

  4. Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2008-01-01

    Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter

  5. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  6. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  7. Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates

    Directory of Open Access Journals (Sweden)

    Pereira M. J.

    2014-07-01

    Full Text Available Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC. Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.

  8. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  9. Rome in its setting. Post-glacial aggradation history of the Tiber River alluvial deposits and tectonic origin of the Tiber Island

    Science.gov (United States)

    Motta, Laura; Brock, Andrea L.; Macrì, Patrizia; Florindo, Fabio; Sadori, Laura; Terrenato, Nicola

    2018-01-01

    The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city’s original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6–8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island. PMID:29590208

  10. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  11. Influence of substrate temperature and annealing on structural and optical properties of TiO{sub 2} films deposited by reactive e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pjević, D., E-mail: dejanp@vinca.rs [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Marinković, T.; Savić, J.; Bundaleski, N.; Obradović, M.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Kulik, M. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie St. 6, Dubna 141980, Moscow Region (Russian Federation)

    2015-09-30

    The influence of deposition and post-deposition annealing parameters on the structure and optical properties of TiO{sub 2} thin films synthesized by reactive e-beam evaporation is reported. Pure Ti (99.9%) was evaporated in oxygen atmosphere to form thin films on Si (100) and glass substrates. Depositions were conducted on substrates held at room temperature and at 200–400 °C heated substrates. Post-deposition annealing was done for 3 h at 500 °C in air. Compositional and structural studies were performed by Rutherford backscattering spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy, and optical properties were studied by ultraviolet–visible spectroscopy and analytically by pointwise unconstrained minimization approach method. It was found that both the structure and optical properties of the films are strongly influenced by the deposition and processing parameters. All deposited samples showed good stoichiometry of Ti:O ~ 1:2. Depending on the substrate temperature and oxygen pressure in the chamber during the deposition, anatase–rutile mixed films were obtained, and in some cases TiO and Ti{sub 2}O{sub 3} phases were observed. Substrate deposition temperature appears to play the major role on the final structure of the films, while post-deposition annealing adds up for the lack of oxygen in some cases and invokes crystal grain growth of already initiated phases. The results can be interesting towards the development of TiO{sub 2} thin films with defined structure and optical properties. - Highlights: • TiO{sub 2} films were deposited by reactive e-beam evaporation. • Structure and properties were studied as a function of deposition temperature. • Stoichiometry of as-deposited films was Ti:O ~ 1:2, containing different Ti-O phases. • Post-deposition annealing yielded phase transformation, affecting the properties. • Refractive index increases with the substrate deposition temperature.

  12. Electronic structures of ultra-thin silicon carbides deposited on graphite

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    Electronic structures of ultra-thin silicon carbide films have been investigated by X-ray photoelectron spectroscopy (XPS) and Si K-edge X-ray absorption near edge structure (XANES) using linearly polarized synchrotron soft X-rays. Silicon carbide films were deposited on the surface of highly oriented pyrolytic graphite (HOPG) by ion beam deposition method. Tetramethylsilane (Si(CH 3 ) 4 ) was used as a discharge gas. The XPS and XANES features for the thick layers were similar to those for the bulk SiC. For sub-monolayered films, the Si 1s binding energy in XPS was higher by 2.5 eV than that for bulk SiC. This suggests the existence of low-dimensional SiC x where the silicon atoms are more positively charged than those in bulk SiC. After annealing the sub-monolayered film at 850 deg. C, a new peak appeared around 1840 eV in the XANES spectrum. The energy of this new peak was lower than those for any other silicon compounds. The low-energy feature of the XANES peak suggests the existence of π*-like orbitals around the silicon atom. On the basis of the polarization dependencies of the XANES spectra, it was revealed that the direction of the π*-like orbitals are nearly perpendicular to the surface. We conclude that sub-monolayered SiC x film exhibits flat-lying structure of which configuration is similar to a single sheet of graphite

  13. The controlling role of positive structures over the metallogenesis and emplacement of inter layer oxidation sandstone type uranium deposits

    International Nuclear Information System (INIS)

    Gu Kangheng; Chen Zuyi

    2010-01-01

    The positive structures in this paper mean the geological structures related to the occurrence of U-metallogenic zones or U-deposit such as anticlines, uplifts and uplifted fault-blocks. Occurrence features of interlayer oxidation sandstone type deposit at the southern margin of Yili basin and southwestern margin of Turpan-Hami basin, the northeastern margin of Jiudong basin illustrate that the sandstone-hosted uranium deposits, the U-mineralized sections and the uranium occurrences are always selectively emplaced on/in positive structures. The reasons for this lie in the formation mechanism of sandstone-hosted U-deposits. The positive structures raised the elevation of ore-hosting sandstone horizon and make it close to ground surface or exposed at the ground surface, which result in the infiltration of uranium and oxygen bearing groundwater from recharge area into host sandstone horizon, and the interlayer oxidation of host sandstone, as well as the dissolution and the migration of uranium in host sandstone, and the reduction mineralization at the oxidation-reduction interface. Sufficient attention should be paid to the controlling role of positive structures over the metallogenesis and emplacement of sandstone-hosted uranium deposits. They could act as an important criterion for recognizing and prognosticating potential uranium mineralized areas in uranium metallogenic zones or uranium-productive sedimentary basins. (authors)

  14. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  15. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  16. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  17. On the structure of the set of coincidence points

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, A V [Peoples Friendship University of Russia, Moscow (Russian Federation); Gel' man, B D [Voronezh State University (Russian Federation)

    2015-03-31

    We consider the set of coincidence points for two maps between metric spaces. Cardinality, metric and topological properties of the coincidence set are studied. We obtain conditions which guarantee that this set (a) consists of at least two points; (b) consists of at least n points; (c) contains a countable subset; (d) is uncountable. The results are applied to study the structure of the double point set and the fixed point set for multivalued contractions. Bibliography: 12 titles.

  18. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    Science.gov (United States)

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  19. Basement and climate controls on proximal depositional systems in continental settings

    NARCIS (Netherlands)

    Ventra, D.

    2011-01-01

    This doctoral dissertation discusses the sedimentology and dynamics of selected, modern and ancient clastic depositional systems (alluvial fans and colluvial aprons) at continental basin margins. The focus on single depositional systems gave the opportunity to devote particular attention to

  20. Plasma exposure behavior of re-deposited tungsten on structural materials of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu-Ping; Wang, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Zhou, Hai-Shan, E-mail: haishanzhou@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Zeng-De [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Li, Xiao-Chun; Lu, Tao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Hao-Dong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Ding, Fang; Mao, Hong-Min; Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Lin, Chen-Guang [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Luo, Guang-Nan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230031 (China); Hefei Center for Physical Science and Technology, Hefei 230031 (China); Hefei Science Center of Chinese Academy of Science, Hefei 230027 (China)

    2017-05-15

    To evaluate the effects of re-deposited tungsten (W) on the surface modification and hydrogen isotope retention behavior of fusion structural materials, the plasma exposure behavior of re-deposited W samples prepared by magnetron sputtering on the F82H steel, the V-5Cr-5Ti alloy as well as bare substrate samples was investigated. All the samples were exposed to 367 shots of deuterium plasmas in the 2015 spring EAST campaign. After the plasma exposure, large area of W layer was exfoliated, while big blisters were found at the interface between the remaining W layer and the substrate materials. The deuterium retention behavior of the samples with re-deposited W layer was characterized by thermal desorption spectroscopy and compared with the bare substrate samples.

  1. Structural characterization of AlN films synthesized by pulsed laser deposition

    International Nuclear Information System (INIS)

    Szekeres, A.; Fogarassy, Zs.; Petrik, P.; Vlaikova, E.; Cziraki, A.; Socol, G.; Ristoscu, C.; Grigorescu, S.; Mihailescu, I.N.

    2011-01-01

    We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 x 10 8 W/cm 2 , repetition rate 3 Hz, 10 J/cm 2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10 -4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.

  2. Influences of structures on the interlayer oxidation zone sandstone-type uranium deposits on the southern margin of Yili basin

    International Nuclear Information System (INIS)

    Wang Mou; Li Shengfu

    2006-01-01

    Based on geology and the theory of hydromorphic origin uranium deposit, structural conditions of uranium formation on the southern margin of Yili Basin are analyzed from two aspects of structural movements and deformation. It is suggested that the subsidiary structures caused by the neotectonic movement are the major factor that control and reform the interlayer oxidation zone sandstone-type uranium deposit, and the differences lie in the tectonics at the eastern and western section on the southern margin of Yili Basin. At the western section, because Mesozoic and Cenozoic strata are tilted by the subsidiary structures, some strata on the margin of the basin outcrop at the surface and suffer from the weathering and erosion, which is favorable for the formation of large size uranium deposits. But at the eastern section, the fault and fold are predominant, outcropping at the surface, cause the redistribution of the uranium, which is favorable for the formation of small size uranium deposits. (authors)

  3. Itataia's deposit - Structural zoning of a pit until the level 480 meters

    International Nuclear Information System (INIS)

    Mendonca, J.C.G.S.

    1986-01-01

    This work is part of Itataia Project-Geotechnics; in it are introduced several comments concerning the structural zoning of a pit in Itataias' phosphorous-uranipherous deposit, until the level 480 meters. The structural parameters (fractures, faults, foliations) obtained in surface and underground works were statistically treated. Stereographic projection was used to define eventual slipping into the pit. All the data were arranged in tables to make it easy the comparison with experimental pits. (author) [pt

  4. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  5. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  6. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  7. Ion beam assisted deposition of nano-structured C:Ni films

    Energy Technology Data Exchange (ETDEWEB)

    Abrasonis, G.; Muecklich, A.; Heller, R.; Heinig, K.H.; Gemming, S.; Moeller, W. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krause, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Institute of Physics, TU Dresden (Germany)

    2012-07-01

    Nanostructures influence material properties dramatically due to size, shape and interface effects. Thus the control of the structure at the nanoscale is a key issue in nanomaterials science. The interaction of hyperthermal ions with solids is confined to the nanometer scale. Thus, it can be used to control the morphology evolution during multiphase film deposition. Ion-induced displacements occur in a thin surface layer of the growing film where they increase the atomic mobility for the phase separation. Here the growth-structure relationship of C:Ni (15 at.%) nanocomposite films grown by oblique incidence (45 ) ion beam assisted deposition is reported. The influences of the flux of an assisting Ar+ ion beam (0-140 eV) as well as of an elevated substrate temperature have been studied. The formation of elongated nickel nanoparticles is strongly promoted by the ion beam assistance. Moreover, the metal nanocolumns no longer align with the advancing surface, but with the incoming ions. A window of conditions is established within which the ion assistance leads to the formation of regular composition modulations with a well defined periodicity and tilt. As the dominating driving force for the pattern formation is of physical origin, this approach might be applicable to other immiscible systems.

  8. On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films

    International Nuclear Information System (INIS)

    Krishnan, B.; Arato, A.; Cardenas, E.; Roy, T.K. Das; Castillo, G.A.

    2008-01-01

    In the present paper, we have reported the room temperature growth of antimony sulphide (Sb 2 S 3 ) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 at 27 deg. C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb 2 S 3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb 2 S 3 first converts into orthorhombic form and then further heating results in the formation of Sb 2 O 3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively

  9. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  10. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  11. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  12. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  13. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  14. Surface structure of ultrathin metal films deposited on copper single crystals

    International Nuclear Information System (INIS)

    Butterfield, M.T.

    2000-04-01

    Ultrathin films of Cobalt, Iron and Manganese have been thermally evaporated onto an fcc Copper (111) single crystal substrate and investigated using a variety of surface structural techniques. The small lattice mismatch between these metals and the Cu (111) substrate make them an ideal candidate for the study of the phenomena of pseudomorphic film growth. This is important for the understanding of the close relationship between film structure and magnetic properties. Growing films with the structure of their substrate rather than their bulk phase may provide an opportunity to grow materials with novel physical and magnetic properties, and hence new technological applications. Both Cobalt and Iron have been found to initially maintain a registry with the fcc Cu (111) surface in a manner consistent with pseudomorphic growth. This growth is complicated by island rather than layer by layer growth in the initials stages of the film. In both cases a change in the structure of the film seems to occur at a point where the coalescence of islands in the film may be expected to occur. When the film does change structure they do not form a perfect overlayer with the structure of their bulk counterpart. The films do contain a number of features representative of the bulk phase but also contain considerable disorder and possibly remnants of fcc (111) structure. The order present in these films can be greatly improved by annealing. Manganese appears to grow with an fcc Mn (111) lattice spacing and there is no sign of a change in structure in films of up to 4.61 ML thick. The gradual deposition and annealing of a film to 300 deg. C, with a total deposition time the same as that for a 1 ML thick film, causes a surface reconstruction to occur that is apparent in a R30 deg. (√3 x √3) LEED pattern. This is attributed to the formation of a surface alloy, which is also supported by the local expansion of the Cu lattice in the (111) direction. (author)

  15. Analysis on sequence stratigraphy and depositional systems of Mangbang formation, upper tertiary in Longchuanjiang basin

    International Nuclear Information System (INIS)

    Sun Zexuan; Yao Yifeng; Chen Yong; Li Guoxin

    2004-01-01

    Longchuanjiang basin is a small Cenozoic intramontane down-faulted basin. This paper, combining the Pliocene structure, the volcanic activities and the sedimentation of the basin, analyses the sequence stratigraphy and the depositional systems of Mangbang formation (the cover of the basin). Based on the analysis of depositional systems of Mangbang formation, the depositional pattern of Pliocene in Longchuanjiang basin is set up. It is suggested that because of the fast accumulation in early down-faulted zone during Pliocene time, the alluvial fan depositional system was dominated at that time. During the middle-late period, the alluvial fan entered the lake forming a combination of fan-fandelta-lacustrine depositional systems. Authors propose a view point that the formation of Mangbang formation sequence was constrained by multistage tectonic movement, and three structural sequences were established, and system tracts were divided. (authors)

  16. Impact of deposition rate on the structural and magnetic properties of sputtered Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Colmekci, Salih; Kockar, Hakan; Kuru, Hilal; Uckun, Mehmet [Balikesir Univ. (Turkey). Dept. of Physics

    2018-04-01

    The structural and corresponding magnetic properties of Ni/Cu films sputtered at low and high deposition rates were investigated as there is a limited number of related studies in this field. 5[Ni(10 nm)/Cu(30 nm)] multilayer thin films were deposited using two DC sputtering sources at low (0.02 nm/s) and high (0.10 nm/s) deposition rates of Ni layers. A face centered cubic phase was detected for both films. The surface of the film sputtered at the low deposition rate has a lot of micro-grains distributed uniformly and with sizes from 0.1 to 0.4 μm. Also, it has a vertical acicular morphology. At high deposition rate, the number of micro-grains considerably decreased, and some of their sizes increased up to 1 μm. The surface of the Ni/Cu multilayer deposited at the low rate has a relatively more grainy and rugged structure, whereas the surface of the film deposited at the high rate has a relatively larger lateral size of surface grains with a relatively fine morphology. Saturation magnetisation, M{sub s}, values were 90 and 138 emu/cm{sup 3} for deposition rates of 0.02 and 0.10 nm/s, respectively. Remanence, M{sub r}, values were also found to be 48 and 71 emu/cm{sup 3} for the low and high deposition rates, respectively. The coercivity, H{sub c}, values were 46 and 65 Oe for the low and high Ni deposition rates, respectively. The changes in the film surfaces provoked the changes in the H{sub c} values. The M{sub s}, M{sub r}, and H{sub c} values of the 5[Ni(10 nm)/Cu(30 nm)] films can be adjusted considering the surface morphologies and film contents caused by the different Ni deposition rates.

  17. Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Moholkar, A.V.; Agawane, G.L.; Sim, Kyu-Ung; Kwon, Ye-bin; Choi, Doo Sun; Rajpure, K.Y.; Kim, J.H.

    2010-01-01

    Research highlights: → The CdO:Ga thin films seems an alternative to traditional TCO materials used in photovoltaic applications. This work deals the effect of deposition temperature on sprayed CdO:Ga films with respect to the structural, luminescent and XPS studies. → The crystalline quality of the GCO films improves with deposition temperature. → The oxygen vacancies are responsible for n-type conductivity and green emission. → The minimum resistivity, highest carrier concentration and mobility are 1.9 x 10 -4 Ω cm, 11.7 x 10 21 cm -3 and 27.64 cm 2 V -1 s -1 , respectively. - Abstract: The structural, compositional, photoluminescent and XPS properties of CdO:Ga thin films deposited at temperatures ranging from 275 to 350 o C, using spray pyrolysis are reported. X-ray diffraction characterization of as-deposited GCO thin films reveals that films are of cubic structure with a (2 0 0) preferred orientation. The crystalline quality of the GCO films improves and the grain size increases with deposition temperature. The EDS analyses confirm oxygen deficiency present in the film and are responsible for n-type conductivity. The photoluminescence spectra demonstrated that the green emission peaks of CdO thin films are centered at 482 nm. The relative intensity of these peaks is strongly dependent on the deposition temperature. Oxygen vacancies are dominant luminescent centers for green emission in CdO thin films. The XPS measurement shows the presence of Cd, Ga, O and C elements and confirms that CdO:Ga films are cadmium-rich.

  18. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  19. Electrical imaging and self-potential surveys to study the geological setting of the quaternary slope deposits in the Agri high valley (Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Giano, S I; Schiattarella, M [Basilicata Univ., Potenza (Italy). Centro di Geodinamica; Lapenna, V; Piscitelli, S [Consiglio Nazionale delle Ricerche, Tito, PZ (Italy). Ist. di Metodologie Avanzate di Analisi Ambientale

    2000-04-01

    The paper presents the results of a geophysical survey carried out to outline the structural modelling of quarternary slope deposits in the northern part of Agri high valley (Basilicata region, Italy). Quaternary folding and brittle deformations of the subaerial slope deposits have been studied combining electrical imaging and self-potential surveys with geological structural analysis. This integrated approach indicates that the area underwent both transpressional and transtensional tectonics during Pleistocene times as testified by the existence of a push up structure in the basement buried by deformed Quaternary breccias. On this basis, the valley appears to be a more complex structure than a simple extensional graben, as traditionally assumed in the literature.

  20. Non-switching to switching transferring mechanism investigation for Ag/SiO x /p-Si structure with SiO x deposited by HWCVD

    Science.gov (United States)

    Liu, Yanhong; Wang, Ruoying; Li, Zhongyue; Wang, Song; Huang, Yang; Peng, Wei

    2018-04-01

    We proposed and fabricated an Ag/SiO x /p-Si sandwich structure, in which amorphous SiO x films were deposited through hot wire chemical vapor deposition (HWCVD) using tetraethylorthosilicate (TEOS) as Si and O precursor. Experimental results indicate that the I–V properties of this structure transfer from non-switching to switching operation as the SiO x deposition temperature increased. The device with SiO x deposited at high deposition temperature exhibits typical bipolar switching properties, which can be potentially used in resistive switching random accessible memory (RRAM). The transferring mechanism from non-switching to switching can be ascribed to the change of structural and electronic properties of SiO x active layer deposited at different temperatures, as evidenced by analyzing FTIR spectrum and fitting its I–V characteristics curves. This work demonstrates a safe and practicable low-temperature device-grade SiO x film deposition technology by conducting HWCVD from TEOS.

  1. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    Science.gov (United States)

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  2. Application of Bipolar Fuzzy Sets in Graph Structures

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2016-01-01

    Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.

  3. Cadmium sulfide thin films growth by chemical bath deposition

    Science.gov (United States)

    Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.

    2018-03-01

    Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.

  4. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  5. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  6. Structurally controlled deposition of silicon onto nanowires

    Science.gov (United States)

    Wang, Weijie; Liu, Zuqin; Han, Song; Bornstein, Jonathan; Stefan, Constantin Ionel

    2018-03-20

    Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.

  7. Statistics and geostatistics: Kriging and use of hemivariogram functions in the structural investigation of uranium deposits

    International Nuclear Information System (INIS)

    Lucero Michaut, H.N.

    1980-01-01

    After presenting some general conceptual considerations regarding the theory of regionalized variables, the paper deals with specific applications of the intrinsic dispersion law to the determination, description and quantification of structures. It then briefly describes two uranium deposits in Cordoba province, the study of which yielded the basic data and parameters for compiling the geostatistical results presented. Before taking up the matter of structural interpretations, it refers briefly to the mathematical relationship between the number of sampling points available and the number of directions that can be investigated by the variogram method and also emphasizes the need for quantifying regionalization concepts on the basis of a table of absolute dimensionalities. In the case of the ''Rodolfo'' deposit it presents and comments on the hemivariograms for concentrations, thicknesses and accumulations, drawing attention at the same time to the existence of significant nest-like phenomena (gigogne structures). In this connection there is also a discussion of the case of iterative lenticular mineralization on a natural and a simulated model. The ''Schlagintweit'' deposit is dealt with in the same way, with descriptions and evaluations of the subjacent structures revealed by the hemivariographic analysis of grades, mineralization thicknesses and accumulations. This is followed by some considerations on the possibility of applying Krige and Matheron correctors in the moderation of anomalous mineralized thicknesses. In conclusion, the paper presents a ''range ellipse'' for grades; this is designed to supplement the grid of sampling points for the ''Rodolfo'' deposit by means of Matheronian kriging techniques. (author)

  8. CVD boron nitride infiltration of fibrous structures: properties of low temprature deposits

    International Nuclear Information System (INIS)

    Gebhardt, J.J.

    1973-01-01

    The pyrolytic infiltration of boron nitride and silica fibrous structures with boron nitride was investigated using the thermal decomposition of B-trichloroborazole (TCB) to provide the matrix surrounding felted and 4-directional braided constructions. The deposition precursor was generated on a continuous basis by the reaction between boron trichloride and ammonium chloride in a fixed bed reactor under conditions of total conversion of the trichloride: 3BCl 3 + 3NH 4 Cl = B 3 N 3 H 3 Cl 3 + 9HCl. Deposition rates in boron nitride felt specimens varied between 8 and 28 μm/h, depending on the distance from the exterior surface at the minimum deposition temperature used (1100 0 C ). Infiltration of 4-directional silica braids was poorer because of clogging of the fiber bundle surfaces and access paths to voids in the weave. Deposits prepared at 1100 0 C and above were stable to moisture and consisted of glassy transparent materials which had no discernible x-ray diffraction pattern. Heat treatment of low temperature deposits in nitrogen at 1800 0 C caused significant growth of the crystallites and the emergence of x-ray patterns characteristic of hexagonal boron nitride. Heat treatment in vacuum caused changes in the infrared spectrum which could be correlated with mass analyses of the gases evolved. Loss of hydrogen with amines predominated to about 1500 0 C above which point the loss of nitrogen became significant. (14 figures) (U.S.)

  9. Hydrodynamic analysis of clastic injection and hydraulic fracturing structures in the Jinding Zn-Pb deposit, Yunnan, China

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2012-01-01

    Full Text Available The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpressured fluids. This study reports new observations of fluid overpressure-related structures from underground workings (Paomaping and Fengzishan, which show clearer crosscutting relationships than in the open pit. The observed structures include: 1 sand (±rock fragment dikes injecting into fractures in solidified rocks; 2 sand (±rock fragment bodies intruding into unconsolidated or semi-consolidated sediments; 3 disintegrated semi-consolidated sand bodies; and 4 veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to mineralization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection

  10. Scaling behavior of columnar structure during physical vapor deposition

    Science.gov (United States)

    Meese, W. J.; Lu, T.-M.

    2018-02-01

    The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.

  11. How deposition parameters control growth dynamics of nc-Si deposited by hot-wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Moutinho, H.R.; To, B.; Jiang, C.-S.; Xu, Y.; Nelson, B.P.; Teplin, C.W.; Jones, K.M.; Perkins, J.; Al-Jassim, M.M.

    2006-01-01

    We studied the growth of silicon films deposited by hot-wire chemical vapor deposition under different values of filament current, substrate temperature, and hydrogen dilution ratio. The physical and electrical properties of the films were studied by Raman spectroscopy, x-ray diffraction, atomic force microscopy, conductive-atomic force microscopy, and transmission electron microscopy. There is an interdependence of the growth parameters, and films grown with different parameters can have similar structures. We discuss why this interdependence occurs and how it influences the properties of the deposited films, as well as the deposition rate. In general, the films have a complex structure, with a mixture of amorphous (220)-oriented crystalline and nanocrystalline phases present in most cases. The amount of each phase can be controlled by the variation of one or more of the growth parameters at a time

  12. Structural and optical properties of tin (II) sulfide thin films deposited using organophosphorus precursor (Ph3PS)

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-02-01

    Tin sulfide (SnS) thin films have been deposited onto glass substrates using triphenylphosphine sulfide (Ph3PS) as a sulfur precursor in a chemical vapor deposition reactor in a temperature range of 250 °C-400 °C. The influence of the sulphidisation temperature in the crystal structure, surface morphology, chemical composition and optical properties has been investigated. X-ray diffraction, energy dispersive analysis of x-rays, and Raman spectroscopy showed that pure SnS thin films have been successfully obtained at 250 °C. All the deposited films were polycrystalline and showed orthorhombic structure, with a preferential orientation according to the direction . The optical measurements showed that the films deposited exhibited a direct allowed transition and have a relatively high absorption coefficient. The presence of mixed tin sulfide phases granted by the variation of the sulphidisation temperature has affected the optical properties of the deposited films. The refractive index (n) and extinction coefficient (k), has low values compared to conventional semiconductor materials. The grown films can be considered as a good light absorbing material and a promising candidate for application in optoelectronic devices.

  13. Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma

    International Nuclear Information System (INIS)

    Asanuma, T.; Matsutani, T.; Liu, C.; Mihara, T.; Kiuchi, M.

    2004-01-01

    Titanium dioxide (TiO 2 ) thin films were deposited on unheated quartz (SiO 2 ) substrates in 'pure oxygen' plasma by reactive radio-frequency (rf) magnetron sputtering. The structural and optical properties of deposited films were systematically studied by changing the deposition parameters, and it was very recently found that crystalline TiO 2 films grew effectively in pure O 2 atmosphere. For TiO 2 films deposited at a rf power P rf of 200 W, x-ray diffraction patterns show the following features: (a) no diffraction peak was observed at a total sputtering pressure p tot of 1.3 Pa; (b) rutile (110) diffraction was observed at 4.0 Pa, (c) the dominant diffraction was from anatase (101) planes, with additional diffraction from (200), under p tot between 6.7 and 13 Pa. For the deposition at 140 W, however, crystalline films with mixed phases were observed only between 4.0 and 6.7 Pa. The peaks of both the deposition rate and the anatase weight ratio for the films produced at 140 W were found at p tot of approximately 6.7 Pa. This suggests that the nucleation and growth of TiO 2 films were affected by the composition, density, and kinetic energy of the particles impinging on the substrate surface. The optical absorption edge analysis showed that the optical band gap E g and the constant B could sensitively detect the film growth behavior, and determine the film structure and optical absorption. The change in the shape of the fundamental absorption edge is considered to reflect the variation of density and the short-range structural modifications

  14. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  15. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    Science.gov (United States)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc

  16. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    Science.gov (United States)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  17. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  18. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  19. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles of a set of elements: an analytical approach to cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Melo B, W.; Barboza F, M. [Universidad de Sonora, Departamento de Investigacion en Fisica, 83000 Hermosillo, Sonora (Mexico); Chernov, G., E-mail: g.chernovch@gmail.com [Universidad de Sonora, Departamento de Fisica, 83000 Hermosillo, Sonora (Mexico)

    2016-10-15

    The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)

  20. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles of a set of elements: an analytical approach to cell survival

    International Nuclear Information System (INIS)

    Melo B, W.; Barboza F, M.; Chernov, G.

    2016-10-01

    The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)

  1. Strontium titanate thin film deposition - structural and electronical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, Florian; Hanzig, Juliane; Stoecker, Hartmut; Mehner, Erik; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik (Germany); Franke, Michael [TU Bergakademie Freiberg, Institut fuer Elektronik- und Sensormaterialien (Germany)

    2012-07-01

    Strontium titanate is on the one hand a widely-used model oxide for solids which crystallize in perovskite type of structure. On the other hand, with its large band-gap energy and its mixed ionic and electronic conductivity, SrTiO{sub 3} is a promising isolating material in metal-insulator-metal (MIM) structures for resistive switching memory cells. Here, we used physical vapour deposition methods (e. g. electron-beam and sputtering) to produce strontium titanate layers. Sample thicknesses were probed with X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). Additionally, layer densities and dielectric functions were quantified with XRR and SE, respectively. Using infrared spectroscopy free electron concentrations were obtained. Phase and element composition analysis was carried out with grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy. Subsequent temperature treatment of samples lead to crystallization of the initially amorphous strontium titanate.

