WorldWideScience

Sample records for deposition yba2cu3o7-delta coated

  1. Microwave resonators from YBa2Cu3O(7-delta) thin films made by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Young, K. H.; Robinson, Mcd.; Negrete, G. V.; Zhao, J.; Chern, C. S.; Li, Y. Q.; Norris, P. E.

    1992-08-01

    Epitaxial YBa2Cu3O(7-delta) thin films on LaAlO3 deposited by plasma-enhanced metalorganic chemical vapor deposition were tested in a 100 GHz microwave cavity and as patterned 5.6 GHz resonators. Two films, both having high critical temperature and high critical current density, exhibited low-power Q's of 5400 and 8000 as 5.6 GHz microstrip resonators when operated at 77 K. The equivalent surface resistances at 10 GHz are 1.7 and 1 m-Omega, respectively. Despite the fact that these films are thinner than typical laser ablation films, the results are within a factor of 2 of the best laser ablation prepared YBa2Cu3O(7-delta) films.

  2. The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Foltyn, Stephen R [Los Alamos National Laboratory; Wang, Haiyan [Los Alamos National Laboratory; Civale, Leonardo [Los Alamos National Laboratory; Maiorov, Boris A [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory

    2009-01-01

    The critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} (YBCO) films can approach 10 MA/cm{sup 2} at 77 K in self field , but only for very thin films. We have shown previously that strong thickness dependence results if J{sub c} is enhanced near the film-substrate interface. In the present work we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO{sub 3} substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. Interestingly, we find that the 'on' state is accompanied by interfacial misfit dislocations, establishing an unambiguous correlation between enhanced J{sub c} and dislocations at the film-substrate interface.

  3. DIFFERENT TYPES OF DISLOCATIONS IN YBA2CU3O7-DELTA

    NARCIS (Netherlands)

    VERWERFT, M; DIJKEN, DK; DEHOSSON, JTM; VANDERSTEEN, AC

    1994-01-01

    In the present study, dense pellets of polycrystalline YBa2Cu3O7-delta were made by dynamic powder compaction. The shock wave, which passes through the initially loose powder, generates multiple defects. Its hydrostatic component suppresses the brittle nature of YBa2Cu3O7-delta, and so plastic

  4. Epitaxial yttria-stabilized zirconia on (1 -1 0 2) sapphire for YBa2Cu3O(7-delta) thin films

    Science.gov (United States)

    Wu, X. D.; Muenchausen, R. E.; Nogar, N. S.; Pique, A.; Edwards, R.

    1991-01-01

    Epitaxial yttria-stabilized zirconia (YSZ) films were deposited on (1 -1 0 2) sapphire by pulsed laser deposition. The films are formed in a cubic phase with the a axis normal to the substrate surface. Ion beam channeling measurements show that the YSZ films are highly crystalline with a channeling minimum yield of 8 percent. The epitaxial relationship between the film and substrate is further confirmed by a cross-section TEM study. Epitaxial YBa2Cu3O(7-delta) thin films deposited on YSZ/sapphire have Tc and Jc of up to 89 K and 10 to the 6th A/sq cm at 77 K, respectively.

  5. High magnetic field trapping in monolithic single-grain YBa2Cu3O(7-delta) bulk materials

    Science.gov (United States)

    Gao, L.; Xue, Y. Y.; Ramirez, D.; Huang, Z. J.; Meng, R. L.; Chu, C. W.

    1993-01-01

    Results of our study on high magnetic field trapping in unirradiated, high quality monolithic single-grain YBa2Cu3O(7-delta) disks are reported. A record high 4 T trapped field at the surface of the unirradiated disks is observed. However, below 11 K, large flux avalanches caused by thermal instability severely limit the remnant trapped field. Therefore, flux avalanche, rather than Jc x d, dictates the maximum trapped field at low temperatures. To overcome this problem, a strong high temperature superconductor trapped field magnet is proposed. A novel application of the avalanche effect is also mentioned.

  6. Reentrant superconductivity in a composite formed by YBa$_2$Cu$_3$O$ _{7-\\delta}$ and Ammonium Terbium Oxalate

    OpenAIRE

    López-Romero, Rodolfo E.; Medina, Dulce Y.; Escudero, R.

    2017-01-01

    We present a study of reentrant behavior in a composite formed by a Hight-T$ _{c} $ superconductor, YBa$_2$Cu$_3$O$ _{7-\\delta}$ and Ammonium Terbium Oxalate, Tb(H$_2$O)(C$ _2$O$_4$)$_2$ $\\cdot $NH$_4$. The composite has a transition temperature about 92 K, and it presents a reentrant behaviour resulting of the coexistence between superconductivity and magnetism. According to this study the values and shape of the critical magnetic fields were dramatically reduced in a similar form as in othe...

  7. Enhanced vortex pinning and critical current density in proton-irradiated YBa2Cu3O(7-delta) thin films

    Science.gov (United States)

    Venturini, E. L.; Siegal, M. P.; White, A. E.; Hou, S. Y.; Phillips, J. M.

    1992-11-01

    The appropriate fluence of 2.0 MeV H(sup +) ions has been shown previously to enhance the critical current density J(sub c) by a factor of two at a magnetic field of 0.9 tesla in 1000 (Angstrom) thick epitaxial films of YBa(2)Cu(3)O(7-delta) grown by the ex situ BaF2 process. The as-grown films exhibit single crystal-like behavior in both atomic ordering and J(sub c) versus temperature and magnetic field. TRIM simulations suggest that H(sup +) irradiation generates mainly point defects throughout the crystal structure. We show here that such defects produce both a large enhancement of J(sub c) for fields above 1 tesla and a significant increase in the apparent vortex pinning potential deduced from magnetization relaxation data.

  8. A Model Approach to Flux-Pinning Properties of YBa2Cu 3O7-delta Thin Film Vortex States via Non-Superconducting Impurities

    Science.gov (United States)

    Gamble, Ronald S., Jr.

    Thin film YBa2Cu3O7--delta (YBCO) samples with added non-superconducting nanodot defects of CeO 2 and BaSnO2 are the focus of recent high-temperature superconductor studies. These nanodots allow magnetic flux to penetrate at these sites of the superconducting lattice thus creating a magnetic flux vortex state. Examining the structure shows that these quantized magnetic flux vortices arrange themselves in a self-assembled lattice. The nanodots, with non-superconducting properties, serve to present structural properties to restrict motion of these vorticies under a pinning-force and to enhance the critical current density. A formulation of a new model for the system by a variation in the electron pair velocity via the virtual work from the nanodot defects in accordance to the well-known Superconductivity theories is tested. A solution to the expression for the magnetic flux, zero net force and pair velocity will generate a setting for the optimal deposition parameters of number density, growth geometry and mass density of these nanodot structures. With a calculation of pair velocities from a similar work, a comparison is made between experimental and theoretical velocity calculations using growth geometry and chemical potential. This will yield insight into how the current density for a doped high-temperature superconductor will be modified and tuned based on the dynamics and density of the nanodots themselves.

  9. Correlation of tunneling spectra with surface nano-morphology and doping in thin YBa2Cu3O7-delta films

    OpenAIRE

    Sharoni, A.; Koren, G.; Millo, O.

    2001-01-01

    Tunneling spectra measured on thin epitaxial YBa2Cu3O7-delta films are found to exhibit strong spatial variations, showing U and V-shaped gaps as well as zero bias conductance peaks typical of a d-wave superconductor. A full correspondence is found between the tunneling spectra and the surface morphology down to a level of a unit-cell step. Splitting of the zero bias conductance peak is seen in optimally-doped and overdoped films, but not in the underdoped ones, suggesting that there is no tr...

  10. LaNiO(3) Buffer Layers for High Critical Current Density YBa(2)Cu(3)O(7-delta) and Tl(2)Ba(2)CaCu(2)O(8-delta) Films

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.M.; Parilla, P.A.; Siegal, M.P.; Ginley, D.S.; Wang, Y.-T.; Blaugher, R.D.; Price, J.C.; Overmyer, D.L.; Venturini, E.L.

    1999-08-24

    We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.

  11. Atomic oxygen effect on the in situ growth of stoichiometric YBa2Cu3O7 - delta epitaxial films by facing targets 90° off-axis radiofrequency magnetron sputtering

    Science.gov (United States)

    Oya, Gin-ichiro; Diao, Chien Chen; Imai, Syozo; Uzawa, Takaaki; Sawada, Yasuji; Sugai, Tokuko; Nakajima, Kensuke; Yamashita, Tsutomu

    1995-06-01

    (110)- and (103)-oriented almost stoichiometric YBa2Cu3O7-δ (YBCO) films have been grown epitaxially on hot SrTiO3 (110) substrates using a 90° off-axis rf magnetron sputtering technique, for fabrication of vertical sandwich-type YBCO/insulator/YBCO or YBCO/normal metal/YBCO Josephson junctions utilizing the high-quality YBCO films. The YBCO epitaxial films with high transition temperatures Tc of ˜90 K have been deposited in situ only under the conditions of substrate temperatures Ts of ˜650-˜700 °C and oxygen partial pressure PO2 of ˜5×10-3-˜10×10-3 Torr, which are in close proximity to the critical stability/decomposition line for YBa2Cu3O6 in the ordinary Y-Ba-Cu-O phase diagram. Using a quadrupole mass spectrometer, a high density of atomic oxygen has directly been observed to be efficiently produced in the sputter glow discharge under the above optimum conditions of PO2. This atomic oxygen has played a key role in promoting the formation of the perovskite structure and the epitaxial growth of the YBCO films. Furthermore, Shapiro steps have successfully been observed for a Nb-YBCO point-contact junction, which is made by pressing a Nb needle on a surface-etched YBCO epitaxial film, under 525.4 GHz submillimeter-wave irradiation.

  12. Anomalous misfit strain relaxation in ultrathin YBa2Cu3O7 - delta epitaxial films

    Science.gov (United States)

    Kamigaki, K.; Terauchi, H.; Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K.; Hayashi, K.; Nakagawa, I.; Tomii, Y.

    1991-03-01

    Ultrathin YBa2Cu3O7-δ epitaxial films were successfully grown in situ on (001) SrTiO3 and MgO substrates by means of ozone-incorporating activated reactive evaporation. The x-ray-diffraction study was carefully examined to determine the structural properties of the grown films. Excellent crystallinity with no interfacial disorders was revealed by the appearance of the Laue oscillations. It was found that in a well lattice-matched YBa2Cu3O7-δ/SrTiO3 system, the crystallinity was deteriorated due to defect introduction at the critical layer thickness hc ( ˜ 130 Å). Interestingly, also in a poorly lattice-matched YBa2Cu3O7-δ/MgO system, excellent crystallinity was revealed even at above hc ( < 24 Å). This implies that an anomalous misfit relaxation process exists in the YBa2Cu3O7-δ/MgO system. In such a system, no crystal imperfection of the MgO substrate caused by defect introduction was elucidated by the grazing incidence x-ray scattering, which indicated that the MgO substrate did not contribute to the anomalous misfit relaxation. The anomalous growth manner was also found in YBa2Cu3O7-δ/MgO according to surface morphology investigations. Below 40 Å( ≳ hc), island nucleation growth was found. Above 40 Å, it was observed that an atomically smooth surface was obtained and the crystallinity was simultaneously improved. It is suggested that YBa2Cu3O7-δ possesses an anomalous misfit relaxation mechanism, and that especially in the growth on MgO, it couples with the characteristic growth behavior at the initial stage.

  13. Potassium substitution effects in YBa2Cu3O7- & delta superconductor

    Directory of Open Access Journals (Sweden)

    M Farbod

    2006-09-01

    Full Text Available   YBa2-xKxCu3O7-δ compound with x = 0, 0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1 was prepared. The samples were characterized by XRD, Tc, oxygen content and room temperature thermopower measurements. The results shows that by increasing the potassium, the samples go to the underdoped regime. This is due to the depletion of oxygen from the samples. By post annealing of the sample with x = 0.2 and Tc = 78 K in oxygen, the Tc increased up to 93 K which means it is possible to put back the oxygens into the structure.

  14. Observation of out-of-phase bilayer plasmons in $YBa_{2}Cu_{3}O_{7-delta}$

    NARCIS (Netherlands)

    Grüninger, M.; Marel, D. van der; Tsvetkov, A. A.; Erb, A.

    1999-01-01

    Published in: Phys. Rev. Lett. 84 (2000) 1575 Citing articles (CrossRef) citations recorded in [Science Citation Index] Abstract: The temperature dependence of the c-axis optical conductivity sigma(ømega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and

  15. Flux Pinning in YBa2Cu3O7-delta Thin Film Samples Linked to Stacking Fault Density (Postprint)

    Science.gov (United States)

    2008-10-01

    Yoon, H. Wang, T.J. Haugan, F.J. Baca, N.A. Pierce, and P.N. Barnes Power Generation Branch Power Division OCTOBER 2008...ADDRESS(ES) 8. PERFORMING ORGANIZATION Texas A&M University Power Generation Branch (AFRL/RZPG) Power Division Air Force Research Laboratory...Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, B. Maiorov, L. Civale, Y . Lin, M. E. Hawley, M. P. Maley, and D. E. Peter- son, Appl. Phys. Lett. 84

  16. Very Large Scale Integration of Nano-Patterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane A; Anton, Steven; Wu, Stephen; Clarke, John; Dynes, Robert

    2009-09-01

    Very large scale integration of Josephson junctions in a two-dimensional series-parallel array has been achieved by ion irradiating a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film through slits in a nano-fabricated mask created with electron beam lithography and reactive ion etching. The mask consisted of 15,820 high-aspect ratio (20:1), 35-nm wide slits that restricted the irradiation in the film below to form Josephson junctions. Characterizing each parallel segment k, containing 28 junctions, with a single critical current I{sub ck} we found a standard deviation in I{sub ck} of about 16%.

  17. Time Resolved Magneto-Optical Imaging in High Frequency AC Currents of YBa2Cu3O7-delta Thin Films (Postprint)

    Science.gov (United States)

    2012-02-01

    thick sapphire window on top of the cryostat allows optical access to the sample. A 10x fluorite tension-free objective lens is used to minimize...µm for an external magnetic field of 750 Oe perpendicular to the film surface . Currently, the time resolution of our setup is determined by the jitter...images indicate the direction of the applied AC current. Small defects on the surface of the MO indicator are revealed in the images as dark spots. The

  18. Planar tunneling and Andreev bound state spectroscopy of yttrium barium copper oxide thin films using solution-deposited zirconia insulators

    Science.gov (United States)

    Hentges, Patrick Jay

    2004-12-01

    Planar tunnel spectroscopic measurements are performed on YBa2Cu3O7-delta (YBCO) thin films at four different crystallographic orientations. Since tunneling is a highly surface-sensitive probe on YBCO, films have been optimized for high surface quality. To fabricate the tunneling insulator, a novel fabrication technique has been developed through solution condensation and hydrolysis of zirconia, which has proven to be gentler to the surface than previous techniques. The result is a clean tunneling interface as shown in scanning electron microscopy, atomic force microscopy and transmission electron microscopy, that allows us to detect several new features in the tunneling conductance. In addition, we have fabricated tunnel junctions with three different counter-electrode deposition techniques. In doing so, various behaviors of the tunneling conductance and its dependence on magnetic field, temperature, and injected current as a function of these counter-electrode deposition techniques has been observed. Modeling of the tunneling conductance has provided insight into the various behaviors. It has been shown that by varying the value of the tunneling cone, surface faceting and quasiparticle lifetime, in agreement with the observations, splitting vs. non-splitting of the zero-bias conductance peak can be understood.

  19. Evidence that the reversible strain effect on critical current density and flux pinning in Bi2Sr2Ca2Cu3Ox tapes is caused entirely by the pressure dependence of the critical temperature

    NARCIS (Netherlands)

    van der Laan, D. C.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.; van Eck, H. J. N.

    2011-01-01

    It is well known that the critical temperature of cuprate-and iron-based high-temperature superconductors changes with pressure. YBa2Cu3O7-delta coated conductors, as well as Bi2Sr2CaCu2Ox and Bi2Sr2Ca2Cu3Ox tapes and wires, show a clear reversible effect of strain on their current-carrying

  20. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  1. Anisotrophic currents and flux jumps in high-T-c superconducting films with self-organized arrays of planar defects

    DEFF Research Database (Denmark)

    Yurchenko, V.V.; Qviller, A.J.; Mozhaev, P.B.

    2010-01-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa2Cu3O7-delta (YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. We...... present results of real-time magneto-optical imaging (MOI) of magnetic flux distribution and dynamics in a series of YBCO thin films deposited on NdGaO3 substrates with different miscut angles theta. MOI allows reconstructing the current flow profiles. From the angle formed between domains with different...

  2. Ion Deposited Carbon Coatings.

    Science.gov (United States)

    1983-07-01

    sample is included in Figure 5.5.3. After one minute exposure, there was no detectable change in the surface of the coating or the polycarbonate. After...surface de 1/600 000 square meter of a blackbody at the 1/600 000 rnitre carr-6 d’un corps noir L ha temperature of freezing platinum under a temp6rature

  3. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  4. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  5. Antireflection coatings on plastics deposited by plasma ...

    Indian Academy of Sciences (India)

    Wintec

    exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this .... trodes in a cylindrical glass deposition chamber, has been designed, fabricated and assembled in-house. RF power can be applied across the electrodes with a RF generator.

  6. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  7. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  8. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Kyung; Kim, Min Woo; Lee, Hyeon Keun [KAIST, Daejeon (Korea, Republic of); Choi, Doo Jin; Kim, Jun Kyu; Cho, Sung Hyuk [Younsei University, Seoul (Korea, Republic of)

    2008-03-15

    Both ZrC and SiC layers are crucial layers in TRISO coated fuel particles since they prevent diffusion of fission products and provide mechanical strength for the fuel particle. However, each layer has its own defects, so the purpose of this study is to complement such defects of these layers. In this study, we carried out thermodynamic simulations before actual experiments. With these simulation results, we deposited the ZrC layers on SiC/graphite substrates through CVD process. SiC films on graphite have different microstructures which are a hemispherical angular, domed top and faceted structure at different deposition temperature, respectively. According to the microstructures of SiC, preferred orientation, hardness and elastic modules of deposited ZrC layer were changed. TRISO particles. The fracture the SiC coating layer occurred by the tensile stress due to the traditional pressure vessel failure criteria. It is important to find fracture stress of SiC coating layer by the internal pressurization test method. The finite-element analysis was carried out to obtain the empirical equation of strength evaluation. By using this empirical equation, the mechanical properties of several types of SiC coating film with different microstructure and thicknesses will discussed.

  9. Deposition and Characterization of TRISO Coating Layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H. [KAIST, Daejeon (Korea, Republic of)

    2007-03-15

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis.

  10. Deposition and Characterization of TRISO Coating Layers

    International Nuclear Information System (INIS)

    Kim, D. K.; Choi, D. J.; Lee, H. K.; Kim, J. K.; Kim, J. H.; Chun, J. H.

    2007-03-01

    Zirconium carbide has been chosen and studied as an advanced material of silicon carbide. In order to collect data on the basic properties and characteristics of Zirconium carbide, studies have been conducted using various methods. As a result of chemically vapor deposed subliming zirconium tetrachloride(ZrCl4) and using methane(CH4) as a source in hydrogen atmosphere, graphite film is deposited.. Zirconium carbide was deposited on the sample where silicon carbide was deposited on a graphite substrate using Zirconium sponge as a Zirconium source. In terms of physical characteristics, the deposited Zirconium carbide showed higher strength, but slightly lower elastic modulus than silicon carbide. In order to evaluate the mechanical properties of a coating layer in pre-irradiation step, internal pressure induced method and direct strength measurement method is carried out. In the internal pressure induced method, in order to produce the requirement pressure, pressure media is used. In the direct strength measurement method, the indentation experiment that indent on a hemisphere shell with plate indenter is conducted. For this method, the finite element analysis is used and the analysis is verified by indentation experiments. To measure the strength of TRISO particle SiC coating, SiC hemisphere shell is performed through grinding and heat treatment. Through the finite element analysis, strength evaluation equation is suggested. Using suggested equation, Strength evaluation is performed and the strength value shows 1025MPa as a result of statistical analysis

  11. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  12. Electrochemical deposition of Ni–TiN nanocomposite coatings and ...

    Indian Academy of Sciences (India)

    s12034-016-1238-3. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties. NAFISE PARHIZKAR1, ABOLGHASEM DOLATI1, ROYA AGHABABAZADEH2 and.

  13. High Energy Radial Deposition of Diamond-Like Carbon Coatings

    Directory of Open Access Journals (Sweden)

    Konrad Suschke

    2015-07-01

    Full Text Available Diamond-like carbon (DLC coatings were deposited with a new direct ion deposition system using a novel 360 degree ion source operating at acceleration voltage between 4 and 8 kV. Cross-sectional TEM images show that the coatings have a three layered structure which originates from changes in the deposition parameters taking into account ion source condition, ion current density, deposition angles, ion sputtering and ion source movement. Varying structural growth conditions can be achieved by tailoring the deposition parameters. The coatings show good promise for industrial use due to their high hardness, low friction and excellent adhesion to the surface of the samples.

  14. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  15. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  16. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  17. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  18. Protective silicon coating for nanodiamonds using atomic layer deposition

    International Nuclear Information System (INIS)

    Lu, J.; Wang, Y.H.; Zang, J.B.; Li, Y.N.

    2007-01-01

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH 4 ). The coating was performed by sequential reaction of SiH 4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability

  19. Physically vapor deposited coatings on tools: performance and wear phenomena

    International Nuclear Information System (INIS)

    Koenig, W.; Fritsch, R.; Kammermeier, D.

    1991-01-01

    Coatings produced by physical vapor deposition (PVD) enhance the performance of tools for a broad variety of production processes. In addition to TiN, nowadays (Ti,Al)N and Ti(C,N) coated tools are available. This gives the opportunity to compare the performance of different coatings under identical machining conditions and to evaluate causes and phenomena of wear. TiN, (Ti,Al)N and Ti(C,N) coatings on high speed steel (HSS) show different performances in milling and turning of heat treated steel. The thermal and frictional properties of the coating materials affect the structure, the thickness and the flow of the chips, the contact area on the rake face and the tool life. Model tests show the influence of internal cooling and the thermal conductivity of coated HSS inserts. TiN and (Ti,Zr)N PVD coatings on cemented carbides were examined in interrupted turning and in milling of heat treated steel. Experimental results show a significant influence of typical time-temperature cycles of PVD and chemical vapor deposition (CVD) coating processes on the physical data and on the performance of the substrates. PVD coatings increase tool life, especially towards lower cutting speeds into ranges which cannot be applied with CVD coatings. The reason for this is the superior toughness of the PVD coated carbide. The combination of tough, micrograin carbide and PVD coating even enables broaching of case hardened sliding gears at a cutting speed of 66 m min -1 . (orig.)

  20. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  1. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  2. Boron carbide (B4C) coating. Deposition and testing

    Science.gov (United States)

    Azizov, E.; Barsuk, V.; Begrambekov, L.; Buzhinsky, O.; Evsin, A.; Gordeev, A.; Grunin, A.; Klimov, N.; Kurnaev, V.; Mazul, I.; Otroshchenko, V.; Putric, A.; Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A.

    2015-08-01

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B4C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B4C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B4C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B4C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  3. Microstructure of WC/C coatings deposited on steel substrates

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Carvalho, N.J.M.; Brebbia, CA

    2001-01-01

    Electron microscopy, including scanning (SEM), transmission (TEM) and high-resolution (HRTEM) were employed to characterise slightly different tungsten carbide/carbon coatings deposited onto steel substrates. Complementary techniques, such as X-ray diffraction (XRD), Auger electron spectroscopy

  4. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    are meas- ured, and are compared with that of metallic cadmium coating. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition of deposited coatings were studied using a scanning electron microscope (JEOL JSM-6480) with EDS attachment.

  5. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  6. Structure And Properties Of PVD Coatings Deposited On Cermets

    Directory of Open Access Journals (Sweden)

    Żukowska L.

    2015-06-01

    Full Text Available The main aim of the research is the investigation of the structure and properties of single-layer and gradient coatings of the type (Ti,AlN and Ti(C,N deposited by physical vapour deposition technology (PVD on the cermets substrate.

  7. Electrochemical deposition of Ni–TiN nanocomposite coatings and ...

    Indian Academy of Sciences (India)

    The effects of deposition current density, electrolyte agitation speed and the number of particles in the solution on the amount of incorporated particles in the coating process were investigated. The optimum deposition current density of 4 A dm − 2 and agitation speed of 450 rpm were obtained. The effect of sodium dodecyl ...

  8. Electrochemical deposition of mineralized BSA/collagen coating.

    Science.gov (United States)

    Zhuang, Junjun; Lin, Jun; Li, Juan; Wang, Huiming; Cheng, Kui; Weng, Wenjian

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170-0.173mg/cm(2), enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    International Nuclear Information System (INIS)

    Dowling, D P; Law, V J; Ardhaoui, M; Stallard, C; Maher, S; Keenan, A

    2016-01-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV–VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer. (paper)

  10. Chemically vapor deposited coatings for multibarrier containment of nuclear wastes

    International Nuclear Information System (INIS)

    Rusin, J.M.; Shade, J.W.; Kidd, R.W.; Browning, M.F.

    1981-01-01

    Chemical vapor deposition (CVD) was selected as a feasible method to coat ceramic cores, since the technology has previously been demonstrated for high-temperature gas-cooled reactor (HTGR) fuel particles. CVD coatings, including SiC, PyC (pyrolytic carbon), SiO 2 , and Al 2 O 3 were studied. This paper will discuss the development and characterization of PyC and Al 2 O 3 CVD coatings on supercalcine cores. Coatings were applied to 2 mm particles in either fluidized or vibrating beds. The PyC coating was deposited in a fluidized bed with ZrO 2 diluent from C 2 H 2 at temperatures between 1100 and 1200 0 C. The Al 2 O 3 coatings were deposited in a vibrated bed by a two-stage process to minimize loss of PyC during the overcoating operation. This process involved applying 10 μm of Al 2 O 3 using water vapor hydrolysis of AlCl 3 and then switching to the more surface-controlled hydrolysis via the H 2 + CO 2 reaction (3CO 2 + 3H 2 + 2AlCl 3 = Al 2 O 3 + 6HCl + 3CO). Typically, 50 to 80 μm Al 2 O 3 coatings were applied over 30 to 40 μm PyC coatings. The coatings were evaluated by metallographic examination, PyC oxidation tests, and leach resistance. After air oxidation for 100 hours at 750 0 C, the duplex PyC/Al 2 O 3 coated particles exhibited a weight loss of 0.01 percent. Leach resistance is being determined for temperatures from 50 to 150 0 C in various solutions. Typical results are given for selected ions. The leach resistance of supercalcine cores is significantly improved by the application of PyC and/or Al 2 O 3 coatings

  11. Deposition of selenium coatings on beryllium foils. Revision 1

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-01-01

    A technique for preparing selenium films on 50.8 micrometers thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. A water-cooled enclosure was used to minimize contamination of the vacuum system and to reduce the exposure of personnel to toxic and obnoxious materials. Profilometry measurements of the coatings indicated selenium thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 micrometers. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable deposition controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV

  12. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source....... This configuration enables a gentle treatment of sensitive materials like low-density polyethylene foils and biodegradable materials. SiOx coatings deposited in the novel setup were compared with other state of the art plasma coatings and were found to possess equally good or better barrier properties. The barrier...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  13. Collimated Magnetron Sputter Deposition for Mirror Coatings

    DEFF Research Database (Denmark)

    Vickery, A.; Cooper-Jensen, Carsten P.; Christensen, Finn Erland

    2008-01-01

    At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence that a collimat......At the Danish National Space Center (DNSC), a planar magnetron sputtering chamber has been established as a research and production coating facility for curved X-ray mirrors for hard X-ray optics for astronomical X-ray telescopes. In the following, we present experimental evidence...... that a collimation of the sputtered particles is an efficient way to suppress the interfacial roughness of the produced multilayer. We present two different types of collimation optimized for the production of low roughness curved mirrors and flat mirrors, respectively....

  14. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  15. Polyamic acid coating of microspheres by oriented thermal vapor deposition

    International Nuclear Information System (INIS)

    Huang Yong; Zhang Zhanwen; Liu Yiyang; Li Bo; Chen Shufen; Qi Xiaobo

    2011-01-01

    In this paper, a study on the oriented thermal vapor deposition device which is used for coating microspheres with polyamic acid (PAA) is developed. Influences of the processing of monomer material and the adjusting of heating process on the deposition rate are discussed. Two different monomers are poured into two evaporators and evaporated independently, the deposition rate and film thickness are measured via two film thickness measuring probes with the crystal vibration. Space position and symmetry of sample pan, two probes and the oriented tube tip are adjusted so that two monomers' deposition ratio approximates to stoichiometric ratio. High quality coating of PAA on poly-alpha-methylstyrene microsphere is acquired by intermittent piezoelectricity vibration or striking which accompanies rotating of the sample pan. (authors)

  16. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  17. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    trochemical corrosion resistance were carried out in the 5% NaCl, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the ground of these research, the possibility of deposition of Zn–. Ni coatings contained 24–26% at. Ni was exhibited. It was stated, that surface morphology, chemical ...

  18. Multilayer Optical Coating Fabrication By Ion Beam Sputter Deposition

    Science.gov (United States)

    Becker, Juergen; Scheuer, Volker

    1989-02-01

    Ion Beam Sputter Deposition (IBSD) was proven to be a useful technique for producing high performance optical coatings. However, compared to other deposition techniques, several problems remain to be solved, such as low deposition rates, small areas with homogeneous deposition rate and the problem of contamination. In the work described here, a cubic vacuum chamber has been equipped with a commercially available ion beam source, a triple stage target holder and a rotating substrate holder. The primary interest was to get a reasonable deposition rate over a sufficiently large area. Single layers of SiO2, Ta205 and TiO2 and multilayers of Si02/Ta205 were produced. Contaminants in the films were analyzed by various techniques mainly by Total-Reflection X-ray Fluorescence (TXRF). Optical properties of the coatings were investigated to study the influence of the contaminants on the performance of the optical coatings. The optical properties were characterized by the refractive index, the absorption coefficient and the scattering behaviour. Scattering losses were measured by means of Total Integrated Scattering (TIS) and Angle Resolved Scattering (ARS). The damage threshold against high-power laser pulses of 1.06 pm was determined.

  19. Simulation of the optical coating deposition

    Science.gov (United States)

    Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander

    2018-04-01

    A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.

  20. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles

    Science.gov (United States)

    Gittard, Shaun D.; Miller, Philip R.; Jin, Chunming; Martin, Timothy N.; Boehm, Ryan D.; Chisholm, Bret J.; Stafslien, Shane J.; Daniels, Justin W.; Cilz, Nicholas; Monteiro-Riviere, Nancy A.; Nasir, Adnan; Narayan, Roger J.

    2011-06-01

    Microneedles are small-scale needle-like projections that may be used for transdermal delivery of pharmacologic agents, including protein-containing and nucleic acid-containing agents. Commercial translation of polymeric microneedles would benefit from the use of facile and cost effective fabrication methods. In this study, visible light dynamic mask microstereolithography, a rapid prototyping technique that utilizes digital light projection for selective polymerization of a liquid resin, was used for fabrication of solid microneedle array structures out of an acrylate-based polymer. Pulsed laser deposition was used to deposit silver and zinc oxide coatings on the surfaces of the visible light dynamic mask microstereolithography-fabricated microneedle array structures. Agar diffusion studies were used to demonstrate the antimicrobial activity of the coated microneedle array structures. This study indicates that light-based technologies, including visible light dynamic mask microstereolithography and pulsed laser deposition, may be used to fabricate microneedles with antimicrobial properties for treatment of local skin infections.

  1. Chemical solution deposition: a path towards low cost coated conductors

    International Nuclear Information System (INIS)

    Obradors, X; Puig, T; Pomar, A; Sandiumenge, F; Pinol, S; Mestres, N; Castano, O; Coll, M; Cavallaro, A; Palau, A; Gazquez, J; Gonzalez, J C; Gutierrez, J; Roma, N; Ricart, S; Moreto, J M; Rossell, M D; Tendeloo, G van

    2004-01-01

    The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

  2. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  3. Superhydrophobic coating deposited directly on aluminum

    International Nuclear Information System (INIS)

    Escobar, Ana M.; Llorca-Isern, Nuria

    2014-01-01

    This study develops an alternative method for enhancing superhydrophobicity on aluminum surfaces with an amphiphilic reagent such as the dodecanoic acid. The goal is to induce superhydrophobicity directly through a simple process on pure (99.9 wt%) commercial aluminum. The initial surface activation leading to the formation of the superhydrophobic coating is studied using confocal microscopy. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highest contact angle (approaching 153°) was obtained after forming hierarchical structures with a particular roughness obtained by grinding and polishing microgrooves on the aluminum surface together with the simultaneous action of HCl and dodecanoic acid. The results also showed that after immersion in the ethanol-acidic-fatty acid solutions, they reacted chemically through the action of the fatty acid, on the aluminum surface. The mechanism is analyzed by TOF-SIMS and XPS in order to determine the molecules involved in the reaction. The TOF-SIMS analysis revealed that the metal and its oxides seem to be necessary, and that free-aluminum is anchored to the fatty acid molecules and to the alumina molecules present in the medium. Consequently, both metallic aluminum and aluminum oxides are necessary in order to form the compound responsible for superhydrophobicity.

  4. Roll-to-roll vacuum deposition of barrier coatings

    CERN Document Server

    Bishop, Charles A

    2015-01-01

    It is intended that the book will be a practical guide to provide any reader with the basic information to help them understand what is necessary in order to produce a good barrier coated web or to improve the quality of any existing barrier product. After providing an introduction, where the terminology is outlined and some of the science is given (keeping the mathematics to a minimum), including barrier testing methods, the vacuum deposition process will be described. In theory a thin layer of metal or glass-like material should be enough to convert any polymer film into a perfect barrier material. The reality is that all barrier coatings have their performance limited by the defects in the coating. This book looks at the whole process from the source materials through to the post deposition handling of the coated material. This holistic view of the vacuum coating process provides a description of the common sources of defects and includes the possible methods of limiting the defects. This enables readers...

  5. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  6. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  7. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  8. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom of p...

  9. Corrosion Resistance of Copper Coatings Deposited by Cold Spraying

    Science.gov (United States)

    Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.

    2017-12-01

    In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.

  10. Modification of material properties and coating deposition using plasma jet

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Rusimov, Sh.M.

    2006-01-01

    Full text: Using X-ray structure analysis (XRD), scanning electron microscopy (SEM) with micro-analysis, measurements of friction wear and micro-hardness, we studied surface melting effects of powder coatings AN-35, which appeared as a result of action of concentrated energy flows (pulsed plasma flows). Plasma detonation deposition of a powder on a stainless steel substrate were accompanied by formation of an alloyed surface structure, which basic element was α(hcp) and β(fcc) cobalt. A temperature diapason chosen for coating formation (according to the XRD analysis) provided the formation of intermetallic compounds of cobalt and chromium of Co x Cr y type. Pulsed-plasma surface melting of powder coatings also induced doping of the near surface layer by molybdenum atoms. We found that chosen methods of analysis and surface treatment regimes provided essentially decreased wear, as well as increased microhardness and nano hardness of the irradiated surfaces. It was demonstrated that a resulting increase in servicing characteristics was related to the processes of phase transformations occurring in the powder when it had been in a high temperature plasma-detonation flow as a result of pulsed plasma surface doping by molybdenum atoms, redistribution of the coating elements, appearance of micro- and nano-grain structure, as well as decreased coating porosity induced by thermal annealing by concentrated energy flows. New experimental results on the structure and the elemental and phase composition of hybrid coatings, which were deposited on a substrate of AISI 321 stainless steel using a combination of plasma detonation, vacuum arc and subsequent High-Current Electron Beam (HCEB) treatment, are presented. We found that an increase in energy density intensified mass-transfer processes and resulted in changes in aluminum oxide phase composition (γ→α and β→α). Also we observed the formation of a nano-crystalline structure in Al 2 O 3 coatings. Electron beam

  11. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  12. Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer

    International Nuclear Information System (INIS)

    Lee, Jong Hoon; Kim, Sun Hye; Cho, Doo Ho; Kim, Se Chang; Baek, Seung Guk; Lee, Jong Gu; Choi, Jae-Boong; Seok, Chang Sung; Kim, Moon Ki; Koo, Ja Choon; Lim, Byeong Soo; Kang, Junmo

    2012-01-01

    Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

  13. Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon; Kim, Sun Hye; Cho, Doo Ho; Kim, Se Chang; Baek, Seung Guk; Lee, Jong Gu; Choi, Jae-Boong; Seok, Chang Sung; Kim, Moon Ki; Koo, Ja Choon; Lim, Byeong Soo [Sungkyunkwan University, Suwon (Korea, Republic of); Kang, Junmo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-03-15

    Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

  14. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  15. Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field.

    Science.gov (United States)

    Swain, S; Rautray, T R

    2017-09-13

    Uniform distribution of silver (Ag) in the hydroxyapatite (HA) coated Ti surface has been a concern for which an attempt has been made to dope Ag in HA coating with and without magnetic field. Cathodic deposition technique was employed to coat Ag incorporated hydroxyapatite coating using a sacrificial silver anode method by using NdFeB bar magnets producing 12 Tesla magnetic field. While uniform deposition of Ag was observed in the coatings under magnetic field, dense coating was evident in the coating without magnetic field conditions. Uniformly distributed Ag incorporated HA in the present study has potential to fight microorganism while providing osseoconduction properties of the composite coating.

  16. Analysis of Properties of Hard Coatings and Wear Resistance of Chemical Vapour Deposition (PVD Coated Technology

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2015-01-01

    Full Text Available Modern coating methods are having become an important part of industry. Wear resistance, durability, toughness (breakage resistance and hot hardness (high hardness and chemical stability at high temperature are the four main technological properties necessary for durability and long life time. These proprieties are for productivity, economy and ecology very important point. This resource deals with the analysis of properties of hard coatings and wear resistance of chemical vapour deposition (PVD coated technology. It focuses on the preparation, execution and evaluation of test coatings on the front ball-milling cutters. Examination of these characteristic properties may give into an insight to the reason why some systems show excellent wear characteristic.

  17. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  18. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  19. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  20. Chemical vapor deposited silica coatings for solar mirror protection

    Science.gov (United States)

    Gulino, Daniel A.; Dever, Therese M.; Banholzer, William F.

    1988-01-01

    A variety of techniques is available to apply protective coatings to oxidation susceptible spacecraft components, and each has associated advantages and disadvantages. Film applications by means of chemical vapor deposition (CVD) has the advantage of being able to be applied conformally to objects of irregular shape. For this reason, a study was made of the oxygen plasma durability of thin film (less than 5000 A) silicon dioxide coatings applied by CVD. In these experiments, such coatings were applied to silver mirrors, which are strongly subject to oxidation, and which are proposed for use on the space station solar dynamic power system. Results indicate that such coatings can provide adequate protection without affecting the reflectance of the mirror. Scanning electron micrographs indicated that oxidation of the silver layer did occur at stress crack locations, but this did not affect the measured solar reflectances. Oxidation of the silver did not proceed beyond the immediate location of the crack. Such stress cracks did not occur in thinner silica films, and hence such films would be desirable for this application.

  1. Metal coatings prepared by organometallic chemical vapour deposition (OMCVD)

    Energy Technology Data Exchange (ETDEWEB)

    Wochnowski, Joern; Heck, Juergen [Institute of Inorganic and Applied Chemistry, Hamburg (Germany); Goellnitz, Thimo [Institute of Inorganic and Applied Chemistry, Hamburg (Germany); Institute of Applied Physics, University of Hamburg (Germany); Hoffmann, Germar; Wiesendanger, Roland [Institute of Applied Physics, University of Hamburg (Germany)

    2008-07-01

    In microtechnology, the coating of temperature-sensitive substrates with high melting-point materials is challenging. The use of volatile organometallic compounds can be an answer to solve this ambitious task. We developed an experimental set-up for the deposition of elements, oxides, and functional composites in glass hollowware by means of OMCVD. With the first experimental set-up, the thermally induced decomposition of numerous elementorganic and metallorganic precursors has been tested for the deposition of catalytic or optic materials. Here, we present experimental data of the thermal deposition of different metals as tungsten on a glass surface. We used Atomic Force Microscopy as one standard analytical surface method to obtain structural and morphological information of the deposited metal layers. We discuss the preparation and the analytics of the prepared surfaces. With the objective to bring the deposition temperature of W(CO){sub 6} further down to room temperature, we developed a new photolytic OMCVD set-up. We demonstrate and discuss the realization of our experimental setup.

  2. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yongqiang Liang

    2014-06-01

    Full Text Available Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials.

  3. The study of Zn–Co alloy coatings electrochemically deposited by pulse current

    Directory of Open Access Journals (Sweden)

    Tomić Milorad V.

    2012-01-01

    Full Text Available The electrochemical deposition by pulse current of Zn-Co alloy coatings on steel was examined, with the aim to find out whether pulse plating could produce alloys that could offer a better corrosion protection. The influence of on-time and the average current density on the cathodic current efficiency, coating morphology, surface roughness and corrosion stability in 3% NaCl was examined. At the same Ton/Toff ratio the current efficiency was insignificantly smaller for deposition at higher average current density. It was shown that, depending on the on-time, pulse plating could produce more homogenous alloy coatings with finer morphology, as compared to deposits obtained by direct current. The surface roughness was the greatest for Zn-Co alloy coatings deposited with direct current, as compared with alloy coatings deposited with pulse current, for both examined average current densities. It was also shown that Zn-Co alloy coatings deposited by pulse current could increase the corrosion stability of Zn-Co alloy coatings on steel. Namely, alloy coatings deposited with pulse current showed higher corrosion stability, as compared with alloy coatings deposited with direct current, for almost all examined cathodic times, Ton. Alloy coatings deposited at higher average current density showed greater corrosion stability as compared with coatings deposited by pulse current at smaller average current density. It was shown that deposits obtained with pulse current and cathodic time of 10 ms had the poorest corrosion stability, for both investigated average deposition current density. Among all investigated alloy coatings the highest corrosion stability was obtained for Zn-Co alloy coatings deposited with pulsed current at higher average current density (jav = 4 A dm-2.

  4. A study of the deposition process of multilayer coatings on the inner tube surface with the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lozovan, A.A., E-mail: loz-plasma@ya.ru; Alexandrova, S.S.; Mishnev, M.A.; Prishepov, S.V.

    2014-02-15

    Highlights: • Submitted laser bench for coatings, deposited on the inner surfaces of tubes by PLD. • Sprayed multilayered Ti/TiN coatings on the inner surfaces of tubes of small diameter. • We study this of coatings by method RBS and X-ray fluorescence spectroscopy (TXRF). • Shown a significant mixing of the layers thickness of 90 μm. -- Abstract: The multilayer Ti/TiN/Ti coatings (consisting of nano-scale layers) on the inner surface of stainless steel tubes of small diameter were studied. The coatings were deposited by using the pulsed laser deposition (PLD) technique (in the reactive and non-reactive deposition modes). The coatings were analyzed using the X-ray fluorescence analysis with total external reflection (TXRF) and the Rutherford backscattering spectroscopy (RBS). It was found that the deposition of multilayer Ti/TiN/Ti coatings leads to the essential mixing of coating layers due to sputtering of coatings with fast atoms and ions from the laser plume and the evaporation of the coating under the laser radiation reflected from the target surface.

  5. ZnS/Diamond Composite Coatings for Infrared Transmission Applications Formed by the Aerosol Deposition Method

    OpenAIRE

    Johnson, Scooter D.; Kub, Fritz J.; Eddy Jr, Charles R.

    2013-01-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline films up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by crea...

  6. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-01

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400-1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  7. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    Energy Technology Data Exchange (ETDEWEB)

    Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzhinskiy, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  8. Processing and Deposition of Nanocrystalline Oxide Composites for Thermal Barrier Coatings

    National Research Council Canada - National Science Library

    Ying, Jackie

    2000-01-01

    .... Electrophoretic deposition was used to coat the nanocomposite powders onto nickel substrates. The effect of alumina content, powder calcination temperature, and film thickness on the thermal stability of zirconia-based coatings was examined...

  9. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  10. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    Science.gov (United States)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  11. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  12. Interface behavior of tungsten coating on stainless steel by electro spark deposition

    Directory of Open Access Journals (Sweden)

    Wang Yuangang

    2015-01-01

    Full Text Available A new method of electro spark deposition method was put forward, which was based on the theory of electro spark deposition by changing the polarity in the liquid. Tungsten coating layers was produced on surface of Stainless Steel by electro spark deposition. The micro hardness, microstructure, chemical composition and phases of the coating layer were examined by means of hardness test, scanning electron microscopy (SEM and energy dispersive spectrometer (EDS analysis. The results showed that there was tungsten coating in the surface, which was discontinuous. Microhardness of the coating layer was about 3 times more than that of the substrate. The combination between coating layer and substrate was metallurgical bond.

  13. Evaluation of Hydrogen Cracking in Weld Metal Deposited using Cellulosic-Coated Electrodes

    Science.gov (United States)

    2009-06-16

    Cellulosic-coated electrodes (primarily AWS EXX10-type) are traditionally used for "stovepipe" welding of pipelines because they are well suited for deposition of pipeline girth welds and are capable of high deposition rates when welding downhill. De...

  14. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    Science.gov (United States)

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.

  15. High efficient vacuum arc plant for coating deposition

    International Nuclear Information System (INIS)

    Aksenov, I.I.; Belous, V.A.

    2008-01-01

    A number of progressive technical solutions are used in the 'Bulat-9' machine designed for vacuum arc coating deposition. The features of the machine are: a dome shaped working chamber that allows to 'wash' its inner surfaces with hot nitrogen or argon gas; a system of automatic loading/unloading of articles to be treated into the chamber through its bottom; shielding of the inner surfaces of the chamber by heated panels; improved vacuum arc plasma sources including filtered one; four ported power supply for the vacuum arc discharges; LC oscillatory circuits suppressing microarcs on the substrate; the system of automatic control of a working process. The said technical features cause the apparatus originality and novelty preserved up to-day

  16. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  17. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Highlights: • The transformation paths of (Ti + I{sub 2}) powder to Ti coating is: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}) → Ti. • Uniform coating was obtained on SiC fiber, but it contained Si and C elements. • Deposition rate of the coating increased with the increase of temperature. • Deposition thickness increased with time and achieved the maximum at 90 min. - Abstract: Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I{sub 2}) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I{sub 2} system indicates that Ti and I{sub 2} raw powder materials transform to titanium coating as follows: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}), and (TiI{sub 2}, TiI{sub 3}) → Ti. In theory, the conversions of TiI{sub 3} and TiI{sub 2} reach the maximum when Ti:I{sub 2} is 1:1.5, while in actual experiment that reached the maximum when Ti:I{sub 2} was 1:2, as there existed the waste of I{sub 2} due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  18. Thiol-modified gold-coated glass as an efficient hydrophobic substrate for drop coating deposition Raman (DCDR) technique

    Czech Academy of Sciences Publication Activity Database

    Kočišová, E.; Procházka, M.; Šípová, Hana

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1394-1396 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : thiol-modified Au-coated glass * drop coating deposition Raman * liposome Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.969, year: 2016

  19. Properties of DLC coatings deposited by dc and dc with superimposed pulsed vacuum arc

    International Nuclear Information System (INIS)

    Zavaleyev, V.; Walkowicz, J.; Aksyonov, D.S.; Luchaninov, A.A.; Reshetnyak, E.N.; Strel'nitskij, V.E.

    2014-01-01

    Comparative studies of the structure, mechanical and tribological properties of DLC coatings deposited in DC and DC with superimposed high current pulse modes of operation vacuum-arc plasma source with the graphite cathode are presented. Imposition the pulses of high current on DC vacuum-arc discharge allows both increase the deposition rate of DLC coating and reduce the residual compressive stress in the coatings what promotes substantial improvement the adhesion to the substrate. Effect of vacuum arc plasma filtration with Venetian blind filter on the deposition rate and tribological characteristics of the coatings analyzed.

  20. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  1. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  2. Factors influencing the deposition of hydroxyapatite coating onto hollow glass microspheres

    International Nuclear Information System (INIS)

    Jiao, Yan; Xiao, Gui-Yong; Xu, Wen-Hua; Zhu, Rui-Fu; Lu, Yu-Peng

    2013-01-01

    Hydroxyapatite (HA) and HA coated microcarriers for cell culture and delivery have attracted more attention recently, owing to the rapid progress in the field of tissue engineering. In this research, a dense and uniform HA coating with the thickness of about 2 μm was successfully deposited on hollow glass microspheres (HGM) by biomimetic process. The influences of SBF concentration, immersion time, solid/liquid ratio and activation of HGM on the deposition rate and coating characteristics were discussed. X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR) analyses revealed that the deposited HA is poorly crystalline. The thickness of HA coating showed almost no increase after immersion in 1.5SBF for more than 15 days with the solid/liquid ratio of 1:150. At the same time, SBF concentration, solid/liquid ratio and activation treatment played vital roles in the formation of HA coating on HGM. This poorly crystallized HA coated HGM could have potential use as microcarrier for cell culture. Highlights: • HA coatings were deposited on hollow glass microspheres by biomimetic process. • The obtained HA coating was poorly crystalline and carbonated. • The influencing factors of deposition rate and coating characteristics were studied. • The thickness of HA coating showed almost no increase after immersion for 15 days

  3. Effect of negative bias on TiAlSiN coating deposited on nitrided Zircaloy-4

    Science.gov (United States)

    Jun, Zhou; Zhendong, Feng; Xiangfang, Fan; Yanhong, Liu; Huanlin, Li

    2018-01-01

    TiAlSiN coatings were deposited on the nitrided Zircaloy-4 by multi-arc ion plating at -100 V, -200 V and -300 V. In this study, the high temperature oxidation behavior of coatings was tested by a box-type resistance furnace in air for 3 h at 800 °C; the macro-morphology of coatings was observed and analyzed by a zoom-stereo microscope; the micro-morphology of coatings was analyzed by a scanning electron microscopy (SEM), and the chemical elements of samples were analyzed by an energy dispersive spectroscopy(EDS); the adhesion strength of the coating to the substrate was measured by an automatic scratch tester; and the phases of coatings were analyzed by an X-ray diffractometer(XRD). Results show that the coating deposited at -100 V shows better high temperature oxidation resistance behavior, at the same time, Al elements contained in the coating is of the highest amount, meanwhile, the adhesion strength of the coating to the substrate is the highest, which is 33N. As the bias increases, high temperature oxidation resistance behavior of the coating weakens first and then increases, the amount of large particles on the surface of the coating increases first and then decreases whereas the density of the coating decreases first and then increases, and adhesion strength of the coating to the substrate increases first and then weakens. The coating's quality is relatively poor when the bias is -200 V.

  4. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  5. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Sudarsanam Suresh [ORNL

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  6. Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-ɛ-Caprolactone Biocomposite Coatings

    Science.gov (United States)

    Garcia-Alonso, Diana; Parco, Maria; Stokes, Joseph; Looney, Lisa

    2012-01-01

    Thermal spraying is widely employed to deposit hydroxyapatite (HA) and HA-based biocomposites on hip and dental implants. For thick HA coatings (>150 μm), problems are generally associated with the build-up of residual stresses and lack of control of coating crystallinity. HA/polymer composite coatings are especially interesting to improve the pure HA coatings' mechanical properties. For instance, the polymer may help in releasing the residual stresses in the thick HA coatings. In addition, the selection of a bioresorbable polymer may enhance the coatings' biological behavior. However, there are major challenges associated with spraying ceramic and polymeric materials together because of their very different thermal properties. In this study, pure HA and HA/poly-ɛ-caprolactone (PCL) thick coatings were deposited without significant thermal degradation by low-energy plasma spraying (LEPS). PCL has never been processed by thermal spraying, and its processing is a major achievement of this study. The influence of selected process parameters on microstructure, composition, and mechanical properties of HA and HA/PCL coatings was studied using statistical design of experiments (DOE). The HA deposition rate was significantly increased by the addition of PCL. The average porosity of biocomposite coatings was slightly increased, while retaining or even improving in some cases their fracture toughness and microhardness. Surface roughness of biocomposites was enhanced compared with HA pure coatings. Cell culture experiments showed that murine osteoblast-like cells attach and proliferate well on HA/PCL biocomposite deposits.