  2. Supercritical-flow structures (backset-bedded sets and sediment waves) on high-gradient clinoform systems influenced by shallow-marine hydrodynamics

    Science.gov (United States)

    Massari, F.

    2017-10-01

    Inferred supercritical structures and bedforms, including sediment waves and backset-bedded sets, are identified as components of coarse-grained siliciclastic and bioclastic, high-gradient clinoform wedges (Plio-Pleistocene of southern Italy) and canyon head infills (Tortonian of Venetian pre-Alps), showing evidence of having been built out in a setting influenced by shallow-marine hydrodynamics. The facies identified are dominated by a range of traction carpets, formed after segregation of coarser particles in the lower part of bipartite density underflows. The generation of backset-bedded sets is thought to imply scouring due to impact of a submerged hydraulic jump on the bed, and upstream migration of the jump, concomitant with the deposition of backset beds on the stoss side of the developing bedform. Submerged hydraulic jumps apparently formed spontaneously and in any position on the foreset and toeset, without requiring any precursor bed defect. The mostly solitary, non-cyclical character of the bedforms prevents their attribution to cyclic steps. The sets of backset beds are locally underlain by chaotic infills of deep, steep-sided scours attributed to vigorous erosion at the hydraulic jump, accompanied by instantaneous loss in transport capacity which results in rapid plugging of the scour (hydraulic jump facies of Postma et al., 2014). Gravel waves have a distinct internal stratigraphy, and their length to amplitude ratios show lower mean values and higher variability when compared to sediment waves consisting of sand. The presence of supercritical bedforms on steep foreset slopes of the studied clinoform systems, even in proximity to the topset-foreset rollover, is believed to reflect high inefficiency of mud-poor and short run-out bipartite underflows episodically transporting relatively small volumes of coarse-grained sediment. This may also account for common solitary, non-cyclical bedforms. It is proposed that during intense oceanographic events, such

  3. Influence of aluminium incorporation on the structure of ZrN films deposited at low temperatures

    International Nuclear Information System (INIS)

    Araiza, J J; Sanchez, O

    2009-01-01

    We have studied the influence of Al incorporation in the crystalline structure of ZrN thin films deposited by dc magnetron sputtering at low temperature. The amount of aluminium in the films depends directly on the power applied to the aluminium cathode during the deposition. Energy dispersive x-ray analysis and x-ray diffraction (XRD) were used to obtain the chemical composition and crystalline structure of the films, respectively. When Al atoms are incorporated into the ZrN coatings, the strong ZrN (2 0 0) orientation is modified by a combination of other ones such as ZrN (1 1 1), Zr 3 N 4 (2 1 1) and hexagonal AlN (1 0 0) as detected from the XRD spectra for high aluminium concentrations. Fourier-transform infrared spectroscopy allowed us to identify oxides and nitrides, ZrO, AlO and AlN, incorporated into the deposited films. The effect of a bias voltage applied to the substrate has also been investigated and related to the changes in the microstructure and in the nanohardness values of the ZrAlN films.

  4. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  5. Morphological, Structural and Optical Evolution of Ag Nanostructures on c-Plane GaN Through the Variation of Deposition Amount and Temperature

    Science.gov (United States)

    Sui, Mao; Li, Ming-Yu; Pandey, Puran; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2018-03-01

    Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer-Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.

  6. Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

    Directory of Open Access Journals (Sweden)

    Armin Kleibert

    2011-01-01

    Full Text Available Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111/W(110 and bcc W(110. We use a combined approach of X-ray magnetic circular dichroism (XMCD, reflection high energy electron diffraction (RHEED and scanning tunneling microscopy (STM to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111/W(110 have a significantly lower (higher magnetic spin (orbital moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110 – despite of the large lattice mismatch between iron and tungsten – are

  7. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  8. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  9. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  10. Market Discipline and Deposit Insurance

    OpenAIRE

    Peresetsky, Anatoly

    2008-01-01

    The paper examines Russian banks’ household deposit interest rates for the transition period of setting up the deposit insurance system. Monthly observations of Russian banks’ interest rates and balance sheets are used in a fixed effects panel data model. It is shown market discipline has been significantly diminished after switching to the deposit insurance.

  11. Morphological Characteristics of Au Films Deposited on Ti: A Combined SEM-AFM Study

    Directory of Open Access Journals (Sweden)

    Francesco Ruffino

    2018-03-01

    Full Text Available Deposited Au films and coatings are, nowadays, routinely used as active or passive elements in several innovative electronic, optoelectronic, sensing, and energy devices. In these devices, the physical properties of the Au films are strongly determined by the films nanoscale structure. In addition, in these devices, often, a layer of Ti is employed to promote adhesion and, so, influencing the nanoscale structure of the deposited Au film. In this work, we present experimental analysis on the nanoscale cross-section and surface morphology of Au films deposited on Ti. In particular, we sputter-deposited thick (>100 nm thickness Au films on Ti foils and we used Scanning Electron Microscopy to analyze the films cross-sectional and surface morphology as a function of the Au film thickness and deposition angle. In addition, we analyzed the Au films surface morphology by Atomic Force Microscopy which allowed quantifying the films surface roughness versus the film thickness and deposition angle. The results establish a relation between the Au films cross-sectional and surface morphologies and surface roughness to the film thickness and deposition angle. These results allow setting a general working framework to obtain Au films on Ti with specific morphological and topographic properties for desired applications in which the Ti adhesion layer is needed for Au.

  12. Investigation of the optical property and structure of WO3 thin films with different sputtering depositions

    Science.gov (United States)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui

    2011-09-01

    The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.

  13. Late Paleozoic fusulinids from Sonora, Mexcio: importance for interpretation of depositional settings, biogeography, and paleotectonics

    Science.gov (United States)

    Stevens, Calvin H.; Poole, Forrest G.; Amaya-Martínez, Ricardo

    2014-01-01

    Three sets of fusulinid faunas in Sonora, Mexico, discussed herein, record different depositional and paleotectonic settings along the southwestern margin of Laurentia (North America) during Pennsylvanian and Permian time. The settings include: offshelf continental rise and ocean basin (Rancho Nuevo Formation in the Sonora allochthon), shallow continental shelf (La Cueva Limestone), and foredeep basin on the continental shelf (Mina México Formation). Our data represent 41 fusulinid collections from 23 localities with each locality providing one to eight collections.Reworked fusulinids in the Middle and Upper Pennsylvanian part of the Rancho Nuevo Formation range in age from Desmoinesian into Virgilian (Moscovian-Gzhelian). Indigenous Permian fusulinids in the La Cueva Limestone range in age from middle or late Wolfcampian to middle Leonardian (late Sakmarian-late Artinskian), and reworked Permian fusulinids in the Mina México Formation range in age from early to middle Leonardian (middle-late Artinskian). Conodonts of Guadalupian age occur in some turbidites in the Mina México Formation, indicating the youngest foredeep deposit is at least Middle Permian in age. Our fusulinid collections indicate a hiatus of at least 10 m.y. between the youngest Pennsylvanian (Virgilian) rocks in the Sonora allochthon and the oldest Permian (middle Wolfcampian) rocks in the region.Most fusulinid faunas in Sonora show affinities to those of West Texas, New Mexico, and Arizona; however, some genera and species are similar to those in southeastern California. As most species are similar to those east of the southwest-trending Transcontinental arch in New Mexico and Arizona, this arch may have formed a barrier preventing large-scale migration and mixing of faunas between the southern shelf of Laurentia in northwestern Mexico and the western shelf in the southwestern United States.The Sonora allochthon, consisting of pre-Permian (Lower Ordovician to Upper Pennsylvanian) deep

  14. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    Science.gov (United States)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel

  15. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    Science.gov (United States)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  16. Stratigraphy and structural setting of Upper Cretaceous Frontier Formation, western Centennial Mountains, southwestern Montana and southeastern Idaho

    Science.gov (United States)

    Dyman, T.S.; Tysdal, R.G.; Perry, W.J.; Nichols, D.J.; Obradovich, J.D.

    2008-01-01

    Stratigraphic, sedimentologic, and palynologic data were used to correlate the Frontier Formation of the western Centennial Mountains with time-equivalent rocks in the Lima Peaks area and other nearby areas in southwestern Montana. The stratigraphic interval studied is in the middle and upper parts (but not uppermost) of the formation based on a comparison of sandstone petrography, palynologic age data, and our interpretation of the structure using a seismic line along the frontal zone of the Centennial Mountains and the adjacent Centennial Valley. The Frontier Formation is comprised of sandstone, siltstone, mudstone, limestone, and silty shale in fluvial and coastal depositional settings. A distinctive characteristic of these strata in the western Centennial Mountains is the absence of conglomerate and conglomeratic sandstone beds. Absence of conglomerate beds may be due to lateral facies changes associated with fluvial systems, a distal fining of grain size, and the absence of both uppermost and lower Frontier rocks in the study area. Palynostratigraphic data indicate a Coniacian age for the Frontier Formation in the western Centennial Mountains. These data are supported by a geochronologic age from the middle part of the Frontier at Lima Peaks indicating a possible late Coniacian-early Santonian age (86.25 ?? 0.38 Ma) for the middle Frontier there. The Frontier Formation in the western Centennial Mountains is comparable in age and thickness to part of the Frontier at Lima Peaks. These rocks represent one of the thickest known sequences of Frontier strata in the Rocky Mountain region. Deposition was from about 95 to 86 Ma (middle Cenomanian to at least early Santonian), during which time, shoreface sandstone of the Telegraph Creek Formation and marine shale of the Cody Shale were deposited to the east in the area now occupied by the Madison Range in southwestern Montana. Frontier strata in the western Centennial Mountains are structurally isolated from other

  17. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  18. Deposition and Resuspension of Particles

    DEFF Research Database (Denmark)

    Lengweiler, P.; Nielsen, Peter V.; Moser, A.

    A new experimental set-up to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airBorne dust concentration considerably. As a basis for developing methods to eliminate dust related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension....

  19. Vapour and electro-deposited metal films on copper: structure and reactivity

    OpenAIRE

    McEvoy, Thomas F.

    2004-01-01

    The systems studied involve deposition of metals of a larger atomic diameter on a Cu{100} single crystal surface under vacuum and determining the structures formed along with the effect on the Cu{100} substrate. Cu microelectrodes were fabricated and characterised with Indium electrodeposited on the electrode surface. The In on Cu{ 100} growth mode is compared with the growth mode of electrodeposited Indium on Cu microelectrodes. The Cu{100}/In system has been studied for the In coverage ...

  20. Contaminant deposition building shielding factors for US residential structures.

    Science.gov (United States)

    Dickson, Elijah; Hamby, David; Eckerman, Keith

    2017-10-10

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.

  1. Contaminant deposition building shielding factors for US residential structures

    International Nuclear Information System (INIS)

    Dickson, E D; Hamby, D M; Eckerman, K F

    2015-01-01

    This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. (paper)

  2. E-MSD: improving data deposition and structure quality.

    Science.gov (United States)

    Tagari, M; Tate, J; Swaminathan, G J; Newman, R; Naim, A; Vranken, W; Kapopoulou, A; Hussain, A; Fillon, J; Henrick, K; Velankar, S

    2006-01-01

    The Macromolecular Structure Database (MSD) (http://www.ebi.ac.uk/msd/) [H. Boutselakis, D. Dimitropoulos, J. Fillon, A. Golovin, K. Henrick, A. Hussain, J. Ionides, M. John, P. A. Keller, E. Krissinel et al. (2003) E-MSD: the European Bioinformatics Institute Macromolecular Structure Database. Nucleic Acids Res., 31, 458-462.] group is one of the three partners in the worldwide Protein DataBank (wwPDB), the consortium entrusted with the collation, maintenance and distribution of the global repository of macromolecular structure data [H. Berman, K. Henrick and H. Nakamura (2003) Announcing the worldwide Protein Data Bank. Nature Struct. Biol., 10, 980.]. Since its inception, the MSD group has worked with partners around the world to improve the quality of PDB data, through a clean up programme that addresses inconsistencies and inaccuracies in the legacy archive. The improvements in data quality in the legacy archive have been achieved largely through the creation of a unified data archive, in the form of a relational database that stores all of the data in the wwPDB. The three partners are working towards improving the tools and methods for the deposition of new data by the community at large. The implementation of the MSD database, together with the parallel development of improved tools and methodologies for data harvesting, validation and archival, has lead to significant improvements in the quality of data that enters the archive. Through this and related projects in the NMR and EM realms the MSD continues to improve the quality of publicly available structural data.

  3. Structural and electrical characterizations of BiFeO{sub 3} capacitors deposited by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, Ali Osman, E-mail: cetinkayaaliosman@gmail.com [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Kaya, Senol; Aktag, Aliekber [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Budak, Erhan [Chemistry Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Yilmaz, Ercan [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey)

    2015-09-01

    Bismuth ferrite (BiFeO{sub 3}) thin films were deposited by sol–gel dip coating (SGDC) technique on Si-P(100) and glass substrates to investigate the structural and electrical characteristics. The aluminum (Al) metal contacts were formed on the samples deposited on the Si-P(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. The fabricated MOS structures were characterized electrically by capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. The structural characterizations were performed by X-ray diffraction technique and scanning electron microscopy. The compositions of the films were investigated by energy-dispersive X-ray spectroscopy. The results exhibit that pure rhombohedral perovskite phase films were fabricated without any elemental contamination. Average grain sizes of the BiFeO{sub 3} deposited on silicon and glass wafers were found to be about 34,50 and 30,00 nm, respectively. In addition, while the thin films deposited on glass substrate exhibit porous surface, those deposited on Si-P(100) wafers exhibit dense microstructure with a homogenous surface. Moreover, the C–V and G/ω–V characteristics are sensitive to applied voltage frequency due to frequency dependent charges (N{sub ss}) and series resistance (R{sub s}). The peak values of R{sub s} have been decreased from 2,6 kΩ to 40 Ω, while N{sub ss} is varied from 6,57 × 10{sup 12} to 3,68 × 10{sup 12} eV{sup −1} cm{sup −2} with increasing in frequency. Consequently, pure phase polycrystalline BiFeO{sub 3} thin films were fabricated successfully by SGDC technique and BiFeO{sub 3} dielectric layer exhibits stable insulation characteristics. - Highlights: • Bismuth ferrite thin films were deposited onto silicon and glass substrates by sol–gel. • Structural and electrical properties of fabricated films have been investigated. • Pure rhombohedral perovskite phase films without any contamination were deposited. • Series resistance and interface

  4. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  5. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12050'N

    International Nuclear Information System (INIS)

    Lalou, C.; Brichet, E.; Hekinian, R.

    1985-01-01

    During several cruises (Clipperton, 1981; Cyatherm, 1982 and Geocyarise Leg 3, 1984), conducted between 12 0 40'N and 12 0 54'N on the East Pacific Rise, massive sulfide deposits have been dredged and recovered by the diving saucer ''Cyana''. These well localized and documented samples have been analyzed for their 210 Pb/Pb ratio and uranium series disequilibrium in view of dating the hydrothermal phenomenon. Using samples which are presently forming, the initial 210 Pb/Pb ratio has been established as 0.60+-0.06. Ten sulfide samples from the central graben (near 12 0 50'N) have ages less than about 10 years and are younger than most of the deposits found at 21 0 N on the East Pacific Rise. One sample from the eastern rim of the graben presents an age of about 150 years. Two off-axis structures with hydrothermal sulfide deposits were studied. The first is a semi-circular volcanic structure where low-temperature hydrothermal vents were observed at 500 m and 1000 m from the rise axis; sulfide samples collected from these sites yielded ages of about 2000 years. Further east, about 6 km from the rise axis, the second off-axis structure, called South Eastern (SE) Seamount presents thick inactive sulfide deposits as well as Mn-rich and nontronite deposits. An age around 20,000 years has been found for these deposits. These ages are discussed, and, taking into acount the asymmetrical structure of the ridge near 12 0 43'N, it is concluded that the formation of the SE Seamount occurred 20,000 years ago, on a basement of about 100,000 years old, accompanied by an extensive hydrothermal event. This indicates that an important eastward shift (4-5 km from the graben) of the volcano-hydrothermal activity took place in this area (12 0 43'N). (orig.)

  6. Influence of aluminium incorporation on the structure of ZrN films deposited at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Araiza, J J [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Paseo a la Bufa esq, Calzada Solidaridad s/n 98060, Zacatecas (Mexico); Sanchez, O [Departamento de Fisica e Ingenieria de Superficies, Instituto de Ciencia de Materiales de Madrid-CSIC, C/ Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain)], E-mail: olgas@icmm.csic.es

    2009-06-07

    We have studied the influence of Al incorporation in the crystalline structure of ZrN thin films deposited by dc magnetron sputtering at low temperature. The amount of aluminium in the films depends directly on the power applied to the aluminium cathode during the deposition. Energy dispersive x-ray analysis and x-ray diffraction (XRD) were used to obtain the chemical composition and crystalline structure of the films, respectively. When Al atoms are incorporated into the ZrN coatings, the strong ZrN (2 0 0) orientation is modified by a combination of other ones such as ZrN (1 1 1), Zr{sub 3}N{sub 4} (2 1 1) and hexagonal AlN (1 0 0) as detected from the XRD spectra for high aluminium concentrations. Fourier-transform infrared spectroscopy allowed us to identify oxides and nitrides, ZrO, AlO and AlN, incorporated into the deposited films. The effect of a bias voltage applied to the substrate has also been investigated and related to the changes in the microstructure and in the nanohardness values of the ZrAlN films.

  7. Depositional setting analysis using seismic sedimentology: Example from the Paleogene Lishagang sequence in the Fushan depression, South China Sea

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-09-01

    Full Text Available The Fushan depression is a classic lacustrine rifted sub-basin in the Beibuwan Basin, South China Sea. The Paleogene Liushagang sequence is the main hydrocarbon-bearing stratigraphic unit in the depression. Using three-dimensional (3-D seismic data and logging data, we analyzed depositional setting of the Liushagang sequence. We use wave impedance inversion to describe progradational directions of provenance and the general distribution of sand body. The seismic facies was analyzed by using the seismic sedimentology approach based on 3-D seismic data, and summed into eight types of seismic facies which could be well related to sedimentary facies. Seismic attributes with six objective sequence boundaries were extracted. Consequently, four provenance system of Liushagang sequence in the study area were confirmed by the corresponding relationship between the geologic information and the warm color and higher value area of seismic attributes: (i the Hainan uplift provenance area in the south, (ii the Linggao uplift provenance area in the west, (iii the Yunlong uplift provenance area in the east and (iv the northern provenance area. The seismic sedimentology used in this study may provide new insights into a better understanding of depositional setting in continental lacustrine rifted basins.

  8. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  9. Effects of deposition time in chemically deposited ZnS films in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, H.; Chelouche, A., E-mail: azeddinechelouche@gmail.com; Talantikite, D.; Merzouk, H.; Boudjouan, F.; Djouadi, D.

    2015-08-31

    We report an experimental study on the synthesis and characterization of zinc sulfide (ZnS) single layer thin films deposited on glass substrates by chemical bath deposition technique in acidic solution. The effect of deposition time on the microstructure, surface morphology, optical absorption, transmittance, and photoluminescence (PL) was investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), UV-Vis–NIR spectrophotometry and photoluminescence (PL) spectroscopy. The results showed that the samples exhibit wurtzite structure and their crystal quality is improved by increasing deposition time. The latter, was found to affect the morphology of the thin films as showed by SEM micrographs. The optical measurements revealed a high transparency in the visible range and a dependence of absorption edge and band gap on deposition time. The room temperature PL spectra indicated that all ZnS grown thin films emit a UV and blue light, while the band intensities are found to be dependent on deposition times. - Highlights: • Single layer ZnS thin films were deposited by CBD in acidic solution at 95 °C. • The effect of deposition time was investigated. • Coexistence of ZnS and ZnO hexagonal structures for time deposition below 2 h • Thicker ZnS films were achieved after monolayer deposition for 5 h. • The highest UV-blue emission observed in thin film deposited at 5 h.

  10. Special analyses reveal coke-deposit structure

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    A scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX) have been used to obtain information that clarifies the three mechanisms of coke formation in ethylene furnaces, and to analyze the metal condition at the exit of furnace. The results can be used to examine furnace operations and develop improved ethylene plant practices. In this first of four articles on the analyses of coke and metal samples, the coking mechanisms and coke deposits in a section of tube from an actual ethylene furnace (Furnace A) from a plant on the Texas Gulf Coast are discussed. The second articles in the series will analyze the condition of the tube metal in the same furnace. To show how coke deposition and metal condition dependent on the operating parameters of an ethylene furnace, the third article in the series will show the coke deposition in a Texas Gulf Coast furnace tube (Furnace B) that operated at shorter residence time. The fourth article discusses the metal condition in that furnace. Some recommendations, based on the analyses and findings, are offered in the fourth article that could help extend the life of ethylene furnace tubes, and also improve overall ethylene plant operations

  11. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage

  12. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Saeed, S.; Buters, F.; Dohnalova, K.; Wosinski, L.; Gregorkiewicz, T.

    2014-01-01

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO2. Optical characterization

  13. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    OpenAIRE

    Díaz Molina, Margarita; Kälin, Otto; Benito Moreno, María Isabel; López Martínez, Nieves; Vicens, Enric

    2007-01-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface de...

  14. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity.

    Science.gov (United States)

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-04-29

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.

  15. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  16. Effect of negative bias on the composition and structure of the tungsten oxide thin films deposited by magnetron sputtering

    Science.gov (United States)

    Wang, Meihan; Lei, Hao; Wen, Jiaxing; Long, Haibo; Sawada, Yutaka; Hoshi, Yoichi; Uchida, Takayuki; Hou, Zhaoxia

    2015-12-01

    Tungsten oxide thin films were deposited at room temperature under different negative bias voltages (Vb, 0 to -500 V) by DC reactive magnetron sputtering, and then the as-deposited films were annealed at 500 °C in air atmosphere. The crystal structure, surface morphology, chemical composition and transmittance of the tungsten oxide thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectrophotometer. The XRD analysis reveals that the tungsten oxide films deposited at different negative bias voltages present a partly crystallized amorphous structure. All the films transfer from amorphous to crystalline (monoclinic + hexagonal) after annealing 3 h at 500 °C. Furthermore, the crystallized tungsten oxide films show different preferred orientation. The morphology of the tungsten oxide films deposited at different negative bias voltages is consisted of fine nanoscale grains. The grains grow up and conjunct with each other after annealing. The tungsten oxide films deposited at higher negative bias voltages after annealing show non-uniform special morphology. Substoichiometric tungsten oxide films were formed as evidenced by XPS spectra of W4f and O1s. As a result, semi-transparent films were obtained in the visible range for all films deposited at different negative bias voltages.

  17. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Finch, W.I.; Davis, J.F.

    1985-01-01

    World-class sandstone-type uranium deposits are defined as epigenetic concentrations of uranium minerals occurring as uneven impregnations and minor massive replacements primarily in fluvial, lacustrine, and deltaic sandstone formations. The main purpose of this introductory paper is to define, classify, and introduce to the general geologic setting for sandstone-type uranium deposits

  18. Effects of the composition and crystal structure of zinc-nickel alloy deposits on the internal strain

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Y.; Tanaka, M. [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1996-02-05

    An average internal strain in the electrodeposited Zn-Ni alloy films was in-situ measured using the resistance wire type strain gauge setup on the reverse side of the copper substrate. The Ni content of the Zn-Ni alloy coatings utilized for the steel frame of automobiles and for the plastic coated steel sheets is around at 15% and the dominant structure is the {gamma}-phase. Such Zn-Ni alloy coatings are favorable for the protection of steel against corrosion. The internal stress in these deposits is always compressive during electroplating. However, upon turning off the current, the internal stress sharply changes from compressive to tensile. The tensile stress seems to simultaneously result in many cracks on the surface of the deposits. In this study, a resistance wire type strain gauge meter was used for successive measurement of the internal strain in the deposits during electroplating and solid-state stripping voltammetry was applied for the anodic dissolution of the deposits. And the effects concerning the partial electroleaching of Zn from the deposits on the internal strain in the deposits under periodic reverse plating. 15 refs., 8 figs., 3 tabs.

  19. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  20. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    Science.gov (United States)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an

  1. Respiratory trace deposition models. Final report

    International Nuclear Information System (INIS)

    Yeh, H.C.

    1980-03-01

    Respiratory tract characteristics of four mammalian species (human, dog, rat and Syrian hamster) were studied, using replica lung casts. An in situ casting techniques was developed for making the casts. Based on an idealized branch model, over 38,000 records of airway segment diameters, lengths, branching angles and gravity angles were obtained from measurements of two humans, two Beagle dogs, two rats and one Syrian hamster. From examination of the trimmed casts and morphometric data, it appeared that the structure of the human airway is closer to a dichotomous structure, whereas for dog, rat and hamster, it is monopodial. Flow velocity in the trachea and major bronchi in living Beagle dogs was measured using an implanted, subminiaturized, heated film anemometer. A physical model was developed to simulate the regional deposition characteristics proposed by the Task Group on Lung Dynamics of the ICRP. Various simulation modules for the nasopharyngeal (NP), tracheobronchial (TB) and pulmonary (P) compartments were designed and tested. Three types of monodisperse aerosols were developed for animal inhalation studies. Fifty Syrian hamsters and 50 rats were exposed to five different sizes of monodisperse fused aluminosilicate particles labeled with 169 Yb. Anatomical lung models were developed for four species (human, Beagle dog, rat and Syrian hamster) that were based on detailed morphometric measurements of replica lung casts. Emphasis was placed on developing a lobar typical-path lung model and on developing a modeling technique which could be applied to various mammalian species. A set of particle deposition equations for deposition caused by inertial impaction, sedimentation, and diffusion were developed. Theoretical models of particle deposition were developed based on these equations and on the anatomical lung models

  2. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  3. Molecular dynamics study of growth and interface structure during aluminum deposition on Ni(1 0 0) substrate

    International Nuclear Information System (INIS)

    er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco); Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hassani, A.; Makan, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Sbiaai, K.; er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory of Radiation and Matter, Faculty of Science and Technology, 26000 Settat (Morocco))" >Tabyaoui, A.; er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" data-affiliation=" (Univ Hassan 1er, Laboratory LS3M, Faculté Polydisciplinaire of Khouribga, 26000 Settat (Morocco))" >Hasnaoui, A.

    2015-01-01

    Highlights: • Aluminum thin film growth on Ni(1 0 0) substrate was investigated. • Molecular dynamics simulation based on EAM interaction potential was considered. • Hexagonal and fourfold structures coexisted in the first layer. • Interface mismatch was revealed by wavy effect occurring in both lateral directions. • Film growth followed a layer-by-layer mode only in the first three deposited layers. - Abstract: We investigate aluminum thin film growth on Ni(1 0 0) substrate by means of molecular dynamics simulation. Embedded Atom Method interaction potential is considered. The simulation is performed at 300 K using an incident energy of 1 eV. The substrate-grown film interface shows the coexistence of hexagonal and fourfold structures in the first layer during the initial stage of deposition. As the deposition proceeds, the hexagonal geometry transforms to fourfold one which becomes dominant toward the end of deposition. The coverage of this layer exceeded 100%. Moreover, the deposited Al atoms with fourfold geometry adopt the lattice parameter of Ni as the thickness of deposited film increases. The interface mismatch investigation revealed that the roughness is dictated by how the Al(1 1 1) fits to the Ni(1 0 0) substrate, which may be reflected by a wavy effect occurring in both lateral directions. Furthermore, the film grows by a layer-by-layer mode with a coverage rate greater than 66.7% in the first three layers, while it follows an island mode with a coverage rate lower than the previous value (66.7%) beyond the third layer. Overall, a detailed analysis of each layer growth has established a relationship between the number of deposited atoms and the coverage rate of each layer

  4. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  5. Straightforward and complete deposition of NMR data to the PDBe

    International Nuclear Information System (INIS)

    Penkett, Christopher J.; Ginkel, Glen van; Velankar, Sameer; Swaminathan, Jawahar; Ulrich, Eldon L.; Mading, Steve; Stevens, Tim J.; Fogh, Rasmus H.; Gutmanas, Aleksandras; Kleywegt, Gerard J.; Henrick, Kim; Vranken, Wim F.