  7. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  8. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  9. In-situ formation of multiphase deposited thermal barrier coatings

    Science.gov (United States)

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  10. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings

    International Nuclear Information System (INIS)

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2013-01-01

    Highlights: ► Both normal and anomalous deposition can be realized by changing bath temperature. ► The Ni content in Zn–Ni alloy deposit increases sharply as temperature reach 60 °C. ► The abrupt change in coating composition is caused by the shift of cathodic potential. ► The deposition temperature has great effect on microstructure of Zn–Ni alloy deposit. -- Abstract: Zinc–nickel alloy coatings were electrodeposited on carbon steel substrates from the ammonium chloride bath at different temperatures. The composition, phase structure and morphology of these coatings were analyzed by energy dispersive spectrometer, X-ray diffractometer and scanning electron microscopy respectively. Chronopotentiometry and potentiostatic methods were also employed to analyze the possible causes of the composition and structure changes induced by deposition temperature. It has been shown that both normal and anomalous co-deposition of zinc and nickel could be realized by changing deposition temperature under galvanostatic conditions. The abrupt changes in the composition and phase structure of the zinc–nickel alloy coatings were observed when deposition temperature reached 60 °C. The sharply decrease of current efficiency for zinc–nickel co-deposition was also observed when deposition temperature is higher than 40 °C. Analysis of the partial current densities showed that the decrease of current efficiency with the rise of deposition temperature was due to the enhancement of the hydrogen evolution. It was also confirmed that the ennoblement of cathodic potential was the cause for the increase of nickel content in zinc–nickel alloy coatings as a result of deposition temperature rise. The good zinc–nickel alloy coatings with compact morphology and single γ phase could be obtained when the deposition temperature was fixed at 30–40 °C

  11. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  12. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  13. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    Science.gov (United States)

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-04

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  14. INKJET PRINTING OF ALUMOOXIDE SOL FOR DEPOSITION OF ANTIREFLECTING COATINGS

    Directory of Open Access Journals (Sweden)

    E. A. Eremeeva

    2017-01-01

    Full Text Available Subject of Research. This work describes for the first time the formation of antireflective coating on the base of boehmite phase of AlOOH with low refractive index (1.35 by inkjet printing on the nonporous substrate. This method gives the possibility to increase the contrast of colorful interfering images by 32% obtaining by inkjet printing of titanium dioxide sol. The usage of this technology enables to obtain patterns with wide viewing angle and makes them highly stable. Methods. Traditional sol-gel method with peptizing agents and heating for 90oC was applied for sol synthesis. Then the mixture was under sonic treatment for the obtaining of viscous sol. The viscosity was determined by Brookfield HA/HB viscometer, and the surface tension by Kyowa DY-700 tensiometer. Aluminum oxide ink was deposited on polished slides (26×76 mm2, Paul Marienfeld, Germany, over titanium oxide layer. To print titania ink, we use a desktop office printer Canon Pixma IP 2840 and Dimatix DMP-2831. The thickness of an inkjet AlOOH layer after drying in the air and removal of the solvents did not exceed 150 nm with an RI not less than 1.35 in the entire visible range. Results. The stable colloidal ink was obtained for the first time on the base of aluminum oxide matrix with neutral pH. The rheology was regulated by controlling parameters of sol-gel method in the system of aqueous titanium dioxide sol and by adding ethanol that affects the charge of double electrical layer of disperse phase. The controllable coalesce of drops enables to apply antireflection coating within the thickness accuracy of 10 nm. The morphology of particles and the topology of printed structures were analyzed by optical, scanning electron and atomic-force microscopes. Practical Relevance. We have proposed the approach to obtain colorful, interference patterns using two types of high refractive inks with different refractive indexes. The inkjet printing method opens new opportunities for

  15. Deposition, microstructure, and properties of nanocrystalline Ti(C,O,N) coatings

    Science.gov (United States)

    Ruppi, S.; Larsson, A.

    2003-01-01

    Chemical vapor deposition of Ti(C,N) coatings from the TiCl4- CH3CN- N2-H2 system on cemented carbide substrates was studied. The morphology and grain size of the coatings were modified using carbon monoxide (CO). Transmission electron microscopy confirmed that grain refinement of the Ti(C,N) coatings could be obtained by means of CO doping and nanocrystalline coatings were obtained at CO levels exceeding 6%. CO doping resulted in the incorporation of oxygen in the structure, but no segregation of oxygen to grain boundaries was observed. The coatings appeared to be of homogeneous composition even at the highest CO levels. Both improved coating hardness and surface quality were obtained with decreasing grain size. However, the coatings exhibited clearly lower crater wear resistance in the nanograined region. This was explained by an increased tendency for grain-boundary sliding in the nanocrystalline coatings leading to more pronounced plastic deformation.

  16. Influence of thickness on the properties of hydroxyapatite coatings deposited by KrF laser ablation.

    Science.gov (United States)

    Fernandez-Pradas, J M; Clèries, L; Martinez, E; Sardin, G; Esteve, J; Morenza, J L

    2001-08-01

    The growth of hydroxyapatite coatings obtained by KrF excimer laser ablation and their adhesion to a titanium alloy substrate were studied by producing coatings with thicknesses ranging from 170 nm up to 1.5 microm, as a result of different deposition times. The morphology of the coatings consists of grain-like particles and also droplets. During growth the grain-like particles grow in size, partially masking the droplets, and a columnar structure is developed. The thinnest film is mainly composed of amorphous calcium phosphate. The coating 350nm thick already contains hydroxyapatite, whereas thicker coatings present some alpha tricalcium phosphate in addition to hydroxyapatite. The resulting coating to substrate adhesion was evaluated through the scratch test technique. Coatings fail under the scratch test by spallating laterally from the diamond tip and the failure load increases as thickness decreases, until not adhesive but cohesive failure for the thinnest coating is observed.

  17. Boron carbide (B{sub 4}C) coating. Deposition and testing

    Energy Technology Data Exchange (ETDEWEB)

    Azizov, E.; Barsuk, V. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Begrambekov, L., E-mail: lbb@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Buzhinsky, O. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Evsin, A.; Gordeev, A.; Grunin, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Klimov, N. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Kurnaev, V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mazul, I. [Federal State Unitary Interprise Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA Efremov), St-Peterburg (Russian Federation); Otroshchenko, V.; Putric, A. [Troitsk Institute for Innovation and Fusion Research (TRINITI), Moscow Region (Russian Federation); Sadovskiy, Ya.; Shigin, P.; Vergazov, S.; Zakharov, A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-15

    Boron carbide was proposed as a material of in-situ protecting coating for tungsten tiles of ITER divertor. To prove this concept the project including investigation of regimes of plasma deposition of B{sub 4}C coating on tungsten and tests of boron carbide layer in ITER-like is started recently. The paper contends the first results of the project. The results of B{sub 4}C coating irradiation by the plasma pulses of QSPU-T plasma accelerator are presented. The new device capable of B{sub 4}C film deposition on tungsten and testing of the films and materials with ITER-like heat loads and ion- and electron irradiation is described. The results of B{sub 4}C coating deposition and testing of both tungsten substrate and coating are shown and discussed.

  18. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  19. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  20. Characterization of Environmental Stability of Pulsed Laser Deposited Oxide Ceramic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, THADM

    2004-03-02

    A systematic investigation of candidate hydrogen permeation materials applied to a substrate using Pulsed Laser Deposition has been performed. The investigation focused on application of leading permeation-resistant materials types (oxide, carbides, and metals) on a stainless steel substrate. and evaluation of the stability of the applied coatings. Type 304L stainless steel substrates were coated with aluminum oxide, chromium oxide, and aluminum. Characterization of the coating-substrate system adhesion was performed using scratch adhesion testing and microindentation. Coating stability and environmental susceptibility were evaluated for two conditions-air at 350 degrees Celsius and Ar-H2 at 350 degrees Celsius for up to 100 hours. Results from this study have shown the pulsed laser deposition process to be an extremely versatile technology that is capable of producing a sound coating/substrate system for a wide variety of coating materials.

  1. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  2. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    Science.gov (United States)

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Functionalization and Area-Selective Deposition of Magnetic Carbon-Coated Iron Nanoparticles from Solution

    Directory of Open Access Journals (Sweden)

    Erika Widenkvist

    2011-01-01

    Full Text Available A route to area-selective deposition of carbon-coated iron nanoparticles, involving chemical modification of the surface of the particles, is described. Partial oxidative etching of the coating introduces carboxylic groups, which then are esterified. The functionalized particles can be selectively deposited on the Si areas of Si/SiO2 substrates by a simple dipping procedure. Nanoparticles and nanoassemblies have been analyzed using SEM, TEM, and XPS.

  4. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    Science.gov (United States)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  5. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    OpenAIRE

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulate...

  6. Advanced TiC/a-C: H nanocomposite coatings deposited by magnetron sputtering

    OpenAIRE

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing substrate bias or carbon content. Micro-cracks induced by nanoindentation or wear tests readily propagate through the column boundaries whereas the coatings without a columnar inicrostructure exhibit s...

  7. Additive manufactured Ti6Al4V scaffolds with the RF- magnetron sputter deposited hydroxyapatite coating

    International Nuclear Information System (INIS)

    Chudinova, E; Surmeneva, M; Surmenev, R; Koptioug, A; Scoglund, P

    2016-01-01

    Present paper reports on the results of surface modification of the additively manufactured porous Ti6Al4V scaffolds. Radio frequency (RF) magnetron sputtering was used to modify the surface of the alloy via deposition of the biocompatible hydroxyapatite (HA) coating. The surface morphology, chemical and phase composition of the HA-coated alloy were studied. It was revealed that RF magnetron sputtering allows preparing a homogeneous HA coating onto the entire surface of scaffolds. (paper)

  8. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  9. High Temperature Oxidation Property of SiC Coating Layer Fabricated by Aerosol Deposition Process

    Directory of Open Access Journals (Sweden)

    Ham G.-S.

    2017-06-01

    Full Text Available This study investigated the high temperature oxidation property of SiC coated layer fabricated by aerosol deposition process. SiC coated layer could be successfully manufactured by using pure SiC powders and aerosol deposition on the Zr based alloy in an optimal process condition. The thickness of manufactured SiC coated layer was measured about 5 μm, and coating layer represented high density structure. SiC coated layer consisted of α-SiC and β-SiC phases, the same as the initial powder. The initial powder was shown to have been crushed to the extent and was deposited in the form of extremely fine particles. To examine the high temperature oxidation properties, oxidized weight gain was obtained for one hour at 1000°C by using TGA. The SiC coated layer showed superior oxidation resistance property than that of Zr alloy (substrate. The high temperature oxidation mechanism of SiC coated layer on Zr alloy was suggested. And then, the application of aerosol deposited SiC coated layer was also discussed.

  10. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  11. Advanced TiC/a-C : H nanocomposite coatings deposited by magnetron sputtering

    NARCIS (Netherlands)

    Pei, Y.T.; Galvan, D.; Hosson, J.Th.M. De; Strondl, C.

    2006-01-01

    TiC/a-C:H nanocomposite coatings have been deposited by magnetron Sputtering. They consist of 2-5 nm TiC nanocrystallites embedded in the amorphous hydrocarbon (a-C:H) matrix. A transition from a Columnar to a glassy microstructure has been observed in the nanocomposite coatings with increasing

  12. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.

    Science.gov (United States)

    Chen, Gexin; Beving, Derek E; Bedi, Rajwant S; Yan, Yushan S; Walker, Sharon L

    2009-02-03

    In this study, the impact of zeolite thin film coatings on bacterial deposition and "biofouling" of surfaces has been investigated in an aqueous environment. The synthesis of two types of zeolite coatings, ZSM-5 coated on aluminum alloy and zeolite A coated on stainless steel, and the characterization of the coated and bare metal surfaces are described. The extent of cell deposition onto the bare and zeolite-coated aluminum alloy and stainless steel surfaces is investigated in a parallel plate flow chamber system under a laminar flow conditions. The initial rates of bacterial transfer to the various surfaces are compared by utilizing a marine bacterium, Halomonas pacifica g, under a range of ionic strength conditions. H. pacifica g deposited onto bare metal surfaces to a greater extent as compared with cells deposited onto the zeolite coatings. The surface properties found to have the most notable effect on attachment are the electrokinetic and hydrophobicity properties of the metal and zeolite-coated surfaces. These results suggest that a combination of two chemical mechanisms-hydrophobic and electrostatic interactions-contribute to the antifouling nature of the zeolite surface. Additional observations on the relative role of the hydrodynamic and physical phenomena are also discussed.

  13. Microstructural characterization of Co-based coating deposited by low power pulse laser cladding

    NARCIS (Netherlands)

    Farnia, A.; Ghaini, F. Malek; Ocelik, V.; De Hosson, J. Th. M.

    A detailed microstructural study of Stellite 6 coating deposited on a low carbon ferritic steel substrate using preplaced powder method and low power Nd:YAG pulse laser is performed. The grain structure and solidification texture of the coating are investigated by orientation imaging microscopy

  14. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  15. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  16. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  17. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    Science.gov (United States)

    Akesso, Laurent; Navabpour, Parnia; Teer, Dennis; Pettitt, Michala E.; Callow, Maureen E.; Liu, Chen; Su, Xueju; Wang, Su; Zhao, Qi; Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika; Callow, James A.

    2009-04-01

    A range of SiO x-like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O 2 ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O 2 ratios, the resulting coatings were close to SiO 2. Carbon content in the bulk of the coatings increased with increasing HMDSO/O 2 ratio. Coatings deposited at high HMDSO/O 2 ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy ( γLW) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy ( γ-) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  18. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  19. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  20. Gas phase deposition of oxide and metal-oxide coatings on fuel particles

    International Nuclear Information System (INIS)

    Patokin, A.P.; Khrebtov, V.L.; Shirokov, B.M.

    2008-01-01

    Production processes and properties of oxide (Al 2 O 3 , ZrO 2 ) and metal-oxide (Mo-Al 2 O 3 , Mo-ZrO 2 , W-Al 2 O 3 , W-ZrO 2 ) coatings on molybdenum substrates and uranium dioxide fuel particles were investigated. It is shown that the main factors that have an effect on the deposition rate, density, microstructure and other properties of coatings are the deposition temperature, the ratio of H 2 and CO 2 flow rates, the total reactor pressure and the ratio of partial pressures of corresponding metal chlorides during formation of metal-oxide coatings

  1. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  2. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  3. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  4. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  5. Electro-spark deposition: A technique for producing wear resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, G.L. (Washington State Univ., Pullman, WA (USA)); Johnson, R.N. (Westinghouse Hanford Co., Richland, WA (USA))

    1984-12-01

    Electro-spark deposition (ESD) is a coating process using short duration, high current electrical pulses to deposit an electrode material on a metallic substrate. A principal attribute of the process is its ability to apply metallurgically bonded coatings with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. A review of the process is briefly given, then current research using WC-TiC and Cr{sub 3}C{sub 2} electrodes to deposit coatings on Type 316 stainless steel and other substrates is presented. The ESD carbide coatings were found to be exceptionally hard, wear-resistant and spalling-resistant in high-stress rubbing tests. Several applications for nuclear reactor components are described. 17 refs., 18 figs., 1 tab.

  6. The effect of number of nano structural coating containing Ti and Ru created by electro deposition

    Science.gov (United States)

    Ardi, Simin; Asl, Shahin Khamene; Hoseini, Mirghasem; Pouladvand, Iman

    2018-01-01

    TiO2 and RuO2 have many applications in the field of photocataliysis, environmental protection, high charge storage capacity devices and etc. Electro deposition offers advantages such as rigid control of film thickness, uniformity and deposition rate. Electro deposition of RuO2-TiO2 coatings on Ti substrates was performed via hydrolysis by electro generated based of TiCl4 and RuCl3 salts dissolved in mixed methyl alcohol-water solvent in presence of hydrogen peroxide for one, three and six layer. The obtained coatings have been heated in electric furnace at 500 ˚C. Results show that coating with six layers on Ti substrate is the useful coating

  7. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Yan, E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Xi, Tingfei [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, Shicheng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing 100081 (China)

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  8. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  9. Fluidized bed deposition and evaluation of silicon carbide coatings on microspheres

    International Nuclear Information System (INIS)

    Federer, J.I.

    1977-01-01

    The fuel element for the HTGR is an array of closely packed fuel microspheres in a carbonaceous matrix. A coating of dense silicon carbide (SiC), along with pyrocarbon layers, is deposited on the fueled microspheres to serve as a barrier against diffusion of fission products. The microspheres are coated with silicon carbide in a fluidized bed by reaction of methyltrichlorosilane (CH 3 SiCl 3 or MTS) and hydrogen at elevated temperatures. The principal variables of coating temperature and reactant gas composition (H 2 /MTS ratio) have been correlated with coating rate, morphology, stoichiometry, microstructure, and density. The optimum temperature for depositing highly dense coatings is in the range 1475 to 1675 0 C. Lower temperatures result in silicon-rich deposits, while higher temperatures may cause unacceptable porosity. The optimum H 2 /MTS ratio for highly dense coatings is 20 or more (approximately 5% MTS or less). The amount of grown-in porosity increases as the H 2 /MTS ratio decreases below 20. The requirement that the H 2 /MTS ratio be about 20 or more imposes a practical restraint on coating rate, since increasing the total flow rate would eventually expel microspheres from the coating tube. Evaluation of stoichiometry, morphology, and microstructure support the above mentioned optimum conditions of temperature and reactant gas composition. 18 figures, 3 tables

  10. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  11. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    OpenAIRE

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface ...

  12. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  13. Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings

    Directory of Open Access Journals (Sweden)

    Januś M.

    2015-06-01

    Full Text Available Plasma Assisted Chemical Vapour Deposition (PA CVD method allows to deposit of homogeneous, well-adhesive coatings at lower temperature on different substrates. Plasmochemical treatment significantly impacts on physicochemical parameters of modified surfaces. In this study we present the overview of the possibilities of plasma processes for the deposition of diamond-like carbon coatings doped Si and/or N atoms on the Ti Grade2, aluminum-zinc alloy and polyetherketone substrate. Depending on the type of modified substrate had improved the corrosion properties including biocompatibility of titanium surface, increase of surface hardness with deposition of good adhesion and fine-grained coatings (in the case of Al-Zn alloy and improving of the wear resistance (in the case of PEEK substrate.

  14. Novel composite cBN-TiN coating deposition method: structure and performance in metal cutting

    International Nuclear Information System (INIS)

    Russell, W.C.; Malshe, A.P.; Yedave, S.N.; Brown, W.D.

    2001-01-01

    Cubic boron nitride coatings are under development for a variety of applications but stabilization of the pure cBN form and adhesion of films deposited by PVD and ion-based methods has been difficult. An alternative method for depositing a composite cBN-TiN film has been developed for wear related applications. The coating is deposited in a two-stage process utilizing ESC (electrostatic spray coating) and CVI (chemical vapor infiltration). Fully dense films of cBN particles evenly dispersed in a continuous TiN matrix have been developed. Testing in metal cutting has shown an increase in tool life (turning - 4340 steel) of three to seven times, depending of machining parameters, in comparison with CVD deposited TiN films. (author)

  15. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition.

    Science.gov (United States)

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-04-06

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.

  16. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  17. Electrophoretic deposition of double-layer HA/Al composite coating on NiTi.

    Science.gov (United States)

    Karimi, Esmaeil; Khalil-Allafi, Jafar; Khalili, Vida

    2016-01-01

    In order to improve the bioactivity of NiTi alloys, which are being known as the suitable materials for biomedical applications, numerous NiTi disks were electrophoretically coated by hetero-coagulated hydroxyapatite/aluminum composite coatings in three main voltages from suspensions with different Al concentrations. In this paper, the amount of Ni ions release and bioactivity of prepared samples as well as bonding strength of the coating to substrate were investigated. The surface characterization of the coating by XRD, EDX, SEM, and FTIR showed that HA particles bonded by Al particles. It caused the formation of a free crack coating on NiTi disks. Moreover, the bonding strength of HA/Al coatings to NiTi substrate were improved by two times as compared to that of the pure HA coatings. Immersing of coated samples in SBF for 1 week showed that apatite formation ability was improved on HA/Al composite coating and Ni ions release from the surface of composite coating decreased. These results induce the appropriate bioactivity and biocompatibility of the deposited HA/Al composite coatings on NiTi disks. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High-rate deposition of optical coatings by closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M.

    2005-09-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in a wide range of optical applications. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to <+/-1% is accomplished simply using time. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. The CFM configuration also allows plasma treatment of surfaces prior to deposition, allowing optimisation of coating adhesion to substrates such as plastics. This paper presents data on optical, durability and environmental properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process for a range of optical applications are described.

  19. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition.

    Science.gov (United States)

    Boies, Adam M; Roberts, Jeffrey T; Girshick, Steven L; Zhang, Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

  20. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate.

    Science.gov (United States)

    Shi, Y Y; Li, M; Liu, Q; Jia, Z J; Xu, X C; Cheng, Y; Zheng, Y F

    2016-03-01

    Electrophoretic deposition (EPD) is a facile and feasible technique to prepare functional nanocomposite coatings for application in orthopedic-related implants. In this work, a ternary graphene oxide-chitosan-hydroxyapatite (GO-CS-HA) composite coating on Ti substrate was successfully fabricated by EPD. Coating microstructure and morphologies were investigated by scanning electron microscopy, contact angle test, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. It was found GO-CS surface were uniformly decorated by HA nanoparticles. The potentiodynamic polarization test in simulated body fluid indicated that the GO-CS-HA coatings could provide effective protection of Ti substrate from corrosion. This ternary composite coating also exhibited good biocompatibility during incubation with MG63 cells. In addition, the nanocomposite coatings could decrease the attachment of Staphylococcus aureus.

  1. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition

    International Nuclear Information System (INIS)

    Boies, Adam M; Girshick, Steven L; Roberts, Jeffrey T; Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane

    2009-01-01

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO 2 ) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO 2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO 2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 0 C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10 7 particles cm -3 .

  2. Radio frequency magnetron sputtering deposition of calcium phosphate coatings: Monte Carlo simulations of the deposition process and depositions through an aperture

    Science.gov (United States)

    Feddes, B.; Wolke, J. G. C.; Jansen, J. A.; Vredenberg, A. M.

    2003-01-01

    Radio frequency magnetron sputtering deposited calcium phosphate (CaP) coatings can be applied to improve the biological performance of medical implants. However, the deposition process is rather complex. Particle ejection from the sputtering target, particle collisions with the background gas, charge state of the sputtered particles, and resputtering of the deposited film all influence the composition and structure of the film. In this work we study the deposition process of the coatings by performing depositions through an aperture. Thus an image of the sputtering target is obtained. In order to interpret these images, the deposition process is simulated using a Monte Carlo computer simulation. We found that the experimental images obtained at different gas pressures are well predicted by the simulations. The calcium and phosphorus are proven to be ejected as neutrals from the target. The particle ejection distribution could not unambiguously be derived. This was partially because the image is distorted due to resputtering of the deposited film. The resputtering is the result of bombardment by energetic argon from the plasma, or energetic negative oxygen from the target. Phosphorus is preferentially resputtered from the film. In conclusion, we found that depositions with an aperture in combination with Monte Carlo simulations are a powerful combination to study and better understand the deposition process.

  3. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  4. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  5. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes.

    Science.gov (United States)

    Chen, Qiang; de Larraya, Uxua Pérez; Garmendia, Nere; Lasheras-Zubiate, María; Cordero-Arias, Luis; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2014-06-01

    This study presents the electrophoretic deposition (EPD) of cellulose nanocrystals (CNs) and CNs-based alginate composite coatings for biomedical applications. The mechanism of anodic deposition of CNs and co-deposition of CNs/alginate composites was analyzed based on the results of zeta-potential, Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analyses. The capability of the EPD technique for manipulating the orientation of CNs and for the preparation of multilayer CNs coatings was demonstrated. The nanotopographic surface roughness and hydrophilicity of the deposited coatings were measured and discussed. Electrochemical testing demonstrated that a significant degree of corrosion protection of stainless steel could be achieved when CNs-containing coatings were present. Additionally, the one-step EPD-based processing of free-standing CNs/alginate membranes was demonstrated confirming the versatility of EPD to fabricate free-standing membrane structures compared to a layer-by-layer deposition technique. CNs and CNs/alginate nanocomposite coatings produced by EPD are potential candidates for biomedical, cell technology and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Diamond coating deposition by synergy of thermal and laser methods-A problem revisited

    International Nuclear Information System (INIS)

    Ristic, Gordana S.; Trtica, Milan S.; Bogdanov, Zarko D.; Romcevic, Nebojsa Z.; Miljanic, Scepan S.

    2007-01-01

    Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO 2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO 2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium

  7. Acid formic effect in zinc coatings obtained by galvanostatic deposition

    International Nuclear Information System (INIS)

    Lopes, C.; David, M.; Souza, E.C.