    2010-01-01

    We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB. Instructions and download information for the ECI are available from the PDBe web site at http://www.ebi.ac.uk/pdbe/nmr/deposition/eci.htmlhttp://www.ebi.ac.uk/pdbe/nmr/deposition/eci.html.

  6. Structure and Morphology Effects on the Optical Properties of Bimetallic Nanoparticle Films Laser Deposited on a Glass Substrate

    Directory of Open Access Journals (Sweden)

    A. O. Kucherik

    2017-01-01

    Full Text Available Moving nanosecond laser system is used for laser-assisted thermodiffusion deposition of metallic nanoparticles from water-based colloidal solutions. The results obtained for both gold and silver nanoparticles show that film morphology strongly depends on laser scanning speed and the number of passages. We show, furthermore, the possibility of producing bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. As a result of several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness, and morphology. By changing laser scanning parameters, film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness, and mean separation between the particles. The transparency spectra of the deposited films are shown to be defined by their morphology.

  7. Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit.

    Science.gov (United States)

    Agrawal, A K; Sarkar, P S; Singh, B; Kashyap, Y S; Rao, P T; Sinha, A

    2016-02-01

    SiC coatings are commonly used as oxidation protective materials in high-temperature applications. The operational performance of the coating depends on its microstructure and uniformity. This study explores the feasibility of applying tabletop X-ray micro-CT for the micro-structural characterization of SiC coating. The coating is deposited over the internal surface of pipe structured graphite fuel tube, which is a prototype of potential components of compact high-temperature reactor (CHTR). The coating is deposited using atmospheric pressure chemical vapor deposition (APCVD) and properties such as morphology, porosity, thickness variation are evaluated. Micro-structural differences in the coating caused by substrate distance from precursor inlet in a CVD reactor are also studied. The study finds micro-CT a potential tool for characterization of SiC coating during its future course of engineering. We show that depletion of reactants at larger distances causes development of larger pores in the coating, which affects its morphology, density and thickness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  9. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  10. Morphological and Structural Analysis of Nano-hydroxyapatite (n-hap) Coatings Electrodeposited on Titanium Substrate : Effect of Deposition Solution Concentration

    International Nuclear Information System (INIS)

    Nik Norziehana Che Isa; Norjanah Yury; Yusairie Mohd

    2011-01-01

    Various concentration of deposition solutions containing CaCl 2 and NH 4 H 2 PO 4 (with Ca/P ratio equal to 1.67) were used to study the effect of deposition solution concentration on the surface morphology and structure of Hydroxyapatite (HAp) coatings. Each HAp coating was deposited onto Ti substrate by applying a constant potential of 1.5 V (vs Ag/ AgCl) at 80 degree Celsius. The formation of HAp coatings was confirmed by FTIR and XRD analyses. Various morphologies consisting of HAp nanoparticles were produced from different deposition solutions as observed by SEM. The concentration of deposition solution has significantly affected the morphology of n-HAp coatings. (author)

  11. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  12. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  13. Growth model and structure evolution of Ag layers deposited on Ge films.

    Science.gov (United States)

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz

    2018-01-01

    We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.

  14. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering

    Science.gov (United States)

    Lv, Yanhong; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin

    2012-02-01

    The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above -100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from -50 to -250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.

  15. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2014-10-01

    recognized. Petrographic data represent three apatite generations: stage 1 which is recognized in the massive and disseminated ore types, stage 2 occurred in brecciated zones and stage 3 which is formed by dissolution and redeposition of the 1 and 2 apatite types in vein-shaped bodies. The correlations among major elements and SiO2 correspond to magmatic differentiation. Cerium is the most abundant REE in the studied samples. Similar REE distribution patterns were observed in the apatite, magnetite and host rhyolite. Electron Probe Micro Analysis (EPMA shows that the apatites are of fluoroapatite type, enriched in LREE. Low content of Sr was detected in apatites of Esfordi. Low Cd and Na concentrations but high U and Th values were also detected in the studied ore samples. Discussion Esfordi iron-apatite deposit is located NE of Bafq, Yazd Province, and in the Central Iran structural zone hosted by mainly Infracambrian rhyolites. Field evidence such as flow structure of ore and dendritic texture of some minerals, e.g., actinolite reveal the magmatic origin of iron-apatite deposit. The trends of major element concentrations in ores from different rocks are consistent with magmatic origin of the ores. The absence of sulfides shows an oxidized condition of magma at the time of ore formation. Low Sr in the apatite however, rejects any carbonatitic magma at Esfordi (Belousova et al., 2002. Similar REE distribution patterns in the apatite, magnetite and host rhyolite indicates the same origin for them. Cerium concentration in the ores from Esfordi is also consistent with magmatic ore types and negatively sloped REE distribution pattern and negative Eu anomaly resemble to the Kiruna type iron-apatite deposits (Hsieh et al., 2008. Low Cd and variable Th/U in the apatite along with low Na are contradicting with sedimentary environment (Jami, 2005; Alves, 2008. The Esfordi deposit probably formed in an extensional arc-related setting associated with syn-collision granitoids

  16. Compositional and structural properties of pulsed laser-deposited ZnS:Cr films

    Science.gov (United States)

    Nematollahi, Mohammadreza; Yang, Xiaodong; Seim, Eivind; Vullum, Per Erik; Holmestad, Randi; Gibson, Ursula J.; Reenaas, Turid W.

    2016-02-01

    We present the properties of Cr-doped zinc sulfide (ZnS:Cr) films deposited on Si(100) by pulsed laser deposition. The films are studied for solar cell applications, and to obtain a high absorption, a high Cr content (2.0-5.0 at.%) is used. It is determined by energy-dispersive X-ray spectroscopy that Cr is relatively uniformly distributed, and that local Cr increases correspond to Zn decreases. The results indicate that most Cr atoms substitute Zn sites. Consistently, electron energy loss and X-ray photoelectron spectroscopy showed that the films contain mainly Cr2+ ions. Structural analysis showed that the films are polycrystalline and textured. The films with ~4 % Cr are mainly grown along the hexagonal [001] direction in wurtzite phase. The average lateral grain size decreases with increasing Cr content, and at a given Cr content, increases with increasing growth temperature.

  17. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.

    Science.gov (United States)

    Kang, Donggu; Ahn, Geunseon; Kim, Donghwan; Kang, Hyun-Wook; Yun, Seokhwan; Yun, Won-Soo; Shim, Jin-Hyung; Jin, Songwan

    2018-06-06

    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs.

  18. Topological structure of the solution set for evolution inclusions

    CERN Document Server

    Zhou, Yong; Peng, Li

    2017-01-01

    This book systematically presents the topological structure of solution sets and attractability for nonlinear evolution inclusions, together with its relevant applications in control problems and partial differential equations. It provides readers the background material needed to delve deeper into the subject and explore the rich research literature.  In addition, the book addresses many of the basic techniques and results recently developed in connection with this theory, including the structure of solution sets for evolution inclusions with m-dissipative operators; quasi-autonomous and non-autonomous evolution inclusions and control systems;evolution inclusions with the Hille-Yosida operator; functional evolution inclusions; impulsive evolution inclusions; and stochastic evolution inclusions. Several applications of evolution inclusions and control systems are also discussed in detail.  Based on extensive research work conducted by the authors and other experts over the past four years, the information p...

  19. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.

    Science.gov (United States)

    Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao

    2012-02-15

    A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and

  20. Effect of post-deposition implantation and annealing on the properties of PECVD deposited silicon nitride films

    International Nuclear Information System (INIS)

    Shams, Q.A.

    1988-01-01

    Recently it has been shown that memory-quality silicon nitride can be deposited using plasma enhanced chemical vapor deposition (PECVD). Nitrogen implantation and post-deposition annealing resulted in improved memory properties of MNOS devices. The primary objective of the work described here is the continuation of the above work. Silicon nitride films were deposited using argon as the carrier gas and evaluated in terms of memory performance as the charge-trapping layer in the metal-nitride-oxide-silicon (MNOS) capacitor structure. The bonding structure of PECVD silicon nitride was modified by annealing in different ambients at temperatures higher than the deposition temperature. Post-deposition ion implantation was used to introduce argon into the films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the MNOS devices. Results show that the memory performance of PECVD silicon nitride is sensitive to the deposition parameters and post-deposition processing

  1. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  2. Structural anomalies induced by the metal deposition methods in 2D silver nanoparticle arrays prepared by nanosphere lithography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shengli, E-mail: huangsl@xmu.edu.cn [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yang, Qianqian [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Zhang, Chunjing; Kong, Lingqi; Li, Shuping; Kang, Junyong [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-06-01

    Silver nanoparticle arrays with 2-dimensional hexagonal arrangement were fabricated on the silicon substrates by nanosphere lithography. The silver film was deposited either by thermal evaporation or by magnetron sputtering under different conditions. The nanostructures of the achieved sphere template and the array units were characterized by scanning electron microscopy and atomic force microscopy, and were found to be anomalous under different deposition parameters. Comparative study indicated that the formation of the various 2-dimensional silver nanoparticle array structures was dominated by the thermal energy (temperature), kinetic energy and deposition direction of the deposited metal atoms as well as the size and nanocurvature of the colloidal particles and the metal clusters. - Highlights: • Silver nanoparticle arrays with different nanostructures on silicon substrates. • Various deposition parameters in arrays formation systematically examined. • Possible mechanisms and optimization of nanostructures formation addressed.

  3. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil)

    Science.gov (United States)

    Zani, Hiran; Assine, Mario Luis; McGlue, Michael Matthew

    2012-08-01

    Traditional Shuttle Radar Topography Mission (SRTM) topographic datasets hold limited value in the geomorphic analysis of low-relief terrains. To address this shortcoming, this paper presents a series of techniques designed to enhance digital elevation models (DEMs) of environments dominated by low-amplitude landforms, such as a fluvial megafan system. These techniques were validated through the study of a wide depositional tract composed of several megafans located within the Brazilian Pantanal. The Taquari megafan is the most remarkable of these features, covering an area of approximately 49,000 km2. To enhance the SRTM-DEM, the megafan global topography was calculated and found to be accurately represented by a second order polynomial. Simple subtraction of the global topography from altitude produced a new DEM product, which greatly enhanced low amplitude landforms within the Taquari megafan. A field campaign and optical satellite images were used to ground-truth features on the enhanced DEM, which consisted of both depositional (constructional) and erosional features. The results demonstrate that depositional lobes are the dominant landforms on the megafan. A model linking baselevel change, avulsion, clastic sedimentation, and erosion is proposed to explain the microtopographic features on the Taquari megafan surface. The study confirms the potential promise of enhanced DEMs for geomorphological research in alluvial settings.

  4. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    Science.gov (United States)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  5. Palaeoloxodon and Human Interaction: Depositional Setting, Chronology and Archaeology at the Middle Pleistocene Ficoncella Site (Tarquinia, Italy)

    Science.gov (United States)

    Aureli, Daniele; Contardi, Antonio; Giaccio, Biagio; Jicha, Brian; Lemorini, Cristina; Madonna, Sergio; Magri, Donatella; Marano, Federica; Milli, Salvatore; Modesti, Valerio; Palombo, Maria Rita; Rocca, Roxane

    2015-01-01

    The Ficoncella site in northern Latium (Italy) represents a unique opportunity to investigate the modalities of a short occupation in an alluvial setting during the Lower Palaeolithic. The small excavation area yielded a lithic assemblage, a carcass of Palaeoloxodon antiquus, and some other faunal remains. The main objectives of the study are to better characterize the depositional context where the Palaeoloxodon and the lithic assemblage occur, and to evaluate with greater precision the occupation dynamics. A 25 m-long well was drilled just above the top of the terrace of the Ficoncella site and faunal and lithic remains were analyzed with current and innovative techniques. The archaeological site contains floodplain deposits as it is located next to a small incised valley that feeds into a larger valley of the Mignone River. A tephra layer capping the site is 40Ar/39Ar dated to 441± 8 ka. Collectively, the geochronologic, tephrochronologic and geologic data, suggest the site was occupied during MIS 13. The new results should prompt further research at Ficoncella in order to improve our understanding of the dynamics of human settlement in Europe during the Early to Middle Pleistocene. PMID:25898322

  6. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    Energy Technology Data Exchange (ETDEWEB)

    Sadekar, H K [Arts, Commerce and Science college, Sonai 414105 (M.S.) (India); Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Deshpande, N G; Gudage, Y G; Ghosh, A; Chavhan, S D; Gosavi, S R [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India); Sharma, Ramphal [Thin film and Nanotechnology Laboratory, Department of Physics, Dr. B.A.M. University, Aurangabad 431004 (M.S.) (India)

    2008-04-03

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has {approx}120 {+-} 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient ({approx}75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV.

  7. Structure and gas-barrier properties of amorphous hydrogenated carbon films deposited on inner walls of cylindrical polyethylene terephthalate by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Tian Xiubo; Yang Shiqin; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp 3 /sp 2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.

  8. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  9. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  10. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    Science.gov (United States)

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  11. Bank deposits, notions and features of accounting

    Directory of Open Access Journals (Sweden)

    Georgeta MELNIC

    2016-06-01

    Full Text Available Bank deposits are the main method of raising capital and short-term available savings. The opening and using of the bank deposits is the main function of banks. In 2004 the Deposit Guarantee Fund was set up in the Republic of Moldova of Deposit Guarantee Fund and for the first time there was established a guaranteed bank minimum in case of bank insolvency which is currently 6,000 lei for the deposit of each natural person.

  12. Observation of self-assembled periodic nano-structures induced by femtosecond laser in both ablation and deposition regimes

    Science.gov (United States)

    Tang, Mingzhen; Zhang, Haitao; Her, Tsing-Hua

    2008-02-01

    We observed the spontaneous formation of periodic nano-structures in both femtosecond laser ablation and deposition. The former involved 400-nm femtosecond pulses from a 250-KHz regenerated amplified mode-locked Ti:sapphire laser and periodic nanocracks and the nano-structure are in the form of periodic nanocracks in the substrate, the latter applied an 80-MHz mode-locked Ti:sapphire oscillator with pulse energy less than half nanojoule in a laser-induced chemical vapor deposition configuration and tungsten nanogratings grow heterogeneously on top of the substrates. These two observed periodic nanostructures have opposite orientations respecting to laser polarization: the periodic nanocracks are perpendicular to, whereas the deposited tungsten nanogratings are parallel to laser polarization direction. By translating the substrate respecting to the laser focus, both the periodic nanocrack and tungsten nanograting extend to the whole scanning range. The deposited tungsten nanogratings possess excellent uniformity on both the grating period and tooth length. Both the attributes can be tuned precisely by controlling the laser power and scanning speed. Furthermore, we discovered that the teeth of transverse tungsten nanogratings are self aligned along their axial direction during multiple scanning with appropriate offset between scans. We demonstrate the feasibility of fabricating large-area one-dimensional grating by exploiting such unique property. These distinct phenomena of nanocracks and tungsten nanogratings indicate different responsible mechanisms.

  13. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition

    KAUST Repository

    El Zein, B.; Boulfrad, Samir; Jabbour, Ghassan E.; Doghè che, Elhadj Hadj

    2014-01-01

    The successful synthesis of catalyst free zinc oxide (ZnO) Nanowall networks with honeycomb like structure by Pulsed Laser Deposition (PLD) is demonstrated in this paper. The synthesis was conducted directly on Silicon (Si) (1 0 0) and Glass

  14. Structural Studies of the SET Domain from RIZ1 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Briknarova, Klara; Zhou, Xinliang; Satterthwait, Arnold C.; Hoyt, David W.; Ely, Kathryn R.; Huang, Shi

    2008-02-15

    Histone lysine methyltransferases (HKMTs) are involved in regulation of chromatin structure, and, as such, are important for longterm gene activation and repression that is associated with cell memory and establishment of cell-type specific transcriptional programs. Most HKMTs contain a SET domain, which is responsible for their catalytic activity. RIZ1 is a transcription regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3 and contains a rather distinct SET domain. Similar SET domains, sometimes refererred to as PR (PRDI-BF1 and RIZ1 homology) domains, are also found in other proteins including Blimp-1/PRDI-BF1, MDS1-EVI1 and Meisetz. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenosyl homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an α-helix that exhibits higher mobility than the SET fold and points away from the protein face that harbors active site in other SET domains. Residues that interact with the methylation cofactor in SET domains are not conserved in RIZ1 or other PR domains, and the SET fold of RIZ1 does not bind SAH. However, the PR domain of RIZ1 interacts specifically with a synthetic peptide comprising residues 1-20 of histone H3.

  15. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  16. An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications

    Science.gov (United States)

    Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.

    2017-08-01

    An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.

  17. Micromorphology of modern tills in southwestern Spitsbergen – insights into depositional and post-depositional processes

    Directory of Open Access Journals (Sweden)

    Skolasińska Katarzyna

    2016-12-01

    Full Text Available Textural properties and microstructures are commonly used properties in the analysis of Pleistocene and older glacial deposits. However, contemporary glacial deposits are seldom studied, particularly in the context of post-depositional changes. This paper presents the results of a micromorphological study of recently deposited tills in the marginal zones of Hansbreen and Torellbreen, glaciers in southwestern Spitsbergen. The main objectives of this study were to compare modern tills deposited in subglacial and supraglacial conditions, as well as tills that were freshly released from ice with those laid down several decades ago. The investigated tills are primarily composed of large clasts of metamorphic rocks and represent coarse-grained, matrix-supported diamictons. The tills reveal several characteristic features for ductile (e.g. turbate structures and brittle (e.g. lineations, microshears deformations, which have been considered to be indicative of subglacial conditions. In supraglacial tills, the same structures are common as in the subglacial deposits, which points to the preservation of the primary features, though the sediment was transferred up to the glacier surface due to basal ice layer deformation and redeposited as slumps, or to formation of similar structures due to short-distance sediment re-deposition by mass flows. This study revealed that it might not be possible to distinguish subglacial and supraglacial tills on the basis of micromorphology if the latter are derived from a subglacial position. The only noted difference was the presence of iron oxide cementation zones and carbonate dissolution features in supraglacial tills. These features were found in tills that were deposited at least a few years ago and are interpreted to be induced by early post-depositional processes involving porewater/sediment interactions.

  18. CORAL ASSEMBLAGES AND BIOCONSTRUCTIONS ADAPTED TO THE DEPOSITIONAL DYNAMICS OF A MIXED CARBONATE-SILICICLASTIC SETTING: THE CASE STUDY OF THE BURDIGALIAN BONIFACIO BASIN (SOUTH CORSICA

    Directory of Open Access Journals (Sweden)

    MARCO BRANDANO

    2016-03-01

    Full Text Available Coral bioconstructions associated with mixed carbonate-siliciclastic settings are known to be strongly controlled by coastal morphology and paleotopography. A striking example is represented by the different types of coral bioconstructions and coral-rich deposits of the Cala di Labra Formation deposited in the coastal environment of the Bonifacio Basin (Corsica, France during the Early Miocene. Detailed mapping on photomosaics allowed accurate documentation of the internal organization of coral deposits as well as lateral and vertical facies relationships. Four types of coral bioconstructions (CB  and one reworked coral deposits (RCD have been recognized. The CB are represented by sigmoidal cluster reefs, coral carpets and skeletal conglomerates rich in corals. The RCD occurs in lens-shaped bodies intercalated within clinoforms composed of bioclastic floatstones and coarse packstones. The investigated bioconstructions can be contextualised in a coastal environment. In the upper shoreface corals developed in association with the oyster Hyotissa, above bioclastic conglomerates sourced by ephemeral streams and erosion of the granitic coastline. In the lower shoreface corals formed sigmoidal bioconstructions interpreted as cluster reefs, whereas  coral carpets developed during a relative sea-level rise related to the middle Burdigalian transgressive phase. The reworked coral deposits can be interpreted as lobe-shaped deposits of coarse-grained bioclastic submarine fans formed at the base of the depositional slope of an infralittoral prograding wedge system.

  19. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  20. Structural and Optical Properties of Eu Doped ZnO Nanorods prepared by Pulsed Laser Deposition

    KAUST Repository

    Alarawi, Abeer

    2014-06-23

    Nano structured wide band gap semiconductors have attracted attention of many researchers due to their potential electronic and optoelectronic applications. In this thesis, we report successful synthesis of well aligned Eu doped ZnO nano-rods prepared, for the first time to our knowledge, by pulsed laser deposition (PLD) without any catalyst. X-ray diffraction (XRD) patterns shows that these Eu doped ZnO nanorods are grown along the c-axis of ZnO wurtzite structure. We have studied the effect of the PLD growth conditions on forming vertically aligned Eu doped ZnO nanorods. The structural properties of the material are investigated using a -scanning electron microscope (SEM). The PLD parameters must be carefully controlled in order to obtain c-axis oriented ZnO nanorods on sapphire substrates, without the use of any catalyst. The experiments conducted in order to identify the optimal growth conditions confirmed that, by adjusting the target-substrate distance, substrate temperature, laser energy and deposition duration, the nanorod size could be successfully controlled. Most importantly, the results indicated that the photoluminescence (PL) properties reflect the quality of the ZnO nanorods. These parameters can change the material’s structure from one-dimensional to two-dimensional however the laser energy and frequency affect the size and the height of the nanorods; the xygen pressure changes the density of the nanorods.

  1. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    Science.gov (United States)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  2. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr [Faculty of Education, Hakkari Universty, 30000, Hakkari (Turkey); Gumus, Cebrail [Faculty of Science and Letters, Cukurova University, 01330, Adana (Turkey)

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  3. Effects of copper concentration on electro-optical and structural properties of chemically deposited nanosized (Zn-Cd)S:Cu films

    International Nuclear Information System (INIS)

    Khare, Ayush

    2010-01-01

    Nanocrystalline (Zn-Cd)S films have been co-deposited on glass slide substrates by chemical bath deposition (CBD) technique at 70 deg. C for 75 min. Electroluminescent (EL), photoluminescent (PL) and structural characteristics of these films doped with Cu have been investigated. Cu doping has significant effects on the growth, structural and optical properties of the deposited (Zn-Cd)S films. EL studies show the essentiality of copper for EL emission. The effect of Cu concentration is examined on XRD, SEM, UV-vis spectroscopy, etc. The morphology of these films investigated with SEM and XRD is used to determine crystalline nature of the films. The optical absorption coefficient of the films has been found to increase with increase in Cu concentration. Voltage and frequency dependence shows the effectiveness of acceleration-collision mechanism. The trap-depth values are calculated from temperature dependence of EL brightness.

  4. Chemical and structural analyses of subsurface crevices formed during spontaneous deposition of cerium-based conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Daimon K, E-mail: dkheller@mmm.com; Fahrenholtz, William G., E-mail: billf@mst.edu; O' Keefe, Matthew J., E-mail: mjokeefe@mst.edu

    2011-11-15

    Subsurface crevices formed during the deposition of cerium-based conversion coatings were analyzed in cross-section to assess the effect of deposition and post-treatment on the structure and chemistry of phases present. An Al-O containing phase, believed to be amorphous Al(OH){sub 3}, was formed in crevices during coating deposition. Analysis by energy dispersive X-ray spectroscopy revealed the presence of up to 1.6 at.% chlorine within the Al-O phase, which was likely a product of soluble chlorides that were present in the coating solution. Cerium was not detected within crevices. After post-treatment in an 85 deg. C aqueous phosphate solution, the chloride concentration was reduced to {<=} 0.30 at.% and electron diffraction of the Al-O phase produced ring patterns, indicating it had crystallized. Some diffraction patterns could be indexed to gibbsite (Al(OH){sub 3}), but others are believed to be a combination of hydrated aluminum hydroxides and/or oxides. Aluminum phosphate was not identified. Separately from its effect on cerium-based conversion coatings, phosphate post-treatment improved the corrosion resistance of Al 2024-T3 substrates by acting to crystallize Al(OH){sub 3} present on interior surfaces of crevices and by reducing the chloride concentration in this phase. - Highlights: {yields} Analysis of subsurface crevices formed during deposition of Ce-based conversion coatings. {yields} Phosphate post-treatment improved corrosion protection in salt spray testing. {yields} Post-treatment affected the composition and structure of regions within crevices. {yields} Crystallized Al(OH){sub 3} within crevices acted as a more effective barrier to chloride ions.

  5. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    Science.gov (United States)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of , and . The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  6. Mapping topographic structure in white matter pathways with level set trees.

    Directory of Open Access Journals (Sweden)

    Brian P Kent

    Full Text Available Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees--which provide a concise representation of the hierarchical mode structure of probability density functions--offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N = 30, we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber pathways and an efficient segmentation of the pathways that had empirical accuracy comparable to standard nonparametric clustering techniques. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output.

  7. Effects of negative bias on structure and surface topography of titanium films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Duan Linglong

    2008-01-01

    Pure Ti films were fabricated by bias sputtering. The deposition rate, the density and the surface topography of the Ti films at different negative bias were studied. The results show that the deposition rate is weakly affected when the bias power is low. As the bias voltage increases, the deposition rate decreases strongly due to the increase of the layer density and the resputtering phenomena. The film density increased and saturated to nearly bulk value at a bias voltage of -119.1 V. SEM view indicates that the columnar-type structure of Ti films can be destroyed by applying negative bias. The experiments demonstrated that a dense Ti film with more smooth surface can be produced by applying negative bias. (authors)

  8. Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique (SGT)

    International Nuclear Information System (INIS)

    Sadekar, H.K.; Deshpande, N.G.; Gudage, Y.G.; Ghosh, A.; Chavhan, S.D.; Gosavi, S.R.; Sharma, Ramphal

    2008-01-01

    ZnS thin films have been deposited onto glass substrates at temperature 90 deg. C by solution growth technique (SGT). The deposition parameters were optimized. Triethanolamine (TEA) was used as a complexing agent for uniform deposition of the thin films. The elemental composition of the film was confirmed by energy dispersive analysis by X-ray (EDAX) technique. Structure and surface morphology of as-deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), atomic force microscopy (AFM), respectively. XRD patterns reveal that as-deposited thin films were amorphous in nature; while the obtained precipitate powder was polycrystalline in nature. SEM results revealed that deposited ZnS material has ∼120 ± 20 nm average grain size and the spherical grains are distributed over the entire glass substrate. Low surface roughness was found to be 2.7 nm from AFM studies. Transmission spectra indicate a high transmission coefficient (∼75%) with direct band gap energy equal to 3.72 eV while indirect band gap was found to be 3.45 eV. A photoluminescence (PL) study of the ZnS at room temperature (300 K) indicates a strong luminescence band at energy 2.02 eV

  9. How to make deposition of images a reality.

    Science.gov (United States)

    Guss, J Mitchell; McMahon, Brian

    2014-10-01

    The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.

  10. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  11. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    Science.gov (United States)

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  12. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  13. An Investigation of Structural and Electrical Properties of Nano Crystalline SnO2:Cu Thin Films Deposited by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    J. Podder

    2011-11-01

    Full Text Available Pure tin oxide (SnO2 and Cu doped SnO2 thin films have been deposited onto glass substrates by a simple spray pyrolysis technique under atmospheric pressure at temperature 350 °C. The doping concentration of Cu was varied from 1 to 8 wt. % while all other deposition parameters such as spray rate, carrier air gas pressure, deposition time, and distance between spray nozzle to substrate were kept constant. Surface morphology of the as-deposited thin films has been studied by Scanning Electron Microscopy (SEM. The SEM micrograph of the films shows uniform deposition. The structural properties of the as-deposited and annealed thin films have been studied by XRD and the electrical characterization was performed by Van-der Pauw method. The as-deposited films are found polycrystalline in nature with tetragonal crystal structure. Average grain sizes of pure and Cu doped SnO2 thin film have been obtained in the range of 7.2445 Å to 6.0699 Å, which indicates the nanometric size of SnO2 grains developed in the film. The resistivity of SnO2 films was found to decrease initially from 4.5095×10−4 Ωm to 1.1395× 10−4 Ωm for concentration of Cu up to 4 % but it was increased further with increasing of Cu concentrations. The experimental results depict the suitability of this material for using as transparent and conducting window materials in solar cells and gas sensors.