    2016-01-01

    Zinc deposits obtained from electrodeposition is widely used for the purpose of protecting steel substrates from corrosion. They are generally added to Zn deposition bath many additives for improving certain characteristics of the deposit. As far as is known there is no information in literature about the effect of formic acid in corrosion resistance of a Zn deposit. Because it is an acid additive, it has the use of cyclohexylamine, in order for the electrolytic bath continue with a pH equal to the one used commercially, around 5. The main goal of this study is analyze the effect of the formic acid addition in the corrosion resistance of an Zn electrodeposition obtained by galvanostatic deposition. The results obtained by performance tests, cyclic voltammetry and X-ray diffraction showed that the formic acid addition may be promising in combating the corrosion of materials. (author)

  8. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Directory of Open Access Journals (Sweden)

    Jose Mario Paiva

    2018-02-01

    Full Text Available In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,AlN deposited by physical vapor deposition (PVD have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC and one central rotating cathode (CERC. The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  9. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    Science.gov (United States)

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  10. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    Science.gov (United States)

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  11. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  12. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  13. Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Science.gov (United States)

    Vaidyanathan, Krishnakumar

    Thermal barrier coatings (TBCs) allow operation of structural components, such as turbine blades and vanes in industrial and aircraft gas engines, at temperatures close to the substrate melting temperatures. They consist of four different layers; a high strength creep-resistant nickel-based superalloy substrate, an oxidation resistant bond coat (BC), a low thermal conductivity ceramic topcoat and a thermally grown oxide (TGO), that is predominantly alpha-Al 2O3, that forms between the BC and the TBC. Compressive stresses (3--5 GPa) that are generated in the thin TGO (0.25--8 mum) due to the mismatch in thermal coefficient of expansion between the TGO and BC play a critical role in the failure of these coatings. In this study, the failure mechanisms of a commercial yttria-stabilized zirconia (7YSZ) electron beam-physical vapor deposited (EB-PVD) coating on platinum aluminide (beta-(Ni,Pt)Al) bond coat have been identified. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the TGO/bond coat interface. The first mechanism leads to localized debonding at TGO/bond coat interface due to increased out-of-plane tensile stress, along bond coat features that manifest themselves as ridges. The second mechanism causes cavity formation at the TGO/bond coat interface, driven by cyclic plasticity of the bond coat. It has been found that the debonding at the TGO/bond coat interface due to the first mechanism is solely life determining. The final failure occurs by crack extension along either the TGO/bond coat interface or the TGO/YSZ interface or a combination of both, leading to large scale buckling. Based on these mechanisms, it is demonstrated that the bond coat grain size and the aspect ratio of the ridges have a profound influence on spallation lives of the coating. The removal of these ridges by fine polishing prior to TBC deposition led to a four-fold improvement in life. The failure mechanism identified for the

  14. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  15. Abrasion resistance of alloy coatings deposited by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Lescoffit, A.-E.; Teboul, B.; Neufuss, Karel; Voleník, Karel

    2009-01-01

    Roč. 54, č. 2 (2009), s. 113-126 ISSN 0001-7043 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * alloy coatings * slurry abrasion * hardness and microhardness Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. lectrolytic deposition of lithium into calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Groot, K.; van Blitterswijk, Clemens; de Boer, Jan

    2009-01-01

    Objectives: Lithium ions stimulate the Wnt signaling pathway and the authors previously demonstrated that lithium enhances the proliferation of tissue cultured human mesenchymal stem cells. The aim of this study was to prepare and characterize a calcium phosphate/lithium coating by means of

  17. Deposition of protective coatings in rf organosilicon discharges

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franta, D.; Dvořák, P.; Šmíd, R.; Peřina, Vratislav; Macková, Anna

    2007-01-01

    Roč. 16, č. 1 (2007), s. 123-132 ISSN 0963-0252 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : organosilicon discharges, hardness and elastic modulus, protectove coating s Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.120, year: 2007

  18. Characterization of Tungsten Carbide coatings deposited on AISI 1020 steel

    International Nuclear Information System (INIS)

    Santos, A; Gonzalez, C; Ramirez, Z Y

    2017-01-01

    In order to determine the variation in the mechanical properties of AISI 1020 standardized steel, heat treated by a quenching and tempering process and with a Tungsten Carbide coating, was performed a microstructural and chemical characterization of the coating material through electron microscopy scanning and X-ray energy dispersive spectroscopy. The steel received a heat treatment of quenching performed by heating to 850°C, followed by cooling in water and tempering at a temperature of 450°C with air cooling. Tests of a) microhardness with a Wilson-Wolpert Tukon 2100B micro durometer and b) resistance to adhesive and abrasive wear following the ASTM G99-05 “Standard test method for wear testing with a pin-on-disk machine” and ASTM G65-04 “standard test method for measuring abrasion using dry sand and rubber Wheel” standards respectively. The results show that the microhardness of the steel do not vary with the load used to perform the test; in addition, the heat treatment of quenching and tempering improves by 5.5% the property while the coating increase it by 124.2%. Regarding the abrasive wear resistance, it is observed that the amount of material lost increases linearly with the distance covered. It was determined that the heat treatment decreased on average by 17.5% the volume of released material during the tests while the coating recued it by 66.7%. The amount volume of material lost during the adhesive wear tests increases linearly with the distance covered while the heat treatment decreased on average by 10.5% the volume of released material during the trial and the coating reduced it by 66.5%. (paper)

  19. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...... decreasedwith titaniumcontent in the as-deposited, and heat-treated states, and after anodisation of the as-deposited coatings. Specimens turned grey or blackwhen anodising after heat treatment. Partially anodised Al3Ti phaseswere found in the anodised layer, and the interface between substrate and anodised...

  20. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, O., E-mail: omar.jimenez.udg@gmail.com [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Audronis, M.; Leyland, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Flores, M.; Rodriguez, E. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, CP 45101 Zapopan, Jal (Mexico); Kanakis, K.; Matthews, A. [Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2015-09-30

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB{sub 2}/Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N{sub 2} reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  1. Small grain size zirconium-based coatings deposited by magnetron sputtering at low temperatures

    International Nuclear Information System (INIS)

    Jimenez, O.; Audronis, M.; Leyland, A.; Flores, M.; Rodriguez, E.; Kanakis, K.; Matthews, A.

    2015-01-01

    Hard, partly amorphous, ZrTiB(N) coatings were deposited by Physical Vapour Deposition (PVD) onto (111) silicon wafers at low substrate temperatures of 85 and 110 °C using Closed Field Unbalanced Magnetron Sputtering. A segmented rectangular sputter target composed of three pieces (Zr/TiB 2 /Zr) was used as the source of evaporation of coating components. Two different substrate biases (i.e. floating potential and − 50 V) and N 2 reactive-gas flow rates of 2, 4 and 6 sccm were employed as the main deposition parameter variables. The chemical composition, structure, morphology and mechanical properties were investigated using a variety of analytical techniques such as Glow-Discharge Optical Emission Spectroscopy, cross-sectional Scanning Electron Microscopy (SEM), Glancing Angle X-ray Diffraction (GAXRD) and nanoindentation. With other parameters fixed, coating properties were found to be dependent on the substrate negative bias and nitrogen flow rate. Linear scan profiles and SEM imaging revealed that all coatings were smooth, dense and featureless (in fracture cross section) with no apparent columnar morphology or macro-defects. GAXRD structural analysis revealed that mostly metallic phases were formed for coatings containing no nitrogen, whereas a solid solution (Zr,Ti)N single phase nitride was found in most of the reactively deposited coatings — exhibiting a very small grain size due to nitrogen and boron grain refinement effects. Hardness values from as low as 8.6 GPa up to a maximum of 25.9 GPa are related mainly to solid solution strengthening effects. The measured elastic moduli correlated with the trends in hardness behaviour; values in the range of 120–200 GPa were observed depending on the selected deposition parameters. Also, high H/E values (> 0.1) were achieved with several of the coatings.

  2. Effect of thermally deposited siloxane-methacrylate coating on bonding to glass fibre posts.

    Science.gov (United States)

    Silva, F P; Faria-E-Silva, A L; Moraes, R R; Ogliari, A O; Reis, G R; Oliveira, A R F; Menezes, M S

    2018-01-01

    To evaluate the alterations promoted by a thermally deposited siloxane-methacrylate coating on the surface of glass fibre posts and their effect on the bond strength of resin-core materials to the posts. Fibre post surfaces were treated with experimental thermally deposited siloxane-methacrylate coatings or clinically available treatments (i.e. hydrogen peroxide and methylene chloride); nontreated posts were used as controls. The contact angles formed between the post surface and the water/adhesive were measured with a tensiometer. Scanning electron microscopy and electron dispersive spectroscopy were used to examine the topographies and chemical changes in the post surfaces following treatment. Surface roughness was evaluated with laser interferometry. Core resin was bonded to the fibre posts, and microtensile bond strength testing was subsequently performed. The data were individually submitted to anova and Tukey's tests (α = 0.05). The water contact angle was reduced significantly (P coating. All treatments significantly increased the adhesive contact angle (P ≤ 0.016) compared to the control as well as the surface roughness (P ≤ 0.006) and the amount of Si on post surfaces. Greater percentages of Si were observed for the thermally deposited coating. The bond strength to the posts was significantly improved by the thermally deposited coating (P treatments did not differ from the control. Treating the surface of glass fibre posts with a thermally deposited siloxane-methacrylate coating improved the bond strength to resin-based materials. The coating could be performed by manufacturers of glass fibre posts in order to reduce the number of clinical steps required for luting posts into root canals. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Chemical vapour deposition of optical coatings onto small scale complex optical components

    Science.gov (United States)

    Hitchman, M. L.; Gibson, D. R.; Manookian, W.; Waddell, E. M.

    2005-09-01

    In this paper we describe how optical coatings can be deposited uniformly with a high precision and reproducibility on 3-dimensional substrates, such as spherical lenses, by CVD. We present results that will highlight some specific advantages of CVD over the traditionally used methods of e-beam evaporation and magnetron sputtering and we will show that CVD has tremendous potential for enhancing the quality of optical coatings and for making cost savings.

  4. HARDNESS AND DIMENSIONS OF STEELS WITH HARD COATINGS PRODUCED BY CHEMICAL VAPOUR DEPOSITION AT MEDIUM TEMPERATURES

    OpenAIRE

    Ruppert, W.

    1989-01-01

    Chemical Vapour Deposition (CVD) of hard coatings onto steels requires thorough controlling of dimensions and hardness. Dimensional and hardness problems depend on the metallurgical properties of the base and the heat treatments which are applied to the steel before and at the application of CVD. Some information on the control of the dimensions and the hardness of high-carbon high-chromium tool steels which have to be coated with hard compounds by CVD at high temperatures (HTCVD) was already...

  5. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties.

    Science.gov (United States)

    Karbowniczek, Joanna; Cordero-Arias, Luis; Virtanen, Sannakaisa; Misra, Superb K; Valsami-Jones, Eugenia; Tuchscherr, Lorena; Rutkowski, Bogdan; Górecki, Kamil; Bała, Piotr; Czyrska-Filemonowicz, Aleksandra; Boccaccini, Aldo R

    2017-08-01

    To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nano-structured yttria-stabilized zirconia coating by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Ghaleh, H., E-mail: H_Maleki@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Rekabeslami, M. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shakeri, M.S. [Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Siadati, M.H. [Faculty of Mechanical Engineering, Materials Science and Engineering Division, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Javidi, M. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Talebian, S.H. [Faculty of Petroleum Engineering, Universiti Technologi Petronas, Perak (Malaysia); Aghajani, H. [Department of Materials Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2013-09-01

    The most important role of thermal barrier coatings is to reduce the temperature of the substrate in high temperature applications. Nanoparticle zirconia might be a suitable choice for improving the efficiency of thermal barrier coatings. Nanostructured coatings have lower thermal conduction, higher thermal expansion and lower dimensional variations at higher temperatures in comparison with the microstructured coatings. Electrophoretic deposition has been preferred for thermal barrier coatings due to its simplicity, controllability and low cost. In the present study, three different suspensions of ZrO{sub 2}–8 wt%Y{sub 2}O{sub 3} (40 nm) made with ethanol, acetone and acetyl acetone were used. Electrophoretic deposition was conducted at a fixed voltage of 60 V for 120 s on aluminized Inconel 738-LC, and then heat treated at 1100{sup o}C for 4 h in air atmosphere. The coating morphology and elemental distribution were studied using scanning electron microscopy. It was observed that suspension media have an important effect on the quality of the final product. Acetyl acetone showed better dispersion of particles than the other two media. Consequently, deposition from acetyl acetone resulted in uniform and crack-free layers while those from ethanol and acetone were completely non-uniform due to agglomeration and low viscosity, respectively.

  7. ELECTROPHORETICALLY DEPOSITED NANOSIZED HYDROXYAPATITE COATINGS ON 316LVM STAINLESS STEEL FOR ORTHOPAEDIC IMPLANTS

    Directory of Open Access Journals (Sweden)

    MARIJA MIHAILOVIĆ

    2011-03-01

    Full Text Available Hydroxyapatite is a widely used bioceramic material in implant coatings research because of its bioactive behavior when being deposited onto the metallic implant and compatibility with the human bones composition. The coating of nanosized hydroxyapatite was electrophoretically deposited on a blasted surface of stainless steel 316LVM samples at constant voltage, for different deposition times and subsequently sintered in both, vacuum and argon atmosphere, at 1040 and 1000 °C, respectively. Although sintering temperatures needed to achieve highly dense coatings can cause HAp coating phase changes, the possibility to obtain a bioactive coating on 316LVM substrate, without the coatings phase changes due to the nature of the used stoichiometric nanostructured hydroxyapatite is presented in this work. The thermal stability of the used HAp powder was assessed by DTA-TG analyses over the temperature range of 23-1000 C, i.e., at the or nearby experimental sintering temperature. The microstructure characterization was accomplished using SEM, while phase composition was determined using XRD.

  8. ZnS/diamond composite coatings for infrared transmission applications formed by the aerosol deposition method

    Science.gov (United States)

    Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.

    2013-06-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.

  9. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  10. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  11. Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Shabadi, Rajashekhara

    2014-01-01

    The mechanism of interaction of light with the microstructure of anodized layer giving specific optical appearance is investigated using Al–Zr sputter deposited coating as a model system on an AA6060 substrate. Differences in the oxidative nature of various microstructural components result...... in the evolution of typical features in the anodized layer, which are investigated as a function of microstructure and correlated with its optical appearance. The Zr concentration in the coating was varied from 6 wt.% to 23 wt.%. Heat treatment of the coated samples was carried out at 550°C for 4 h in order...... to evolve Al–Zr based second phase precipitates in the microstructure. Anodizing was performed using 20 wt.% sulphuric acidat 18°C with an intention to study the effect of anodizing on the Al–Zr based precipitates in the coating.Detailed microstructural characterization of the coating and anodized layer...

  12. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Tsai, Ming-Tzu; Chang, Yin-Yu; Huang, Heng-Li; Hsu, Jui-Ting; Chen, Ya-Chi; Wu, Aaron Yu-Jen

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO 2 layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO 2 , ZnO, and Ti(Zn)O 2 coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO 2 coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO 2 coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O 2 coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO 2 and Ti(Zn)O 2 coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO 2 and Ti(Zn)O 2 coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O 2 coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO 2 , Ti(Zn)O 2 and ZnO coatings were deposited by cathodic arc evaporation. ► Zn may incorporated with Ti to form Zn-doped TiO 2 .

  13. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Huang, Heng-Li; Hsu, Jui-Ting [School of Dentistry, College of Medicine China Medical University, Taichung 404, Taiwan (China); Chen, Ya-Chi [Department of Materials Science and Engineering, Mingdao University, Changhua 523, Taiwan (China); Wu, Aaron Yu-Jen [Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan (China)

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO{sub 2} layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO{sub 2}, ZnO, and Ti(Zn)O{sub 2} coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO{sub 2} coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO{sub 2} coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O{sub 2} coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO{sub 2} and Ti(Zn)O{sub 2} coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO{sub 2} and Ti(Zn)O{sub 2} coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O{sub 2} coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO{sub 2}, Ti(Zn)O{sub 2} and ZnO coatings were deposited by cathodic arc

  14. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  15. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    OpenAIRE

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the coating and the substrate, the macro-stresses were found to be compressive and to decrease in magnitude with increasing processing speed. The origin of the macro- and micro-stresses is discussed. T...

  16. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  17. Electrochemical behaviour of silica basic hybrid coatings deposited on stainless steel by dipping and EPD

    International Nuclear Information System (INIS)

    Castro, Y.; Duran, A.; Damborenea, J.J.; Conde, A.

    2008-01-01

    The aim of this work is the characterisation of the corrosion behaviour of stainless steel (AISI 304) substrates coated by dipping and electrophoretic deposition (EPD) from a sol-gel basic sol. Particulate silica sols (labelled NaSi) were prepared by basic catalysis from ethyltriethoxysilane (TEOS), methyltriethoxysilane (MTES) and sodium hydroxide. Coatings between 2 and 10 μm were prepared by using concentrated and diluted sols by dipping and EPD process and the corrosion behaviour of the coated substrates were studied through potentiodynamic and impedance spectroscopy measurements (EIS). Potentiodynamic studies of coatings produced by dipping reveal a strong dependence of the protective properties with the concentration of the sol. This behaviour was confirmed by EIS showing that only the coatings obtained from concentrated sol present enough protective properties. On the contrary, EPD coatings prepared from diluted NaSi sol showed an excellent corrosion resistance, maintaining a pure capacitive behaviour for long periods of immersion. EPD deposition is thus proposed as a good alternative method for obtaining thicker and denser coatings with good protective properties from dilute and stable sols

  18. Ion assisted deposition of refractory oxide thin film coatings for improved optical and structural properties

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Bhattacharyya, D.; Das, N.C.

    1999-03-01

    Ion assisted deposition technique (IAD) has emerged as a powerful tool to control the optical and structural properties of thin film coatings. Keeping in view the complexity of the interaction of ions with the films being deposited, sophisticated ion sources have been developed that cater to the need of modern optical coatings with stringent spectral and environmental specifications. In the present work, the results of ion assisted deposition (IAD) of two commonly used refractory oxides, namely TiO 2 and ZrO 2 , using cold cathode ion source (CC-102R) are presented. Through successive feedback and calibration techniques, various ion beams as well as deposition parameters have been optimized to achieve the best optical and structural film properties in the prevalent deposition geometry of the coating system. It has been possible to eliminate the unwanted optical and structural inhomogeneities from these films using and optimized set of process parameters. Interference modulated spectrophotometric and phase modulated ellipsometric techniques have been very successfully utilized to analyze the optical and structural parameters of the films. Several precision multilayer coatings have been developed and are being used for laser and spectroscopic applications. (author)

  19. PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Jakub Skocdopole

    2017-07-01

    Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.

  20. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  1. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  2. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  3. Diamond like carbon coatings deposited by microwave plasma CVD ...

    Indian Academy of Sciences (India)

    WINTEC

    Diamond-like carbon (DLC) films were deposited by microwave assisted chemical vapour deposi- tion system using d.c. bias voltage ... Diamond like carbon films; microwave assisted CVD; X-ray photoelectron spectroscopy; spectro- scopic ellipsometry. 1. .... The electrical resistivity of these films was higher than 200 MΩ ...

  4. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  5. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    Science.gov (United States)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  6. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    Science.gov (United States)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  7. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  8. Deposition of multilayer optical coatings using closed-field magnetron sputtering

    Science.gov (United States)

    Gibson, D. R.; Brinkley, I.; Hall, G. W.; Waddell, E. M.; Walls, J. M.

    2006-08-01

    "Closed field" magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion current density, low bias voltage and reactive oxidation in the entire volume around the rotating substrate drum carrier, thereby producing films over a large surface area at high deposition rate with excellent and reproducible optical properties. Machines based on the Closed Field are scaleable to meet a range of batch and in-line size requirements. Typically, thin film thickness control to < +/-1% is accomplished simply using time, although optical monitoring can be used for more demanding applications. Fine layer thickness control and deposition of graded index layers is also assisted with a specially designed rotating shutter mechanism. This paper presents data on optical properties for CFM deposited optical coatings, including anti-reflection, IR blocker and colour control and thermal control filters, graded coatings, narrowband filters as well as conductive transparent oxides such as indium tin oxide. Benefits of the CFM sputter process are described.

  9. Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr

    Directory of Open Access Journals (Sweden)

    Marta eMiola

    2015-10-01

    Full Text Available In this research work the original 45S5 bioactive glass (BG was modified by introducing zinc and/or strontium oxide (6% mol in place of calcium oxide. Sr was added for its ability to stimulate bone formation, Zn for its role in bone metabolism, antibacterial properties and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology, while compositional analysis (EDS demonstrated the effective addition of these elements inside the glass network. Bioactivity test in simulated body fluid (SBF up to one month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD. Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD and alternating current EPD (AC-EPD. The stability of the suspension was analysed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, while the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behaviour of 45S5-Sr containing coating, while coatings containing Zn exhibited no hydroxyapatite formation.

  10. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß, Sigrid

    2012-03-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles and PEEK microparticles for EPD were prepared in ethanol. PEEK-TiO 2 composite coatings were optimized using suspensions containing 6wt% PEEK-TiO 2 in ethanol with a 3:1 ratio of PEEK to TiO 2 in weight and by applying a potential difference of 30 V for 1 minute. A heat-treatment process of the optimized PEEK-TiO 2 composite coatings was erformed at 335°C for 30 minutes with a heating rate of 10°Cmin -1 to densify the deposits. The EPD coatings were microstructurally evaluated by scanning electron microscopy (SEM). It was demonstrated that EPD is a convenient and rapid method to fabricate PEEK/TiO 2 coatings on stainless steel which are interesting for biomedical applications. © (2012) Trans Tech Publications, Switzerland.

  11. Nanocomposite Coatings Codeposited with Nanoparticles Using Aerosol-Assisted Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Xianghui Hou

    2013-01-01

    Full Text Available Incorporating nanoscale materials into suitable matrices is an effective route to produce nanocomposites with unique properties for practical applications. Due to the flexibility in precursor atomization and delivery, aerosol-assisted chemical vapour deposition (AACVD process is a promising way to synthesize desired nanocomposite coatings incorporating with preformed nanoscale materials. The presence of nanoscale materials in AACVD process would significantly influence deposition mechanism and thus affect microstructure and properties of the nanocomposites. In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2 has been codeposited with Cr2O3 coatings using AACVD. In order to understand the codeposition process for the nanocomposite coatings, chemical reactions of the precursor and the deposition mechanism have been studied. The correlation between microstructure of the nanocomposite coatings and the codeposition mechanism in the AACVD process has been investigated. The heterogeneous reaction on the surface of IF-WS2 nanoparticles, before reaching the substrate surface, is the key feature of the codeposition in the AACVD process. The agglomeration of nanoparticles in the nanocomposite coatings is also discussed.

  12. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  13. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ho [School of Medicine, China Medical University, Taichung, 404 Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan (China); Huang, Heng-Li [School of Dentistry, China Medical University, Taichung, Taiwan (China); Kao, Ho-Yi [Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan (China)

    2011-12-30

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N{sub 2}) and C{sub 2}H{sub 2} activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  14. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Lai, Chih-Ho; Chang, Yin-Yu; Huang, Heng-Li; Kao, Ho-Yi

    2011-01-01

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N 2 ) and C 2 H 2 activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  15. Microstructural Evolution of (Ti,W,CrB2 Coatings Deposited on Steel Substrates during Annealing

    Directory of Open Access Journals (Sweden)

    Aleksandra Newirkowez

    2014-05-01

    Full Text Available The topic of the present experiments are transition metal diboride coatings of composition (Ti0.49W0.51B2 and (Ti0.44W0.30Cr0.26B2. The coatings were deposited on steel substrates using dc magnetron sputtering. We investigated how annealing in argon at elevated temperatures modifies microstructure. The as-deposited films are amorphous. Annealing between 700 and 1100 °C results in the formation of nano-crystalline precipitates with average grain diameters of about 10–50 nm. A TiC phase (Fm-3m; a ≈ 4.3 Å is observed as the dominating precipitate phase. In addition, small amounts (10%–20% of a Cr23C6 phase (Fm-3m; a ≈ 10.6 Å are observed. In contrast to literature data on the same coatings deposited on silicon substrates, the formation of boride precipitate phases is strongly suppressed here. From investigations with X-ray diffractometry, electron microscopy and secondary ion mass spectrometry we conclude that the nanostructure of the coatings is formed by reactive phase formation of the boride coating with the carbon containing steel substrate.

  16. Prospects of chemically deposited CoS-CU2S coatings for solar ...

    African Journals Online (AJOL)

    Moreover, the coating of the glass substrates with a thin layer of CoS prior to Cu2S film deposition was found to improve the mechanical stability of the Cu2S thin films, offering the choice of different shades of colours for the same integrated transmittance in the visible region in solar control applications. The possibility ...

  17. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Optimal configuration, represented as (Zn–Co)2.0/4.0/300 was found to exhibit ∼ 89 times better corrosion resistance compared to monolithic (Zn–Co)3.0 alloy deposited for same time, from same bath. The better corrosion resistance of CMMA coatings was attributed to changed interfacial dielectric properties, evidenced by ...

  18. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    The electrodeposition of tin/nickel (65/35 wt%) is a unique coating process because of the deposition of an intermetallic phase of nickel and tin, which cannot be formed by any pyrometallurgical process. From thermodynamic calculations it can be shown that intermetallic phases can be formed throu...

  19. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  20. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  1. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  2. Influence of relative humidity during coating on polymer deposition and film formation.

    Science.gov (United States)

    Macchi, Elena; Felton, Linda A

    2016-08-20

    The influence of relative humidity in the pan during coating on polymer deposition and film formation was investigated. Four tablet substrates, differing in hydrophobicity, porosity, and surface roughness, were prepared and coated with Eudragit(®) RS/RL 30 D (8:2 ratio). The spray rate and atomization air pressure were varied to create two distinct micro-environmental conditions in the coating pan. PyroButton data logging devices placed directly in the pan were found to more accurately reflect the relative humidity to which tablets were exposed in comparison to measurements taken at the exhaust. Polymer deposition was shown to be influenced by the properties of the substrate, rather than the processing conditions used during coating, with higher polymer weight gains observed for the more porous tablets. Differences in the film-tablet interface and in the release performance of the coated products, however, were attributed to both the relative humidity in the pan and tablet porosity. Overall, this study demonstrated that a more humid coating process (86% vs 67%) promoted surface dissolution and physical mixing of the tablet ingredients with the forming film and the extent of this phenomenon was dependent on the tablet porosity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel

    Science.gov (United States)

    Wang, Fangfang; Zhang, Fengxiang; Zheng, Lijing; Zhang, Hu

    2017-11-01

    The corrosion protection of chromium coating deposited on aerospace bearing steels by using the Filtered Cathodic Vacuum Arc deposition- Metal Evaporation Vacuum Arc duplex technique (MEVVA-FCVA) had been investigated. The protection efficiency of chromium coating on different substrate materials had also been evaluated. The chromium coating was mainly composed of nanocrystallineα-Cr in a range of 50-200 nm. The orientation distributions of α-Cr film on substrates with different composition had a certain difference to each other. Electrochemical experimental results indicated that the chromium coating significantly improved the corrosion resistance of experimental bearing steels in 3.5% NaCl solution. The protective efficiency of chromium films were all over 98%. The corrosion resistance of chromium coating was influenced by the chemical composition of substrate material. The chromium coatings on higher Cr-containing substrate displayed lower corrosion current density and more positive corrosion potential. The increase of passive film thickness and the formation of a mass of chromium oxide and hydroxide on the surface are responsible for the improved corrosion properties.