  14. Structure, phase analysis and component composition of multilayer films depositing in T-10 tokamak

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gureev, V.M.; Khimchenko, L.N.; Kolbasov, B.N.; Vukolov, K.Yu.

    2005-01-01

    The structure and composition of the deuterocarbon films, formed on the internal surfaces of the T-10 tokamak vacuum chamber and on the stainless steel mirror-specimens positioned inside the T-10 tokamak upper stub pipe during the experimental campaigns in spring-summer of 2002 and autumn of 2003, are compared. Before the 2003 experimental campaign the ring diaphragm made of MPG-8 graphite was removed from the tokamak and MPG-8 graphite in the movable limiter was replaced by RGT-91 graphite. All the films have a multilayer structure. In the 2002 campaign all the films had homogeneous layer structure and smooth surface without any signs of physical sputtering. The films formed on the chamber walls in both campaigns were 'soft' and had reddish-brown colour. The average atomic D/C ratio in these films during 2002 campaign was of 0.66. The 'soft' film formation was caused by the plasma-wall interaction during the vacuum chamber conditioning under deuterium discharges. Preliminary X-ray diffraction analysis suggests that these films have amorphous structure and contain from 4 to 10 % fullerene-like substance with lattice constant in the range of 1.2-1.4 nm. Mirror surfaces could be screened during chamber conditioning and exposed to plasma only during working discharges. The films on mirrors were thinner than those on the vacuum chamber walls and, as a rule, semitransparent. The films deposited on the mirror surface, exposed to plasma only during working discharges, in 2002 were 'hard' with D/C = 0.26. Two crystalline phases with interplanar spacings of 0.359 and 0.304 nm at the Bragg angles 2θ of 24.8 and 28.8 deg respectively were revealed in a diffractogram of these films. In the 2003 campaign both types of films (formed on vacuum chamber walls and deposited on mirror specimens) were 'soft' with D/C ratio of 0.57 and 1.55 respectively. Deuterium concentration in the films is determined by the temperature of film formation - <370 K on mirror specimens and ∼520 K

  15. Effects of deposition period on the chemical bath deposited Cu4SnS4 thin films

    International Nuclear Information System (INIS)

    Kassim, Anuar; Wee Tee, Tan; Soon Min, Ho.; Nagalingam, Saravanan

    2010-01-01

    Cu 4 SnS 4 thin films were prepared by simple chemical bath deposition technique. The influence of deposition period on the structural, morphological and optical properties of films was studied. The films were characterized using X-ray diffraction, atomic force microscopy and UV-Vis Spectrophotometer. X-ray diffraction patterns indicated that the films were polycrystalline with prominent peak attributed to (221) plane of orthorhombic crystal structure. The films prepared at 80 min showed significant increased in the intensity of all diffractions. According to AFM images, these films indicated that the surface of substrate was covered completely. The obtained films also produced higher absorption characteristics when compared to the films prepared at other deposition periods based on optical absorption studies. The band gap values of films deposited at different deposition periods were in the range of 1.6-2.1 eV. Deposition for 80 min was found to be the optimum condition to produce good quality thin films under the current conditions. (author).

  16. Detection and correction of underassigned rotational symmetry prior to structure deposition

    International Nuclear Information System (INIS)

    Poon, Billy K.; Grosse-Kunstleve, Ralf W.; Zwart, Peter H.; Sauter, Nicholas K.

    2010-01-01

    An X-ray structural model can be reassigned to a higher symmetry space group using the presented framework if its noncrystallographic symmetry operators are close to being exact crystallographic relationships. About 2% of structures in the Protein Data Bank can be reclassified in this way. Up to 2% of X-ray structures in the Protein Data Bank (PDB) potentially fit into a higher symmetry space group. Redundant protein chains in these structures can be made compatible with exact crystallographic symmetry with minimal atomic movements that are smaller than the expected range of coordinate uncertainty. The incidence of problem cases is somewhat difficult to define precisely, as there is no clear line between underassigned symmetry, in which the subunit differences are unsupported by the data, and pseudosymmetry, in which the subunit differences rest on small but significant intensity differences in the diffraction pattern. To help catch symmetry-assignment problems in the future, it is useful to add a validation step that operates on the refined coordinates just prior to structure deposition. If redundant symmetry-related chains can be removed at this stage, the resulting model (in a higher symmetry space group) can readily serve as an isomorphous replacement starting point for re-refinement using re-indexed and re-integrated raw data. These ideas are implemented in new software tools available at http://cci.lbl.gov/labelit

  17. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    International Nuclear Information System (INIS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony P.; Cullen, Joseph; Daniels, Stephen; McGlynn, Enda

    2016-01-01

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO_2) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO_2 cubic fluorite structure, although evidence of Ce_2O_3 was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O_2 annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO_2 films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies with increasing annealing

  18. Fluvial depositional environment evolving into deltaic setting with marine influences in the buntsandstein of northern vosges (France)

    Science.gov (United States)

    Gall, Jean-Claude

    supersaturation of stagnant waters with time. The fluvial environment persists up to the lower part of the Grès à Voltzia where the progression of the sea towards the west gives rise to a close intertonguing of fluvial and marine influences in a deltaic setting. Lenticular sandstone bodies are laid down as stream mouth bars at the end of the distributary channels and as river bars in the watercourses during both normal and flood discharge. Silty-clayey sediments settle out in stagnant water in restricted ponds, pools and puddles as well as in extensive veneers of shallow water in the overbank plain between the streams. Carbonate-bearing deposits originate in the coastal littoral mud flat, marsh seam, beach belt and tidal flat. The Grès à Voltzia has the greatest palaeoenvironmental and palaeoecological significance in the Buntsandstein of the Northern Vosges due to the occurrence of a wealth of extraordinarily well-preserved plant and animal fossils (having been recovered by Louis Grauvogel during almost 50 years and since abt. 25 years by Jean-Claude Gall). The rich suite of faunal and floral elements includes aquatic invertebrates, terrestrial animals and continental plants. The aquatic invertebrate fauna lives in fresh lakes and brackish ponds in the overbank plain and in brackish lagoons in the coastal seam as well as in hypersaline and euhaline marginal marine waters. The terrestrial plants colonize both dry and wet substrates, and the continental fauna consists of mainly arthropods, amphibians and reptiles inhabiting the levee zones of standing and flowing waters and strolling across the desiccated flats. The marine euryhaline association of invertebrates is with time replaced by a stenohaline community, and the deltaic plain of the Grès à Voltzia is finally inundated by a pellicular transgression representing the first stage of the Muschelkalk sea setting an end to Buntsandstein continental deposition.

  19. Structure and properties of (Sr, Ca)CuO2-BaCuO2 superlattices grown by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Verbist, Karen; Rijnders, Augustinus J.H.M.; Rogalla, Horst; van Tendeloo, Gustaav; Blank, David H.A.

    2001-01-01

    We report on the preparation of CuBa2(SrxCa1¿x)nCun¿1Oy compounds by fabrication of (Ba,Sr,Ca)CuO2 superlattices with pulsed laser deposition (PLD). A technique called interval deposition is used to suppress multi-level or island growth resulting in high-quality superlattice structures. Both, the

  20. How to make deposition of images a reality

    Energy Technology Data Exchange (ETDEWEB)

    Guss, J. Mitchell, E-mail: mitchell.guss@sydney.edu.au [School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006 (Australia); McMahon, Brian [International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU (United Kingdom); School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-10-01

    An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.

  1. Effect of Thermal Budget on the Electrical Characterization of Atomic Layer Deposited HfSiO/TiN Gate Stack MOSCAP Structure.

    Directory of Open Access Journals (Sweden)

    Z N Khan

    Full Text Available Metal Oxide Semiconductor (MOS capacitors (MOSCAP have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer, time-temperature cycle and sequence are key parameters influencing the device's output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application.

  2. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  3. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  4. Discussion on the genesis of Zhongchuan uranium deposit

    International Nuclear Information System (INIS)

    Zhang Yulong; Zhang Chengzhong

    2008-01-01

    Through elaborating the geological setting, deposit and orebody geological charactors and hydrological features, the ore controlling factors are analysed and the genesis of Zhongchuan uranium deposit is discussed in the way of deposit occurrence, mineral asembleage and matalization ages. It is believed that uranium deposit was formed under the regional uplifting background with the exogenous mechanism and its genesis belongs to surface leaching. (authors)

  5. Extended analysis of the frequency dependence of the admittance of MIS structures with pulsed-laser-deposited AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Simeonov, S; Bakalova, S; Szekeres, A; Kafedjiijska, E [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Grigorescu, S; Socol, G; Mihailescu, I N [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-54, RO-77125, Bucharest-Magurele (Romania)], E-mail: sbakalova@issp.bas.bg

    2008-05-01

    MIS structures with AlN films deposited on p-Si by pulsed laser deposition were prepared and admittance measurements were carried out in the frequency range of 100 Hz - 10 MHz. The density of traps in the AlN film and at the AlN/Si interface was evaluated using the electrical characteristics obtained, and the hopping mechanism of charge transport was determined from the dispersion of the a.c. conductance.

  6. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  7. Synthesis of LSM films deposited by dip-coating on YSZ substrate; Sintese de filmes de LSM depositados por dip-coating em substratos de YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Leandro da; Souza, Mariana M.V.M., E-mail: mmattos@eq.ufrj.b [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica; Ribeiro, Nielson F.P. [Coordenacao dos Programas de Pos-graduacao de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica. Nucleo de Catalise

    2010-07-01

    The dip-coating process was used to deposit films of La{sub 0.7}Sr{sub 0.}3MnO{sub 3} (LSM) used as cathode in solid oxide fuel cells (SOFC). In this study we evaluated the relationship between the deposition parameters such as speed of withdrawal and number of deposited layers of LSM film on a substrate of 8% YSZ commercial, and structural properties, such as thickness and formation of cracks. The structure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). With parameters set the film had good adhesion to the substrate with a thickness around 10 {mu}m, showing possible adherence problems when more than one layer is deposited on the substrate. (author)

  8. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    Science.gov (United States)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  9. Assessment of Global Mercury Deposition through Litterfall.

    Science.gov (United States)

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  10. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO3 thin films

    International Nuclear Information System (INIS)

    Ding, Defang; Shen, Yi; Ouyang, Yali; Li, Zhen

    2012-01-01

    Three kinds of tungsten oxide (WO 3 ) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO 3 films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO 3 films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron–hole pairs and the proton diffusion rates. - Highlights: ► Ordered WO 3 nanorod arrays were prepared by hydrothermal deposition process. ► Two hierarchical WO 3 structure arrays were obtained with ethanol and oxalic acid. ► Mechanism for the improved photochromic performances of WO 3 films is proposed.

  11. Genetic-Structural relations in some types of spanish uranium deposits; Relaciones genetico-estructurales de algunos tipos de mienralizaciones uraniferas espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Alia Medina, M

    1962-07-01

    On the spanish hercynian areas there are different types of uraniferous deposits, which may be classified in the following groups: Group I, high temperature magmatic deposits, Group II, low temperature veins and Group III supergenic deposits, generated by weathering of the former ones or by lixiviation of the intra granitic uranium. The deposits belonging to Group I are founding the hercynian ge anticlinal; those of Groups II and III, chiefly in the eugeosyncline. The explanation suggested for these genetic-structural relationships assumes that, in the ge anticlinal, uranium would migrate from the dioritic magmas to form and high temperature deposits. In the eugeosyncline, a large fraction of the uranium would migrate towards more differentiated granites, in which it might partially remain or from which it might have been finally concentrated in the epithermal veins or by later tectonic actions. The Group III deposits ar more frequent in the eugeosyncline, due to the greater abundance of more differentiated intrusive rocks. (Author) 16 refs.

  12. Power deposition to the facing components in Tore-Supra

    International Nuclear Information System (INIS)

    Guilhem, D.; Chatelier, M.; Chappuis, P.; Koski, J.; Watkins, J.

    1990-01-01

    The modifications of the power scrape-off length, λ q and power deposition are studied for various configurations in ohmic Tore-Supra plasmas. The plasma is either touching the horizontal limiter alone, the full set of six pump limiters or the inner bumper limiter. All configurations are with and without the ergodic divertor system energized. From a comparison of the infrared images of the limiter we derived that the λ q for power deposition was slightly less than 9±1 mm in ohmic plasmas which is in agreement with the predicted design value of 10 mm. Using the six limiters, instead of one, does not modify λ q significantly, but leads to small asymmetries. The power is shared by all the limiters and the maximum surface temperature on the horizontal limiter decreases. These λ q values have been independently determined by calorimetric measurements on the integrated energy deposition on the horizontal limiter and other internal structures 5 cm into the scrape-off layer. These values agree with the infrared measurements in the two cases. In the presence of the ergodic divertor we observe a broadening of the scrape-off layer, the e-folding length for power deposition reaching 2.5 cm. Large asymmetries in the power deposition can be seen on the front face of the limiter, leading to the formation of hot spots at the leading edges. (orig.)

  13. Power deposition to the facing components in Tore-Supra

    International Nuclear Information System (INIS)

    Guilhem, D.; Chatelier, M.; Chappuis, P.

    1990-01-01

    The modification of power scrape-off-length, λq, and power deposition are studied during various configurations in ohmic TORE-SUPRA plasmas. The plasma is either leaning on the horizontal limiter alone, on the full set of 6 pump limiters or on the inner bumper limiter, all configurations with and without the ergodic divertor system energised. From comparison of the infrared images of the limiter we derived that the λq for power deposition was slightly less than 9 mm (±1 mm) in ohmic plasma which is in agreement with the predicted design value of 10 mm. Inserting the 6 limiters, instead of 1, does not modify significantly λq, but lead to small asymmetries. The power is shared by all the limiters and the maximum surface temperature on the horizontal limiter decreased. These λq values have been independently determined by calorimetric measurements done on the integrated energy deposition on the horizontal limiter and other internal structures 5 cm into the scrape-off layer. These values agree with the infrared measurements in the two cases. In the presence of the ergodic divertor we observe a broadening of the scrape off layer, the e-folding length for power deposition reaching 2.5 cm. Large asymmetries on power deposition can be seen on the front face of the limiter leading to the formation of hot spots at the leading edges

  14. Use of process indices for simplification of the description of vapor deposition systems

    International Nuclear Information System (INIS)

    Kajikawa, Yuya; Noda, Suguru; Komiyama, Hiroshi

    2004-01-01

    Vapor deposition is a complex process, including gas-phase, surface, and solid-phase phenomena. Because of the complexity of chemical and physical processes occurring in vapor deposition processes, it is difficult to form a comprehensive, fundamental understanding of vapor deposition and to control such systems for obtaining desirable structures and performance. To overcome this difficulty, we present a method for simplifying the complex description of such systems. One simplification method is to separate complex systems into multiple elements, and determine which of these are important elements. We call this method abridgement. The abridgement method retains only the dominant processes in a description of the system, and discards the others. Abridgement can be achieved by using process indices to evaluate the relative importance of the elementary processes. We describe the formulation and use of these process indices through examples of the growth of continuous films, initial deposition processes, and the formation of the preferred orientation of polycrystalline films. In this paper, we propose a method for representing complex vapor deposition processes as a set of simpler processes

  15. A Generic Model for the Resuspension of Multilayer Aerosol Deposits by Turbulent Flow

    International Nuclear Information System (INIS)

    Friess, H.; Yadigaroglu, G.

    2001-01-01

    An idealized lattice structure is considered of multilayer aerosol deposits, where every particle at the deposit surface is associated with a resuspension rate constant depending on a statistically distributed particle parameter and on flow conditions. The response of this generic model is represented by a set of integrodifferential equations. As a first application of the general formalism, the behavior of Fromentin's multilayer model is analyzed, and the model parameters are adapted to experimental data. In addition, improved relations between model parameters and physical input parameters are proposed. As a second application, a method is proposed for building multilayer models by using resuspension rate constants of existing monolayer models. The method is illustrated by a sample of monolayer data resulting from the model of Reeks, Reed, and Hall. Also discussed is the error to be expected if a monolayer resuspension model, which works well for thin aerosol deposits, is applied to thick deposits under the classical monolayer assumption that all deposited particles interact with the fluid at all times

  16. Evidence of coexistence of micro and nanoporosity of organo-silica polymeric films deposited on silicon by plasma deposition

    International Nuclear Information System (INIS)

    Purohit, Viswas; Mielczarski, Ela; Mielczarski, Jerzy A.; Akesso, Laurent

    2013-01-01

    A range of hybrid, SiOCH films were deposited on silicon substrates within a radio frequency plasma reactor using hexamethyldisiloxane (HMDSO) as a precursor. The plasma polymerized films were deposited at various HMDSO/argon/oxygen ratios. The composition and structure, at microscopic and nanoscopic levels, of the deposited films were determined by external reflection and transmission Fourier Transform Infrared (FTIR) spectroscopy as well as by X-Ray Photoelectron Spectroscopy (XPS). The content of carbon and oxygen in films were found to be inversely proportional to each other. XPS results showed that the outermost surface of the deposited films are nanoporous and coexist with microporosity which was revealed by electron microscopy. The structure of deposited coatings is anisotropic as was documented by polarized external reflection FTIR spectroscopy. Several correlations between the film chemical composition, surface structure, and macroscopic properties of the films such as: hydrophobicity and hydrophilicity were established. - Highlights: • Hybrid organo-polymer silicon films deposited by RF plasma on silicon substrates. • FTIR and XPS reveal porosity by interpreting bonding between Si and –O. • Quantification of nano and microporosity are identified with bonding of Si with –O

  17. Evidence of coexistence of micro and nanoporosity of organo-silica polymeric films deposited on silicon by plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Viswas, E-mail: vishwas.purohit@gmail.com [Laboratoire Environnment et Mineralurgie, UMR 7569 CNRS, INPL-ENSG, BP.40, 54501 Vandoeuvre-les-Nancy (France); Mielczarski, Ela; Mielczarski, Jerzy A. [Laboratoire Environnment et Mineralurgie, UMR 7569 CNRS, INPL-ENSG, BP.40, 54501 Vandoeuvre-les-Nancy (France); Akesso, Laurent [Teer Coatings Ltd., Droitwich, Worcestershire WR9 9AS (United Kingdom)

    2013-09-16

    A range of hybrid, SiOCH films were deposited on silicon substrates within a radio frequency plasma reactor using hexamethyldisiloxane (HMDSO) as a precursor. The plasma polymerized films were deposited at various HMDSO/argon/oxygen ratios. The composition and structure, at microscopic and nanoscopic levels, of the deposited films were determined by external reflection and transmission Fourier Transform Infrared (FTIR) spectroscopy as well as by X-Ray Photoelectron Spectroscopy (XPS). The content of carbon and oxygen in films were found to be inversely proportional to each other. XPS results showed that the outermost surface of the deposited films are nanoporous and coexist with microporosity which was revealed by electron microscopy. The structure of deposited coatings is anisotropic as was documented by polarized external reflection FTIR spectroscopy. Several correlations between the film chemical composition, surface structure, and macroscopic properties of the films such as: hydrophobicity and hydrophilicity were established. - Highlights: • Hybrid organo-polymer silicon films deposited by RF plasma on silicon substrates. • FTIR and XPS reveal porosity by interpreting bonding between Si and –O. • Quantification of nano and microporosity are identified with bonding of Si with –O.

  18. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı Formation, Eastern Turkey

    Science.gov (United States)

    Koç Taşgin, Calibe; Türkmen, İbrahim

    2009-06-01

    During the Neogene, both strike-slip and extensional regimes coexisted in eastern Turkey and, a number of fault-bounded basins associated with the East Anatolian Fault System developed. The Çaybağı Formation (Late Miocene-Early Pliocene) deposited in one of these basins consists of fluvio-lacustrine deposits. Numerous soft-sediment deformation structures are encountered in this formation, particularly in conglomerates, medium- to coarse-grained tuffaceous sandstones and claystones: folded structures (slumps, convolute laminations, and simple recumbent folds), water-escape structures (intruded sands, internal cusps, interpenetrative cusps and sand volcanoes), and load structures (load casts, pseudonodules, flame structures, and pillow structures). These structures are produced by liquefaction and/or fluidization of the unconsolidated sediments during a seismic shock. Consequently, the existence of seismically-induced deformation structures in the Çaybağı Formation and the association with a Neogene intraformational unconformity, growth faults, and reverse faults in the Çaybağı basin attest to the tectonic activity in this area during the Late Miocene and Early Pliocene. The East Anatolian Fault System, in particular the Uluova fault zone, is the most probable seismogenic source. Earthquakes with a magnitude of over 5 in the Richter scale can be postulated.

  19. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  20. ZnO film deposition on Al film and effects of deposition temperature on ZnO film growth characteristics

    International Nuclear Information System (INIS)

    Yoon, Giwan; Yim, Munhyuk; Kim, Donghyun; Linh, Mai; Chai, Dongkyu

    2004-01-01

    The effects of the deposition temperature on the growth characteristics of the ZnO films were studied for film bulk acoustic wave resonator (FBAR) device applications. All films were deposited using a radio frequency magnetron sputtering technique. It was found that the growth characteristics of ZnO films have a strong dependence on the deposition temperature from 25 to 350 deg. C. ZnO films deposited below 200 deg. C exhibited reasonably good columnar grain structures with highly preferred c-axis orientation while those above 200 deg. C showed very poor columnar grain structures with mixed-axis orientation. This study seems very useful for future FBAR device applications

  1. Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: princeterry@163.com [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Gao, G.J. [Changchun University of Science and Technology, College of Science, Changchun 130000 (China); Wang, X.Q.; Lv, G.H.; Zhou, L.; Chen, H.; Pang, H.; Yang, S.Z. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China)

    2012-07-15

    Ti-Al-N films were deposited by cathodic vacuum arc (CVA) technique in N{sub 2} atmosphere with different pulsed substrate bias. The influence of pulsed substrate bias (0 to -800 V) on the deposition rate, surface morphology, crystal structure, and mechanical properties of the Ti-Al-N films were systematically investigated. Increasing pulsed bias voltage resulted in the decrease of deposition rate but the increase of surface roughness. It was found that there was a strong correlation between the pulsed bias and film structure. All the films studied in this paper were composed of TiN, AlN, and Ti-Al-N ternary phases. The grains changed from equiaxial to columnar and exhibited preferred orientation when the pulsed bias increased. With the increase of pulsed bias voltage, the atomic ratio of Ti to Al element increased gradually, while the N to (Ti + Al) ratio decreased. The composite films present an enhanced nanohardness compared with binary TiN and ZrN films. The film deposited with pulsed bias of -200 V possessed the maximum scratch critical load and nanohardness. The minimum friction coefficient with pulsed bias of -300 V was obtained.

  2. Electrical and structural characteristics of spray deposited (Zn O)x-(Cd O)1-x

    International Nuclear Information System (INIS)

    Alarcon F, G.; Pelaez R, A.; Villa G, M.; Carmona T, S.; Luna G, J. A.; Aguilar F, M.; Vasquez P, B.; Falcony, C.

    2013-01-01

    (Zn O) x (Cd O) 1-x thin films were deposited on glass substrates at 300 and 400 C by ultrasonic spray pyrolysis with compositions ranging from Cd O to Zn O. The electrical properties were obtained by impedance spectroscopy and Hall Effect measurements. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, were used to study the structural characteristics of the films. Ellipsometry, in addition, was used to confirm the structural characteristics. The films as deposited resulted mainly polycrystalline and dense, depending on the substrate temperature and on their relative composition. All the films showed n-type conductivity and the films with intermediate compositions resulted in a mixture of both phases; Cd O and Zn O. Hall Effect measurements showed that the highest conductivity of Cd O was close to 1 x 10 3 (Ω-cm) -1 , the highest value obtained for Cd O, without doping. Impedance spectroscopy confirmed the Hall Effect results, showing that the highly conducting character of Cd O influenced dramatically the conductivity of the (Zn O) x (Cd O) 1-x films. In addition, depending on the substrate temperature and on the relative composition of the films, both, the bulk or grains, as well as the grain boundaries properties limit the conductivity in them. (Author)

  3. Influence of composition and substrate bias on structure and inert-gas content of sputter-deposited Ni-La alloys

    International Nuclear Information System (INIS)

    Knoll, R.W.; McClanahan, E.D.

    1982-09-01

    X-ray diffraction patterns show that the disappearance of crystallinity in the deposit occurs gradually as the La content increases. At the same time, the deposit becomes saturated with Kr. Because there is no evidence of crystalline La metal or Ni-La intermetallic phase in the diffraction data, it may be concluded that each La atom creates a highly disordered (amorphous) region in the lattice, and that this region contains interstitial voids large enough to capture inert gas atoms. Saturation of the gas content with respect to La/Ni ratio might commence when these disordered regions begin to impinge upon one another. Finally, if inert gas atoms occupy interstitial voids within the deposit, then determination of the gas trapping characteristics of the material, using inert gas ions of different sizes, may be a means of studying the structure of glassy vapor-deposited materials. For example, the size distribution of the interstitial voids might be determined in this manner

  4. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  5. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  6. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets

    Directory of Open Access Journals (Sweden)

    Ashford Paul

    2012-03-01

    Full Text Available Abstract Background Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. Results We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i analysis of a kinase superfamily highlights the

  7. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.

    Science.gov (United States)

    Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A

    2012-03-14

    Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active

  8. Pulsed laser deposition to synthesize the bridge structure of artificial nacre: Comparison of nano- and femtosecond lasers

    Science.gov (United States)

    Melaibari, Ammar A.; Molian, Pal

    2012-11-01

    Nature offers inspiration to new adaptive technologies that allow us to build amazing shapes and structures such as nacre using synthetic materials. Consequently, we have designed a pulsed laser ablation manufacturing process involving thin film deposition and micro-machining to create hard/soft layered "brick-bridge-mortar" nacre of AlMgB14 (hard phase) with Ti (soft phase). In this paper, we report pulsed laser deposition (PLD) to mimic brick and bridge structures of natural nacre in AlMgB14. Particulate formation inherent in PLD is exploited to develop the bridge structure. Mechanical behavior analysis of the AlMgB14/Ti system revealed that the brick is to be 250 nm thick, 9 μm lateral dimensions while the bridge (particle) is to have a diameter of 500 nm for a performance equivalent to natural nacre. Both nanosecond (ns) and femtosecond (fs) pulsed lasers were employed for PLD in an iterative approach that involves varying pulse energy, pulse repetition rate, and target-to-substrate distance to achieve the desired brick and bridge characteristics. Scanning electron microscopy, x-ray photoelectron spectroscopy, and optical profilometer were used to evaluate the film thickness, particle size and density, stoichiometry, and surface roughness of thin films. Results indicated that both ns-pulsed and fs-pulsed lasers produce the desired nacre features. However, each laser may be chosen for different reasons: fs-pulsed laser is preferred for much shorter deposition time, better stoichiometry, uniform-sized particles, and uniform film thickness, while ns-pulsed laser is favored for industrial acceptance, reliability, ease of handling, and low cost.

  9. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  10. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  11. Precambrian uranium deposits as a possible source of uranium for the European Variscan deposits

    International Nuclear Information System (INIS)

    Mineeva, I.G.; Klochkov, A.S.

    2002-01-01

    The Precambrian uranium deposits have been studied on the territory of Baltic and Ukrainian shields. The primary Early Proterozoic complex Au-U deposits originated in granite-greenstone belts as a result of their evolution during continental earth crust formation by prolonged rift genesis. The greenstone belts are clues for revealing ancient protoriftogenic structures. The general regularities of uranium deposition on Precambrian shields are also traceable in Variscan uranium deposits from the Bohemian massif. The Variscan period of uranium ore formation is connected with a polychronous rejuvenation of ancient riftogenous systems and relatively younger processes of oil and gas formation leading to the repeated mobilization of U from destroyed Proterozoic and Riphean uranium deposits. (author)

  12. Regional setting, distribution and genesis of surficial uranium deposits in calcretes and associated sediments in Western Australia

    International Nuclear Information System (INIS)

    Butt, C.R.M.; Mann, A.W.; Horwitz, R.C.