  4. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  5. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  6. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    Energy Technology Data Exchange (ETDEWEB)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A [Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ovsianikov, A; Chichkov, B N [Laser Zentrum Hannover, Hollerithallee 8, 30419 Hannover (Germany); Stafslien, S; Chisholm, B, E-mail: roger_narayan@msn.co [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States)

    2009-12-15

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  7. Pulsed laser deposition of antimicrobial silver coating on Ormocer (registered) microneedles

    International Nuclear Information System (INIS)

    Gittard, S D; Narayan, R J; Jin, C; Monteiro-Riviere, N A; Ovsianikov, A; Chichkov, B N; Stafslien, S; Chisholm, B

    2009-01-01

    One promising option for transdermal delivery of protein- and nucleic acid-based pharmacologic agents involves the use of microneedles. However, microneedle-generated pores may allow microorganisms to penetrate the stratum corneum layer of the epidermis and cause local or systemic infection. In this study, microneedles with antimicrobial functionality were fabricated using two-photon polymerization-micromolding and pulsed laser deposition. The antibacterial activity of the silver-coated organically modified ceramic (Ormocer (registered) ) microneedles was demonstrated using an agar diffusion assay. Human epidermal keratinocyte viability on the Ormocer (registered) surfaces coated with silver was similar to that on uncoated Ormocer (registered) surfaces. This study indicates that coating microneedles with silver thin films using pulsed laser deposition is a useful and novel approach for creating microneedles with antimicrobial functionality. (communication)

  8. Chemical vapor deposition of aluminide coatings on iron, nickel and superalloys

    International Nuclear Information System (INIS)

    John, John T.; De, P.K.; Dubey, Vivekanand; Srinivasa, Raman

    2009-08-01

    Aluminide coatings are a class of intermetallic coatings applied on nickel and cobalt base superalloys and steels to protect them from different forms of environmental degradation at high temperatures. In this report a CVD system that can produce the aluminide coatings on iron, nickel and nickel base alloys has been described and the result of chemical vapor deposition of aluminide coatings on iron specimens, their characterization, and property evaluation have been presented. The CVD system consists of an AlCl 3 bath, a stainless steel retort as a hot-wall reacto, cold traps and vacuum system. Aluminium chloride vapor was carried in a stream of hydrogen gas at a flow rate of 150 SCCM (standard cubic centimeter per minute) into the CVD reactor maintained in the temperature range of 1173 - 1373 K and at a pressure of 1.33 kPa (10 Torr). Aluminum deposition takes place from aluminium subchlorides produced by reaction between AlCl 3 and pure aluminum kept in the CVD reactor. The aluminum diffuses into the iron samples and iron aluminide phases are formed at the surface. The coatings were shining bright and showed good adherence to the substrate. The coatings consisted of FeAl phase over a wide range of experimental conditions. The growth kinetics of the coating followed a parabolic rate law and the mean activation energy was 212 ±16 kJ/mol. Optical microscopic studies on the transverse section of the coating showed that the aluminide coating on iron consisted of two layers. The top layer had a thickness in the range of 20-50 μm, and the under layer had thickness ranging from 35 to 250 μm depending on coating temperature in two hours. The thickness of the aluminide layer increased with coating duration and temperature. Electron microprobe studies (EPMA) showed that the aluminum concentration decreased steadily as distance from the surface increased. TEM studies showed that the outer most layer had a B2 order (of the FeAl phase), which extended even into the under

  9. Multi objective optimization of wear resistant TiAlN and TiN coatings deposite by PVD techniques

    OpenAIRE

    A. Zarychta; J. Ratajski; Ł. Szparaga

    2011-01-01

    Purpose: The goal of this paper is to determine, the optimal layer thickness of deposited coatings, in respect of thermal strain and stresses.Design/methodology/approach: For physical modelling purposes Cr, TiN and TiAlN layers were treated as a continuous medium, so the physical phenomena, occurring in the coating, are modelled based on a classical theory of stiffness. Computer model of the object (coating + substrate) describing strains and thermal stresses states in layers, after deposit...

  10. Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

    Directory of Open Access Journals (Sweden)

    Winnicki M.

    2016-12-01

    Full Text Available The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3 deposited by Low Pressure Cold Spraying method (LPCS. The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

  11. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  12. Optical and microstructural properties of Au alloyed Al–O sputter deposited coatings

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, N.M., E-mail: nuno.figueiredo@dem.uc.pt [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra (Portugal); Vaz, F.; Cunha, L. [Center of Physics, University of Minho (Portugal); Pei, Y.T.; De Hosson, J.T.M. [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen (Netherlands); Cavaleiro, A. [SEG-CEMUC, Department of Mechanical Engineering, University of Coimbra (Portugal)

    2016-01-01

    This research is focused on the microstructure and optical properties of an Al–O dielectric matrix incorporated with increasing Au contents up to 11 at.%. For the as-deposited coatings, the Au atoms appear to be alloyed into the amorphous oxide matrix, although a small fraction of Au atoms can also be incorporated in the form of very small nanoparticles (< 1–2 nm). Precipitation of Au nanoparticles was found in the coatings after annealing at increasing temperatures. Au clustering in the dielectric matrix was able to promote the surface plasmon resonance (SPR) effect, a desirable effect for applications in decorative and sensors fields. - Highlights: • Au-Al{sub 2}O{sub 3} nanocomposites with Au contents between 0 and 11 at.% were deposited by reactive co-sputtering. • For the as-deposited coatings, the Au atoms appear to be alloyed into the amorphous oxide matrix. • Precipitation of Au nanoparticles was found in the coatings after annealing at increasing temperatures. • Surface Plasmon Resonance effect was noted only after thermal annealing at 500 °C.

  13. Recent Advances in the Deposition of Diamond Coatings on Co-Cemented Tungsten Carbides

    Directory of Open Access Journals (Sweden)

    R. Polini

    2012-01-01

    Full Text Available Co-cemented tungsten carbides, namely, hard metals are largely used to manufacture high wear resistant components in several manufacturing segments. Coating hard metals with superhard materials like diamond is of utmost interest as it can further extend their useful lifespan. The deposition of diamond coatings onto WC-Co can be extremely complicated as a result of poor adhesion. This can be essentially ascribed to (i the mismatch in thermal expansion coefficients between diamond and WC-Co, at the typical high temperatures inside the chemical vapour deposition (CVD chamber, generates large residual stresses at the interface; (ii the role of surface Co inside the WC-Co matrix during diamond CVD, which promotes carbon dissolution and diffusion. The present investigation reviews the techniques by which Co-cemented tungsten carbides can be treated to make them prone to receive diamond coatings by CVD. Further, it proposes interesting ecofriendly and sustainable alternatives to further improve the diamond deposition process as well as the overall performance of the coated hard metals.

  14. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  15. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  16. Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms.

    Science.gov (United States)

    Flynn, Raymond M; Yang, Xinyao; Hofmann, Thilo; von der Kammer, Frank

    2012-03-06

    Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modeling colloid responses suggested adsorption of 1 μg BSA generated the same response as blockage by between 7.1 × 10(8) and 2.3 × 10(9) deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix's colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.

  17. Optimizing the vacuum plasma spray deposition of metal, ceramic, and cermet coatings using designed experiments

    Science.gov (United States)

    Kingswell, R.; Scott, K. T.; Wassell, L. L.

    1993-06-01

    The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.

  18. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  19. Bioactivity response of Ta1-xOx coatings deposited by reactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Almeida Alves, C.F.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O 2 atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta 1-x O x coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta oxide surface

  20. Electrophoretic Deposition of α-Fe2O3/Chitosan Nanocomposite Coatings for Functional and Biomedical Applications.

    Science.gov (United States)

    Cabanas-Polo, S; Distaso, M; Peukert, W; Boccaccini, A R

    2015-12-01

    Promising composite coatings based on hematite (α-Fe2O3) mesocrystals of size 110 nm and chitosan (CHT) molecules for different biotechnological applications have been successfully obtained by electrophoretic deposition (EPD). Homogeneous and reproducible coatings have been obtained by studying and controlling the chemical interactions between both phases (α-Fe2O3 and CHT). A voltage of 25 V and a deposition time of 5 min were chosen as best deposition conditions, which resulted in highly homogeneous coatings with well-distributed α-Fe2O3 particles. According to TGA measurements, the content of α-Fe2O3 and chitosan in the final composite coating were found to be 74 and 26 wt%, respectively. The presence of both phases in the composite coating was determined by XRD analysis and the coatings microstructure was observed by SEM.

  1. Structure and mechanical properties of Ti-Si-C coatings deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampril, J.J.

    2001-01-01

    Nanostructured coatings consisting of mixed carbide phases can provide a potential means to developing superhard coatings. Heterogeneous nanostructured coatings can be obtained by either deposition of multilayer structures or by depositing film compositions that undergo a natural phase separation due to thermodynamic immiscibility. In the present work, we have taken the latter approach, and deposited films by radio frequency cosputtering from dual carbide targets. We have examined a number of ternary carbide systems, and here we report the results obtained on Ti-Si-C films with a nominal (Ti 1-x Si x )C stoichiometry and with x≤0.31. It was found that the nanoindentation hardness increased with Si content, and the maximum hardness achieved was nearly twice that of sputter-deposited TiC. We further analyzed these films using high-resolution transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction. Since cubic SiC has an x-ray pattern almost identical to that of TiC, the extent of phase separation could not be determined by that method. However, XRD did demonstrate a general disordering of the films with increasing SiC content. In addition, a mottled structure was observed in high-resolution TEM images of the Si-containing films, confirming microstructural effects due to the Si additions

  2. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  3. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  4. The protection of alloys against high temperature sulphidation by SiO@#2@#-coatings deposited by MOCVD

    NARCIS (Netherlands)

    Hofman, R.; Hofman, R.; Westheim, J.G.F.; Westheim, J.G.F.; Fransen, T.; Gellings, P.J.

    1992-01-01

    Silica coatings have been deposited on various alloys by MOCVD (Metal Organic Chemical Vapor Deposition) to protect them against high temperature corrosion in coal gasification environments. DiAcetoxyDitertiaryButoxySilane (DADBS) has been used as a metal organic precursor at deposition temperatures

  5. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  6. Corrosion resistance of tungsten carbide based cermet coatings deposited by High Velocity Oxy-Fuel spray process

    Energy Technology Data Exchange (ETDEWEB)

    Aw, Poh Koon [Singapore Institute of Manufacturing Technology (Singapore)], E-mail: pkaw@SIMTech.a-star.edu.sg; Tan, Annie Lai Kuan [Singapore Institute of Manufacturing Technology (Singapore); Tan, Tai Phong [Hamilton Sundstrand Pacific Aerospace Pte Ltd (Singapore); Qiu, Jianhai [School of Materials Science and Engineering, Nanyang Technological University (Singapore)

    2008-06-30

    WC-17Ni and WC-17Co coatings were deposited on mild steel and stainless steel substrates by High Velocity Oxy-Fuel (HVOF) spray process. WC-17Ni and WC-17Co coatings were obtained by the spray process and the porosity of these coatings was measured. Polarization and electrochemical impedance spectroscopy (EIS) were performed on both uncoated substrates and coated samples immersed in 3% NaCl solution. WC-17Ni coating with a lower porosity, serve as a better barrier and effectively prevented corrosion attack when it was deposited on mild steel substrate. The nickel binder in the WC-17Ni coating was found to have a better corrosion resistance than the cobalt binder in the WC-17Co coating.

  7. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  8. SiO{sub 2} coating of silver nanoparticles by photoinduced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Boies, Adam M; Girshick, Steven L [Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN 55455 (United States); Roberts, Jeffrey T [Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Zhang Bin; Nakamura, Toshitaka; Mochizuki, Amane, E-mail: jtrob@umn.ed, E-mail: slg@umn.ed [Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2009-07-22

    Gas-phase silver nanoparticles were coated with silicon dioxide (SiO{sub 2}) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO{sub 2} precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO{sub 2} coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 {sup 0}C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10{sup 7} particles cm{sup -3}.

  9. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  10. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  11. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    International Nuclear Information System (INIS)

    Olaya, J.J.; Rodil, S.E.; Muhl, S.

    2008-01-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN x films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N 2 ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV 0.025 . While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV 0.025 . The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics

  12. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools

    International Nuclear Information System (INIS)

    Sein, H; Ahmed, W; Rego, C A; Jones, A N; Amar, M; Jackson, M; Polini, R

    2003-01-01

    Diamond coatings on Co cemented tungsten carbide (WC-Co) hard metal tools are widely used for cutting non-ferrous metals. It is difficult to deposit diamond onto cutting tools, which generally have a complex geometry, using a single step growth process. This paper focuses on the deposition of polycrystalline diamond films onto dental tools, which possess 3D complex or cylindrical shape, employing a novel single step chemical vapour deposition (CVD) growth process. The diamond deposition is carried out in a hot filament chemical vapour deposition (HFCVD) reactor with a modified filament arrangement. The filament is mounted vertically with the drill held concentrically in between the filament coils, as opposed to the commonly used horizontal arrangement. This is a simple and inexpensive filament arrangement. In addition, the problems associated with adhesion of diamond films on WC-Co substrates are amplified in dental tools due to the very sharp edges and unpredictable cutting forces. The presence of Co, used as a binder in hard metals, generally causes poor adhesion. The amount of metallic Co on the surface can be reduced using a two step pre-treatment employing Murakami etching followed by an acid treatment. Diamond films are examined in terms of their growth rate, morphology, adhesion and cutting efficiency. We found that in the diamond coated dental tool the wear rate was reduced by a factor of three as compared to the uncoated tool

  13. Mechanistic Study on the Degradation of Thermal Barrier Coatings Induced by Volcanic Ash Deposition

    Science.gov (United States)

    Arai, Masayuki

    2017-08-01

    Thermal stress generated on thermal barrier coatings (TBCs) by volcanic ash (VA) deposition was assessed measuring the tip deflection of a multilayered beam structure as a function of temperature. The TBC in this study was deposited onto the surface of a blade utilized in a land-based gas turbine which is composed of 8 wt.%Y2O3-ZrO2/CoNiCrAlY on a Ni-based superalloy. The VA-deposited TBC sample was heated at 1453 K, and the effect of VA deposition on TBC delamination was examined in comparison with a TBC sample without VA deposition as a reference. On the basis of the VA attack damage mechanism which was investigated via the tip deflection measurement and a comprehensive microstructure examination, a damage-coupled constitutive model was proposed. The proposed model was based on the infiltration of the molten VA inside pores and phase transformations of yttria -tabilized zirconia in the TBC system. The numerical analysis results, which were simulated utilizing the finite element code installing the developed constitutive model, showed us that VA attack on the TBC sample induced near-interfacial cracks because of a significant increasing in the coating stress.

  14. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  15. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  16. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  17. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2017-12-27

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  18. Standard specification for pyrolytic and vacuum deposition coatings on flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers the optical and aesthetic quality requirements for coatings applied to glass for use in building glazing. 1.2 The coatings covered are applied to the glass using either pyrolytic or vacuum (sputtering) deposition methods and are typically applied to control solar heat gain, energy performance, comfort level, and condensation and enhance the aesthetic of the building. 1.3 This specification addresses blemishes related to the coating only. It does not address glass blemishes, applied ceramic frits, and organic films. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

  19. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  20. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  1. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    International Nuclear Information System (INIS)

    Vital, Alexane; Vayer, Marylène; Tillocher, Thomas; Dussart, Rémi; Boufnichel, Mohamed

    2017-01-01

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  2. Characterization of hydroxyapatite coatings deposited by hydrothermal electrochemical method on NaOH immersed Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    He, Daihua, E-mail: hedh21@163.com [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Liu, Ping; Liu, Xinkuan; Ma, Fengcang; Chen, Xiaohong; Li, Wei [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Du, Jiandi; Wang, Pu [School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 (China); Zhao, Jun [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2016-07-05

    The hydrothermal electrochemical method was used to deposit hydroxyapatite coating on Ti6Al4V. In order to improve the bonding strength between the coating and substrate, the substrates were modified by 8 M NaOH solution before the deposition. The effects of immersing time on the substrate, on the hydroxyapatite coating, and on the bonding strength were studied. X-Ray Diffraction, Scanning Electron Microscope, Fourier Transform Infrared Spectroscopy and Drop Shape Analysis Method were applied. And the crystallinity of hydroxyapatite coating was calculated. The results show that immersing treatment effects the phase compositions, the microstructure and the wettability of the substrate surface. A porous, three-dimensional network structure is formed on the Ti6Al4V surface through the NaOH immersion. The pore size and depth increase with the increase of immersing time from 12 to 48 h. The surface microstructure of Ti6Al4V with 60 h′ immersion time was different from the others. The modification treatment can improve the bonding strength between hydroxyapatite coating and the substrate obviously. The value of the bonding strength with the substrate immersed for 48 h is larger than those of the others. A bone-like apatite layer forms on the coating after 3 days of soaking in SBF, implying with good bioactivity of the hydroxyapatite coatings deposited by the method. The surface characteristics of the sample immersed with 48 h are more conductive to the deposition of hydroxyapatite and to the improvement of the bonding strength. The formation mechanism of hydroxyapatite coating deposited by hydrothermal electrochemical method was discussed. - Highlights: • Immerse Ti6Al4V alloy with NaOH solution for different immersing time. • We deposit hydroxyapatite coating by hydrothermal electrochemical method. • We examine changes of composition, microstructure, bonding strength and bioactivity of the hydroxyapatite coating. • 48 h is the optimal immersing time. • We

  3. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  4. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  5. Microstructural and mechanical characterizations of a novel HVOF-sprayed WC-Co coating deposited from electroless Ni–P coated WC-12Co powders

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M., E-mail: majid_jafari@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Enayati, M.H.; Salehi, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Nahvi, S.M. [Iranian Surface Research and Engineering Centre, Isfahan 84155-337 (Iran, Islamic Republic of); Park, C.G. [Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2013-08-20

    In this research, a novel WC-Co coating was deposited from electroless Ni–P coated WC-12Co powders using high velocity oxygen fuel (HVOF) process. Toward this purpose, an electroless Ni–P plating process was used to develop a uniform Ni–P layer on the surface of WC-12Co powders. The obtained Ni–P coated powders were then used as HVOF feedstock material. Microstructural characteristics of the Ni–P coated WC-12Co powders and the resultant coating, which is denoted as Ni–P modified coating, were investigated using X-ray diffractometry (XRD) and high resolution field emission scanning electron microscopy (HR FE SEM). The micro-hardness, elastic modulus and fracture toughness measurements were executed to evaluate the mechanical properties of the Ni–P modified coating. For comparison, the same experiments were performed on two conventional HVOF sprayed WC-12Co and WC-17Co coatings. The Ni–P modified WC-12Co coating showed a dense structure with extremely low porosity of ∼0.3% which was much lower than that of WC-12Co and WC-17Co coatings. Besides, it was observed that the Ni–P modified coating has undergone negligible decarburization of 2.6% as compared to conventional WC-12Co and WC-17Co coatings with that of 16.3 and 17.6%. The Ni–P modified coating showed the maximum hardness of ∼11.45 GPa, while lower hardness values of 10.98 and 10.59 GPa were measured for the WC-12Co and WC-17Co coatings. The fracture toughness of Ni–P modified WC-12Co coating was found to be 9.86 MPa m{sup 1/2}, indicating 71.2 and 61.1% increase in comparison with WC-12Co and WC-17Co coatings, respectively.

  6. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  7. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  8. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The suggestion of droplets generation prevention method of CNx coating by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yagi, Yuji; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Fuwa, Yoshio; Manabe, Kazuyoshi

    2013-01-01

    It has been reported that the carbon nitride (CNx) coating was the super-low friction in which friction coefficient was less than 0.01, and it attracts attention as a high wear resistance and low friction material. When synthesizing a CNx coating with Ion Beam Assisted Deposition (IBAD) method, it was clear that the small asperities called droplets was generated onto the CNx coating surface with increasing thickness, and these droplets generated high friction. Therefore, it is necessary to clarify droplets generation mechanism to reduce droplets. To establish optimal coating conditions for controlling droplets were clarified by paying attention to the energy of an electron beam and the shape of a carbon target. First of all, 300 nm thickness CNx coatings were synthesized with five different filament current densities to clarify the relationship between the filament current density and droplet heights. Secondly, the effect of carbon target shape on droplets generation was confirmed with normal and processed carbon target. Finally, friction coefficient of these surfaces was measured by friction tests under PAO lubrication. (author)

  12. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    Science.gov (United States)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  13. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  14. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiming, E-mail: li-zhiming@hotmail.com [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Qian Shiqiang, E-mail: qshiqiang@163.com [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang Wei [College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2011-03-01

    Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 deg. C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are {gamma}-Ni and {gamma}'-Ni{sub 3}Al phases, also there is an extremely small quantity of Al{sub 2}O{sub 3} in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO{sub 2} is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.

  15. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  16. Effect of structure and deposition technology on tribological properties of DLC coatings alloyed with VIA group metals

    Science.gov (United States)

    Khrushchov, M.; Levin, I.; Marchenko, E.; Avdyukhina, V.; Petrzhik, M.

    2016-07-01

    The results of a comprehensive research on atomic structure, phase composition, micromechanical and tribological characteristics of alloyed DLC coatings have been presented. The coatings have been deposited by reactive magnetron sputtering in acetylene-nitrogen gas mixtures of different compositions (a-C:H:Cr), by plasma-assisted chemical vapor deposition in atmospheres of silicone-organic precursor gases (a-C:H:Mo:Si), and by nonreactive magnetron sputtering of a composite target (a-C:H:W).

  17. Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target

    Czech Academy of Sciences Publication Activity Database

    Bleykher, G.A.; Borduleva, A.O.; Yuryeva, A.V.; Krivobokov, V.P.; Lančok, Ján; Bulíř, Jiří; Drahokoupil, Jan; Klimša, Ladislav; Kopeček, Jaromír; Fekete, Ladislav; Čtvrtlík, Radim; Tomáštík, Jan

    2017-01-01

    Roč. 324, Sep (2017), s. 111-120 ISSN 0257-8972 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : magnetron sputtering * evaporation * high-rate coating deposition * coating properties * Cu coatings Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.589, year: 2016

  18. The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings

    NARCIS (Netherlands)

    Hemmati, I.; Ocelik, V.; De Hosson, J. Th. M.

    2011-01-01

    Shorter processing time has given impetus to laser cladding technology and therefore in this research the AISI 431 martensitic stainless steel coatings are laser deposited at high cladding speeds, i.e. up to 117 mm/s. The analysis of phase constitution and functional properties of the coatings are

  19. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.

    Science.gov (United States)

    Berni, M; Lopomo, N; Marchiori, G; Gambardella, A; Boi, M; Bianchi, M; Visani, A; Pavan, P; Russo, A; Marcacci, M

    2016-05-01

    One of the most important issues leading to the failure of total joint arthroplasty is related to the wear of the plastic components, which are generally made of ultra high molecular weight polyethylene (UHMWPE). Therefore, the reduction of joint wear represents one of the main challenges the research in orthopedics is called to address nowadays. Surface treatments and coatings have been recognized as innovative methods to improve tribological properties, also in the orthopedic field. This work investigated the possibility to realize hard ceramic coatings on the metal component of a prosthesis, by means of Pulsed Plasma Deposition, in order to reduce friction and wear in the standard coupling against UHMWPE. Ti6Al4V substrates were coated with a 2 μm thick yttria-stabilized zirconia (YSZ) layer. The mechanical properties of the YSZ coatings were assessed by nanoindentation tests performed on flat Ti6Al4V substrates. Tribological performance was evaluated using a ball-on-disk tribometer in dry and lubricated (i.e. with fetal bovine serum) highly-stressing conditions, up to an overall distance of 10 km. Tribology was characterized in terms of coefficient of friction (CoF) and wear rate of the UHMWPE disk. After testing, specimens were analyzed through optical microscopy and SEM images, in order to check the wear degradation mechanisms. Progressive loading scratch tests were also performed in dry and wet conditions to determine the effects of the environment on the adhesion of the coating. Our results supported the beneficial effect of YSZ coating on metal components. In particular, the proposed solution significantly reduced UHMWPE wear rate and friction. At 10 km of sliding distance, a wear rate reduction of about 18% in dry configuration and of 4% in presence of serum, was obtained by the coated group compared to the uncoated group. As far as friction in dry condition is concerned, the coating allowed to maintain low CoF values until the end of the tests, with an

  20. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    Science.gov (United States)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry

  1. Synthesizing the Nanocrytalline Cobalt-Iron Coating Through The Electrodeposition Process With Different Time Deposition

    Science.gov (United States)

    Rozlin Nik Masdek, Nik; Sorfian Hafiz Mansor, Mohd; Salleh, Zuraidah; Hyie, Koay Mei

    2018-03-01

    In the engineering world, electrodeposition or electroplating has become the most popular method of surface coating in improving corrosion behavior and mechanical properties of material. Therefore in this study, CoFe nanoparticle protective coating has been synthesized on the mild steel washer using electrodeposition method. The electrodeposition was conducted in the acidic environment with the pH value range from 1 to 2 with the controlled temperature of 50°C. The influence of deposition time (30, 60, 90 minutes) towards characteristic and properties such as particle size, surface morphology, corrosion behavior, and microhardness were studied in this investigation. Several results can be obtained by doing this experiment and testing. First, the surface morphology of Cobalt Iron (CoFe) on the electrodeposited mild steel washer are obtained. In addition, the microhardness of the mild steel washer due to the different deposition time are determined. Next, the observation on the difference in the grain size of CoFe that has been electrodeposited on the mild steel plate is made. Last but not least, the corrosion behavior was investigated. CoFe nanoparticles deposited for 30 minutes produced the smallest particle size and the highest microhardness of 86.17 and 236.84 HV respectively. The CoFe nanoparticles also exhibit the slowest corrosion rate at 30 minutes as compared to others. The crystalline size also increases when the time deposition is increased. The sample with 30 minute depositon time indicate the smallest crystalline size which is 15nm. The decrement of deposition time plays an important role in synthesizing CoFe nanoparticles with good corrosion resistance and microhardness. CoFe nanoparticles obtained at 30 minutes shows high corrosion resistance compared to others. In a nutshell, it was observed that the decrement of deposition time improved mechanical and corrosion properties of CoFe nanoparticles.

  2. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  3. Evaluation of tribological wear and corrosion in coatings of diamalloy 4060NS deposited by thermal spray

    Science.gov (United States)

    Acuña R, S. M.; Moreno T, C. M.; Espinosa C, E. J.

    2017-12-01

    Surface engineering seeks the development of new techniques to improve the performance and life of components of machines or industrial facilities, always looking for low costs and the least possible environmental damage. Thermal projection is one of the techniques that is based on the projection of particles of compounds and alloys on properly prepared and heated substrates, these particles are driven by a stream of air passing through an oxyacetylene flame which gives the energy to the process; These coatings give the possibility to improve the properties of the materials or the maintenance of components to maximize the availability of service. In order to reduce the damage caused by wear and corrosion of a low carbon AISI 1020 steel, they were coated with a metal based alloy, studying the effect of the cobalt-chromium-silicon-tungsten carbide alloy coating (DIAMALLLOY 4060 NS). The coating was deposited with two different pressures in the gases supplied to the torch, obtaining two flames and working three thicknesses of coating that oscillate between 100-500μm, according to the number of deposited layers, making use of a projection gun Castolin Eutectic. Powder and substrate characterization was performed using X-Ray Diffraction (XRD) techniques, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), spark emission spectroscopy and metallographic analysis. The results confirm the chemical nature and structure of the powder of the alloy and the substrate to be used, in addition, the thermal stability of the system was verified. The evaluation of the adhesion of the deposited layers was carried out by the implementation of pull-off tests according to ASTM D4541, in order to determine the type of failure that is presented. Mechanical wear was determined using a MT/60/NI microtest tribometer while electrochemical tests were performed using a suitable experimental unit for this purpose, confirming that the substrate exhibits lower wear levels when coated with

  4. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  5. Multilayer Ti-Cr-N Coatings Produced by the Vacuum-Arc Deposition

    International Nuclear Information System (INIS)

    Kunchenko, Yu.V.; Kunchenko, V.V.; Neklyudov, I.M.; Kartmazov, G.N.; Andreev, A.A.

    2007-01-01

    A possibility is demonstrated for nanolayer TiN x /CrN x coating formation by the method of vacuum-arc deposition on the substrate, which being rotated around the 'Bulat'-type chamber axis intercepts sequentially the plasma flows generated by three evaporators. The model for calculating the coating deposition rate (thickness) was used to determine the geometrical parameters that provide the formation of layer structures in the nanometer range. The variations of phase-structure characteristics, compression microstresses (σ) microhardness (H v ) of the coating formed have been investigated as functions of nitrogen pressure (P N =0.001...1.0 Pa), bias voltage (U=-100...-300 V) and condensation temperature (T C =330...750 degree C) at focusing magnetic field strength H F =0; 35 and 100 Oe. The mentioned field strengths were responsible for the ion current densities (j∼5,8...10 and ≥15 mA/cm 2 ). A nonmonotonic behaviour of H v as a function of condensation temperature and of vacuum annealing temperature has been established. The maximum H v values (∼35...37 GPa) were observed in the 450...500 degree C range

  6. The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    International Nuclear Information System (INIS)

    Cooper, Ian Richard; Pollini, Mauro; Paladini, Federica

    2016-01-01

    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies, which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobial materials for prevention of catheter-associated urinary tract infection. - Highlights: • Silver nanocoatings were deposited on urinary catheters. • Both luminal and outer surface were successfully treated. • The treated devices demonstrated were effective against different microorganisms. • The antibacterial potential of the devices was assessed.

  7. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  8. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.; Dameron, Arrelaine A.; Li, Xuemin; Yang, Yongan; Hurst, Katherine E.; Ban, Chunmei; Tenent, Robert C.; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

    2018-01-01

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  9. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    International Nuclear Information System (INIS)

    Sun, Yong; Lu, Cheng; Yu, Hailiang; Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao; Kong, Charlie

    2015-01-01

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating

  10. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Yu, Hailiang [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kong, Charlie [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-02-11

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating.

  11. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  12. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye.

    Science.gov (United States)

    Xiao, Gaofei; Zeng, HongYan; Xu, Sheng; Chen, ChaoRong; Zhao, Quan; Liu, XiaoJun

    2017-10-01

    TiO 2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve its photocatalytic activity, the Ti-coating MgAl hydrotalcite (Ti-MgAl-LDH) was prepared by chemical vapor deposition (CVD) method. Response surface method (RSM) was employed to evaluate the effect of Ti species coating parameters on the photocatalytic activity, which was found to be affected by the furnace temperature, N 2 flow rate and influx time of precursor gas. Application of RSM successfully increased the photocatalytic efficiency of the Ti-MgAl-LDH in methylene blue photodegradation under UV irradiation, leading to improved economy of the process. According to the results from X-ray diffraction, scanning electron microscopy, Brunner-Emmet-Teller and Barrett-Joyner-Hallender, thermogravimetric and differential thermal analysis, UV-vis diffuse reflectance spectra analyses, the Ti species (TiO 2 or/and Ti 4+ ) were successfully coated on the MgAl-LDH matrix. The Ti species on the surface of the Ti-MgAl-LDH lead to a higher photocatalytic performance than commercial TiO 2 -P25. The results suggested that CVD method provided a new approach for the industrial preparation of Ti-coating MgAl-LDH material with good photocatalytic performances. Copyright © 2017. Published by Elsevier B.V.

  13. Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Liew, Li-Anne; Wen, Rongfu; Yang, Ronggui; Lee, Yung-Cheng

    2016-11-30

    Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO 2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO 2 /Al 2 O 3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO 2 /Al 2 O 3 protective coatings.

  14. TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Devia, D.M. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Cra. 27 No. 64-60, Manizales, Caldas (Colombia); Tschiptschin, A.P. [Escola Politecnica da Universidade de Sao Paulo, Depto. de Engenharia Metalurgica e de Materiais, Sao Paulo, SP (Brazil); Velez, J.M. [Laboratorio de Materiales, Universidad Nacional de Colombia Sede Medellin, Sede Medellin, Antioquia (Colombia)

    2011-05-01

    TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {l_brace}1 1 1{r_brace}, {l_brace}2 0 0{r_brace} {l_brace}2 2 0{r_brace} and {l_brace}3 1 1{r_brace} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion.

  15. Spectroscopic studies of electrophoretically deposited hybrid HAp/CNT coatings on titanium.

    Science.gov (United States)

    Długoń, E; Niemiec, W; Frączek-Szczypta, A; Jeleń, P; Sitarz, M; Błażewicz, M

    2014-12-10

    Carbon nanotubes deposited on the surface of the metal can be used in a wide variety of applications for modern medicine including: sensors and sensor array devices, electrodes for neural system stimulation, scaffolds for improved healing process for bone defects. Additionally it is debated if deposited on the surface of e.g. endoprosthesis, CNT coating can significantly increase the strength of the tissue/bone joint and stimulate a fast integration of the implant and the tissue. The aim of this paper is the analysis of the electrophoretically deposited nanocomposite coating made of hydroxyapatite nanoparticles and carbon nanotubes on the surface of titanium. The paper concentrates on the analysis of the layer's structure and its bioactivity properties. The nanocomposite films were investigated using Raman Spectroscopy as well as AFM and SEM microscopy. The measurements were conducted at every stage of layer preparation and after bioactivity test. Bioactivity was evaluated by in vitro test in Simulated Body Fluid (SBF, 37°C, for 30days). It was shown that hybrid HAp/CNT layers are very attractive materials for modification of the surface of metallic orthopedic implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Coating and selective deposition of nanofilm on silicone rubber for cell adhesion and growth.

    Science.gov (United States)

    Ai, Hua; Lvov, Yuri M; Mills, David K; Jennings, Merilyn; Alexander, Jonathan S; Jones, Steven A

    2003-01-01

    A recently developed method for surface modification, layer-by-layer (LbL) assembly, has been applied to silicone, and its ability to encourage endothelial cell growth and control cell growth patterns has been examined. The surfaces studied consisted of a precursor, with alternating cationic polyethyleneimine (PEI) and anionic sodium polystyrene sulfonate (PSS) layers followed by alternating gelatin and poly-D-lysine (PDL) layers. Film growth increased linearly with the number of layers. Each PSS/PEI bilayer was 3 nm thick, and each gelatin/PDL bilayer was 5 nm thick. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. The contact angle was primarily dictated by the outermost layer. Of the coatings studied, gelatin was the most hydrophilic. A film of (PSS/PEI)4/(gelatin/PDL)4/ gelatin was highly favorable for cell adhesion and growth, in contrast to films of (PSS/PEI)8 or (PSS/PEI)8/PSS. Cell growth patterns were successfully controlled by selective deposition of microspheres on silicone rubber, using microcontact printing with a silicone stamp. Cell adhesion was confined to the region of microsphere deposition. These results demonstrate that the LbL self-assembly technique provides a general approach to coat and selectively deposit films with nanometer thickness on silicone rubber. Furthermore, they show that this method is a viable technique for controlling cellular adhesion and growth.

  17. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  18. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  19. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  20. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  1. Vibration-Assisted Convective Deposition of Binary Suspensions for Structured Coatings

    Science.gov (United States)

    Kaewpetch, Thitiporn

    There are many applications for thin films of ordered particles including membranes, microlens arrays, and structure-color coatings. Convective deposition, a process that uses evaporation-driven flow in a thin liquid film to order particles, is a relatively fast and scalable method of making such films. Recently, it was shown that using lateral vibration in the direction of coating can enhance this process. This work focuses on depositing well-ordered monolayers of a binary suspension of microspheres and nanoparticles to understand the effect of the process parameters on the final distribution of particles. In order to investigate the deposited morphology of binary suspensions, various concentrations of nanoparticles were deposited on the substrate at 50 Hz frequency and a range of vibration amplitudes. The result was for all concentrations, the deposition rate and the range of speed for monolayers tend to increase with amplitude of vibration. The overall quality of the thin films is more uniform; the stripes are rarely seen. However, areas exist where microspheres were not surrounded by nanoparticles, and this inhomogeneity increases with higher amplitude vibration. To analyze the non-uniformity of deposition, samples were imaged using confocal laser scanning microscopy and particle-level image analysis. The particle coverage, the intensity of segregation, the distribution of number of nearest neighbored particles of microsphere and local area of particles were characterized. At low amplitude, the nanoparticle coverage is higher and has small deviation over large sample areas. As expected, each microsphere on average has 6 nearest neighbored (NN) particles and a relatively uniform local area distribution for uniform, well-ordered particle coatings. On the other hand, when the coverage has many defects due to vibration, the average number of NN particles tends to decrease which can also be described by the a decrease in the distribution of local areas. Even though

  2. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    Science.gov (United States)

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  3. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  4. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  5. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  6. Aluminum-silicon coatings on austenitic stainless steel (AISI 304 and 317 deposited by chemical vapor deposition in a fluidized bed

    Directory of Open Access Journals (Sweden)

    José Luddey Marulanda Arevalo

    2014-05-01

    Full Text Available Aluminum-silicon coatings were deposited onto stainless steels AISI 304 and AISI 317. The deposition was performed at 540°C with a ratio of active gases HCl/H2 of 1/15.3; argon was used as a carrier gas. The bed of the FBR-CVD process consisted of 2.5 g aluminum powder, 7.5 g silicon powder and 90 g alumina. After the coatings were deposited, each sample was given a heat treatment to improve its mechanical properties and oxidation behavior by diffusing the alloying elements. Thermodynamic simulation was performed with Thermo-Calc software to investigate the composition of the deposited material. The coated and uncoated specimens were exposed to temperatures of 750ºC in an atmosphere where the vapor was transported to the samples using a flow of N2 of 40 ml/min and 100% water vapor (H2O. The coated specimens gained little weight during the thousand hours of exposure and will thus guard against a corrosive attack compared to the uncoated substrates. In addition, the coated stainless steels show an oxidation rate with a logarithmic trend while the uncoated steel oxidation rate showed a linear trend.

  7. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  8. All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization.

    Science.gov (United States)

    Wilbrandt, Steffen; Stenzel, Olaf; Kaiser, Norbert

    2010-09-13

    A new all-oxide design for broadband antireflection coatings with significantly reduced impact of deposition errors to the final reflectance is presented. Computational manufacturing including re-optimization during deposition has been used in the design work to account for maximum insensibility of the design with respect to deposition errors typical for plasma ion assisted deposition PIAD. Repeated deposition runs with the deducted monitoring and re-optimization strategy verify the validity of the simulations and the stability of the derived design solution.

  9. Magnetron deposition of metal-ceramic protective coatings on glasses of windows of space vehicles

    OpenAIRE

    Sergeev, Viktor Petrovich; Panin, Viktor Evgenyevich; Psakhie, Sergey Grigorievich; Chernyavskii, Alexandr; Svechkin, Valerii; Khristenko, Yurii; Kalashnikov, Mark Petrovich; Voronov, Andrei

    2014-01-01

    Transparent refractory metal-ceramic nanocomposite coatings with a high coefficient of elasticrecovery and microhardness on the basis of Ni/Si-Al-N are formed on a glass substrate by the pulse magnetron deposition method. The structure-phase states were investigated by TEM, SEM. It was established that the first layer consists of Ni nanograins with a fcc crystalline lattice, the second layer is two-phase: 5-10 nm nanocrystallites of the AlN phase with the hcp crystalline lattice in amorphous ...

  10. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    Science.gov (United States)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  11. Study of RF PACVD diamond like carbon coatings deposited at low bias for vacuum applications

    Science.gov (United States)

    Vercammen, K.; Meneve, J.; Dekempeneer, E.; Roberts, E. W.; Eiden, M. J.

    2001-09-01

    Currently, sputtered molybdenum disulphide (MoS2) is an established coating for space applications. However, when operated in air, molybdenum disulphide loses much of its lubricating power, thus preventing in-air ground testing. In this work, the tribological properties in vacuum, dry N2 and air of a-C:H films produced by radio frequency plasma assisted chemical vapour deposition (RF PACVD) were studied in order to assess their potential for applications in space. We demonstrated that diamond-like carbon (DLC) films deposited at low bias voltage show lubricating capacity under vacuum conditions. However, the shorter lifetime of the DLC films as compared to MoS2 under vacuum is considered as an important limiting factor.

  12. Self-optimized metal coatings for fiber plasmonics by electroless deposition.

    Science.gov (United States)

    Bialiayeu, A; Caucheteur, C; Ahamad, N; Ianoul, A; Albert, J

    2011-09-26

    We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water. © 2011 Optical Society of America

  13. Enhancement of the corrosion protection of electroless Ni–P coating by deposition of sonosynthesized ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharifalhoseini, Zahra [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Entezari, Mohammad H., E-mail: entezari@um.ac.ir [Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of); Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91779 Mashhad (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: Enhancement of the corrosion protection of electroless Ni–P layer by ZnO nanoparticles deposition and the comparison with the classical and sonochemical Ni–P coatings. - Highlights: • Unique effects of ultrasound were investigated on the anticorrosive performance of electroless Ni–P coating. • Sonoynthesis of ZnO NPs and its deposition were performed on the surface of Ni–P coating. • ZnO as an anticorrosive has a critical role in the multifunctional surfaces. • Electrochemical properties of all fabricated samples were compared with each other. - Abstract: Ni–P coatings were deposited through electroless nickel plating in the presence and absence of ultrasound. The simultaneous synthesis of ZnO nanoparticle and its deposition under ultrasound were also carried out on the surface of Ni–P layer prepared by the classical method. The morphology of the surfaces and the chemical composition were determined by scanning electron microscopy(SEM) and energy dispersive spectroscopy (EDS), respectively. Electrochemical techniques were applied for the corrosion behavior studies. The Ni–P layer deposited by ultrasound showed a higher anticorrosive property than the layer deposited by the classical method. The ZnO nanoparticles deposited on the surface of Ni–P layer significantly improved the corrosion resistance.

  14. Synthesis of Highly Conductive, Uniformly Silver-Coated Carbon Nanofibers by Electroless Deposition.

    Science.gov (United States)

    Cauchy, Xavier; Klemberg-Sapieha, Jolanta-Ewa; Therriault, Daniel

    2017-08-30

    Noble-metal-coated carbon-based nanoparticles, when used as electrically conductive fillers, have the potential to provide excellent conductivity without the high weight and cost normally associated with metals such as silver and gold. To this effect, many attempts were made to deposit uniform metallic layers on core nanoparticles with an emphasis on silver for its high conductivity. The results so far were disheartening with the metal morphology being better described as a decoration than a coating with small effects on the electrical conductivity of the bulk particles. We tackled in this work the specific problem of electroless deposition of silver on carbon nanofibers (CNFs) with the investigation of every step of the process. We performed X-ray photoelectron spectroscopy (XPS), transmission and scanning electron microscopy (TEM, SEM), zeta potential, and electrical conductivity measurements to identify a repeatable, reliable set of parameters allowing for a uniform and fully connected silver deposition on the surface of the CNFs. The bulk particles' specific electrical conductivity (conductivity per unit mass) undergoes a more than 10-fold increase during the deposition, reaching 2500 S·cm 2 /g, which indicates that the added metal mass participates efficiently to the conduction network. The particles keep their high aspect ratio through the process, which enables a percolated conduction network at very low volume loadings in a composite. No byproducts are produced during the reaction so the particles do not have to be sorted or purified and can be used as produced after the short ∼15 min reaction time. The particles might be an interesting replacement to conventional fillers in isotropic conductive adhesives, as a conductive network is obtained at a much lower loading. They might also serve as electrically conductive fillers in composites where a high conductivity is needed, such as lightning strike protection systems, or as high surface area silver

  15. UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure

    Science.gov (United States)

    Wallenhorst, L.; Gurău, L.; Gellerich, A.; Militz, H.; Ohms, G.; Viöl, W.

    2018-03-01

    In this study, artificial ageing of beech wood coated with Zn/ZnO particles by means of a cold plasma spraying process as well as coating systems including a Zn/ZnO layer and additional conventional sealings were examined. As ascertained by colour measurements, the particle coatings significantly decreased UV light-induced discolouration. Even though no significant colour changes were observed for particle-coated and alkyd-sealed samples, ATR-FTIR measurements revealed photocatalytic degradation of the alkyd matrix. In contrast, the polyurethane sealing appeared to be stabilised by the Zn/ZnO coating. Furthermore, morphologic properties of the pure particle coatings were studied by SEM and roughness measurements. SEM measurements confirmed a melting and solidifying process during deposition.

  16. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  17. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  18. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  19. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  20. Deposition and Characterization of Hermetic, Biocompatible Thin Film Coatings for Implantable, Electrically Active Devices

    Science.gov (United States)

    Sweitzer, Robyn K.

    Retinal prostheses may be used to support patients suffering from Age-related macular degeneration or retinitis pigmentosa. A hermetic encapsulation of the poly(imide )-based prosthesis is important in order to prevent the leakage of water and ions into the electric circuitry embedded in the poly(imide) matrix. The deposition of amorphous aluminum oxide (by sputtering) and diamond like carbon (by pulsed laser ablation and vacuum arc vapor deposition) were studied for the application in retinal prostheses. The resulting thin films were characterized for composition, thickness, adhesion and smoothness by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy, profilometry and light microscopy. Electrical stability was evaluated and found to be good. The as-deposited films prevented incursion of salinated fluids into the implant over two (2) three month trials soaking in normal saline at body temperature, Biocompatibility was tested in vivo by implanting coated specimen subretinally in the eye of Yucatan pigs. While amorphous aluminum oxide is more readily deposited with sufficient adhesion quality, biocompatibility studies showed a superior behavior of diamond-like carbon. Amorphous aluminum oxide had more adverse effects and caused more severe damage to the retinal tissue.

  1. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  2. Morphological, structural and optical properties of ZnO thin films deposited by dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Marouf, Sara; Beniaiche, Abdelkrim; Guessas, Hocine, E-mail: aziziamor@yahoo.fr [Laboratoire des Systemes Photoniques et Optiques Non Lineaires, Institut d' Optique et Mecanique de Precision, Universite Ferhat Abbas-Setif 1, Setif (Algeria); Azizi, Amor [Laboratoire de Chimie, Ingenierie Moleculaire et Nanostructures, Universite Ferhat Abbas-Setif 1, Setif (Algeria)

    2017-01-15

    Zinc oxide (ZnO) thin films were deposited on glass substrate by dip coating technique. The effects of sol aging time on the deposition of ZnO films was studied by using the field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and optical transmission techniques. The morphology of the films strongly depends on preparation route and deposition technique. It is noteworthy that films deposited from the freshly prepared solution feature indistinct characteristics; had relatively poor crystalline quality and low optical transmittance in the visible region. The increase in sol aging time resulted in a gradual improvement in crystallinity (in terms of peak sharpness and peak intensity) of the hexagonal phase for all diffraction peaks. Effect of sol aging on optical transparency is quite obvious through increased transmission with prolonged sol aging time. Interestingly, 72-168 h sol aging time was found to be optimal to achieve smooth surface morphology, good crystallinity and high optical transmittance which were attributed to an ideal stability of solution. These findings present a better-defined and more versatile procedure for production of clean ZnO sols of readily adjustable nanocrystalline size. (author)

  3. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  4. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, W.T. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Su, C.Y., E-mail: cysu@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan (China); Huang, T.S. [China Steel Corporation, Kaohsiung, Taiwan (China); Liao, W.H. [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung 310, Taiwan (China); Nano Technology Laboratory, Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2013-05-15

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C.

  5. Relative importance of acid coating on ice nuclei in the deposition and contact modes for wintertime Arctic clouds and radiation

    Science.gov (United States)

    Girard, Eric; Sokhandan Asl, Niloofar

    2014-01-01

    Aerosols emitted from volcanic activities and polluted mid-latitudes regions are efficiently transported over the Arctic during winter by the large-scale atmospheric circulation. These aerosols are highly acidic. The acid coating on ice nuclei, which are present among these aerosols, alters their ability to nucleate ice crystals. In this research, the effect of acid coating on deposition and contact ice nuclei on the Arctic cloud and radiation is evaluated for January 2007 using a regional climate model. Results show that the suppression of contact freezing by acid coating on ice nuclei leads to small changes of the cloud microstructure and has no significant effect on the cloud radiative forcing (CRF) at the top of the atmosphere when compared with the effect of the alteration of deposition ice nucleation by acid coating on deposition ice nuclei. There is a negative feedback by which the suppression of contact freezing leads to an increase of the ice crystal nucleation rate by deposition ice nucleation. As a result, the suppression of contact freezing leads to an increase of the cloud ice crystal concentration. Changes in the cloud liquid and ice water contents remain small and the CRF is not significantly modified. The alteration of deposition ice nucleation by acid coating on ice nuclei is dominant over the alteration of contact freezing.

  6. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  7. Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Kristin Pfeiffer

    2017-08-01

    Full Text Available Antireflection (AR coatings are indispensable in numerous optical applications and are increasingly demanded on highly curved optical components. In this work, optical thin films of SiO2, Al2O3, TiO2 and Ta2O5 were prepared by atomic layer deposition (ALD, which is based on self-limiting surface reactions leading to a uniform film thickness on arbitrarily shaped surfaces. Al2O3/TiO2/SiO2 and Al2O3/Ta2O5/SiO2 AR coatings were successfully applied in the 400–750 nm and 400–700 nm spectral range, respectively. Less than 0.6% reflectance with an average of 0.3% has been measured on a fused silica hemispherical (half-ball lens with 4 mm diameter along the entire lens surface at 0° angle of incidence. The reflectance on a large B270 aspherical lens with height of 25 mm and diameter of 50 mm decreased to less than 1% with an average reflectance < 0.3%. The results demonstrate that ALD is a promising technology for deposition of uniform optical layers on strongly curved lenses without complex in situ thickness monitoring.

  8. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition.

    Science.gov (United States)

    Cui, W; Beniash, E; Gawalt, E; Xu, Z; Sfeir, C

    2013-11-01

    Degradable metals have been suggested as biomaterials with revolutionary potential for bone-related therapies. Of these candidate metals, magnesium alloys appear to be particularly attractive candidates because of their non-toxicity and outstanding mechanical properties. Despite their having been widely studied as orthopedic implants for bone replacement/regeneration, their undesirably rapid corrosion rate under physiological conditions has limited their actual clinical application. This study reports the use of a novel biomimetic peptide coating for Mg alloys to improve the alloy corrosion resistance. A 3DSS biomimetic peptide is designed based on the highly acidic, bioactive bone and dentin extracellular matrix protein, phosphophoryn. Surface characterization techniques (scanning electron microscopy, energy dispersive X-ray spectroscopy and diffuse-reflectance infrared spectroscopy) confirmed the feasibility of coating the biomimetic 3DSS peptide onto Mg alloy AZ31B. The 3DSS peptide was also used as a template for calcium phosphate deposition on the surface of the alloy. The 3DSS biomimetic peptide coating presented a protective role of AZ31B in both hydrogen evolution and electrochemical corrosion tests. Copyright © 2013. Published by Elsevier Ltd.

  9. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  10. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    Science.gov (United States)

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  11. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  12. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  13. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    Science.gov (United States)

    Shanaghi, Ali; Chu, Paul K.

    2016-11-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/ E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  14. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  15. Effects of argon and oxygen flow rate on water vapor barrier properties of silicon oxide coatings deposited on polyethylene terephthalate by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Sung-Ryong; Choudhury, Moinul Haque; Kim, Won-Ho; Kim, Gon-Ho

    2010-01-01

    Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O 2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m 2 /day and was decreased after depositing the silicon oxide (SiO x ) coatings. The minimum WVTR, 0.47 g/m 2 /day, was observed at Ar and O 2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm -1 and Si-O-Si stretching at 1000-1150 cm -1 varied depending on the Ar and O 2 flow rates. The contact angle of the SiO x coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O 2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiO x morphology and the water vapor barrier performance with the Ar and O 2 flow rates. The roughness of the deposited coatings increased when either the O 2 or Ar flow rate was increased.