    1984-01-01

    Surficial uranium deposits in Western Australia are largely in the Yilgarn Block in areas of Archean granitoids and greenstones, and in the Gascoyne Province in Proterozoic granites and gneisses. The region has had a long weathering history marked by continuous planation developing a regolith up to 100 metres thick. The distribution of calcrete type uranium deposits is controlled by geologic as well as weathering, erosion and climatic factors. Valley, playa and terrace deposits are recognized. The principal known surficial uranium deposit, Yeelirrie, occurs in the Yilgarn block as a valley deposit. (author)

  13. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  14. Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin

    Science.gov (United States)

    Ingels, Jeroen; Billett, David S. M.; Kiriakoulakis, Konstadinos; Wolff, George A.; Vanreusel, Ann

    2011-12-01

    Samples collected at two different depths (ca. 3200 and ca. 4200 m) in the Setúbal and Cascais canyons off the Portuguese coast, during the HERMES RRS Charles Darwin cruise CD179, were analysed for (1) sediment biogeochemistry (TOC, TN) and (2) composition, and structural and trophic diversity of nematode communities. Multivariate PERMANOVA analysis on the nematode community data revealed differences between sediment layers that were greater than differences between canyons, water depths, and stations. This suggests that biogeochemical gradients along the vertical sediment profile are crucial in determining nematode community structure. The interaction between canyon conditions and the nematode community is illustrated by biogeochemical patterns in the sediment and the prevalence of nematode genera that are able to persist in disturbed sediments. Trophic analysis of the nematode community indicated that non-selective deposit feeders are dominant, presumably because of their non-selective feeding behaviour compared to other feeding types, which gives them a competitive advantage in exploiting lower-quality food resources. This study presents a preliminary conceptual scheme for interactions between canyon conditions and the resident fauna.

  15. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    Science.gov (United States)

    Yakubchuk, Alexander

    2004-09-01

    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  16. Optimizing the Use of Resources of Technogenic Deposits Taking into Account Uncertainties

    Directory of Open Access Journals (Sweden)

    Ivan Mikhaylovich Potravny

    2017-12-01

    Full Text Available The article discusses the problem of resource deterioration and the exhaustion of natural resources as well as the involvement in economic circulation of waste production, resources of technogenic deposits in order to maintain natural capital and support “green” economic growth. This necessitates the development of the mechanism for the environmental management optimization. This mechanism aims at using technogenic deposits in the economy to decrease of both the nature intensity of production and the cost of production. Furthermore, the environmental management optimization should reduce the negative impact of production on the environment. The authors propose to construct a model of economic relevance for the use of waste based on the theory of sustainable development and the theory of substitution of primary natural resources. Under substitutes, we consider useful products, resources from technogenic deposits, resulting from past economic activities. The article considers the problem of accumulation of municipal solid waste and industrial wastes in the regions of Russia in terms of forming and operating the ever-growing technogenic deposits. The authors propose a set of models for the optimum exploitation of technogenic deposits taking into account various factors of the external and internal environment as well as the time factor. The proposed models allow to substantiate and choose the best technologies for the processing of accumulated waste in terms of the reduction of pollution and “green” revenues from the exploitation of technogenic deposits. To account the probabilistic assessments of the geological structure of the technogenic deposits, we propose to use a combination of Monte-Carlo method and of developed optimization models. The authors describe the calculation results and the prospects for the development of a comprehensive model using regional technogenic deposits. The results of the research allow forming an optimal set

  17. A pilot cluster randomized controlled trial of structured goal-setting following stroke.

    Science.gov (United States)

    Taylor, William J; Brown, Melanie; William, Levack; McPherson, Kathryn M; Reed, Kirk; Dean, Sarah G; Weatherall, Mark

    2012-04-01

    To determine the feasibility, the cluster design effect and the variance and minimal clinical importance difference in the primary outcome in a pilot study of a structured approach to goal-setting. A cluster randomized controlled trial. Inpatient rehabilitation facilities. People who were admitted to inpatient rehabilitation following stroke who had sufficient cognition to engage in structured goal-setting and complete the primary outcome measure. Structured goal elicitation using the Canadian Occupational Performance Measure. Quality of life at 12 weeks using the Schedule for Individualised Quality of Life (SEIQOL-DW), Functional Independence Measure, Short Form 36 and Patient Perception of Rehabilitation (measuring satisfaction with rehabilitation). Assessors were blinded to the intervention. Four rehabilitation services and 41 patients were randomized. We found high values of the intraclass correlation for the outcome measures (ranging from 0.03 to 0.40) and high variance of the SEIQOL-DW (SD 19.6) in relation to the minimally importance difference of 2.1, leading to impractically large sample size requirements for a cluster randomized design. A cluster randomized design is not a practical means of avoiding contamination effects in studies of inpatient rehabilitation goal-setting. Other techniques for coping with contamination effects are necessary.

  18. Sandstone-type uranium deposits. Summary and conclusions

    International Nuclear Information System (INIS)

    Finch, W.I.

    1985-01-01

    The similarity of most of the deposits described in this report is striking even though they occur in sandstone host rocks ranging in age from Carboniferous to Tertiary and on every continent outside the polar regions. Geologic environments of the uranium deposits consist of distinctive sets of tectonic and sedimentary-depositional systems, all of which have some common threads of favorable geologic processes. In this summary paper it is hoped that this report has sharpened an understanding of the deposit's ''home environment'' that will aid future exploration for these resource-important sandstone-type uranium ores

  19. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  20. Low-fluorine Stockwork Molybdenite Deposits

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane; Piatak, Nadine M.

    2009-01-01

    Low-fluorine stockwork molybdenite deposits are closely related to porphyry copper deposits, being similar in their tectonic setting (continental volcanic arc) and the petrology (calc-alkaline) of associated igneous rock types. They are mainly restricted to the Cordillera of western Canada and the northwest United States, and their distribution elsewhere in the world may be limited. The deposits consist of stockwork bodies of molybdenite-bearing quartz veinlets that are present in and around the upper parts of intermediate to felsic intrusions. The deposits are relatively low grade (0.05 to 0.2 percent Mo), but relatively large, commonly >50 million tons. The source plutons for these deposits range from granodiorite to granite in composition; the deposits primarily form in continental margin subduction-related magmatic arcs, often concurrent with formation of nearby porphyry copper deposits. Oxidation of pyrite in unmined deposits or in tailings and waste rock during weathering can lead to development of acid-rock drainage and limonite-rich gossans. Waters associated with low-fluorine stockwork molybdenite deposits tend to be nearly neutral in pH; variable in concentrations of molybdenum (10,000 ug/L); below regulatory guidelines for copper, iron, lead, zinc, and mercury; and locally may exceed guidelines for arsenic, cadmium, and selenium.

  1. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  2. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  3. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  4. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    Science.gov (United States)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  5. Factor Structure of the WPPSI in Mental Health Clinic Settings.

    Science.gov (United States)

    Haynes, Jack P.; Atkinson, David

    1984-01-01

    Factor-analyzed the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) scores of emotionally disturbed children (N=181). The results suggested that the structure of intelligence for emotionally disturbed children is similar to that for normal children. WPPSI profile analysis that uses subtest scores may be invalid in clinical settings.…

  6. Effect of the cadmium ion source on the structural and optical properties of chemical bath deposited CdS thin films

    Science.gov (United States)

    Rami, M.; Benamar, E.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-06-01

    The chemical bath deposition (CBD) technique has been successfully used to deposit cadmium sulphide from cadmium chloride and cadmium acetate as the cadmium ion source and thiourea as the sulphur source on both glass microscope slide and indium tin oxide coated glass substrates. Various properties of the films such as surface morphology, crystallinity, optical properties and resistivitiy have been investigated. XRD patterns reveal that the CdS films deposited from cadmium chloride have an hexagonal structure. Their preferential orientation changes from (002) to (100) with the thermal annealing. Films deposited from cadmium acetate are amorphous but improve their crystallinity with annealing. SEM analysis shows that the grains of the as deposited films are randomly shaped and appear to be bigger in the case of the CdS prepared from cadmium chloride. The optical transmission of the layers are in the 70-80 % range for wavelength above the band gap absorption which makes them more appropriate as window material in heterojunction solar cells.

  7. Effect of the cadmium ion source on the structural and optical properties of chemical bath deposited CdS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rami, M.; Benamar, E.; Fahoume, M.; Chraibi, F.; Ennaoui, A. [University Mohamed V, Laboratory of Materials Physics, Dept., Faculty of Sciences, Rabat (Morocco)

    1999-06-01

    The chemical bath deposition (CBD) technique has been successfully used to deposit cadmium sulphide from cadmium chloride and cadmium acetate as the cadmium ion source and thiourea as the sulphur source on both glass microscope slide and indium tin oxide coated glass substrates. Various properties of the films such as surface morphology, crystallinity, optical properties and resistivity have been investigated. XRD patterns reveal that the CdS films deposited from cadmium chloride have an hexagonal structure. Their preferential orientation changes from (002) to (100) with the thermal annealing. Films deposited from cadmium acetate are amorphous but improve their crystallinity with annealing. SEM analysis shows that the grains of the as deposited films are randomly shaped and appear to be bigger in the case of the CdS prepared from cadmium chloride. The optical transmission of the layers are in the 70-80% range for wavelength above the band gap absorption which makes them more appropriate as window material in heterojunction solar cells. (authors)

  8. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  9. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  10. The Blind River uranium deposits: the ores and their setting

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1976-01-01

    The Matinenda Formation (basal Huronian) comprises northward-derived arkose, quartzite, and pyritic, uraniferous oligomictic conglomerate that contains 75 percent of Canada's uranium reserves. The conglomerate beds occur in southeasterly striking zones controlled by basement topography down-sedimentation from radioactive Archean granite. The mineralization is syngenetic, probably placer. Drab-coloured rocks, uranium and sulphide mineralization, and a post-Archean regolith formed under reducing conditions, suggest a reducing environment. Sedimentary features indicate deposition in fast-flowing shallow water, and possibly a cold climate. (author)

  11. Hierarchical Sets: Analyzing Pangenome Structure through Scalable Set Visualizations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin

    2017-01-01

    of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https...

  12. Electronic and structural properties of deposited silver nanoparticles. A STM and GISAXS study

    Energy Technology Data Exchange (ETDEWEB)

    Sell, Kristian

    2010-12-15

    The properties of supported Ag nanoparticles are investigated, with the focus on specific structural and electronic qualities. Using a statistical analysis it is shown that large Ag particles move over the surface after being deposited on Si(111)7 x 7. Surface photovoltage measurements reveal the band topology of nanoscale metal-semiconductor systems. The findings are discussed with a band topology model and in terms of current transport mechanisms. Grazing-incidence small angle X-ray scattering is used to monitor in situ the size and shape change of Ag nanoparticles during a catalytic reaction. (orig.)

  13. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aryanto, Didik, E-mail: didi027@lipi.go.id [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Marwoto, Putut; Sugianto [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Sudiro, Toto [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Birowosuto, Muhammad D. [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); CINTRA UMI CNRS/NTU/THALES 3288 Research Techno Plaza, 50 Nanyang Drive, Border X Block, level 6, 637553 (Singapore); Sulhadi [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)

    2016-04-19

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtained at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.

  14. Hydrothermal deposition and photochromic performances of three kinds of hierarchical structure arrays of WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Defang; Shen, Yi, E-mail: sysy7373@163.com; Ouyang, Yali; Li, Zhen

    2012-10-01

    Three kinds of tungsten oxide (WO{sub 3}) thin films have been fabricated by a simple hydrothermal deposition method. Scanning electron microscopy images of the products revealed that the capping agents did impact the microstructure of WO{sub 3} films. Films prepared without capping agents were ordered nanorod arrays, while the ones obtained with ethanol and oxalic acid revealed peeled-orange-like and cauliflower-like hierarchical structure arrays, respectively. Both of the two hierarchical structures were composed of much thinner nanorods compared with the one obtained without capping agents. All the WO{sub 3} films exhibited good photochromic properties and the two with inducers performed even better, which could be due to the changes in the microstructure that increased the amount of photogenerated electron-hole pairs and the proton diffusion rates. - Highlights: Black-Right-Pointing-Pointer Ordered WO{sub 3} nanorod arrays were prepared by hydrothermal deposition process. Black-Right-Pointing-Pointer Two hierarchical WO{sub 3} structure arrays were obtained with ethanol and oxalic acid. Black-Right-Pointing-Pointer Mechanism for the improved photochromic performances of WO{sub 3} films is proposed.

  15. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  16. Theoretical study of thin metallic deposit layers: from electronic structure to kinetics

    International Nuclear Information System (INIS)

    Senhaji, Abdelali

    1993-01-01

    We have studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A (or B) deposited on a B (or A) substrate. We used an energetic model derived from the electronic structure (T.B.I.M.) allowing us to study the surface segregation both in disordered and in ordered alloys. Moreover we have developed a kinetic model (K.T.B.I.M.) consistent with the TBIM energetic model to study the kinetics both of segregation and dissolution. This process has been applied to the Cu-Pt system for which Auger, LEED and photoemission experiments are in progress at L.U.R.E. Concerning the equilibrium surface segregation in the ordered state we have studied all the possible terminations for the (111) and (100) faces in the various ordered structures occurring on the F.C.C. lattice (L1 0 , L1 1 - L1 2 and L'). In particular we have determined the domain of (meta)stability of each termination, which is very useful to understand the competition between single and double steps in ordered alloys. Studying the kinetics of dissolution of a few layers of Cu (or Pt) deposited on the (111) or (100) face of a Pt (or Cu) substrate, we have shown the formation of surface compounds with a great variety of behaviours depending on the face or on the temperature. All these behaviours can be rationalized with the local equilibrium concept, which we have defined accurately within our model and which allows to connect the dissolution mode with the equilibrium segregation. (author) [fr

  17. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  18. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    Science.gov (United States)

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    More than 420 million oz of gold were concentrated in circum-Pacific synorogenic quartz loades mainly during two periods of continental growth, one along the Gondwanan margin in the Palaeozoic and the other in the northern Pacific basin between 170 and 50 Ma. These ores have many features in common and can be grouped into a single type of lode gold deposit widespread throughout clastic sedimentary-rock dominant terranes. The auriferous veins contain only a few percent sulphide minerals, have gold:silver ratios typically greater than 1:1, show a distinct association with medium grade metamorphic rocks, and may be associated with large-scale fault zone. Ore fluids are consistently of low salinity and are CO2-rich. In the early and middle Palaeozoic in the southern Pacific basin, a single immense turbidite sequence was added to the eastern margin of Gondwanaland. Deformation of these rocks in southeastern Australia was accompanied by deposition of at least 80 million oz of gold in the Victorian sector of the Lachlan fold belt mainly during the Middle and Late Devonian. Lesser Devonian gold accumulations characterized the more northerly parts of the Gondwanan margin within the Hodgkinson-Broken River and Thomson fold belts. Additional lodes were emplaced in this flyschoid sequence in Devonian or earlier Palaeozoic times in what is now the Buller Terrane, Westland, New Zealand. Minor post-Devonian growth of Gondwanaland included terrane collision and formation of gold-bearing veins in the Permian in Australia's New England fold belt and in the Jurassic-Early Cretaceous in New Zealand's Otago schists. Collision and accretion of dozens of terranes for a 100-m.y.-long period against the western margin of North America and eastern margin of Eurasia led to widespread, lattest Jurassic to Eocene gold veining in the northern Pacific basin. In the former location, Late Jurassic and Early Cretaceous veins and related placer deposits along the western margin of the Sierra Nevada

  19. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  20. Uranium deposits: Main types and concepts for detection

    International Nuclear Information System (INIS)

    Mashkovtsev, G.A.; Kislyakov, Ya.M.; Miguta, A.K.; Modnikov, I.S.; Shchetochkin, V.N.

    1997-01-01

    This paper presents a classification of uranium deposits as a basis for developing an optimal exploration strategy for discovering deposits with favorable characteristics for low production cost. The classification is based on endogenic and exogenic sub-classes both of which are subdivided to synegenetic and epigenetic groups. The tectonic setting is also taken into consideration. Following description of the economic and geological types of deposits, the factors governing the formation of the deposits is given. (author). 2 figs, 2 tabs

  1. Complex mineralization at large ore deposits in the Russian Far East

    Science.gov (United States)

    Schneider, A. A.; Malyshev, Yu. F.; Goroshko, M. V.; Romanovsky, N. P.

    2011-04-01

    Genetic and mineralogical features of large deposits with complex Sn, W, and Mo mineralization in the Sikhote-Alin and Amur-Khingan metallogenic provinces are considered, as well as those of raremetal, rare earth, and uranium deposits in the Aldan-Stanovoi province. The spatiotemporal, geological, and mineralogical attributes of large deposits are set forth, and their geodynamic settings are determined. These attributes are exemplified in the large Tigriny Sn-W greisen-type deposit. The variation of regional tectonic settings and their spatial superposition are the main factor controlling formation of large deposits. Such a variation gives rise to multiple reactivation of the ore-magmatic system and long-term, multistage formation of deposits. Pulsatory mineralogical zoning with telescoped mineral assemblages related to different stages results in the formation of complex ores. The highest-grade zones of mass discharge of hydrothermal solutions are formed at the deposits. The promising greisen-type mineralization with complex Sn-W-Mo ore is suggested to be an additional source of tungsten and molybdenum. The Tigriny, Pravourminsky, and Arsen'evsky deposits, as well as deposits of the Komsomol'sk and Khingan-Olonoi ore districts are examples. Large and superlarge U, Ta, Nb, Be, and REE deposits are localized in the southeastern Aldan-Stanovoi Shield. The Ulkan and Arbarastakh ore districts attract special attention. The confirmed prospects of new large deposits with Sn, W, Mo, Ta, Nb, Be, REE, and U mineralization in the south of the Russian Far East assure expediency of further geological exploration in this territory.

  2. Comparison of stress in single and multiple layer depositions of plasma-deposited amorphous silicon dioxide

    International Nuclear Information System (INIS)

    Au, V; Charles, C; Boswell, R W

    2006-01-01

    The stress in a single-layer continuous deposition of amorphous silicon dioxide (SiO 2 ) film is compared with the stress within multiple-layer intermittent or 'stop-start' depositions. The films were deposited by helicon activated reactive evaporation (plasma assisted deposition with electron beam evaporation source) to a 1 μm total film thickness. The relationships for stress as a function of film thickness for single, two, four and eight layer depositions have been obtained by employing the substrate curvature technique on a post-deposition etch-back of the SiO 2 film. At film thicknesses of less than 300 nm, the stress-thickness relationships clearly show an increase in stress in the multiple-layer samples compared with the relationship for the single-layer film. By comparison, there is little variation in the film stress between the samples when it is measured at 1 μm film thickness. Localized variations in stress were not observed in the regions where the 'stop-start' depositions occurred. The experimental results are interpreted as a possible indication of the presence of unstable, strained Si-O-Si bonds in the amorphous SiO 2 film. It is proposed that the subsequent introduction of a 'stop-start' deposition process places additional strain on these bonds to affect the film structure. The experimental stress-thickness relationships were reproduced independently by assuming a linear relationship between the measured bow and film thickness. The constants of the linear model are interpreted as an indication of the density of the amorphous film structure

  3. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    Science.gov (United States)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  4. Morpho-Structural Characterization of WC20Co Deposited Layers

    Science.gov (United States)

    Tugui, C. A.; Vizureanu, P.

    2017-06-01

    Hydroelectric power plants use the power of water to produce electricity. In this paper we propose a solution that will increase the efficiency of turbine operation by implementing new innovative technologies to increase the working characteristics by depositing hard thin films of tungsten carbide. For this purpose hard tough deposits with WC20Co and Jet Plasma Jet on X3CrNiMo13-4 stainless steel were used for the realization of the Francis turbine with vertical shaft.

  5. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  6. Micro-structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited using LAAM

    Science.gov (United States)

    Bi, G.; Sun, C. N.; Nai, M. L.; Wei, J.

    In this paper, deposition of Ni-base Inconel 625 mixed with nano-TiC powders using laser aided additive manufacturing (LAAM) was studied. Micro-structure and mechanical properties were intensively investigated. The results showed that nano-size TiC distributed uniformly throughout the Ni- matrix. Inconel 625 can be reinforced by the strengthened grain boundaries with nano-size TiC. Improved micro-hardness and tensile properties were observed.

  7. Evolution of Fine-Grained Channel Margin Deposits behind Large Woody Debris in an Experimental Gravel-Bed Flume

    Science.gov (United States)

    ONeill, B.; Marks, S.; Skalak, K.; Puleo, J. A.; Wilcock, P. R.; Pizzuto, J. E.

    2014-12-01

    Fine grained channel margin (FGCM) deposits of the South River, Virginia sequester a substantial volume of fine-grained sediment behind large woody debris (LWD). FGCM deposits were created in a laboratory setting meant to simulate the South River environment using a recirculating flume (15m long by 0.6m wide) with a fixed gravel bed and adjustable slope (set to 0.0067) to determine how fine sediment is transported and deposited behind LWD. Two model LWD structures were placed 3.7 m apart on opposite sides of the flume. A wire mesh screen with attached wooden dowels simulated LWD with an upstream facing rootwad. Six experiments with three different discharge rates, each with low and high sediment concentrations, were run. Suspended sediment was very fine grained (median grain size of 3 phi) and well sorted (0.45 phi) sand. Upstream of the wood, water depths averaged about 0.08m, velocities averaged about 0.3 m/s, and Froude numbers averaged around 0.3. Downstream of the first LWD structure, velocities were reduced tenfold. Small amounts of sediment passed through the rootwad and fell out of suspension in the area of reduced flow behind LWD, but most of the sediment was carried around the LWD by the main flow and then behind the LWD by a recirculating eddy current. Upstream migrating dunes formed behind LWD due to recirculating flow, similar to reattachment bars documented in bedrock canyon rivers partially obstructed by debouching debris fans. These upstream migrating dunes began at the reattachment point and merged with deposits formed from sediment transported through the rootwad. Downstream migrating dunes formed along the channel margin behind the LWD, downstream of the reattachment point. FGCM deposits were about 3 m long, with average widths of about 0.8 m. Greater sediment concentration created thicker FGCM deposits, and higher flows eroded the sides of the deposits, reducing their widths.

  8. Monitoring of Students' Interaction in Online Learning Settings by Structural Network Analysis and Indicators.

    Science.gov (United States)

    Ammenwerth, Elske; Hackl, Werner O

    2017-01-01

    Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.

  9. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium

    Science.gov (United States)

    Dill, Harald G.

    2010-06-01

    Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a classification chart of mineral resources called the "chessboard" (or "spreadsheet") classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 -D/pipes, 2 -D/veins) are plotted along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and

  10. Uniform deposition of size-selected clusters using Lissajous scanning

    International Nuclear Information System (INIS)

    Beniya, Atsushi; Watanabe, Yoshihide; Hirata, Hirohito

    2016-01-01

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt n (n = 7, 15, 20) clusters uniformly deposited on the Al 2 O 3 /NiAl(110) surface and demonstrated the importance of uniform deposition.

  11. Uniform deposition of size-selected clusters using Lissajous scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Hirata, Hirohito [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.

  12. Morphology of silver deposits produced by non-stationary steady regimes

    International Nuclear Information System (INIS)

    Popovski, Orce

    2002-01-01

    Morphology of silver electro deposits produced by periodical reversing of d.c. pulses was studied. Employing usual electrorefining conditions it is not possible to deposit compact silver layers from Ag non-complexing salts. This is due, mainly, to the high value of silver exchange current density and to the silver crystallographic peculiarity. In order to counteract this phenomenon, instead of usual, (stationer) potential-current regimes, non-stationary one was applied in this study. The effect of phosphate ions in the electrolyte was further clarified. A set of experimental conditions was applied so that silver was electrodeposited under mixed electrochemical and diffusion control. The primar cathodic pulse causes silver to nucleate with high density and nuclei to start to grow. The subsequent anodic pulse (current reversal) lowers the gradient of silver ion concentration and dissolves the most active growth centers as well. The combination of cathodic and anodic pulses diminishes the dendritic growth and helps smoothing of deposit surface to occur. Fine-grained and more compact deposits are produced, as compared to the ones grown in purely potentiostatic conditions. It was found that the addition of phosphate ions as well as the application of intensive electrolyte stirring change the Ag- grain morphology in favor of poli crystal whisker structure. (Author)

  13. Structural and Tectonic Composition and Origins of the Magnesite Deposit within the Dúbravský Massif near Jelšava, based on studies at the 220 m elev. Level (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Julián Kondela

    2010-03-01

    Full Text Available Magnesite deposit Jelsava – Dubravsky Massif represents one of the foremost deposits in Europe, even in the world, in terms of itsreserves size. A geological exploration and development of new blocks between the elevation levels of 220m and 320 m allowed moredetailed studies of structural and tectonic development within the deposit, which yielded new results. As the mining continues deeper,it becomes essential to understand details of the youngest extension phase of the deposit deformation. This stage, combined withthe earlier deformation stages, completes the deposit’s complex structural development which significantly influences the distributionof mined raw materials, the stability of mine workings and the mining operations’ safety. This paper summarizes individual structuresstudied and their characteristics. A special attention was devoted to youngest structures, which most likely developed duringthe Neo-Alpine stage. These structures completed the current block composition of the deposit and thus are the proof that even the oldestunits within the Western Carpathians bear signs of the youngest deformation stages.

  14. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    Science.gov (United States)

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  15. The analysis of structural and electronic environments of silicon network in HWCVD deposited a-SiC:H films

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2007-01-01

    Hydrogenated amorphous silicon carbon alloys (a-SiC:H) films were deposited by hot wire chemical vapour deposition (HWCVD) using SiH 4 and C 2 H 2 as precursor gases. a-SiC:H films were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Solid-state plasmon of Si network shifts from 19.2 to 20.5 eV by varying C 2 H 2 flow rate from 2 to 10 sccm. Incorporation of carbon content changes the valence band structure and s orbital is more dominant than sp and p orbital with carbon incorporation

  16. Geology of uranium vein-deposits in France

    International Nuclear Information System (INIS)

    Sarcia, J.A.; Carrat, J.; Poughon, A.; Sanselme, H.

    1958-01-01

    This paper gives an outline of the characteristics of the main uranium vein deposits in France; it underlines the structural, petrographic and metallogenic similarities of these deposits. (author) [fr

  17. Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

    Science.gov (United States)

    Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di

    2017-02-22

    Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.

  18. Effect of pH on optic and structural characterization of chemical deposited AgI thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tezel, Fatma Meydaneri [Department of Metallurgy and Materials Engineering, Karabük University (Turkey); Kariper, İshak Afşin [Department of Science Education, Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-11-15

    AgI thin films were grown on amorphous commercial glass substrates with chemical bath deposition (CBD) at different pH values (2, 3, 4, 5, 6), 6 hours deposition time and 60 °C. The structure of the nanocrystals was characterized by X-ray diffraction (XRD). The ratio of Ag{sup +} and I{sup -} ions changed the crystalline structures. The presence of the Ag{sup +} ions produces the γ-phase of AgI and excess of iodine concentration produces β-phase of AgI. The pH: 4 was like a transition pH for these phases. The number of crystallites per unit area has maximum value at pH: 5, as the structure is re-crystallization to hexagonal phase. Also, the thicknesses of produced thin films were decreased with increased pH values. Therefore, transmission, reflection, extinction coefficients and refractive index of the materials were affected by thicknesses, and calculated to be 32, 35, 3, 11, 9 (%) - 27, 25, 61, 45, 49 (%) - 0.036, 0.032, 0.067, 0.107, 0.075 and 3.21, 3.02, 5.16, 8.35, 5.70 in 550 nm at pH: 2-3-4-5-6 values, respectively. The exciton peaks of AgI were observed at between 320 and 420 nm. Surface properties were investigated by using scanning electron microscopy (SEM). (author)

  19. Vein type uranium deposits

    International Nuclear Information System (INIS)

    1986-01-01

    Veins are tabular- or sheet-like masses of minerals occupying or following a fracture or a set of fractures in the enclosing rock. They have been formed later than the country rock and fractures, either by filling of the open spaces or by partial or complete replacement of the adjoining rock or most commonly by both of these processes combined. This volume begins with the occurrences and deposits known from old shield areas and the sedimentary belts surrounding them. They are followed by papers describing the European deposits mostly of Variscan age, and by similar deposits known from China being of Jurassic age. The volume is completed by two papers which do not fit exactly in the given scheme. A separate abstract was prepared for each of the 25 papers in this report

  20. Morphology, structure, and electrical properties of YBa2Cu3Ox thin films on tilted NdGaO3 substrates, deposited by DC-sputtering

    International Nuclear Information System (INIS)

    Mozhaev, Peter B.; Kotelyanskii, Iosif M.; Luzanov, Valery A.; Mozhaeva, Julia E.; Donchev, Todor; Mateev, Emil; Nurgaliev, Timur; Bdikin, Igor K.; Narymbetov, Bakhyt Zh.

    2005-01-01

    Thin YBa 2 Cu 3 O x (YBCO) films were deposited using DC-sputtering technique on NdGaO 3 substrates, tilted from (1 1 0) orientation by 0-26 deg . The structure and surface quality of the substrates were carefully characterized to obtain reliable results of thin films deposition. Structural, morphological and electrical properties of the YBCO thin films show three different ranges of inclination angle: vicinal, intermediate and high. In the vicinal range the properties of the film are generally the same as of the standard films deposited on (1 1 0) NdGaO 3 substrate. An increase of the inclination angle to the intermediate range results in a significant improvement of morphology and structural quality of the film. Best electrical parameters are measured for the films of the intermediate range also. Probable reason for such behavior is simultaneous and regular seeding of the film in the joints of facets on the substrate surface. Further increase of inclination angle leads to step bunching and oxygen out-diffusion, destroying both structural and electrical perfection of the tilted-axes YBCO film

  1. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Halling Folkmar Andersen, Anna; Anegaard Rolskov, Lærke

    2017-01-01

    Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast......, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological......, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view...

  2. Structural setting of the Metán Basin (NW Argentina): new insights from 2D seismic profiles

    Science.gov (United States)

    Conti, Alessia; Maffucci, Roberta; Bigi, Sabina; Corrado, Sveva; Giordano, Guido; Viramonte, José G.

    2017-04-01

    The Metán Basin is located in the sub-Andean foreland, in the southernmost portion of the Santa Barbara system structural province (NW Argentina). The upper crust in this region shows a strong segmentation due to inherited stratigraphic and structural discontinuities, related to a Palaeozoic orogenic event and to a Cretaceous to Paleogene rifting event (Kley et al., 1999; Iaffa et al., 2011). This study seeks to unravel the deep structural setting of the basin, in order to better understand the tectonic evolution of the area. Different seismic sections are analysed, located in the Metán basin and acquired by YPF (Yacimientos Petrolíferos Fiscales, former national oil company of Argentina) in different surveys during the '70s - '80s. Stratigraphic control for the seismic interpretation is provided by petroleum exploratory wells drilled in the basin; they show a stratigraphic succession of syn-rift and post-rift deposits, mainly constituted by a continental succession of red beds, with minor limestone intercalations (Salta Group), overlain by a thick continental foreland basin succession (Orán Group) (Salfity et al., 1981). From a structural point of view, the Metán basin is characterized by a variety of structural trends, with thrust faults and related folds mainly trending N-S, NE-SW and NNE-SSW. Different mechanism can be responsible for the folding of the sedimentary cover; hangingwall anticlines are represented both by high angle thrust faults produced by inversion of Cretaceous extensional faults (Maffucci et al., 2015), and by fault propagation folds formed during the Andean shortening event. The study of the interaction between the older reactivated faults and the newly generated ones could provide new insights to unravel the complex structural setting of the area. References Iaffa D. N., Sàbat, F., Muñoz, J.A., Mon, R., Gutierrez, A.A., 2011. The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. Journal of

  3. An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Museth, Ken

    2004-01-01

    enforced by the convex boundaries of an underlying cartesian computational grid. Here we present a novel very memory efficient narrow band data structure, dubbed the Sparse Grid, that enables the representation of grid independent high resolution level sets. The key features our new data structure are...

  4. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  5. Geochemistry and genesis of apatite bearing Fe oxide Dizdaj deposit, SE Zanjan

    Directory of Open Access Journals (Sweden)

    Ghasem Nabatian

    2009-09-01

    magnetites. Fluid inclusion studies were conducted on two generations of apatite in the deposit. Based on the studies, the temperature and salinity of the first generation apatites are higher than those for the second generation apatites. The most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit indicated magmatic Fe-P-REE-rich fluids source for the mineralization. Comparison of the most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit (including tectonic setting, host rock, mineralogy, alteration, structure and texture and geochemistry with those of various types of iron mineralization in the world suggest that Sorkheh-Dizaj iron-oxide apatite deposit shows the most similarity with the Kiruna type iron-oxide apatite deposits classified as a subgroup of hydrothermal Iron Oxide Copper Gold (IOCG deposits.

  6. Magnetoresistive multilayers deposited on the AAO membranes

    International Nuclear Information System (INIS)

    Malkinski, Leszek M.; Chalastaras, Athanasios; Vovk, Andriy; Jung, Jin-Seung; Kim, Eun-Mee; Jun, Jong-Ho; Ventrice, Carl A.

    2005-01-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si

  7. Palladium clusters deposited on the heterogeneous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: cqdxwk@126.com [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Liu, Juanfang, E-mail: juanfang@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China); Chen, Qinghua, E-mail: qhchen@cqu.edu.cn [College of Power Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing 400044 (China)

    2016-07-15

    Graphical abstract: The site-exchange between the substrate and cluster atoms can result in the formation of the surface alloys and the reconstruction of the cluster structure before the collision system approaching the thermal equilibrium. The deposited cluster adjusted the atom arrangement as possibly as to match the substrate lattice arrangement from bottom to up. The structural reconstruction is accompanied by the system potential energy minimization. - Highlights: • The deposition process can divide explicitly into three stages: adsorption, collision, relaxation. • The local melt does not emerge inside the substrate during the deposition process. • Surface alloys are formed by the site-exchange between the cluster and substrate atoms. • The cluster reconstructs the atom arrangement following as the substrate lattice arrangement from bottom to up. • The structural reconstruction ability and scope depend on the cluster size and incident energy. - Abstract: To improve the performance of the Pd composite membrane prepared by the cold spraying technology, it is extremely essential to give insights into the deposition process of the cluster and the heterogeneous deposition of the big Pd cluster at the different incident velocities on the atomic level. The deposition behavior, morphologies, energetic and interfacial configuration were examined by the molecular dynamic simulation and characterized by the cluster flattening ratio, the substrate maximum local temperature, the atom-embedded layer number and the surface-alloy formation. According to the morphology evolution, three deposition stages and the corresponding structural and energy evolution were clearly identified. The cluster deformation and penetrating depth increased with the enhancement of the incident velocity, but the increase degree also depended on the substrate hardness. The interfacial interaction between the cluster and the substrate can be improved by the higher substrate local temperature

  8. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  9. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    Science.gov (United States)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  10. Composition, structure and magnetic properties of sputter deposited Ni-Mn-Ga ferromagnetic shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Annadurai, A.; Nandakumar, A.K.; Jayakumar, S.; Kannan, M.D. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore 641004 (India); Manivel Raja, M.; Bysak, S. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India)], E-mail: rg_gopy@yahoo.com; Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India)

    2009-03-15

    Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L2{sub 1} austenitic phase.

  11. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    Science.gov (United States)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  12. Surficial uranium deposits: summary and conclusions

    International Nuclear Information System (INIS)

    Otton, J.K.

    1984-01-01

    Uranium occurs in a variety of surficial environments in calcretes, gypcretes, silcretes, dolocretes and in organic sediments. Groundwater moving on low gradients generates these formations and, under favourable circumstances, uranium deposits. A variety of geomorphic settings can be involved. Most surficial deposits are formed in desert, temperate wetland, tropical, or transitional environments. The largest deposits known are in sedimentary environments in arid lands. The deposits form largely by the interaction of ground or surface waters on the geomorphic surface in favourable geologic terrains and climates. The deposits are commonly in the condition of being formed or reconstituted, or being destroyed. Carnotite is common in desert deposits while in wetland deposits no uranium minerals may be seen. Radioactive disequilibrium is common, particularly in wetland deposits. Granites and related rocks are major source rocks and most large deposits are in regions with enriched uranium contents, i.e. significantly greater than 5 ppm uranium. Uranium dissolution and transport is usually under oxidizing conditions. Transport in desert conditions is usually as a bicarbonate. A variety of fixation mechanisms operate to extract the uranium and form the deposits. Physical barriers to groundwater flow may initiate ore deposition. Mining costs are likely to be low because of the near surface occurrence, but there may be processing difficulties as clay may be present and the saline or carbonate content may be high. (author)

  13. Structure and magnetic properties of Co2FeSi film deposited on Si/SiO2 substrate with Cr buffer layer

    Science.gov (United States)

    Chatterjee, Payel; Basumatary, Himalay; Raja, M. Manivel

    2018-05-01

    Co2FeSi thin films of 25 nm thickness with 50 nm thick Cr buffer layer was deposited on thermally oxidized Si substrates. Structural and magnetic properties of the films were studied as a function of annealing temperature and substrate temperatures. While the coercivity increases with increase in annealing temperature, it is found to decrease with increase in substrate temperature. A minimum coercivity of 18 Oe has been obtained for the film deposited at 550°C substrate temperature. This was attributed to the formation of L12 phase as observed from the GIXRD studies. The films with a good combination of soft magnetic properties and L21 crystal structure are suitable for spintronic applications.

  14. Structural properties of In2Se3 precursor layers deposited by spray pyrolysis and physical vapor deposition for CuInSe2 thin-film solar cell applications

    International Nuclear Information System (INIS)

    Reyes-Figueroa, P.; Painchaud, T.; Lepetit, T.; Harel, S.; Arzel, L.; Yi, Junsin; Barreau, N.; Velumani, S.

    2015-01-01

    The structural properties of In 2 Se 3 precursor thin films grown by chemical spray pyrolysis (CSP) and physical vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process of CuInSe 2 (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In 2 Se 3 crystalline phase for both films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the same crystalline phase but with different orientations are normally used in the preparation of high quality CISe films by 3-stage process. Scanning electron microscope cross-section images showed an important difference in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers (600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamination. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the obtained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber films. - Highlights: • To find the intricacies involved in spray pyrolysis (CSP) and physical vapor (PVD) deposition. • Comparison of CSP and PVD film formations — especially in structural properties. • Feasibility to substitute CSP (cheaper) films for PVD in the manufacturing process. • Decreasing the global production cost of Cu(In,Ga)Se 2 devices in the 3-stage process

  15. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  16. A special issue devoted to gold deposits in northern Nevada: Part 2. Carlin-type Deposits

    Science.gov (United States)

    Hofstra, Albert H.; John, David A.; Theodore, Ted G.

    2003-01-01

    This is the second of two special issues of Economic Geology devoted to gold deposits in northern Nevada. Readers interested in a general overview of these deposits, their economic significance, their context within the tectonic evolution of the region, and synoptic references on each gold deposit type are directed to the preface of the first special issue (John et al., 2003). Volume 98, issue 2, contains five papers that address regional aspects important to the genesis of gold deposits in northern Nevada and five papers that present detailed studies of epithermal deposits and districts. All of the regional papers are pertinent to Carlin-type gold deposits, because they address the age of mineralization (Arehart et al., 2003), origin and evolutionary history of the northwest-striking mineral belts that localize many deposits (Grauch et al., 2003), nature of the middle and lower crust below these mineral belts (Howard, 2003), district- to deposit-scale stream sediment and lithogeochemical anomalies (Theodore et al., 2003), and stratigraphy and structure of a district located along a northeast-striking lineament (Peters et al., 2003).

  17. Plasma processing techniques for deposition of carbonic thin protective coatings on structural nuclear materials

    International Nuclear Information System (INIS)

    Andrei, V.; Oncioiu, G.; Coaca, E.; Rusu, O.; Lungu, C.

    2009-01-01

    Full text of publication follows: The production of nano-structured surface films with controlled properties is crucial for the development of materials necessary for the Advanced Systems for Nuclear Energy. Since the surface of materials is the zone through which materials interact with the environment, the surface science and surface engineering techniques plays an essential role in the understanding and control of the processes involved. Complex surface structures were developed on stainless steels used as structural nuclear materials: austenitic stainless steels based on Fe, austenitic steels with high content of Cr, ferrites resistant to corrosion, by various Plasma Processing methods which include: - Plasma Electrolytic (PE) treatments: the steel substrates were modified by nitriding and nitro-carburizing plasma diffusion treatments; - carbonic films deposition in Thermionic Vacuum Arc Plasma. The results of the characterization of surface structures obtained in various experimental conditions for improvement of the properties (corrosion resistance, hardness, wear properties) are reported: the processes and structures were characterized by correlation of the results of the complementary techniques: XPS, 'depth profiling', SEM, XRD, EIS. An overall description of the processes involved in the surface properties improvement, and some consideration about the new materials development for energy technologies are presented

  18. Types of tectonic structures, sedimentary volcanogenetic formations of a mantle, favourable processes for exogenetic and polygenetic uranium deposits formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.

    1985-01-01

    Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization

  19. Impact of Atomic Layer Deposition to NanoPhotonic Structures and Devices: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan eSaleem

    2014-10-01

    Full Text Available We review the significance of optical thin films by Atomic Layer Deposition (ALD method to fabricate nanophotonic devices and structures. ALD is a versatile technique to deposit functional coatings on reactive surfaces with conformal growth of compound materials, precise thickness control capable of angstrom resolution and coverage of high aspect ratio nanostructures using wide range of materials. ALD has explored great potential in the emerging fields of photonics, plasmonics, nano-biotechnology, and microelectronics. ALD technique uses sequential reactive chemical reactions to saturate a surface with a monolayer by pulsing of a first precursor (metal alkoxides or covalent halides, followed by reaction with second precursor molecules such as water to form the desired compound coatings. The targeted thickness of the desired compound material is controlled by the number of ALD cycles of precursor molecules that ensures the self limiting nature of reactions. The conformal growth and filling of TiO2 and Al2O3 optical material on nanostructures and their resulting optical properties have been described. The low temperature ALD-growth on various replicated sub-wavelength polymeric gratings is discussed.

  20. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  1. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  2. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  3. Structural and magnetic properties in Mn-doped ZnO films prepared by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Li, Qiang; Wang, Yuyin; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2014-01-01

    We investigated the structural and magnetic properties of Zn 0.95 Mn 0.05 O films prepared on sapphire substrates by pulsed-laser deposition. Only low temperature ferromagnetism (Curie temperature lower than 50 K) was observed in Mn-doped samples, while pure ZnO film shows a typical paramagnetic behavior. Structural analyses indicate that the substitutional Mn 2+ ions play a significant role for the low temperature ferromagnetism. Lattice defects such as V O and V Zn were not proven to be effective factors for the origin of ferromagnetism in the films. The low temperature ferromagnetism might be interpreted as p–d hybridization from indirect coupling of Mn ions (Mn–O–Mn).

  4. LATE PLIOCENE-HOLOCENE DEBRIS FLOW DEPOSITS IN THE IONIAN SEA (EASTERN MEDITERRANEAN

    Directory of Open Access Journals (Sweden)

    GIOVANNI ALOISI DE LARDEREL

    1997-11-01

    Full Text Available Widespread coring of the Eastern Mediterranean Basin has outlined the existence of a systematic relation between lithology of debris flow deposits and physiographic setting. Whilst the topographic highs are characterized by pelagic sedimentation, the basin floors are alternatively subject to pelagic sedimentation and re-sedimentation pro cesses. Amongst the latters, turbidity flows and debris flows are the most common transport mechanisms.In this paper we present the study of the debris flow pro cess in the Ionian Sea using visual description of cores, grain size, carbonate content and smear slide analysis carried out on gravity and piston cores recovered over the past 20 years. A distinction has been made between debris flow deposits originating from the continental margins (North Africa and Malta Escarpment and those emplaced in the small basins amidst the Calabrian and Mediterranean ridges "Cobblestone Topography". As a result of the difference in setting, the former debris flow deposits include a great variety of lithologies and ages whilst the latter involve the pelagic sediments forming the typical Eastern Mediterranean Plio-Quaternary succession. A detailed study of clast and matrix structures makes it possible to describe the flows in terms of existing classifications of sediment gravity flows and to assume a clast support mechanism. Finally, biostratigraphy coupled with the presence of widespread marker beds enabled us to estimate the age of emplacement of the deposits and to hypothesize a triggering mechanism for flow initiation. Three flows are strictly related to the pelagic turbidite named homogenite, triggered by the explosive eruption of the Santorini volcano (Minoan eruption and therefore have an estimated age of 3,500 BP. The other deposits have ages ranging from 9,000 BP to about 70,000 BP and were originated by debris flows triggered by events such as earthquakes and glacial low sea level stands.    

  5. Hydrogeological feature and recharge factors of Baofengyuan uranium deposit in north Jiangxi

    International Nuclear Information System (INIS)

    He Xiaomei

    2013-01-01

    Baofengyuan uranium deposit is a typical carbonaceous-siliceous-argillaceous rock one in China. The groundwater in the deposit distributed like layers which are mainly interlayer structure fracture confined water and structure solution cave fracture confined water in the third and fourth layer of Wangyinpu formation of Cambrian and the third and second layer of Dengying formation and Doushantuo formation of Sinian. The mineralization bed is basically coherent with the aquifer. In the area, geologic structures are fairly complicated, the groundwater between aquifers are probably connected with leakage and diversion structures. In the west side of structure F8, the deposit is recharged mainly by interlayer structure solution cave fissure confined water of rich source, and in the east side of structure F8, the deposit is recharged by interlayer structure fissure confined water of poor source. Before mining the deposit, the hydrogeological evaluation must be performed to accurately ascertain the diversion structure position, analysis the weak location of the top and bottom watertight stratum of the ore-bearing bed so as to provide a basis for waterproof security. (author)

  6. Mechanistic study of aerosol dry deposition on vegetated canopies; Etude mecaniste du depot sec d'aerosols sur les couverts vegetaux

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, A

    2005-04-15

    The dry deposition of aerosols onto vegetated canopies is modelled through a mechanistic approach. The interaction between aerosols and vegetation is first formulated by using a set of parameters, which are defined at the local scale of one surface. The overall deposition is then deduced at the canopy scale through an up-scaling procedure based on the statistic distribution parameters. This model takes into account the canopy structural and morphological properties, and the main characteristics of the turbulent flow. Deposition mechanisms considered are Brownian diffusion, interception, initial and turbulent impaction, initially with coniferous branches and then with entire canopies of different roughness, such as grass, crop field and forest. (author)

  7. Ion-assisted sputter deposition of molybdenum--silicon multilayers

    International Nuclear Information System (INIS)

    Vernon, S.P.; Stearns, D.G.; Rosen, R.S.

    1993-01-01

    X-ray multilayer (ML) structures that are fabricated by the use of magnetron-sputter deposition exhibit a degradation in structural quality as the deposition pressure is increased. The observed change in morphology is attributed to a reduced mobility of surface adsorbed atoms, which inhibits the formation of smooth, continuous layers. The application of a negative substrate bias produces ion bombardment of the growing film surface by sputtering gas ions extracted from the plasma and permits direct control of the energy density supplied to the film surface during thin-film growth. The technique supplements the energy lost to thermalization in high-pressure deposition and permits the fabrication of high-quality ML structures at elevated processing pressures. A threefold improvement in the soft-x-ray normal-incidence reflectance at 130 A results for substrate bias voltages of the order of ∼-150 V for Mo--Si ML's deposited at 10-mTorr Ar

  8. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    Science.gov (United States)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  9. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    International Nuclear Information System (INIS)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-01-01

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT

  10. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  11. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  12. Deformed glacial deposits of Passamaquoddy Bay area, New Brunswick

    International Nuclear Information System (INIS)

    Kumarapeli, S.

    1990-03-01

    The New Brunswick-Maine border area, centred around Passamaquoddy Bay, is characterized by a distinctly higher level of seismic activity compared with the very low level background activity of the region. In this same general area, post-glacial deformation including faulting, has been observed in glaciofluvial and ice contact deposits and the possibility that these structures may in some way related to neotectonic movements in the area has been suggested. A study was undertaken to document these structures and to investigate their origin. The studies show that structures related to collapse of sediments due to melting of buried ice masses are the most prominent post-depositional structures in the glacial sediments. A second group of structures includes failure phenomena such as slumping. These require the action of a mechanism leading to reduction of sediment strength which could be achieved by seismic shaking. However, such failure phenomena could also be brought about by non-seismic processes, thus a unique interpretation of the origin of these structures is difficult, if not impossible. Since seismic shaking is the most effective, regionally extensive trigger of a broad group of failure phenomena in soft sediments, the related structures are usually spread over a large area, but are restricted to a very short time gap. Although the establishment of such space and time relationships may be feasible, for example in extensive lake deposits, it is difficult to do so in patchy laterally variable deposits such as the glacial deposits in Passamaquoddy Bay area

  13. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  14. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  15. Structural investigation of ZnO:Al films deposited on the Si substrates by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Y.Y.; Yang, J.R.; Cheng, S.L.; Shiojiri, M.

    2013-01-01

    ZnO:Al films 400 nm thick were prepared on (100) Si substrates by magnetron sputtering. Energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM) revealed that in the initial stage of the deposition, an amorphous silicon oxide layer about 4 nm thick formed from damage to the Si substrate due to sputtered particle bombardment and the incorporation of Si atoms with oxygen. Subsequently, a crystalline Si (Zn) layer about 30 nm thick grew on the silicon oxide layer by co-deposition of Si atoms sputtered away from the substrate with Zn atoms from the target. Finally, a ZnO:Al film with columnar grains was deposited on the Si (Zn) layer. The sputtered particle bombardment greatly influenced the structure of the object films. The (0001) lattice fringes of the ZnO:Al film were observed in high-resolution TEM images, and the forbidden 0001 reflection spots in electron diffraction patterns were attributed to double diffraction. Therefore, the appearance of the forbidden reflection did not imply any ordering of Al atoms and/or O vacancies in the ZnO:Al film. - Highlights: • ZnO:Al films were deposited on (100) Si substrate using magnetron sputtering. • An amorphous silicon oxide layer with a thickness of 4 nm was formed on Si substrate. • Crystalline Si (Zn) layer about 30 nm thick grew on amorphous silicon oxide layer. • ZnO:Al film comprising columnar grains was deposited on the Si(Zn) layer. • Lattice image of the ZnO:Al film has been interpreted

  16. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    Science.gov (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  17. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Surmeneva, Maria A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Surmenev, Roman A., E-mail: rsurmenev@gmail.com [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Nikonova, Yulia A.; Selezneva, Irina I. [Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142292 (Russian Federation); Ivanova, Anna A. [Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Putlyaev, Valery I. [Department of Chemistry, Moscow State University, Vorobievi Gory, 1, Moscow 119991 (Russian Federation); Prymak, Oleg; Epple, Matthias [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany)

    2014-10-30

    Highlights: • Growth of a columnar grain structure perpendicular to the substrate surface was observed. • Interplanar spacing distances measured using HRTEM were 0.82 and 0.28 nm, corresponding to the (0 0 1) and (2 1 1) lattice planes of hexagonal HA. • Grain size and crystallinity increased when increasing the deposition time. • Nanometer-thick low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules. - Abstract: A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  18. Kinematics of Mass Transport Deposits revealed by magnetic fabrics

    Science.gov (United States)

    Weinberger, R.; Levi, T.; Alsop, G. I.; Marco, S.

    2017-08-01

    The internal deformation and movement directions of Mass Transport Deposits (MTDs) are key factors in understanding the kinematics and dynamics of their emplacement. Although these are relatively easy to recover from well-bedded sediments, they are more difficult to deduce from massive beds without visible strain markers. In order to test the applicability of using anisotropy of magnetic susceptibility (AMS) to determine MTD movement, we compare AMS fabrics, with structural measurements of visible kinematic indicators. Our case study involves the structural analysis of slumped lake sediments extensively exposed in MTDs within the Dead Sea Basin. Structural analyses of MTDs outcropping for >100 km reveal radial transport directions toward the basin depocenter. We show that the AMS fabrics display the same transport directions as inferred from structural analyses. Based on this similarity, we outline a robust procedure to obtain the transport direction of slumped MTDs from AMS fabrics. Variations in the magnetic fabrics and anisotropies in fold-thrust systems within the slumps match the various structural domains. We therefore suggest that magnetic fabrics and anisotropy variations in drill cores may reflect internal deformation within the slumps rather than different slumps. Obtaining magnetic fabrics from MTDs provides a viable way to infer the transport directions and internal deformation of MTDs and reconstruct the basin depocenter in ancient settings. The present results also have implications beyond the kinematics of MTDs, as their geometry resembles fold-thrust systems in other geological settings, scales, and tectonic environments.

  19. Influence of substrate bias on the structure and properties of (Ti, Al)N films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Cheng, Y.H.; Tay, B.K.; Lau, S.P.; Shi, X.

    2001-01-01

    (Ti, Al)N films were deposited by an off-plane, double-bend, filtered cathodic vacuum arc technique in N 2 atmosphere at room temperature. The (Ti, Al)N films deposited are atomically smooth. The influence of substrate negative bias at the wide range (0-1000 V) on the deposition rate, surface morphology, crystal structure, internal stress, and mechanical properties of (Ti, Al)N films were systematically studied. Increasing substrate bias results in the decrease of deposition rate and the increase of surface roughness monotonically. At the bias of 0 V, (Ti, Al)N films are amorphous, and the internal stress, hardness, and Young's modulus for the deposited films are fairly low. With increasing substrate bias to 200 V, single-phase face-centered cubic-type nanocrystalline (Ti, Al)N films can be obtained, and the internal stress, hardness, and Young's modulus increase to the maximum of 7 GPa, 28 GPa, and 240 GPa, respectively. Further increase of substrate bias results in the decrease of intensity and the broadening of x-ray diffraction lines, and the gradual decrease of internal stress, hardness, and Young's modulus in (Ti, Al)N films

  20. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    Science.gov (United States)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  1. The structure and growth mechanism of Si nanoneedles prepared by plasma-enhanced chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Ledinský, Martin; Stuchlík, Jiří; Stuchlíková, The-Ha; Bakardjieva, Snejana; Hruška, Karel; Fejfar, Antonín; Kočka, Jan

    2010-01-01

    Roč. 21, č. 41 (2010), 415604/1-415604/7 ISSN 0957-4484 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : nanoneedles * nanowires * silicon * plasma * chemical vapor deposition * crystal structure * growth * phonon * SEM * Raman Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  2. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    Science.gov (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  3. The nano-fractal structured tungsten oxides films with high thermal stability prepared by the deposition of size-selected W clusters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ji; Kim, Young Dok [Sungkyunkwan University, Department of Chemistry, Suwon (Korea, Republic of); Dollinger, Andreas; Huether, Lukas; Blankenhorn, Moritz; Koehler, Kerstine; Gantefoer, Gerd [Konstanz University, Department of Physics, Constance (Germany); Seo, Hyun Ook [Sangmyung University, Department of Chemistry and Energy Engineering, Seoul (Korea, Republic of)

    2017-06-15

    Size-selected W{sub n}{sup -} clusters (n = 1650) were deposited on the highly ordered pyrolytic graphite surface at room temperature under high vacuum conditions by utilizing a magnetron sputtering source and a magnet sector field. Moreover, geometrical structure and surface chemical states of deposited clusters were analyzed by in situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, respectively. The formation of 2-D islands (lateral size ∝150 nm) with multiple dendritic arms was observed by STM, and the structure of the individual W{sub 1650} clusters survived within the dendritic arms. To study the thermal stability of the nano-fractal structure under the atmospheric conditions, the sample was brought to the ambient air conditions and sequentially post-annealed at 200, 300, and 500 C in the air. The nano-fractal structure was maintained after the 1st post-annealing process at 200 C for 1 h in the air, and the subsequent 2nd post-annealing at 300 C (for 1 h, in the air) also did not induce any noticeable change in the topological structure of the sample. The topological changes were observed only after the further post-annealing at a higher temperature (at 500 C, 1 h) in the air. We show high potential use of these nano-structured films of tungsten oxides in ambient conditions. (orig.)

  4. Plasma-deposited a-C(N) H films

    CERN Document Server

    Franceschini, D E

    2000-01-01

    The growth behaviour, film structure and mechanical properties of plasma-deposited amorphous hydrogenated carbon-nitrogen films are shortly reviewed. The effect of nitrogen-containing gas addition to the deposition to the hydrocarbon atmospheres used is discussed, considering the modifications observed in the chemical composition growth kinetics, carbon atom hybridisation and chemical bonding arrangements of a-C(N):H films. The overall structure behaviour is correlated to the variation of the mechanical properties.