  16. The cutting properties and wear of the knives with DLC and W-DLC coatings, deposited by PVD methods, applied for wood and wood-based materials machining

    OpenAIRE

    M. Pancielejko; A. Czyżniewski; A. Gilewicz; V. Zavaleyev; W. Szymański

    2012-01-01

    Purpose: Performance of DLC and W-DLC coated woodworking knives was investigated. The results of testing DLC and W-DLC coating properties as well as the results of life-time tests in the form of wear of HSS and HM knives with these coatings is presents.Design/methodology/approach: DLC coating was deposited by MCVA method, and W-DLC coating was deposited by pulsed RMS. Tests of knives coated with DLC and W-DLC as uncoated ones was made by machining: MDF board, pinewood slats and floorboard - u...

  17. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO{sub 2} nanotube by electrochemical deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Mao, Huanhuan [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-02-28

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  18. Action mechanism of hydrogen gas on deposition of HfC coating using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yalei, E-mail: yaleipm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Li, Zehao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Xiong, Xiang, E-mail: xiongx@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Li, Xiaobin [School of Metallurgy and Environment, Central South University, Changsha, 410083 (China); Chen, Zhaoke; Sun, Wei [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China)

    2016-12-30

    Highlights: • HfC coatings were deposited on C/C composites by LPCVD using HfCl4-CH4-H2-Ar system. • Action mechanism of H2 on structure and growth behavior of HfC coating was studied. • Increased H2 concentration leads to transformation in growth mechanism of coating. - Abstract: Hafnium carbide coatings were deposited on carbon/carbon composites by low pressure chemical vapor deposition using HfCl{sub 4}-CH{sub 4}-H{sub 2}-Ar system. The microstructure, mechanical and ablation resistance performance of HfC coatings deposited with various H{sub 2} concentrations were investigated. The effect of hydrogen gas on the deposition of HfC coating was also discussed. Results show that all of the deposited coatings are composed of single cubic HfC phase, the hydrogen gas acted as a crucial role in determining the preferred orientation, microstructure and growth behavior of HfC coatings. During the deposition process, the gas phase supersaturation of the reaction species can be controlled by adjusting the hydrogen gas concentration. When deposited with low hydrogen gas concentration, the coating growth was dominated by the nucleation of HfC, which results in the particle-stacked structure of HfC coating. Otherwise, the coating growth was dominated by the crystal growth at high hydrogen gas concentration, which leads to the column-arranged structure of HfC coating. Under the ablation environment, the coating C2 exhibits better configurational stability and ablation resistance. The coating structure has a significant influence on the mechanical and ablation resistance properties of HfC coating.

  19. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  20. Influence of process parameters on the deposition footprint in plasma-spray coating

    Science.gov (United States)

    Remesh, K.; Ng, H. W.; Yu, S. C. M.

    2003-09-01

    This paper presents an investigation of the influence of plasma spray process conditions on the in-flight particle behavior and their cumulative deposition to form a coating on the substrate. Three-dimensional computational fluid dynamics (CFD) analyses were performed to model the in-flight particle behavior in the plasma-spray process and their deposition on the substrate. The plasma spray was modeled as a jet issuing from the torch nozzle through the electrical heating of the arc gas. In the model, particles were injected into the plasma jet where they acquired heat and momentum from the plasma, some got melted and droplets were formed. By means of a droplet splatting model, the particle in-flight data generated by the CFD analyses were further processed to build up an imaginary three-dimensional deposition profile on a flat stationary substrate. It is found that the powder carrier gas flow rate influences the particle distribution on the substrate by imparting an injection momentum to the particles that were directed radially into the plasma jet in a direction perpendicular to the plasma jet. The larger sized particles will acquire higher injection momentum compared with the smaller sized particles. This causes particle distribution at the substrate surface that is elliptical in shape with the major axis of ellipse parallel to the particle injection port axis as illustrated in Fig. 1. Larger particles tend to congregate at the lower part of the ellipse, due to their greater momentum. The distribution of particle size, temperature, velocity, and count distribution at the substrate was analyzed. Further, based on the size and the computed particle temperature, velocity histories, and the impact sites on the substrate, the data were processed to build up a deposition profile with the Pasandideh-Fard model. The shapes of deposition profiles were found to be strongly driven by the segregation effect.

  1. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  2. The Correlation Among Deposition Parameters, Structure and Corrosion Behavior in ZnNi/Nano-SiC Coating

    Science.gov (United States)

    Haghmoradi, Navid; Dehghanian, Changiz; Yari, Saeed

    2016-09-01

    The present work explores how deposition parameters affect structural and morphological characteristics of ZnNi/nano-SiC composites in order to engineer an environmentally benign corrosion-resistant coating. In this regard, ZnNi and ZnNi coatings containing SiC nanoparticles were electrodeposited from chloride bath by direct current method, and the effects of SiC concentration, deposition current density and two types of surfactant (sodium dodecyl sulfate, SDS, and hexadecyltrimethyl ammonium bromide, HTAB) were investigated. Increasing SiC nanoparticles concentration in the electrolyte enhances the SiC content of the coating and can affect the coating composition, structure and morphology. Elevation of deposition current density may reduce SiC content of the coating, yet this decline can be compensated by the addition of HTAB. Application of 11 g/L SiC nanoparticles produced a coating with a more even surface and less porosity that had the highest corrosion resistance. The presence of nanoparticles seemingly reduces the available surface for electrochemical reactions and decelerates corrosion.

  3. Adjusting the chlorhexidine content of calcium phosphate coatings by electrochemically assisted co-deposition from aqueous solutions.

    Science.gov (United States)

    Scharnweber, D; Flössel, M; Born, R; Worch, H

    2007-02-01

    Currently, a number of strategies to create either biologically active or antimicrobial surfaces of biomaterials are being developed and commercially applied. However, for metallic implants in contact with bone, both osteomyelitis and a fast and stable long-term fixation of implants are challenges to be overcome, especially in the case of bad bone quality. Therefore, the present work aims to develop compound coatings of calcium phosphate phases (CPP) and chlorhexidine (CHD) that combine bioactive properties with a strategy to prevent initial bacterial adhesion and thus offer a possible solution to the two major problems of implant surgery mentioned above. Using electrochemically assisted deposition of CPP on samples of Ti6Al4V together with the pH-dependent solubility of CHD, the preparation of coatings with a wide range of CHD concentrations (150 ng/cm(2) to 65 microg/cm(2)) from electrolytes with CHD concentrations between 50 and 200 microM was possible, thus allowing the adaptation of implant surface properties to different surgical and patient situations. Detailed SEM and FTIR analysis showed that coatings are formed by a co-deposition process of both phases and that CHD interacts with the deposition and transformation of CPP in the coating. For high CHD contents, coatings consist of CHD crystals coated by nano-crystalline hydroxyapatite.

  4. Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological features

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Jancelewicz, Mariusz; Nowaczyk, Grzegorz; Kempiński, Mateusz; Peplińska, Barbara; Jarek, Marcin; Załęski, Karol; Jurga, Stefan; Smyntyna, Valentyn

    2015-01-01

    TiO 2 thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl 4 and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO 2 crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO 2 are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO 2 and porous Si were established. • The approximate size of TiO 2 nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented

  5. Spray deposition of organic electroluminescent coatings for application in flexible light emitting devices

    Directory of Open Access Journals (Sweden)

    Mariya Aleksandrova

    2015-12-01

    Full Text Available Organic electroluminescent (EL films of tris(8-hydroxyquinolinatoaluminum (Alq3 mixed with polystyrene (PS binder were produced by spray deposition. The influence of the substrate temperature on the layer’s morphology and uniformity was investigated. The deposition conditions were optimized and simple flexible light-emitting devices consisting of indium-tin oxide/Alq3:PS/aluminum were fabricated on polyethylene terephthalate (PET foil to demonstrate the advantages of the sprayed organic coatings. Same structure was produced by thermal evaporation of Alq3 film as a reference. The influence of the deposition method on the film roughness and contact resistance at the electrode interfaces for both types of structures was estimated. The results were related to the devices’ efficiency. It was found that the samples with sprayed films turn on at 4 V, which is 2 V lower in comparison to the device with thermal evaporated Alq3. The current through the sprayed device is six times higher as well (17 mA vs. 2.8 mA at 6.5 V, which can be ascribed to the lower contact resistance at the EL film/electrode interfaces. This is due to the lower surface roughness of the pulverized layers.

  6. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Hernández, Z.E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); CICATA—Altamira, IPN. Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Torres-Huerta, A.M.; Onofre-Bustamante, E. [Instituto Politécnico Nacional, CICATA-Altamira, Grupo CIAMS, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C. P. 89600, Altamira, Tamps, México (Mexico); Andraca Adame, J. [Instituto Politécnico Nacional, Centro de Nanociencias Micro y Nanotecnologías, Departamento de DRX, C. P. 07300, Mexico, DF, México (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C. P. 07300 Mexico, DF, México (Mexico)

    2014-05-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO{sub 2} + 8% Y{sub 2}O{sub 3}) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure.

  7. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering

    International Nuclear Information System (INIS)

    Sánchez-Hernández, Z.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Onofre-Bustamante, E.; Andraca Adame, J.; Dorantes-Rosales, H.

    2014-01-01

    The AISI 316L stainless steel (SS) has been widely used in both artificial knee and hip joints in biomedical applications. In the present study, yttria stabilized zirconia (YSZ, ZrO 2 + 8% Y 2 O 3 ) films were deposited on AISI 316L SS by radio-frequency magnetron sputtering using different power densities (50–250 W) and deposition times (30–120 min) from a YSZ target. The crystallographic orientation and surface morphology were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the surface modification on the corrosion performance of AISI 316L SS were evaluated in phosphate buffered saline (PBS) solution using an electrochemical test on both the virgin and coated samples. The YSZ coatings have a (111) preferred orientation during crystal growth along the c-axis for short deposition times (30–60 min), whereas a polycrystalline structure forms during deposition times from 90 to 120 min. The corrosion protective character of the YSZ coatings depends on the crystal size and film thickness. A significant increase in adhesion and corrosion resistance by at least a factor of 46 and a higher breakdown potential were obtained for the deposited coatings at 200 W (120 min). - Highlights: • Well-formed and protective YSZ coatings were achieved on AISI 316L SS substrates. • Films grown at high power and long deposition time have polycrystalline structures. • The crystal size varies from ∼ 5 to 30 nm as both power and deposition time increased. • The differences of corrosion resistance are attributed to internal film structure

  8. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  9. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface

    Directory of Open Access Journals (Sweden)

    Qianyue Sun

    2017-01-01

    Full Text Available A calcium phosphate (CaP coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating’s morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10−2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10−3 and 10−4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10−3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.

  10. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  11. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  12. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    International Nuclear Information System (INIS)

    Sarin, V.K.

    1991-01-01

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer

  13. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    Science.gov (United States)

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  14. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    Science.gov (United States)

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  15. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    Science.gov (United States)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  16. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  17. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2016-07-01

    Full Text Available In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter.

  18. Plasma immersion ion implantation and deposition of DLC coating for modification of orthodontic magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wongsarat, W. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Aukkaravittayapun, S. [National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani, Bangkok 12120 (Thailand); Jotikasthira, D. [Department of Odontology-Oral Pathology, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    This study was aimed to use the plasma immersion ion implantation and deposition (PIII-D) technique to form diamond-like carbon (DLC) thin films on orthodontic magnets to solve the corrosion problem. To search for the optimal material modification effect, PIII-D conditions including gases, processing time, and pulsing mode were varied. The formation of DLC films was confirmed and characterized with Raman spectra. The intensity of the remnant magnetic field of the magnets and the hardness, adhesion and thickness of the thin films were then measured. A corrosion test was carried out using clinic dental fluid. Improved benefits including a satisfying hardness, adhesion, remnant magnetic strength and corrosion resistance of the DLC coating could be achieved by using a higher interrupting time ratio and shorter processing time.

  19. Micro-scale mechanical characterization of Inconel cermet coatings deposited by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ch.; Verdi, D.; Garrido, M.A.; Ruiz-Hervias, J.

    2016-07-01

    In this study, an Inconel 625-Cr3C2 cermet coating was deposited on a steel alloy by laser cladding. The elastic and plastic mechanical properties of the cermet matrix were studied by the depth sensing indentation (DSI) in the micro scale. These results were compared with those obtained from an Inconel 600 bulk specimen. The values of Young's modulus and hardness of cermet matrix were higher than those of an Inconel 600 bulk specimen. Meanwhile, the indentation stress–strain curve of the cermet matrix showed a strain hardening value which was more than twice the one obtained for the Inconel 600 bulk. Additionally, the mechanical properties of unmelted Cr3C2 ceramic particles, embedded in the cermet matrix were also evaluated by DSI using a spherical indenter. (Author)

  20. Gradient titanium and silver based carbon coatings deposited on AISI316L

    Science.gov (United States)

    Batory, Damian; Reczulska, Malgorzata Czerniak-; Kolodziejczyk, Lukasz; Szymanski, Witold

    2013-06-01

    The constantly growing market for medical implants and devices caused mainly due to a lack of proper attention attached to the physical condition as well as extreme sports and increased elderly population creates the need of new biocompatible biomaterials with controlled bioactivity and certain useful properties. According to many literature reports, regarding the modifications of variety of different biomaterials using the surface engineering techniques and their biological and physicochemical examination results, the most promising material for great spectra of medical applications seem to be carbon layers. Another issue is the interaction between the implant material and surrounding tissue. In particular cases this interface area is directly exposed to air. Abovementioned concern occurs mainly in case of the external fixations, thus they are more vulnerable to infection. Therefore a crucial role has the inhibition of bacterial adhesion that may prevent implant-associated infections, occurrence of other numerous complications and in particular cases rejection of the implant. For this reason additional features of carbon coatings like antibacterial properties seem to be desired and justified. Silver doped diamond-like carbon coatings with different Ag concentrations were prepared by hybrid RF PACVD/MS (Radio Frequency Plasma Assisted Chemical Vapor Deposition/Magnetron Sputtering) deposition technique. Physicochemical parameters like chemical composition, morphology and surface topography, hardness and adhesion were determined. Examined layers showed a uniform distribution of silver in the amorphous DLC matrix, high value of H/E ratio, good adhesion and beneficial topography which make them a perfect material for medical applications e.g. modification of implants for the external fixations.

  1. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  2. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    Directory of Open Access Journals (Sweden)

    Jana Kredl

    2016-04-01

    Full Text Available Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

  4. Drop coating deposition Raman spectroscopy of proteinogenic amino acids compared with their solution and crystalline state

    Science.gov (United States)

    Pazderka, Tomáš; Kopecký, Vladimír

    2017-10-01

    The Raman spectra of 20 proteinogenic amino acids were recorded in the solution, glass phase (as drop coating deposition Raman (DCDR) samples) and crystalline forms in the wide spectral range of 200-3200 cm- 1. The most apparent spectral differences between the Raman spectra of the crystalline forms, glass phases and aqueous solutions of amino acids were briefly discussed and described in the frame of published works. The possible density dependencies of spectral bands were noted. In some cases, a strong influence of the sample density, as well as of the organization of the water envelope, was observed. The most apparent changes were observed for Ser and Thr. Nevertheless, for the majority of amino acids, the DCDR sample form is an intermediate between the solution and crystalline forms. In contrast, aromatic amino acids have only a small sensitivity to the form of the sample. Our reference set of Raman spectra is useful for revealing discrepancies between the SERS and solid/solution spectra of amino acids. We also found that some previously published Raman spectra of polycrystalline samples resemble glassy state rather than crystalline spectra. Therefore, this reference set of spectra will find application in every branch of Raman spectroscopy where the spectra of biomolecules are collected from coatings.

  5. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die.

    Science.gov (United States)

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    The purpose of this study is to investigate the friction and wear behaviors of CrN, TiN, CrAlN, and TiAIN coated onto SKD61 for application to Al 7000 series extrusion dies. On the wear test, the experimental parameters are the load and the counter material's temperature. The results showed that the friction coefficient increased with load but decreased with the counter material's temperature, and the friction coefficients of CrN and CrAIN were lower than the friction coefficients of TiAIN and TIN, especially at a higher temperature. The wear track with different coatings identified different wear behaviors; the wear behavior of CrAIN was found to be abrasive, but the wear behavior of TiN, CrN, and TiAIN was adhesive. Therefore, CrAIN showed the least wear loss with a lower friction coefficient and less adhesion with counter materials at the highest range of wear load and temperature. This resulted in the easy formation of aluminum oxide in the wear track and less Al adhesion; moreover during the hard second phase, AIN dispersed in the film during deposition.

  6. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  7. Corrosion Resistance of Ni-Based WC/Co Coatings Deposited by Spray and Fuse Process Varying the Oxygen Flow

    Science.gov (United States)

    Jiménez, H.; Olaya, J. J.; Alfonso, J. E.; Mtshali, C. B.; Pineda-Vargas, C. A.

    2017-10-01

    In this work, the effect of oxygen flow variation in the corrosion behavior of Ni-based WC/Co coatings deposited by spray and fuse process was investigated. The coatings were deposited on gray cast iron substrates using a Superjet Eutalloy thermal spraying gun. The morphology of the coatings was analyzed using scanning electron microscopy. The crystallographic phases were registered by x-ray diffraction (XRD), the diffraction patterns show the crystalline phases of the powder components with principal reflections for Ni and WC, the increase in flame temperature, due to the oxygen flow variation, generated amorphization in the nickel and an important crystallization of the planes (111) and (222) of WC as well as the decarburization of WC in W2C and W metallic. The corrosion behavior was investigated at room temperature in a 3.5% w/w aqueous solution of NaCl via potentiodynamic polarization. Electrochemical corrosion test showed that the coatings deposited under neutral flame conditions with an oxygen flow of 12.88 SCFH evidenced higher corrosion resistance. The chemical composition of the coatings and corrosion areas were analyzed by particle-induced x-ray emission, this technique permitting the corroboration of the decarburization process of WC determined by XRD and the formation of Cl structures.

  8. Electrolytic deposition of calcium phosphate/cithosan coating on titanium alloy: growth kinetics and influence of current density, acetic acid, and cithosan.

    NARCIS (Netherlands)

    Wang, J.; van Apeldoorn, Aart A.; de Groot, K.

    2006-01-01

    Electrolytically deposited calcium phosphate/chitosan coating demonstrated good bone marrow stromal cell attachment. The aim of this study was to understand the coating's growth kinetics as well as the effects of current density, acetic acid, and chitosan on the coating's formation. The scanning

  9. Functional properties of coated by chemical vapour deposition sintered tool materials investigated with use of tribological tests

    Directory of Open Access Journals (Sweden)

    J. Mikuła

    2017-01-01

    Full Text Available The purpose of the work is to present the results of investigations into the structure and properties of sintered carbides with deposited wear resistant coatings after a tribological test carried out with the method of combined examination of abrasion wear resistance and edge fracture resistance.

  10. IR and Near IR Laser Ablative Deposition of Amorphous Titanium Coats Containing Nanocrystalline Grains of Titanium and Titanium Suboxides.

    Czech Academy of Sciences Publication Activity Database

    Urbanová, M.; Pokorná, D.; Kupčík, Jaroslav; Medlín, R.; Křenek, T.; Pola, J.

    2014-01-01

    Roč. 67, NOV (2014), s. 237-244 ISSN 1350-4495 Institutional support: RVO:61388980 Keywords : laser ablation * laser deposition * amorphous titanium coats Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.550, year: 2014

  11. IR and Near IR Laser Ablative Deposition of Amorphous Titanium Coats Containing Nanocrystalline Grains of Titanium and Titanium Suboxides

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pokorná, Dana; Kupčík, Jaroslav; Medlín, R.; Křenek, T.; Pola, Josef

    2014-01-01

    Roč. 67, NOV 2014 (2014), s. 237-244 ISSN 1350-4495 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0088 Institutional support: RVO:67985858 Keywords : laser ablation * laser deposition * amorphous titanium coats Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.550, year: 2014

  12. The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofouling

    NARCIS (Netherlands)

    Akesso, L.; Pettitt, M.E.; Callow, J.A.; Callow, M.E.; Stallard, J.; Teer, D.; Liu, C.; Wang, S.; Zhao, Q.; D'Souza, F.; Willemsen, P.R.; Donnelly, G.T.; Donik, C.; Kocijan, A.; Jenko, M.; Jones, L.A.; Guinaldo, P.C.

    2009-01-01

    SiOx-like coatings were deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD (PACVD). Surface energies (23.1-45.7 mJ m-1) were correlated with the degree of surface oxidation and hydrocarbon contents. Tapping mode AFM revealed a range of surface topologies with Ra

  13. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  14. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD Coatings on Thermoplastic Polyurethane Polymers

    Directory of Open Access Journals (Sweden)

    Daniel Heim

    2012-04-01

    Full Text Available Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide as well as diamond-like carbon (DLC coating materials on polymer surfaces (thermoplastic polyurethane, deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti. In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  15. Protective coatings of hafnium dioxide by atomic layer deposition for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Berdova, Maria, E-mail: maria.berdova@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Lamagna, Luca; Losa, Stefano; Rossini, Silvia; Somaschini, Roberto; Gioveni, Salvatore [STMicroelectronics, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Università degli studi di Milano Bicocca, Dipartimento di Scienza dei Materiali, 20126, Milano (Italy); Franssila, Sami, E-mail: sami.franssila@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland)

    2016-04-15

    Graphical abstract: - Highlights: • Atomic layer deposition of HfO{sub 2} from (CpMe){sub 2}Hf(OMe)Me or Hf(NMeEt){sub 4} and ozone for potential applications in microelectromechanical systems. • ALD HfO{sub 2} protects aluminum substrates from degradation in moist environment and at the same time retains good reflectance properties of the underlying material. • The resistance of hafnium dioxide to moist environment is independent of chosen precursors. - Abstract: This work presents the investigation of HfO{sub 2} deposited by atomic layer deposition (ALD) from either HfD-CO4 or TEMAHf and ozone for microelectromechanical systems (MEMS) applications, in particular, for environmental protection of aluminum micromirrors. This work shows that HfO{sub 2} films successfully protect aluminum in moist environment and at the same time retain good reflectance properties of underlying material. In our experimental work, the chemical composition, crystal structure, electronic density and roughness of HfO{sub 2} films remained the same after one week of humidity treatment (relative humidity of 85%, 85 °C). The reflectance properties underwent only minor changes. The observed shift in reflectance was only from 80–90% to 76–85% in 400–800 nm spectral range when coated with ALD HfO{sub 2} films grown with Hf(NMeEt){sub 4} and no shift (remained in the range of 68–83%) for films grown from (CpMe){sub 2}Hf(OMe)Me.

  16. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.

    Science.gov (United States)

    Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie

    2013-03-05

    A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well

  17. Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—a comparative study

    Science.gov (United States)

    Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.

    2018-03-01

    The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.

  18. Comparative Study of Deposit through a Membrane and Spin-Coated MWCNT as a Flexible Anode for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Walid Aloui

    2016-01-01

    Full Text Available We present a comparative study between multiwalled carbon nanotubes (MWCNTs thin films deposited on polyethylene terephthalate (PET substrates using (i spin-coating technique and (ii deposition through a membrane. We deduce from transparence, electrical properties, and AFM image that deposition through membrane presents better properties than spin-coating method. The concentration comparison shows that the optimum result was achieved at a concentration of 1.2 mg·mL−1 corresponding to a resistance (Rs of 180 Ω·cm−2 and an optical transparence of about 81% using a wavelength 550 nm. We will also demonstrate the use of the elaborated electrodes to fabricate the following flexible structure: PET-MWCNTs/MEH-PPV/Al. The series resistance Rs and the ideality factor n were calculated.

  19. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  20. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    Science.gov (United States)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  1. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition

    Science.gov (United States)

    Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo

    2018-01-01

    Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.

  2. Preparation of SiC and Ag/SiC coatings on TRISO surrogate particles by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Lustfeld, Martin; Reinecke, Anne-Maria; Lippman, Wolfgang; Hurtado, Antonio; Ruiz-Moreno, Ana

    2014-01-01

    Recently published research results suggest significant advantages of using nanocrystalline instead of coarse grained SiC for nuclear applications. In this work it was attempted to prepare nanocrystalline SiC coatings on TRISO surrogate kernels using the pulsed laser deposition (PLD) process. As a plasma-based physical vapor deposition process, PLD allows the synthesis of dense and stoichiometric coatings in the amorphous or nanocrystalline phase. Two different types of TRISO surrogate kernels were used with outer diameters of 500 pm and 800 μm, respectively: plain Al 2 O 3 kernels and ZrO 2 kernels coated with TRISO-like buffer and pyrolytic carbon (PyC) layers. In a second step, the PLD process was used for the preparation of multilayer coatings consisting of a Ag layer buried with a SiC layer. The samples were analyzed regarding their morphology, microstructure, crystalline phase and chemical composition using scanning electron microscopy (SEM), laser scanning microscopy (LSM), x-ray diffraction (XRD) and energy- dispersive x-ray spectroscopy (EDX). The samples will be used in future work for out-of-pile investigations of both thermal stability and Ag retention capability of nanocrystalline SiC layers. X-ray diflraction measurements did not confirm nano crystallinity of the SiC coatings, but rather indicated that the coatings were mainly amorphous possibly with a little fraction of the nanocrystalline phase. Further analyses showed that some of the SiC coatings had an adequate stoichiometric composition and that Ag/SiC multilayer coatings were successfully produced by PLD. Coatings on TRISO- like buffer and PyC layers exhibited good adhesion to the substrate while coatings on Al 2 O 3 kernels were susceptible to delamination. The results suggest that PLD is generally suitable for SiC coating of TRISO particles. However, further optimization of the process parameters such as the coating temperature is needed to obtain fine- grained non-columnar SiC layers that

  3. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition

    OpenAIRE

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2010-01-01

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we...

  4. Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying

    OpenAIRE

    Sánchez Vilches, Enrique Javier; Bannier, Emilie; Vicent, Mónica; Moreno Berto, Arnaldo; Salvador Moya, María Dolores; Bonache Bezares, Victoria; Klyatskina, Elizabeta; Boccaccini, Aldo R.

    2011-01-01

    Industry has a growing need of advanced coatings for a variety of applications (aerospace, special machinery, medicine ...). Nanostructured coatings have the potential of providing novel materials with enhanced properties. This paper describes the results of recent research on wear resistant nanostructured coatings. Cermet (WC- Co) and ceramic (Al2O3-TiO2) coatings were obtained by atmospheric plasma spraying. Coating microstructure and phase composition were characterized using SEM, EDX and ...