  5. Granular flows on erodible layers: type and evolution of flow and deposit structures

    Science.gov (United States)

    Crosta, G.; De Blasio, F.; De Caro, M.; Volpi, G.; Frattini, P.

    2012-04-01

    The interaction of a fast moving landslide mass with the basal layer over which movement takes place has been discussed in previous contributions. Nevertheless, the evolution of the structures within the moving mass and the erodible layer are still to be described in detail (Hungr and Evans, 2004; Crosta et al., 1992, 2006, 2009, 2011; Dufresne et al., 2010; Mangeney et al., 2010) and modeling results (Crosta et al., 2006, 2009, 2011; Mangeney et al., 2010). We present some of the results from a campaign of laboratory experiments aimed at studying the evolution of a granular flow at the impact with and during the successive spreading over a cohesionless erodible layer. We performed these test to study the processes and to collect data and evidences to compare them with the results of numerical simulations and to verify capabilities of numerical codes. The laboratory setup consists of an inclined slope and an horizontal sector where release and transport, and deposition take place, respectively. Materials used for the tests are: a uniform rounded siliceous sand (Hostun sand; 0.125-0.5 mm) commonly adopted in lab tests because free of scale effects, and a gravel made of angular elements (12 mm in ave. size). Both the materials have been tested in dry conditions. Different slope angles have been tested (40, 45, 50, 55, 50, 66°) as well as different thicknesses of the erodible layer (0, 0.5, 1, 2 cm) and volumes of the released material (1.5, 3, 5, 9.6 liters). Tests have been monitored by means of a high speed camera and the pre- and post-failure geometries have been surveyed by means of a laser scanner. Deposit description allowed also the computation of volumes and the characterization of the different structures developed and frozen into the deposit. Experiments allowed us to observe the extreme processes occurring during the movement and the mise en place of the deposits. In particular, we observe the formation of a clear wave-like feature developing during the

  6. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    Science.gov (United States)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  7. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  8. Evolution of ore-bearing material sources of endogenous uranium deposits

    International Nuclear Information System (INIS)

    Kazansk, V.I.; Laverov, N.P.; Tugarinov, A.I.

    1976-01-01

    Considered are the regularities of changes in types and conditions of uranium deposit formation in connection with the general development of the earth crust tectonic structures. Out of pre-Kembrian uranium deposits considered are Vitwatersrand conglomerates, hydrothermal deposits in pre-Kembrian iron quartzites in the areas of regional fractures in exocontacts of big multiphase granitoid massifs of Proterozoic age and in the fundament folded structures. The hydrothermal-metamorphogen theory is supported of the origin of uranium-bearing sodium metasomatite of Proterozoic, including uranium deposits in the area of the Atabaska lake. Four genetic classes of Palaeozoic deposits are considered. Four periods are singled out in the development of Palaeozoic uranium provinces. Most of the Palaeozoic deposits are shown to be of polygenous origin. Mesozoic deposits are also polygenous, but the combination of ore substance sources in them is more complex

  9. Enhanced nitrogen deposition over China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Christie, Peter; Zhang, Fusuo [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Vitousek, Peter [Department of Biology, Stanford University, Stanford, California 94305 (United States); Erisman, Jan Willem [VU University Amsterdam, 1081 HV Amsterdam (Netherlands); Goulding, Keith [The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ (United Kingdom); Fangmeier, Andreas [Institute of Landscape and Plant Ecology, University of Hohenheim, 70593 Stuttgart (Germany)

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

  10. Uranium deposits of Australia to 1975

    International Nuclear Information System (INIS)

    Spannari, S.

    1979-01-01

    This bibliography provides a retrospective account of Australian uranium deposits, particularly the unpublished materials in the Australian Capital Territory. Some abstracts are included. Occurrences, mineralogy, ore genesis, structural controls and the eonomic geology of uranium deposits are covered but the mining of uranium, exploration reports, surveys, environmental aspects and controversial materials are not

  11. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  12. Core-shell SrTiO3/graphene structure by chemical vapor deposition for enhanced photocatalytic performance

    Science.gov (United States)

    He, Chenye; Bu, Xiuming; Yang, Siwei; He, Peng; Ding, Guqiao; Xie, Xiaoming

    2018-04-01

    Direct growth of high quality graphene on the surface of SrTiO3 (STO) was realized through chemical vapor deposition (CVD), to construct few-layer 'graphene shell' on every STO nanoparticle. The STO/graphene composite shows significantly enhanced UV light photocatalytic activity compared with the STO/rGO reference. Mechanism analysis confirms the role of special core-shell structure and chemical bond (Tisbnd C) for rapid interfacial electron transfer and effective electron-hole separation.

  13. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  14. Structure, morphology and optical properties of CuInS2 thin films prepared by modulated flux deposition

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.; Gutierrez, M.T.; Briones, F.

    2005-01-01

    The structure, morphology and optical properties of copper indium sulfide thin films prepared by a novel modulated flux deposition procedure have been investigated for layers from 200 to 400 nm thickness. These polycrystalline CuInS 2 films grown onto glass substrates showed CuAu-like structure, similar to epitaxial CuInS 2 films grown onto monocrystalline substrates, and direct band gap values Eg=1.52-1.55 eV, optimum for single-junction photovoltaic applications. The increase in the layer thickness leads to growth of the average crystallite size and increases slightly the surface roughness and the absorption coefficient

  15. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  16. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  17. Improving the surface structure of high quality Sr{sub 2}FeMoO{sub 6} thin films for multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Angervo, I., E-mail: ijange@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Saloaro, M. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); Tikkanen, J. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Huhtinen, H.; Paturi, P. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland)

    2017-02-28

    Highlights: • The effects of PLD laser fluence and deposition temperature are investigated on SFMO thin films. • We focus on improving the surface structure of the SFMO thin films. • Both the surface structure and the Curie temperature can be improved by fabricating the films at 900 °C. - Abstract: Two sets of Sr{sub 2}FeMoO{sub 6} thin films were prepared with pulsed laser deposition and the effect of the laser fluence and the deposition temperature was investigated. The Sr{sub 2}FeMoO{sub 6} thin films showed clear evidence of impurity phases when the laser fluence was altered. Phase pure films resulted through the whole temperature range between 900 °C and 1050 °C when a proper laser fluence was used. Films fabricated at lower deposition temperatures resulted with smaller surface roughnesses around 5 nm, higher Curie temperatures and with relatively high saturation magnetization values. The Curie temperature was determined from the minimum of the first order derivative and results showed the highest values of 350 K and above. The films with the highest Curie temperature reached zero magnetization above 400 K. The results indicate that both high microstructural and high magnetic quality Sr{sub 2}FeMoO{sub 6} thin films can be obtained with a deposition temperature between 900 °C and 950 °C. This provides better fabrication parameters for the upcoming SFMO multilayer structures.

  18. Overview of co-deposition and fuel inventory in castellated divertor structures at JET

    International Nuclear Information System (INIS)

    Rubel, M.J.; Coad, J.P.; Pitts, R.A.

    2007-01-01

    The main focus of this work is fuel retention in plasma components of the JET water-cooled Mk-I divertors operated with small tiles, first with carbon fibre composite (CFC) and then with castellated beryllium. Until recently these have been the only large-scale structures of this type used in fusion experiments. Three issues regarding fuel retention and material migration are addressed: (i) accumulation in gaps separating tiles and in the grooves of castellation; (ii) comparison of deposition on carbon and beryllium; (iii) in-depth migration of deuterium into the bulk of CFC. The essential results are summarised as follows: (i) co-deposition occurs up to a few cm deep in the gaps between the Mk-I tiles; (ii) fuel inventory in the CFC tile gaps exceeds that on plasma-facing surfaces by up to a factor of 2; (iii) in gaps between the beryllium tiles from the inner divertor corner the fuel content reaches 30% of that on plasma-facing surfaces, whereas in the grooves of castellation in Be the fuel content is less than 3.0% of that found on the top surface; (iv) fuel inventory on the Be tiles is strongly associated with the carbon co-deposition; (v) the D content measured in the bulk (1.5 mm below the surface) on cleaved CFC tiles exceeds 1 x 10 15 cm -2 . Implications of these results for a next-step device are addressed and the transport mechanism into the gaps is briefly discussed. The results presented here suggest that in a machine with non-carbon walls in the main chamber (as foreseen for ITER) the material transport and subsequent fuel inventory in the castellation would be reduced

  19. Legal Deposit of Electronic Publications

    Directory of Open Access Journals (Sweden)

    Burcu Umut Zan

    2009-06-01

    Full Text Available The most important and basic role of the deposition studies, which are the greatest contributions to the knowledge sharing, is to gather the artistic and philosophical works of a country and provide them for the use of future researchers. However, since early deposition studies were limited with printed publications, they do not involve the electronic publication types appearing with the development of information technology. This stems from the fact that the electronic publications require procedures different from those of the printed publications in terms of deposition steps because of their structures. Today, in order to guarantee that all registered cultural products, which are mostly produced and used in the electronic environment could be fully collected, electronic publications should also be covered by and regulated under legal deposit. This study analyzes the deposition of electronic publications, within the framework of their storage and protection, being put in the use of the users as well as the common approaches to deposition practices in the world parallel to the developments in the information technology. The related situation in Turkey was also evaluated.

  20. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Science.gov (United States)

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the

  1. Structural and superconducting characteristics of YBa2Cu3O7 films grown by fluorine-free metal-organic deposition route

    DEFF Research Database (Denmark)

    Zhao, Yue; Chu, Jingyuan; Qureishy, Thomas

    2018-01-01

    Microstructure and superconducting performance of YBa2Cu3O7 (YBCO) films deposited on LaAlO3 single crystal (LAO) substrates by a fluorine-free metal-organic deposition (FF-MOD) technique, have been studied by means of X-ray reciprocal space mapping (RSM), cross-sectional transmission electron mi...... external magnetic field at 77 K. This work offers an in-depth insight into the correlation between the microstructure and superconductivity in the MOD YBCO films.......Microstructure and superconducting performance of YBa2Cu3O7 (YBCO) films deposited on LaAlO3 single crystal (LAO) substrates by a fluorine-free metal-organic deposition (FF-MOD) technique, have been studied by means of X-ray reciprocal space mapping (RSM), cross-sectional transmission electron....... It is suggested that associated partial dislocations formed at the boundary between the stacking faults and YBCO matrix act as strong linear (or dot) pinning centers. These structural characteristics are well in line with the better superconducting performance of the low fluorine-MOD film, in particular under...

  2. Effects of deposition temperature and in-situ annealing time on structure and magnetic properties of (001) orientation FePt films

    International Nuclear Information System (INIS)

    Yu, Yongsheng; George, T.A.; Li, Haibo; Sun, Daqian; Ren, Zhenan; Sellmyer, D.J.

    2013-01-01

    FePt films were prepared on (100) oriented single crystal MgO substrates at high temperature ranging from 620 until 800 °C and in-situ annealed for different times ranging from 0 to 60 min to obtain ordered FePt films. The structural analysis indicates that FePt films grow epitaxially on MgO (100) substrates. Both increasing deposition temperature and in-situ annealing time enhance the (001) texture and ordering of FePt films. The magnetic analysis shows that these L1 0 FePt films have perpendicular anisotropy and the easy magnetization c-axis is perpendicular to the film plane. Magnetization reversal is controlled by a rotational mechanism. The hard magnetic properties of the films are improved with increasing deposition temperature or in-situ annealing time. - Highlights: ► The paper reports the texture and magnetic evolution of FePt films deposited on MgO substrates. ► Increasing deposition temperature or annealing time enhanced the texture and ordering. ► The magnetic analysis shows L1 0 FePt films have perpendicular anisotropy.

  3. The Expanded FindCore Method for Identification of a Core Atom Set for Assessment of Protein Structure Prediction

    Science.gov (United States)

    Snyder, David A.; Grullon, Jennifer; Huang, Yuanpeng J.; Tejero, Roberto; Montelione, Gaetano T.

    2014-01-01

    Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (D.A. Snyder and G.T. Montelione PROTEINS 2005;59:673–686) is a superimposition independent method for identifying a core atom set, and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an “Expanded FindCore” atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines “expanded core atom sets” that match an expert’s intuition of which parts of the structure are sufficiently well-defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores. PMID:24327305

  4. The structure of Ta nanopillars grown by glancing angle deposition

    International Nuclear Information System (INIS)

    Zhou, C.M.; Gall, D.

    2006-01-01

    Regular arrays of Ta nanopillars, 200 nm wide and 500 nm tall, were grown on SiO 2 nanosphere patterns by glancing angle sputter deposition (GLAD). Plan-view and cross-sectional scanning electron microscopy analyses show dramatic changes in the structure and morphology of individual nanopillars as a function of growth temperature T s ranging from 200 to 700 deg. C. At low temperatures, T s ≤ 300 deg. C, single nanopillars develop on each sphere and branch into subpillars near the pillar top. In contrast, T s ≥ 500 deg. C leads to branching during the nucleation stage at the pillar bottom. The top branching at low T s is associated with surface mounds on a growing pillar that, due to atomic shadowing, develop into separated subpillars. At high T s , the branching occurs during the nucleation stage where multiple nuclei on a single SiO 2 sphere develop into subpillars during a competitive growth mode which, in turn, leads to intercolumnar competition and the extinction of some nanopillars

  5. Growth, structure and stability of sputter-deposited MoS2 thin films

    Directory of Open Access Journals (Sweden)

    Reinhard Kaindl

    2017-05-01

    Full Text Available Molybdenum disulphide (MoS2 thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC substrates. Samples deposited at room temperature (RT and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  6. Gravimetrical and chemical characterization of SiOx structures deposited on fine powders by short plasma exposure in a plasma down stream reactor

    International Nuclear Information System (INIS)

    Spillmann, Adrian; Sonnenfeld, Axel; Rohr, Philipp Rudolf von

    2008-01-01

    The surface of lactose particles was modified by a plasma-enhanced chemical vapor deposition process to improve the flow behavior of the powder. For this, the particulates were treated in a plasma down stream reactor which provides a short (50 ms) and homogeneous exposure to the capacitively coupled RF discharge. The organosilicon monomer hexamethyldisiloxane (HMDSO) was used as a precursor for the formation of SiO x which is deposited on the substrate particle surface. For varying process gas mixtures (O 2 /Ar/HMDSO) and RF power applied, the amount of the deposited material was determined gravimetrically after dissolution of the lactose substrate particles and the chemical composition of the accumulated deposition material was investigated by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The concentration of the deposited SiO x relating to the substrate material was found to be in the range of 0.1 wt.%. Based on the ATR-FTIR analysis, the inorganic, i.e. oxidic SiO x fraction of the obtained deposits was shown to be controllable by varying the process parameters, whilst a relatively large amount of organic structures must be considered.

  7. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  8. Structure and chemical characteristics of natural mineral deposit Terbunskaya (Lipetsk region, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Motyleva, S., E-mail: motyleva-svetlana@mail.ru; Mertvishcheva, M. [All-Russian Horticular Institute for Breeding, Agrotechnology and Nursery Russian Academy of Agricultural Sciences, Moskow (Russian Federation); Shchuchka, R.; Gulidova, V. [Yelets state university named after I. A. Bunin, Yelets (Russian Federation)

    2015-07-22

    New knowledge about the mineralogical features Terbunsky mineral. Investigated 5 fractions isolated from the incision (2-2,5 m). Terbunskaya deposit belongs to minerals Santonian age. Scanning electron microscopy and energy dispersive analysis of fractions isolated studied in detail. In the coarse fractions found ancient organic remains of algae and micro-organisms that have been sedimented together with the mineral component during geological periods. The share of organic inclusions does not exceed 1.5%. Chemical composition confirms the presence of silicon and carbonate organisms. Advantageously proportion of minerals having a layered structure with a plurality of micro and nano pore size 600 - 80-nm and an average chemical composition (wt%): Na (0,64), Mg (0,54), Al (13.48), Si (27 57), K (2.39) Ca (0.75)

  9. Microstructure of Sinter Deposit Formed at Hot Springs in West Sumatera

    Science.gov (United States)

    Putra, A.; Inanda, D. Y.; Buspa, F.; Salim, A. F.

    2018-03-01

    Sinter deposit emerged and spread at several hot springs in West Sumatera is divided into three types, they are full silica, half silica-carbonate and full carbonate. This work intends to investigate the characteristic of each type by its crystalline structure and morphology and its correlation to surface temperature. The research is focused on Sapan Maluluang hot spring (full silica), Garara hot spring (half silica-carbonate) and Bawah Kubang hot spring (full carbonate). Crystalline structure is analyzed by X-Ray Diffraction (XRD) methods, it showed that deposit from Sapan Maluluang has opal-A structure, Garara has opal-CT structure and Bawah Kubang has crystalline structure. The Scanning Electron Microscopy (SEM) methods is applied to describe its morphology surface, in which spherical, almost rounded and irregular textured was formed at each deposit, respectively. Surface temperature of hot spring also has given impact on deposit texture.

  10. Structural and magnetic characterization of martensitic Ni-Mn-Ga thin films deposited on Mo foil

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Anton, R. Lopez; Kohl, M.; Barandiaran, J.M.; Ohtsuka, M.; Orue, I.; Besseghini, S.

    2006-01-01

    Three martensitic Ni 51.4 Mn 28.3 Ga 20.3 thin films sputter-deposited on a Mo foil were investigated with regard to their crystal and magnetic domain structures, as well as their magnetic and magnetostrain properties. The film thicknesses, d, were 0.1, 0.4 and 1.0μm. X-ray and electron diffraction patterns revealed a tetragonal modulated martensitic phase (10M) in the films. The surface topography and micromagnetic structure were studied by scanning probe microscopy. A maze magnetic domain structure featuring a large out-of-plane magnetization component was found in all films. The domain width, δ, depends on the film thickness as δ∼d. The thickness dependencies of the saturation magnetization, saturation magnetic field and magnetic anisotropy were clarified. Beam cantilever tests on the Ni-Mn-Ga/Mo composite as a function of magnetic field showed reversible strains, which are larger than ordinary magnetostriction

  11. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  12. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    Science.gov (United States)

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The structure of a Cantor-like set with overlap

    Energy Technology Data Exchange (ETDEWEB)

    Dai Meifeng [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)] e-mail: daimf0225@163.com; Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)] e-mail: tianlx@ujs.edu.cn

    2005-10-01

    In this paper, for the contracting similarities S{sub 0}(x)=x5, S{sub 1}(x)=x+{lambda}5, S{sub 2}(x)=x+25, S{sub 3}(x)=x+4-{lambda}5 and S{sub 4}(x)=x+45, where rational number {lambda}-bar [0,23], the Hausdorff dimension and the structure of E{sub {lambda}}, an invariant set with respect to S{sub 0}, S{sub 1}, S{sub 2}, S{sub 3}, S{sub 4} were studied and some new results were reported. Relation to El Naschie's quantum fractal is also discussed.

  14. Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Pradhan, Swati S.; Sahoo, Sambita; Pradhan, S.K.

    2010-01-01

    TiO 2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O 2 plasma. The TiO 2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 o C to 800 o C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 o C. The film annealed at 400 o C showed higher hardness than the film annealed at 600 o C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 o C to 800 o C, as revealed by a decrease in water CA from 87 o to 50 o . Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.

  15. 1H and 15N NMR assignment and solution structure of the SH3 domain of spectrin: Comparison of unrefined and refined structure sets with the crystal structure

    International Nuclear Information System (INIS)

    Blanco, Francisco J.; Ortiz, Angel R.; Serrano, Luis

    1997-01-01

    The assignment of the 1 H and 15 Nnuclear magnetic resonance spectra of the Src-homology region 3 domain of chicken brain α-spectrin has been obtained. A set of solution structures has been determined from distance and dihedral angle restraints,which provide a reasonable representation of the protein structure in solution, as evaluated by a principal component analysis of the global pairwise root-mean-square deviation (rmsd) in a large set of structures consisting of the refined and unrefined solution structures and the crystal structure. The solution structure is well defined, with a lower degree of convergence between the structures in the loop regions than in the secondary structure elements. The average pairwise rmsd between the 15 refined solution structures is 0.71 ± 0.13 A for the backbone atoms and 1.43 ± 0.14 A for all heavy atoms. The solution structure is basically the same as the crystal structure. The average rmsd between the 15 refined solution structures and the crystal structure is 0.76 A for the backbone atoms and 1.45 ± 0.09 A for all heavy atoms. There are, however, small differences probably caused by intermolecular contacts in the crystal structure

  16. Identification of tsunami deposits considering the tsunami waveform: An example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan

    Science.gov (United States)

    Fujiwara, Osamu; Kamataki, Takanobu

    2007-08-01

    This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10-20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis. The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows. The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand

  17. Depositional characteristics of cretaceous cover in Xiangyangshan area of Heilongjiang province and analysis on prospect for sandstone hosted interlayer oxidation zone type uranium deposits

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Shengxiang; Dong Wenming

    2003-01-01

    The depositional systems and characteristics of Cretaceous Cover depositional facies are discussed. In combination with logging curves in Xiangyangshan area, two depositional systems (namely, alluvial fan depositional system and alluvial plain depositional system) and five types of depositional facies are distinguished. Results of detailed research are given for each depositional facies in aspects of lithology, depositional structure, logging curve and grain size distribution pattern. Temporal and spatial distribution features of the depositional facies and the development features of interlayer oxidation zones of the second member of Quantou Formation are analyzed. Finally, conclusions on prospects for sandstone-hosted interlayer oxidation zone type uranium deposits in the study area are given in the aspect of depositional facies. (authors)

  18. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Harano, Yoko; Tochio, Naoya; Nakatani, Eiichi; Kigawa, Takanori; Yokoyama, Shigeyuki; Mading, Steve; Ulrich, Eldon L.; Markley, John L.; Akutsu, Hideo; Fujiwara, Toshimichi

    2012-01-01

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  19. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  20. Electrical and structural characteristics of spray deposited (Zn O){sub x}-(Cd O){sub 1-x}

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon F, G.; Pelaez R, A.; Villa G, M.; Carmona T, S.; Luna G, J. A.; Aguilar F, M. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Vasquez P, B. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, 02200 Mexico D. F. (Mexico); Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico)

    2013-10-01

    (Zn O){sub x}(Cd O){sub 1-x} thin films were deposited on glass substrates at 300 and 400 C by ultrasonic spray pyrolysis with compositions ranging from Cd O to Zn O. The electrical properties were obtained by impedance spectroscopy and Hall Effect measurements. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, were used to study the structural characteristics of the films. Ellipsometry, in addition, was used to confirm the structural characteristics. The films as deposited resulted mainly polycrystalline and dense, depending on the substrate temperature and on their relative composition. All the films showed n-type conductivity and the films with intermediate compositions resulted in a mixture of both phases; Cd O and Zn O. Hall Effect measurements showed that the highest conductivity of Cd O was close to 1 x 10{sup 3} ({Omega}-cm){sup -1}, the highest value obtained for Cd O, without doping. Impedance spectroscopy confirmed the Hall Effect results, showing that the highly conducting character of Cd O influenced dramatically the conductivity of the (Zn O){sub x}(Cd O){sub 1-x} films. In addition, depending on the substrate temperature and on the relative composition of the films, both, the bulk or grains, as well as the grain boundaries properties limit the conductivity in them. (Author)

  1. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition

    Science.gov (United States)

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.

  2. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Science.gov (United States)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  3. Acid deposition. Origins, impacts and abatement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (Manchester Polytechnic, Acid Rain Information Centre (United Kingdom). Dept. of Environmental and Geographical Studies) (ed.)

    1991-01-01

    The subject of acid deposition is one of the most important of our contemporary environmental problems. Presenting and discussing new data on the sources and effects of such deposition, this book seeks to assist in the definition of our future research requirements and policy developments. It is divided into four broad themes: Emissions, Chemistry and Deposition, Ecosystem Effects (freshwater, soils and forest systems), Effects on Structural Materials, and Mitigation, Control and Management. (orig.) With 130 figs.

  4. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  5. Remediation of spent block in Uvanas deposit

    International Nuclear Information System (INIS)

    Nurgaziev, M.A.; Iskakov, M.M.

    2012-01-01

    In 2007 by 'Kazatomprom' and 'Mining company' board decision, the branch of 'Mining company', 'Steppe ore management body' is reorganized in structure subdivision, the basic activity of which is organization and carrying out remediation works on spent blocks of PSV uranium deposit. In 2002 works are completed on OVOS for operating deposits Uvanas, Kanjugan, Northern Karamurun and Eastern Minkuduk. The results of present work were reported in IAEA conference. The working project 'Remediation of spent blocks of PSV uranium deposit PV-17 polygon of Steppe ore management body' approved in 2005 was developed for carrying out the remediation works. Works funding were carried out from liquidation fund of the current deposit established in accordance with the Republic of Kazakhstan law 'About interior and interior use'. Deposits remediation is the part of deposit operation life cycle which obliges to operate deposits with minimum expenditures for remediation.

  6. From sources to deposits: Recent advances about the unconformity-related U deposits

    International Nuclear Information System (INIS)

    Mercadier, Julien; Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Cuney, Michel; Annesley, Irvine R.

    2014-01-01

    Current knowledge: - Hydrothermal deposits (< 250°C); - U-Pb ages: 1.6-0.9 Ga + late remobilizations; - 3 locations; - Structure-related, graphite; - Strong K-Mg-B alteration: illite-chloritesdravite/ Mg-foitite (Mg Tour)-hydrothermal quartz; - Mineralizing fluids: Na-Ca-rich brines (25-35 wt% eq. NaCl). However still relevant scientific/geological questions remain: Can we provide new insights about: - the origin of the brines? - the source of U and other metals? - the percolation conditions within the basement rocks? - the chemical modifications at the origin of the formation of mineralizing brines? - the conditions for the transport and deposition of uranium?

  7. Ultra-small platinum and gold nanoparticles by arc plasma deposition

    International Nuclear Information System (INIS)

    Kim, Sang Hoon; Jeong, Young Eun; Ha, Heonphil; Byun, Ji Young; Kim, Young Dok

    2014-01-01

    Highlights: • Ultra-small (<2 nm) and bigger platinum and gold nanoparticles were produced by arc plasma deposition (APD). • Size and coverage of deposited nanoparticles were easily controlled with APD parameters. • Crystalline structures of deposited nanoparticles emerged only when the particle size was bigger than ∼2 nm. - Abstract: Ultra-small (<2 nm) nanoparticles of platinum and gold were produced by arc plasma deposition (APD) in a systematic way and the deposition behavior was studied. Nanoparticles were deposited on two dimensional amorphous carbon and amorphous titania thin films and characterized by transmission electron microscopy (TEM). Deposition behavior of nanoparticles by APD was studied with discharge voltage (V), discharge condenser capacitance (C), and the number of plasma pulse shots (n) as controllable parameters. The average size of intrinsic nanoparticles generated by APD process was as small as 0.9 nm and deposited nanoparticles began to have crystal structures from the particle size of about 2 nm. V was the most sensitive parameter to control the size and coverage of generated nanoparticles compared to C and n. Size of APD deposited nanoparticles was also influenced by the nature of evaporating materials and substrates

  8. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  9. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  10. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  11. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    Science.gov (United States)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  12. Effects of deposition temperatures on structure and physical properties of Cd 1-xZn xTe films prepared by RF magnetron sputtering

    Science.gov (United States)

    Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge

    2010-02-01

    Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.

  13. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    2017-03-15

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.

  14. Uranium distribution and sandstone depositional environments: oligocene and upper Cretaceous sediments, Cheyenne basin, Colorado

    International Nuclear Information System (INIS)

    Nibbelink, K.A.; Ethridge, F.G.

    1984-01-01

    Wyoming-type roll-front uranium deposits occur in the Upper Cretaceous Laramie and Fox Hills sandstones in the Cheyenne basin of northeastern Colorado. The location, geometry, and trend of specific depositional environments of the Oligocene White River and the Upper Cretaceous Laramie and Fox Hills formations are important factors that control the distribution of uranium in these sandstones. The Fox Hills Sandstone consists of up to 450 ft (140 m) of nearshore marine wave-dominated delta and barrier island-tidal channel sandstones which overlie offshore deposits of the Pierre Shale and which are overlain by delta-plain and fluvial deposits of the Laramie Formation. Uranium, which probably originated from volcanic ash in the White River Formation, was transported by groundwater through the fluvial-channel deposits of the White River into the sandstones of the Laramie and Fox Hills formations where it was precipitated. Two favorable depositional settings for uranium mineralization in the Fox Hills Sandstone are: (1) the landward side of barrier-island deposits where barrier sandstones thin and interfinger with back-barrier organic mudstones, and (2) the intersection of barrier-island and tidal channel sandstones. In both settings, sandstones were probably reduced during early burial by diagenesis of contained and adjacent organic matter. The change in permeability trends between the depositional strike-oriented barrier sandstones and the dip-oriented tidal-channel sandstones provided sites for dispersed groundwater flow and, as demonstrated in similar settings in other depositional systems, sites for uranium mineralization

  15. Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition

    Science.gov (United States)

    Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu

    2018-04-01

    Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.

  16. Implicit leadership theories in applied settings: factor structure, generalizability, and stability over time.

    Science.gov (United States)

    Epitropaki, Olga; Martin, Robin

    2004-04-01

    The present empirical investigation had a 3-fold purpose: (a) to cross-validate L. R. Offermann, J. K. Kennedy, and P. W. Wirtz's (1994) scale of Implicit Leadership Theories (ILTs) in several organizational settings and to further provide a shorter scale of ILTs in organizations; (b) to assess the generalizability of ILTs across different employee groups, and (c) to evaluate ILTs' change over time. Two independent samples were used for the scale validation (N1 = 500 and N2 = 439). A 6-factor structure (Sensitivity, Intelligence, Dedication, Dynamism, Tyranny, and Masculinity) was found to most accurately represent ELTs in organizational settings. Regarding the generalizability of ILTs, although the 6-factor structure was consistent across different employee groups, there was only partial support for total factorial invariance. Finally, evaluation of gamma, beta, and alpha change provided support for ILTs' stability over time.

  17. Uranium deposit types and resources of Argentina

    International Nuclear Information System (INIS)

    Lopez, L.; Cuney, M.

    2014-01-01

    The uranium-related activities in Argentina begun in the 1950s and, as a result of the systematic exploration, several types of deposits have been discovered since then: volcanic and caldera-related, sandstone-hosted, vein spatially related to granite (intragranitic and perigranitic) and surficial. The deposits that have been the focus of the most important uranium exploitations are the ones that belong to the volcaniclastic type. These are localized in Permian formations associated with synsedimentary acid volcanism in the Sierra Pintada district (Mendoza province). The volcanic and caldera related type is also present in the Laguna Colorada deposit (Chubut province) located in the San Jorge basin (Cretaceous). Several important uranium mineralisations have been identified in Cretaceous fluvial sandstones and conglomerates, among which the most relevant is the Cerro Solo deposit (Chubut province) that corresponds to the paleochannel structure subtype. Other subtypes of sandstone model have been studied. For instance, the Don Otto deposit (Salta province), located in the Salta Group Basin (Cretaceous - Tertiary), belongs to the tabular U-V subtype. The roll front subtype can be also found in the Los Mogotes Colorados deposit (La Rioja province) which is hosted by Carboniferous continental sandstones. The uranium mineralisations in veins and disseminated episyenites within peraluminous leucogranites of the Sierras Pampeanas (Cordoba and San Luis provinces) represent other types of existing deposits. These granites are Devonian – Carboniferous and the related deposits are comparable to those from the Middle European Variscan. There are also other vein-type uranium deposits located in metamorphic basement in the periphery of high potassium calcalkaline granites (Sierras Pampeanas of Catamarca and La Rioja provinces), where the mineralisation control is mainly structural. The current uranium identified resources of the country are approximately 24,000 tU in the

  18. Mangrove forests submitted to depositional processes and salinity variation investigated using satellite images and vegetation structure surveys

    OpenAIRE

    Cunha-Lignon, M.; Kampel, M.; Menghini, R.P.; Schaeffer-Novelli, Y.; Cintrón, G.; Dahdouh-Guebas, F.

    2011-01-01

    The current paper examines the growth and spatio-temporal variation of mangrove forests in response to depositional processes and different salinity conditions. Data from mangrove vegetation structure collected at permanent plots and satellite images were used. In the northern sector important environmental changes occurred due to an artificial channel producing modifications in salinity. The southern sector is considered the best conserved mangrove area along the coast of São Paulo State, Br...

  19. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  20. On the Tengiz petroleum deposit previous study

    International Nuclear Information System (INIS)

    Nysangaliev, A.N.; Kuspangaliev, T.K.

    1997-01-01

    Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)

  1. Modification of the structure and composition of Ca10(PO4)6(OH)2 ceramic coatings by changing the deposition conditions in O2 and Ar

    Science.gov (United States)

    Donkov, N.; Zykova, A.; Safonov, V.; Kolesnikov, D.; Goncharov, I.; Yakovin, S.; Georgieva, V.

    2014-05-01

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.

  2. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  3. Use of micro-PIXE analysis for the identification of contaminants in the metal deposition on a CMS pitch adapter

    CERN Document Server

    Massi, M; Fedi, M E; Arilli, C; Grassi, N; Mando, P A; Migliori, A; Focardi, E

    2004-01-01

    In the silicon tracker for the Compact Muon Solenoid experiment at the forthcoming Large Hadron Collider of CERN, each silicon sensor is connected to the front-end electronics by a pitch adapter, the structure of which consists of a fan of very thin chromium strips coated with a few microns aluminium deposition, on a glass support. The absence of contaminants in the depositions is of crucial importance for the electrical and mechanical reliability of the micro-bonding connections. The PIXE set-up of the Florence external micro-beam facility appeared to be suitable to analyse the metal deposition of an adapter, on which the micro-bonds had shown mechanical and electrical problems. Our measurements pointed out a significant copper contamination of the metal deposition on the faulty adapter, while no copper was detected in another one, which showed a correct behaviour at bonding. This suggests a possible role of Cu impurities in the encountered problems during micro-bonding.

  4. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  5. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  6. Change in crystalline structure and band alignment in atomic-layer-deposited HfO{sub 2} on InPusing an annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Seon; Kim, Dae-Kyoung; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Seo, Jung-Hye [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Shon, Hyun Kyong; Lee, Tae Geol [Korea Research Institute of Standards and Science, Daejeon 305-540 (Korea, Republic of); Cho, Young Dae; Kim, Sun-Wook; Ko, Dae-Hong [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyoungsub [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-08-15

    Changes in structural characteristics and band alignments of atomic-layer-deposited HfO{sub 2} films on InP (001) as a function of annealing temperature and film thickness were investigated using various analytical techniques. After an annealing at temperatures over 500 C, the HfO{sub 2} films were converted into a fully crystalline structure with a tetragonal phase with no detectable interfacial layer between the film and the InP substrate. In-P-O states, produced by interfacial reactions, were increased during the post deposition annealing (PDA) process and oxides were detected in the surface region of the HfO{sub 2} film, indicating that In and P atoms had out-diffused. The E{sub g} value of the as-grown HfO{sub 2} film was found to be 5.80 {+-} 0.1 eV. After the PDA treatment, the optical band gap and valence band offset values were significantly affected by the interfacial oxide states between the HfO{sub 2} film and InP substrate. Moreover, band bending in InP, due to negative space charges generated by an unstable P-rich interfacial state during atomic layer deposition process was decreased after the annealing treatment. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Bonding structure and mechanical properties of B-C-N thin films synthesized by pulsed laser deposition at different laser fluences

    International Nuclear Information System (INIS)

    Wang, C.B.; Xiao, J.L.; Shen, Q.; Zhang, L.M.

    2016-01-01

    Boron carbon nitride (B-C-N) thin films have been grown by pulsed laser deposition under different laser fluences changing from 1.0 to 3.0 J/cm"2. The influence of laser fluence on microstructure, bonding structure, and mechanical properties of the films was studied, so as to explore the possibility of improving their mechanical properties by controlling bonding structure. The bonding structure identified by FT-IR and XPS indicated the coexistence of B-N, B-C, N-C and N=C bonds in the films, suggesting the formation of a ternary B-C-N hybridization. There is a clear evolution of bonding structure in the B-C-N films with the increasing of laser fluence. The variation of the mechanical properties as a function of laser fluence was also in accordance with the evolution of B-C and sp"3 N-C bonds whereas contrary to that of sp"2 B-N and N=C bonds. The hardness and modulus reached the maximum value of 33.7 GPa and 256 GPa, respectively, at a laser fluence of 3.0 J/cm"2, where the B-C-N thin films synthesized by pulsed laser deposition possessed the highest intensity of B-C and N-C bonds and the lowest fraction of B-N and N=C bonds. - Highlights: • Improvement of mechanical property by controlling bonding structure is explored. • A clear evolution of bonding structure with the increasing of laser fluence • Variation of property is in accordance with the evolution of B−C and N−C bonds.

  8. The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review

    Directory of Open Access Journals (Sweden)

    T.M. (Mike Porter

    2016-05-01

    Mineralisation is characterised by varying, telescoped stages of intrusion and alteration. Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration, mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts. Downward reflux of cooled, late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions, and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks. Uplift, facilitated by syn-mineral longitudinal faulting, brought sections of the porphyry deposit to shallower depths, to be overprinted and upgraded by late stage, shallower, advanced argillic alteration and high sulphidation mineralisation. Key controls on the location, size and grade of the deposit cluster include (i a long-lived, narrow faulted corridor; (ii multiple pulses of overlapping intrusion within the same structure; and (iii enclosing reactive, mafic dominated wall rocks, focussing ore.

  9. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions

    International Nuclear Information System (INIS)

    Markley, John L.; Ulrich, Eldon L.; Berman, Helen M.; Henrick, Kim; Nakamura, Haruki; Akutsu, Hideo

    2008-01-01

    We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems

  10. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME

    International Nuclear Information System (INIS)

    Leadbetter, Susan J.; Hort, Matthew C.; Jones, Andrew R.; Webster, Helen N.; Draxler, Roland R.

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition

  11. Generalized rough sets hybrid structure and applications

    CERN Document Server

    Mukherjee, Anjan

    2015-01-01

    The book introduces the concept of “generalized interval valued intuitionistic fuzzy soft sets”. It presents the basic properties of these sets and also, investigates an application of generalized interval valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The concept of “interval valued intuitionistic fuzzy soft rough sets” is discussed and interval valued intuitionistic fuzzy soft rough set based multi criteria group decision making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The book also details concept of interval valued intuitionistic fuzzy sets of type 2. It presents the basic properties of these sets. The book also introduces the concept of “interval valued intuitionistic fuzzy soft topological space (IVIFS topological space)” together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft cl...

  12. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  13. Turbostratic-like carbon nitride coatings deposited by industrial-scale direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Louring, S.; Madsen, N.D.; Berthelsen, A.N.; Christensen, B.H.; Almtoft, K.P.; Nielsen, L.P.; Bøttiger, J.

    2013-01-01

    Carbon nitride thin films were deposited by direct current magnetron sputtering in an industrial-scale equipment at different deposition temperatures and substrate bias voltages. The films had N/(N + C) atomic fractions between 0.2 and 0.3 as determined by X-ray photoelectron spectroscopy (XPS). Raman spectroscopy provided insight into the ordering and extension of the graphite-like clusters, whereas nanoindentation revealed information on the mechanical properties of the films. The internal compressive film stress was evaluated from the substrate bending method. At low deposition temperatures the films were amorphous, whereas the film deposited at approximately 380 °C had a turbostratic-like structure as confirmed by high-resolution transmission electron microscopy images. The turbostratic-like film had a highly elastic response when subjected to nanoindentation. When a CrN interlayer was deposited between the film and the substrate, XPS and Raman spectroscopy indicated that the turbostratic-like structure was maintained. However, it was inconclusive whether the film still exhibited an extraordinary elastic recovery. An increased substrate bias voltage, without additional heating and without deposition of an interlayer, resulted in a structural ordering, although not to the extent of a turbostratic-like structure. - Highlights: • Carbon nitride films were deposited by industrial-scale magnetron sputtering. • The deposition temperature and the substrate bias voltage were varied. • A turbostratic-like structure was obtained at an elevated deposition temperature. • The turbostratic-like film exhibited a very high elastic recovery. • The influence of a CrN interlayer on the film properties was investigated

  14. Deposits formed by ascending vein water (3 type)

    International Nuclear Information System (INIS)

    Komarova, G.V.

    1980-01-01

    Deposits formed by ascending vein waters (3 type), are considered using uranium-bitumen deposit in red-coloured continental sediments of Permo-Triassic as an example. Geological-structural and hydrogeological conditions of mineralization localization and conditions of deposit formation are discussed. Mineralogic-geochemical features and morphology of ore bodies are characterized. Attention is paid to the problem of epigenetic zone in ore-containing rocks and stages of its formation [ru

  15. Study of tokamaks carbon deposits after heat treatment

    International Nuclear Information System (INIS)

    Richou, M.; Martin, C.; Roubin, P.; Delhaes, P.; Couzi, M.; Brosset, C.; Pegourie, B.

    2006-01-01

    One of the most important problem of tokamak is the interaction plasma-wall. The wall component is the graphite. Meanwhile it is submitted to erosion phenomena, deposition and co-deposition with the hydrogen. This carbon deposits have been studied and show an oval shape. In order to obtain more information on the structure and the growth of these deposits, the authors heated them till 2500 C. Raman spectroscopy, transmission microscopy, magnetic and density measurements have been realized and compared for two types of samples: from Tore Supra and from Textor. (A.L.B.)

  16. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  17. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  18. Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires

    International Nuclear Information System (INIS)

    Chong, Su Kong; Goh, Boon Tong; Wong, Yuen-Yee; Nguyen, Hong-Quan; Do, Hien; Ahmad, Ishaq; Aspanut, Zarina; Muhamad, Muhamad Rasat; Dee, Chang Fu; Rahman, Saadah Abdul

    2012-01-01

    High density of silicon nanowires (SiNWs) were synthesized by a hot-wire assisted plasma enhanced chemical vapor deposition technique. The structural and optical properties of the as-grown SiNWs prepared at different rf power of 40 and 80 W were analyzed in this study. The SiNWs prepared at rf power of 40 W exhibited highly crystalline structure with a high crystal volume fraction, X C of ∼82% and are surrounded by a thin layer of SiO x . The NWs show high absorption in the high energy region (E>1.8 eV) and strong photoluminescence at 1.73 to 2.05 eV (red–orange region) with a weak shoulder at 1.65 to 1.73 eV (near IR region). An increase in rf power to 80 W reduced the X C to ∼65% and led to the formation of nanocrystalline Si structures with a crystallite size of <4 nm within the SiNWs. These NWs are covered by a mixture of uncatalyzed amorphous Si layer. The SiNWs prepared at 80 W exhibited a high optical absorption ability above 99% in the broadband range between 220 and ∼1500 nm and red emission between 1.65 and 1.95 eV. The interesting light absorption and photoluminescence properties from both SiNWs are discussed in the text. - Highlights: ► Growth of random oriented silicon nanowires using hot-wire assisted plasma enhanced chemical vapor deposition. ► Increase in rf power reduces the crystallinity of silicon nanowires. ► High density and nanocrystalline structure in silicon nanowires significant enhance the near IR light absorption. ► Oxide defects and silicon nanocrystallites in silicon nanowires reveal photoluminescence in red–orange and red regions.

  19. Influence of Weaving Loom Setting Parameters on Changes of Woven Fabric Structure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-11-01

    Full Text Available During the manufacturing of fabric of different raw material there was noticed, that after removing the fabric from weaving loom and after stabilization of fabric structure, the changes of parameters of fabric structure are not regular. During this investigation it was analysed, how weaving loom technological parameters (heald cross moment and initial tension of warp should be chosen and how to predict the changes of fabric structure parameters and its mechanical properties. The dependencies of changes of half-wool fabric structure parameters (weft setting, fabric thickness and projections of fabric cross-section and mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on weaving loom setting parameters (heald cross moment and initial warp tension were analysed. The orthogonal Box plan of two factors was used, the 3-D dependencies were drawn, and empirical equations of these dependencies were established.http://dx.doi.org/10.5755/j01.ms.17.4.780

  20. The use of technology of separating horizontal wells into sections by packers in conjunction with a new geological structure concept of deposits 302-302 of the Romashkino Field

    Directory of Open Access Journals (Sweden)

    Z.A. Loscheva

    2018-03-01

    Full Text Available The work considers deposits 302-303 of the Bashkirian and Serpukhovian stages. The Kuakbashsky deposits 302-303 are confined to the carbonate layer of the Bashkirian and Serpukhovian sediments of the Middle and Lower Carboniferous, with various types of voids: intergranular, fractured and cavernous. Based on the analysis of seismic data, aerospace and geophysical data, a new model of the geological structure of deposits 302-303 was created, taking into account faults and lineaments. An analysis was made of the dynamics of horizontal wells operation, depending on the location of decompression zones, which confirmed the geological model of the deposit structure proposed by the authors. Based on the geological structure, solutions are proposed for optimization of deposits development: - During the establishment and operation of wells, it is necessary to take into account the faults location, their type, strike, predicted locations of high fracturing and cavitation zones to improve well performance; - The production mode should be developed with the obligatory observance of a balance between the filtration rate of oil from caverns into cracks and the flow of liquid from the production well. - The conducted analysis shows the complete absence of dependence of the development efficiency on the implementation of various technological measures. A comprehensive approach to the deposit blocks (limited by tectonic faults is required, starting with the selection of the block (the direct drilling site, ending with the selection modes, sequence, type and complex of geological and technical measures, individually for each well of the block.

  1. Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method

    International Nuclear Information System (INIS)

    Liu, J.; Lan, T.; Qin, H.

    2017-01-01

    Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

  2. DEPOSITION AND PROPERTIES OF A LITTLE-ORIENTED PYROLYTIC CARBON; Deposition et proprietes d'un carbone pyrolytique peu oriente

    Energy Technology Data Exchange (ETDEWEB)

    Rappeneau, J; Bocquet, M; Yvars, M; David, C; Auriol, A

    1963-06-15

    Pyrolytic carbon obtained by thermal decomposition of acetylene, at partial pressures of 0.02 to 0.1 atm, on walls heated to between 1550 and 1650 deg C, is characterized by its low density (1.35) and a not very marked preferred orientation of the crystallites. The latter property is expressed by an absence of laminar structure in the deposit and by its good compatibility with an artiticial graphite substrate. Following a description of the method of deposition and an outline of the structural properties, certain physical and chemical properties of the substance are examined. (auth)

  3. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  4. Growth of CoSi2 on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Lim, C.W.; Shin, C.-S.; Gall, D.; Zuo, J.M.; Petrov, I.; Greene, J.E.

    2005-01-01

    CaF 2 -structure CoSi 2 layers were formed on Si(001) by reactive deposition epitaxy (RDE) and compared with CoSi 2 layers obtained by conventional solid phase growth (SPG). In both sets of experiments, Co was deposited by ultrahigh-vacuum magnetron sputtering and CoSi 2 formed at 600 deg. C. However, in the case of RDE, CoSi 2 formation occurred during Co deposition while for SPG, Co was deposited at 25 deg. C and silicidation took place during subsequent annealing. X-ray diffraction pole figures and transmission electron microscopy results demonstrate that RDE CoSi 2 layers are epitaxial with a cube-on-cube relationship (001) CoSi 2 parallel (001) Si and [100] CoSi 2 parallel[100] Si . In contrast, SPG films are polycrystalline with an average grain size of ≅1000 A and a mixed 111/002/022/112 orientation. We attribute the striking difference to rapid Co diffusion into the Si(001) substrate during RDE for which the high Co/Si reactivity gives rise to a flux-limited reaction resulting in the direct formation of the disilicide phase. In contrast, sequential nucleation and transformation among increasingly Si-rich phases--from orthorhombic Co 2 Si to cubic CoSi to CoSi 2 --during SPG results in polycrystalline layers with a complex texture

  5. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  6. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C-400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm-1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  7. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  8. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  9. Structure and soft magnetic properties of sputter deposited MnZn-ferrite films

    NARCIS (Netherlands)

    Gillies, M.F.; Coehoorn, R.; van Zon, J.B.A.D.; Alders, D.

    1998-01-01

    In this paper we report the soft magnetic properties of thin films of sputtered MnZn ferrite deposited on thermally oxidized Si substrates. A high deposition temperature, 600¿°C, together with the addition of water vapor to the sputtering gas was found to improve the initial ac permeability, µ. The

  10. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  11. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    International Nuclear Information System (INIS)

    Schaefer, Michael; Schlaf, Rudy

    2015-01-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru 0 ) and its oxide (RuO 2 ) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru 0 and RuO 2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO 2 and 0.04 Å/cycle for Ru. 0 An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO 2 /OH compound whose surface is saturated with hydroxyl groups

  12. Information system of mineral deposits in Slovenia

    Science.gov (United States)

    Hribernik, K.; Rokavec, D.; Šinigioj, J.; Šolar, S.

    2010-03-01

    At the Geologic Survey of Slovenia the need for complex overview and control of the deposits of available non-metallic mineral raw materials and of their exploitations became urgent. In the framework of the Geologic Information System we established the Database of non-metallic mineral deposits comprising all important data of deposits and concessionars. Relational database is built with program package MS Access, but in year 2008 we plan to transfer it on SQL server. In the evidence there is 272 deposits and 200 concessionars. The mineral resources information system of Slovenia, which was started back in 2002, consists of two integrated parts, mentioned relational database of mineral deposits, which relates information in tabular way so that rules of relational algebra can be applied, and geographic information system (GIS), which relates spatial information of deposits. . The complex relationships between objects and the concepts of normalized data structures, lead to the practical informative and useful data model, transparent to the user and to better decision-making by allowing future scenarios to be developed and inspected. Computerized storage, and display system is as already said, developed and managed under the support of Geological Survey of Slovenia, which conducts research on the occurrence, quality, quantity, and availability of mineral resources in order to help the Nation make informed decisions using earth-science information. Information about deposit is stored in records in approximately hundred data fields. A numeric record number uniquely identifies each site. The data fields are grouped under principal categories. Each record comprise elementary data of deposit (name, type, location, prospect, rock), administrative data (concessionar, number of decree in official paper, object of decree, number of contract and its duration) and data of mineral resource produced amount and size of exploration area). The data can also be searched, sorted and

  13. Metallogenic model for continental volcanic-type rich and large uranium deposits

    International Nuclear Information System (INIS)

    Chen Guihua

    1998-01-01

    A metallogenic model for continental volcanic-type rich and large/super large uranium deposits has been established on the basis of analysis of occurrence features and ore-forming mechanism of some continental volcanic-type rich and large/super large uranium deposits in the world. The model proposes that uranium-enriched granite or granitic basement is the foundation, premetallogenic polycyclic and multistage volcanic eruptions are prerequisites, intense tectonic-extensional environment is the key for the ore formation, and relatively enclosed geologic setting is the reliable protection condition of the deposit. By using the model the author explains the occurrence regularities of some rich and large/super large uranium deposits such as Strelichof uranium deposit in Russia, Dornot uranium deposit in Mongolia, Olympic Dam Cu-U-Au-REE deposit in Australia, uranium deposit No.460 and Zhoujiashan uranium deposit in China, and then compares the above deposits with a large poor uranium deposit No.661 as well

  14. Controllable deposition of gadolinium doped ceria electrolyte films by magnetic-field-assisted electrostatic spray deposition

    International Nuclear Information System (INIS)

    Ksapabutr, Bussarin; Chalermkiti, Tanapol; Wongkasemjit, Sujitra; Panapoy, Manop

    2013-01-01

    This paper describes a simple and low-temperature approach to fabrication of dense and crack-free gadolinium doped ceria (GDC) thin films with controllable deposition by a magnetic-field-assisted electrostatic spray deposition technique. The influences of external permanent magnets on the deposition of GDC films were investigated. The coating area deposited using two magnets with the same pole arrangement decreased in comparison with the case of no magnets, whereas the largest deposition area was obtained in the system of the opposite poles. Analysis of as-deposited films at 450 °C indicated the formation of uniform, smooth and dense thin films with a single-phase fluorite structure. The films produced in the system using same poles were thicker, smaller in crystallite size and smoother than those fabricated under other conditions. Additionally, the GDC film deposited using the same pole arrangement showed the maximum in electrical conductivity of about 2.5 × 10 −2 S/cm at a low operating temperature of 500 °C. - Highlights: • Magnetic-field-assisted electrostatic spray allows a controllable coating. • Dense, crack-free thin films were obtained at low process temperature of 450 °C. • Control of deposition, thickness and uniformity is easy to achieve simultaneously. • Films from the same pole were thicker, smaller in crystal size and smoother. • The maximum conductivity of doped ceria film was 2.5 × 10 −2 S/cm at 500 °C

  15. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    International Nuclear Information System (INIS)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Manera, Maria Grazia; Rella, Roberto; Taurino, Antonietta

    2011-01-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  16. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    Science.gov (United States)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta

    2011-09-01

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  17. Structural characterization of ultrathin Cr-doped ITO layers deposited by double-target pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); Catalano, Massimo; Manera, Maria Grazia; Rella, Roberto; Taurino, Antonietta, E-mail: antonietta.taurino@le.imm.cnr.it [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy)

    2011-09-14

    In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.

  18. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  19. A 5000km2 data set along western Great Bahama Bank illustrates the dynamics of carbonate slope deposition

    Science.gov (United States)

    Schnyder, Jara S. D.; Jo, Andrew; Eberli, Gregor P.; Betzler, Christian; Lindhorst, Sebastian; Schiebel, Linda; Hebbeln, Dierk; Wintersteller, Paul; Mulder, Thierry; Principaud, Melanie

    2014-05-01

    An approximately 5000km2 hydroacoustic and seismic data set provides the high-resolution bathymetry map of along the western slope of Great Bahama Bank, the world's largest isolated carbonate platform. This large data set in combination with core and sediment samples, provides and unprecedented insight into the variability of carbonate slope morphology and the processes affecting the platform margin and the slope. This complete dataset documents how the interplay of platform derived sedimentation, distribution by ocean currents, and local slope and margin failure produce a slope-parallel facies distribution that is not governed by downslope gradients. Platform-derived sediments produce a basinward thinning sediment wedge that is modified by currents that change directions and strength depending on water depth and location. As a result, winnowing and deposition change with water depth and distance from the margin. Morphological features like the plunge pool and migrating antidunes are the result of currents flowing from the banktop, while the ocean currents produce contourites and drifts. These continuous processes are punctuated by submarine slope failures of various sizes. The largest of these slope failures produce several hundred of km2 of mass transport complexes and could generate tsunamis. Closer to the Cuban fold and thrust belt, large margin collapses pose an equal threat for tsunami generation. However, the debris from margin and slope failure is the foundation for a teeming community of cold-water corals.

  20. Sedimentology and ichnology of Neogene Coastal Swamp deposits in the Niger Delta Basin, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezeh Sunny C.

    2016-09-01

    Full Text Available Often analyses of depositional environments from sparse data result in poor interpretation, especially in multipartite depositional settings such as the Niger Delta. For instance, differentiating channel sandstones, heteroliths and mudstones within proximal environments from those of distal facies is difficult if interpretations rely solely on well log signatures. Therefore, in order to achieve an effective and efficient interpretation of the depositional conditions of a given unit, integrated tools must be applied such as matching core descriptions with wireline log signature. In the present paper cores of three wells from the Coastal Swamp depositional belt of the Niger Delta are examined in order to achieve full understanding of the depositional environments. The well sections comprise cross-bedded sandstones, heteroliths (coastal and lower shoreface and mudstones that were laid down in wave, river and tidal processes. Interpretations were made from each data set comprising gamma ray logs, described sedimentological cores showing sedimentary features and ichnological characteristics; these were integrated to define the depositional settings. Some portions from one of the well sections reveal a blocky gamma ray well log signature instead of a coarsening-upward trend that characterises a shoreface setting while in other wells the signatures for heteroliths at some sections are bell blocky in shaped rather than serrated. Besides, heteroliths and mudstones within the proximal facies and those of distal facies were difficult to distinguish solely on well log signatures. However, interpretation based on sedimentology and ichnology of cores from these facies was used to correct these inconsistencies. It follows that depositional environment interpretation (especially in multifarious depositional environments such as the Niger Delta should ideally be made together with other raw data for accuracy and those based solely on well log signatures should