  5. Preparation of tungsten coatings on graphite by electro-deposition via Na2WO4–WO3 molten salt system

    International Nuclear Information System (INIS)

    Sun, Ning-bo; Zhang, Ying-chun; Jiang, Fan; Lang, Shao-ting; Xia, Min

    2014-01-01

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na 2 WO 4 –WO 3 molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na 2 WO 4 –WO 3 molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm −2 to 120 mA cm −2 an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%

  6. Atomic layer deposition of Al2O3 and Al2O3/TiO2 barrier coatings to reduce the water vapour permeability of polyetheretherketone

    International Nuclear Information System (INIS)

    Ahmadzada, Tamkin; McKenzie, David R.; James, Natalie L.; Yin, Yongbai; Li, Qing

    2015-01-01

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al 2 O 3 or Al 2 O 3 /TiO 2 nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al 2 O 3 /TiO 2 coating to PEEK, while the single layer Al 2 O 3 coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al 2 O 3 /TiO 2 coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al 2 O 3 /TiO 2 bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al 2 O 3 /TiO 2 coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  7. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition.

    Science.gov (United States)

    Li, Qingsong; Zhang, Yafeng; Shi, Lei; Qiu, Huihui; Zhang, Suming; Qi, Ning; Hu, Jianchen; Yuan, Wei; Zhang, Xiaohua; Zhang, Ke-Qin

    2018-02-15

    Artificial structural colors based on short-range-ordered amorphous photonic structures (APSs) have attracted great scientific and industrial interest in recent years. However, the previously reported methods of self-assembling colloidal nanoparticles lack fine control of the APS coating and fixation on substrates and poorly realize three-dimensional (3D) conformal coatings for objects with irregular or highly curved surfaces. In this paper, atomization deposition of silica colloidal nanoparticles with poly(vinyl alcohol) as the additive is proposed to solve the above problems. By finely controlling the thicknesses of APS coatings, additive mixing of noniridescent structural colors is easily realized. Based on the intrinsic omnidirectional feature of atomization, a one-step 3D homogeneous conformal coating is also readily realized on various irregular or highly curved surfaces, including papers, resins, metal plates, ceramics, and flexible silk fabrics. The vivid coatings on silk fabrics by atomization deposition possess robust mechanical properties, which are confirmed by rubbing and laundering tests, showing great potential in developing an environmentally friendly coloring technique in the textile industry.

  9. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, A., E-mail: alejandro.lqi@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Hernández-Uresti, D.B., E-mail: ing.dianahdz@gmail.com [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Obregón, S. [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico)

    2016-11-15

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O{sub 2}{sup −} and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  10. The effect of deposition temperature on the surface coverage and morphology of iron-phosphate coatings on low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Popic, J.P. [ICTM-Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade (Serbia); Jegdic, B.V., E-mail: borejegdic@yahoo.com [Institute GOSA, Milana Rakica 35, 11000 Belgrade (Serbia); Bajat, J.B.; Veljovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade (Serbia); Stevanovic, S.I. [ICTM-Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade (Serbia); Miskovic-Stankovic, V.B. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11120 Belgrade (Serbia)

    2011-10-01

    The influence of deposition temperature and concentration of NaNO{sub 2} in the phosphating bath on the surface morphology and coverage of iron-phosphate coatings on low carbon steel was investigated. The phosphate coatings were chemically deposited on steel from phosphate bath at different temperatures (30-70 deg. C) and with the addition of different amounts of accelerator, NaNO{sub 2} (0.1, 0.5 and 1.0 g dm{sup -3}). The morphology of phosphate coatings was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition of iron-phosphate coatings was determined using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Surface coverage was evaluated by the voltammetric anodic dissolution (VAD) technique. It was shown that the increase in temperature of the NaNO{sub 2}-free phosphating bath up to 70 deg. C caused an increase in surface coverage. The addition of NaNO{sub 2} in the phosphating bath significantly increased the surface coverage of phosphate coatings deposited at temperatures lower than 50 deg. C. The phosphate crystals were of laminated and needle-like structures for deposits obtained at temperatures lower than 50 deg. C, while at higher temperatures needle-like structure was transformed to laminated structure. The increase in NaNO{sub 2} concentration in the phosphating bath from 0.1 to 1.0 g dm{sup -3} did not significantly increase the surface coverage, but decreased the crystals size, consequently favouring the phosphate nucleation and better packing of the crystals.

  11. Bioactivity response of Ta{sub 1-x}O{sub x} coatings deposited by reactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Alves, C.F., E-mail: cristiana.alves@fisica.uminho.pt [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal); Carvalho, S. [GRF-CFUM, Physics Departament, University of Minho, Campus of Azurem, Guimaraes 4800-058 (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Coimbra 3030-788 (Portugal)

    2016-01-01

    The use of dental implants is sometimes accompanied by failure due to periimplantitis disease and subsequently poor esthetics when soft–hard tissue margin recedes. As a consequence, further research is needed for developing new bioactive surfaces able to enhance the osseous growth. Tantalum (Ta) is a promising material for dental implants since, comparing with titanium (Ti), it is bioactive and has an interesting chemistry which promotes the osseointegration. Another promising approach for implantology is the development of implants with oxidized surfaces since bone progenitor cells interact with the oxide layer forming a diffusion zone due to its ability to bind with calcium which promotes a stronger bond. In the present report Ta-based coatings were deposited by reactive DC magnetron sputtering onto Ti CP substrates in an Ar + O{sub 2} atmosphere. In order to assess the osteoconductive response of the studied materials, contact angle and in vitro tests of the samples immersed in Simulated Body Fluid (SBF) were performed. Structural results showed that oxide phases where achieved with larger amounts of oxygen (70 at.% O). More compact and smooth coatings were deposited by increasing the oxygen content. The as-deposited Ta coating presented the most hydrophobic character (100°); with increasing oxygen amount contact angles progressively diminished, down to the lowest measured value, 63°. The higher wettability is also accompanied by an increase on the surface energy. Bioactivity tests demonstrated that highest O-content coating, in good agreement with wettability and surface energy values, showed an increased affinity for apatite adhesion, with higher Ca/P ratio formation, when compared to the bare Ti substrates. - Highlights: • Ta{sub 1-x}O{sub x} coatings were deposited by reactive DC magnetron sputtering. • Amorphous oxide phases were achieved with higher oxygen amounts. • Contact angles progressively diminished, with increasing oxygen content. • Ta

  12. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    International Nuclear Information System (INIS)

    Vázquez, A.; Hernández-Uresti, D.B.; Obregón, S.

    2016-01-01

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O 2 − and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  13. The Influence of Geometry on the Magnetic Properties of Ybco

    Science.gov (United States)

    Darwin, Michael John

    1995-01-01

    The purpose of the present study was to investigate the influence of geometry on the magnetic properties of the high temperature superconductor YBa_2 Cu_3O_{7 -delta}. In particular, this study was interested in addressing what effects a flat geometry has on the magnetic properties of a superconductor when a magnetic field is applied perpendicular to the flat plane. Much of the past data concerning magnetic hysteresis in these materials has been collected using bulk magnetic measurement techniques. Unfortunately, bulk measurements must be interpreted using models which describe physical behavior apparent only at smaller length scales. To avoid this interpreted step, and to test some traditionally accepted ideas regarding the spatial dependence of current density in these samples, the present study uses a novel approach to observing the local magnetic behavior at the surface of these superconductors. The local magnetic flux density was directly monitored using micro Hall sensors placed at the surface of the sample. It was found that demagnetization effects are extremely important for large aspect ratio samples and that the observed magnetic behavior cannot be described by the standard elliptical approximation. A modified critical state model valid for thin samples was developed which incorporates demagnetization effects for the perpendicular geometry. This model can be used to explain the observed magnetic hysteresis, magnetic relaxation, and the effects transport current has on the critical state. Novel evidence for surface barriers in YBCO thin films is briefly presented. A geometrical barrier to flux penetration is found to exist in a detwinned YBa _2CU_3O _{7-delta} single crystal and also in a YBa_2CU_3 O_{7-delta} polycrystalline system. This barrier cannot exist in samples which have elliptical cross-sections and is the result of the flat geometry.

  14. Microstructure-property relationships of chemically vapor deposited zirconia fiber coating for environmentally durable silicon carbide/silicon carbide composites

    Science.gov (United States)

    Li, Hao

    In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.

  15. Wear Behaviour of Electroless heat Treated Ni-P Coatings as Alternative to Electroplated hard Chromium Deposits

    OpenAIRE

    Goettems, Felipe Samuel; Ferreira, Jane Zoppas

    2017-01-01

    In this present study was evaluated the influence of heat treatment on the wear resistance of electroless high phosphorus nickel coating (9-10% P wt.). In addition, both untreated and treated Ni-P deposits were then compared to electroplated hard chromium coatings in terms of wear behaviour. Three different heat treatment conditions were performed at temperatures of 320ºC, 400ºC and 500ºC under different holding times. The selection of the heat treatment conditions was chosen considering the ...

  16. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  17. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  18. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Science.gov (United States)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  19. WC-Co Composite Coating Deposited by Cold Spraying of a Core-Shell-Structured WC-Co Powder

    Science.gov (United States)

    Luo, Xiao-Tao; Li, Cheng-Xin; Shang, Fu-Lin; Yang, Guan-Jun; Wang, Yu-Yue; Li, Chang-Jiu

    2015-01-01

    In this study, a core-shell-structured WC-Co powder was used to develop a heterogeneously structured WC-Co coating with tens micrometers of WC-10Co as strengthening phase and Co-rich WC-Co as the binder in order to realize simultaneous strengthening and toughening. Spray powder particles contain WC-10Co core coated with a Co-rich WC-Co shell by mechanical milling. WC-Co coating with dual-scale strengthening phases was deposited by cold spraying. Post-spray annealing was carried out to further modify the coating microstructure. Microstructures of the spray powder and the coating were characterized by SEM. Mechanical properties of the coating in terms of microhardness and fracture toughness were examined. Results show that a biomodal WC-Co coating with a porosity of only 0.7% was deposited by cold spray. The Co-rich matrix phase contains submicrometer-sized carbide and primary hard phase is WC-10Co particles. The measurement yielded a Vickers microhardness of 1493 ± 76.7 HV0.1 for WC-10Co core and 693 ± 47.3 HV0.1 for Co-rich binder phase. After annealed at 900 °C for 5 h, a remarkable increase in fracture toughness from 21.2 ± 3.8 to 35.7±5.2 MPa m-0.5 was achieved while no evident change occurred to the hardness of WC-10Co cores.

  20. Effect of ion irradiation on the surface energy of deposited coatings

    Science.gov (United States)

    Eremin, E. N.; Guchenko, S. A.; Kasymov, S. S.; Yurov, V. M.; Vedyashkin, M. V.

    2017-01-01

    We investigated multi-element coatings exposed to argon ion bombardment. The coatings were irradiated using a multi-ampere hollow-cathode ion source. The arc current was 1 A, and the potential of the substrate was maintained equal to 300 V. The surface tension (surface energy) of the coatings was measured before and after irradiation through the size-dependence of the microhardness and electrical resistivity of coatings on their thickness. Ion irradiation was found to affect the surface energy of the coatings in different ways. This is due to both the structure of the coating and its elemental composition.

  1. Optical property of La1-xSrxTiO3+δ coatings deposited by plasma spraying technique

    Science.gov (United States)

    Zhu, Jinpeng; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi

    2015-11-01

    Perovskite La1-xSrxTiO3+δ oxide is used in various industrial applications because of its excellent physical and chemical properties, which beneficially affects the lifetime and performance of electronic and optical devices. This study illustrates the effects of the spray parameters on particles molten state, microstructure, and optical reflectivity from room temperature up to 1000 °C of single-phase La1-xSrxTiO3+δ (x = 0.1) coating deposited by atmospheric plasma spraying technique. The phase structure and surface morphology of the coating were examined using X-ray diffraction and scanning electron microscopy analysis, respectively, whereas the optical property coating was characterized by UV-visible-near infrared spectroscopy. Results show that plasma spray parameters significantly influenced the microstructure and optical performance of the La1-xSrxTiO3+δ coating, and oxygen deficiency during spraying considerably reduced the coating reflectivity. A high-reflectivity coating can be prepared by adopting optimized plasma spraying parameters and subsequent heat treatment.

  2. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    Energy Technology Data Exchange (ETDEWEB)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.; Sen, S. [Department of Metallurgical and Materials Engineering, Engineering Faculty, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey); Kilinc, B. [Department of Metallurgical and Materials Engineering, Institute of Arts and Sciences, Sakarya University, Esentepe Campus, 54187 Sakarya (Turkey)

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  3. Microstructure and Tribological Performance of TiB2-NiCr Composite Coating Deposited by APS

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-12-01

    Full Text Available Nickel chromium (NiCr powders with different titanium diboride (TiB2 additions (20, 40 and 60 wt % were prepared with a mechanical alloying method and then sprayed using an air plasma spraying technology. The microstructure and phase composite of the powders and the cross-sections of deposited coatings were analyzed with a scanning electronic microscope and X-ray diffraction. The tribological performance of the coatings was studied using a pin-on-disk tribometer at room temperature. The weight loss of the as-sprayed coating was measured by using a high accuracy weighing balance. Cr3C2-25NiCr coating was produced and tested for comparison. The morphologies of the worn surface were then investigated. Parts of debris with some scratches were found, presenting typical signs of abrasive wear and showing slight adhesive wear on the surface. The 20 wt % additive TiB2 coating demonstrated the highest microhardness and the lowest coefficient of friction. The wear resistance of the metal-ceramic composites coatings was enhanced with the addition of TiB2.

  4. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    International Nuclear Information System (INIS)

    Chou, Chia-Man; Shiao, Chiao-Ju; Chung, Chi-Jen; He, Ju-Liang

    2013-01-01

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained

  5. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  6. PREFACE: VI Scientific Technical Conference on "Low-temperature plasma during the deposition of functional coatings"

    Science.gov (United States)

    2014-11-01

    The VI Republican Scientific Technical Conference "Low-temperature plasma during the deposition of functional coatings" took place from 4 to 7 November 2014 at the Academy of Sciences of the Republic of Tatarstan and the Kazan Federal University. The conference was chaired by a Member of the Academy of Sciences of the Republic of Tatarstan Nail Kashapov -Professor, Doctor of Technical Sciences- a member of the Scientific and Technical Council of the Ministry of Economy of the Republic of Tatarstan. At the conference, the participants discussed a wide range of issues affecting the theoretical and computational aspects of research problems in the physics and technology of low-temperature plasma. A series of works were devoted to the study of thin films obtained by low-temperature plasma. This year work dedicated to the related field of heat mass transfer in multiphase media and low-temperature plasma was also presented. Of special interest were reports on the exploration of gas discharges with liquid electrolytic electrotrodes and the study of dusty plasmas. Kashapov Nail, D.Sc., Professor (Kazan Federal University)

  7. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available In this work, zinc oxide (ZnO multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV–Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications. Keywords: Multilayer films, Semiconductor, ZnO, XRD, SEM, Optoelectronic properties

  8. Preparation of uranium coatings by electro deposition in molten chloride media

    International Nuclear Information System (INIS)

    Taxil, P.; Serrano, K.; Dugne, O.

    2001-01-01

    The electrodeposition of uranium is now a relevant topic for two kinds of applications: the preparation of this metal with compounds extracted from the mineral ores; the separation from lanthanides in the nuclear waste. This paper concerns the process of preparation of uranium metal on various substrates, using the electro deposition process in molten salts. The electrolyte consists of an eutectic mixture NaCl-KCl as solvent (fusion point 650 deg C) and a tetravalent uranium compound, UCl 4 as solute. We present the results, theoretical and practical, necessary to manage the process. So, the following points will be considered stepwise in this paper: the electrochemical behaviour of uranium III ions in the electrolyte, since it is now clearly established that uranium metal can be prepared by electrochemical reduction of UCl 3 in a NaCl-KCl mixture in a single step process: U III + 3 e → U 0 ; the crystallisation mode of uranium on the cathodic material; the preparation of uranium coatings with variables conditions: temperature, electrolyte concentration, current density and cathodic substrate; the observation of the crystal growth on the substrates, by using SEM micrographies. (authors)

  9. Deposition of Multicomponent Chromium Carbide Coatings Using a Non-Conventional Source of Chromium and Silicon with Micro-Additions of Boron

    OpenAIRE

    González Ruíz,Jesús Eduardo; Rodríguez Cristo,Alejandro; Paz Ramos,Adrian; Quintana Puchol,Rafael

    2017-01-01

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 oC for 4h. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectr...

  10. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszkowicz, Krzysztof, E-mail: krzysztof.lukaszkowicz@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18A, 44-100 Gliwice (Poland); Sondor, Jozef, E-mail: j.sondor@liss.cz [LISS, a.s., Dopravni 2603, 756 61 Roznov p.R. (Czech Republic); Balin, Katarzyna, E-mail: katarzyna.balin@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kubacki, Jerzy, E-mail: jerzy.kubacki@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-09-01

    Highlights: • The chemical composition of the CrAlSiN + DLC coatings was studied. • The coatings have nanostructural character with fine crystallites. • Their average size grain is less than 10 nm. • The coatings demonstrate friction coefficient within the range 0.05–0.07. • The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. - Abstract: Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction 〈3 1 1〉 is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  11. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  12. Cooper Pair Breakup in YBCO under Strong Terahertz Fields

    OpenAIRE

    Glossner, Andreas; Zhang, Caihong; Kikuta, Shinya; Kawayama, Iwao; Murakami, Hironaru; Müller, Paul; Tonouchi, Masayoshi

    2012-01-01

    We show that strong electric fields of ~ 30 kV cm^(-1) at terahertz frequencies can significantly weaken the superconducting characteristics of cuprate superconductors. High-power terahertz time-domain spectroscopy (THz-TDS) was used to investigate the in-plane conductivity of YBa2Cu3O7-delta (YBCO) with highly intense single-cycle terahertz pulses. Even though the terahertz photon energy (~ 1.5 meV) was significantly smaller than the energy gap in YBCO (~ 20-30 meV), the optical conductivity...

  13. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  14. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    Science.gov (United States)

    Sun, Chen-Cheng; Lee, Shih-Chin; Dai, Shyue-Bin; Tien, Shein-Long; Chang, Chung-Chih; Fu, Yaw-Shyan

    2007-02-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  15. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.-C. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, S.-C. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Dai, S.-B. [Center of General Studies, National Kaohsiung Marine University, Nan-Tzu, Kaohsiung, Taiwan (China); Nano-Win Technology Co. Ltd., Tainan, Taiwan (China); Tien, S.-L. [Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan (China); Chang, C.-C. [Department of Physics, R.O.C. Military Academy, 830 Kaohsiung, Taiwan (China); Fu, Y.-S. [Department of Environment and Energy, National University of Tainan, Tainan, Taiwan (China)]. E-mail: ysfu@mail.nutn.edu.tw

    2007-02-15

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  16. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    International Nuclear Information System (INIS)

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Tien, S.-L.; Chang, C.-C.; Fu, Y.-S.

    2007-01-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications

  17. A cobalt(ii)heteroarylalkenolate precursor for homogeneous Co3O4 coatings by atomic layer deposition.

    Science.gov (United States)

    Büyükyazi, Mehtap; Fischer, Thomas; Yu, Penmgei; Coll, Mariona; Mathur, Sanjay

    2017-10-14

    We present a new and efficient cobalt precursor, Co II (DMOCHCOCF 3 ) 2 , to prepare Co 3 O 4 thin films and conformal coatings. In the synthesis of this Co complex, heteroaryl moieties and CF 3 -groups were combined leading to the precursor with high thermal stability and volatility. The suitability of this precursor for ALD deposition was tested on flat silicon substrates and TiO 2 /C nanofibers upon process optimization. Deposition at 200 °C results in homogeneous and smooth Co 3 O 4 thin films with a growth rate of 0.02 nm per cycle. Conformal coatings have been successfully obtained on TiO 2 /C nanofibers, making them an attractive platform for surface chemistry studies on high aspect ratio structures for future photocatalysts, sensors, supercapacitors and batteries.

  18. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    Science.gov (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  19. A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy

    Science.gov (United States)

    Liu, Xiangmei; Yang, Qiuyue; Li, Zhaoyang; Yuan, Wei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin W. K.; Wu, Shuilin

    2018-03-01

    Rapid corrosion restricts the wide application of Mg and Mg-based alloys. In this work, a combined surface strategy was employed to modify the surface of AZ31 Mg Alloy. An atomic layer deposition (ALD) technique was utilized to prepare ZrO2 nanofilm on Mg substrate. During this course, the film thickness could be precisely controlled by adjusting the ALD cycles with a deposition rate of 0.117 nm/cycle. The subsequent PLGA grafting on ZrO2 nanofilm was carried out by a spin-coating process to further enhance the corrosion resistance. The nanoscratch tests showed that this hybrid coating had good bonding strength with substrate and similar Young's modulus to natural bone. In vitro corrosion tests demonstrated that a thicker ZrO2 nanofilm on the surface could reduce the corrosion rate of Mg substrate when compared to a thinner coating. When increasing ZrO2 deposition cycles from 25 to 100, the corrosion resistance could be significantly increased by two or three orders of magnitude. Hydrogen evolution tests revealed the synergetic effects of both galvanic corrosion and local acidic action could accelerate the corrosion of the AZ31 modified with the PLGA/ZrO2 coating once the ZrO2 nanofilm was damaged. Therefore, by changing the ALD cycles, the corrosion resistance of both ZrO2 thin film and ZrO2/PLGA hybrid coatings can be adjusted. This work provides an effective combined surface strategy that can be employed to adjust the corrosion resistance of Mg-based alloys for biomedical applications.

  20. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  1. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  2. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  3. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Science.gov (United States)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  4. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    Science.gov (United States)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  5. Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition

    Science.gov (United States)

    Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.

    2018-01-01

    Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.

  6. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  7. Effect of active screen plasma nitriding pretreatment on wear behavior of TiN coating deposited by PACVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Raoufi, M., E-mail: raoufi@iust.ac.ir [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mirdamadi, Sh. [School of Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Mahboubi, F. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ahangarani, Sh. [Advanced Materials and Renewable Energies Dep., Iranian Research Organization for Science and Technology (Iran, Islamic Republic of); Mahdipoor, M.S. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Elmkhah, H. [Department of Metallurgical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2012-08-01

    Titanium based alloys are used extensively for improving wear properties of different parts due to their high hardness contents. Titanium nitride (TiN) is among these coatings which can be deposited on surface using various techniques such as CVD, PVD and PACVD. Their weak interface with substrate is one major drawback which can increase the total wear in spite of favorite wear behavior of TiN. Disc shaped samples from AISI H13 (DIN 1.2344) steel were prepared in this study. Single TiN coating was deposited on some of them while others have experienced a TiN deposition by active screen plasma nitriding (ASPN). Hardness at the surface and depth of samples was measured through Vickers micro hardness test which revealed 1810 Hv hardness as the maximum values for a dual-layered ASPN-TiN. Pin-on-disc wear test was done in order to study the wear mechanism. In this regard, the wear behavior of samples was investigated against pins from 100Cr6 (Din 1.3505) bearing steel and tungsten carbide-cobalt (WC-Co) steel. It was evidenced that the dual-layer ASPN-TiN coating has shown the least weight loss with the best wearing behavior because of its high hardness values, stable interface and acceptable resistance against peeling during wearing period.

  8. Structure and properties of the combined protective coatings on the basis of nickel deposited substrates of steel

    International Nuclear Information System (INIS)

    Ruzimov, Sh.M.; Pogrebnjak, A.D.; Kuroda, S.; Alonseva, D.L.; Kolisnichenko, O.V.

    2006-01-01

    Full text: Recently alongside with traditional technologies of surface hardenings like, chemical-technical processing and other highly concentrated sources of heating as plasma jet and electronic beam are more actively used. One of the most perspective and modern methods of reception of materials are the combined methods of processing of materials. The results of structure and element composition of the coatings researches conducted the plasma-detonation method on a substrate from steel are submitted. In practice plasma powder coatings from nickel alloys are widely applied. As coatings from a powder on the basis of nickel: PG-10 N-01 (Ni- the base; Cr -14-20%; Fe -7%; Si - 4,3%; B - 3,3%; C -0,8%;), PGAN-33 (Ni-the base; Cr -24%; Mo -4%; Si -2%; B -2%; W -1%) and PG-19 N-01 (Ni- the base; Cr-8-14%; Fe-5%; Si-1,2-3,2%; B-2,3%; C-0,5%;) are used. After drawing coatings from powders PG-10 N-01 and PGAN-33 a part of samples have melted off high-current electron beam in two modes: soft and rigid. Under high-temperature influence electron melting plastic inter metalloid connections Cr 3 Ni 2 and Cr B are formed in a surface of a coating. Coatings from PG-19 N-01 are deposited either preliminary heated, or as taken a cold substrate for some passes. Repeated melting of coating surfaces was conducted by a pulse plasma jet without adding of a powder in it. In this work to study coating surfaces and their transversal cross sections, we applied XRD and SEM with a microanalysis. Also we measured micro-hardness and wear. The studies demonstrated that the plasma-detonation technology could provide the formation of the coatings with a dense adhesion to a substrate. It is shown that additional processing of a coating by a plasma jet result in change of a shape of a surface, redistribution of elements to reduction the size of grains. In turn it considerably changes mechanical properties of coatings. (author)

  9. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  10. The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofouling.

    Science.gov (United States)

    Akesso, Laurent; Pettitt, Michala E; Callow, James A; Callow, Maureen E; Stallard, Joanne; Teer, Dennis; Liu, Chen; Wang, Su; Zhao, Qi; D'Souza, Fraddry; Willemsen, Peter R; Donnelly, Glen T; Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika; Jones, Lathe A; Guinaldo, Patricia Calvillo

    2009-01-01

    SiO(x)-like coatings were deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD (PACVD). Surface energies (23.1-45.7 mJ m(-1)) were correlated with the degree of surface oxidation and hydrocarbon contents. Tapping mode AFM revealed a range of surface topologies with Ra values 1.55-3.16 nm and RMS roughness 1.96-4.11 nm. Settlement of spores of the green alga Ulva was significantly less, and detachment under shear significantly more on the lowest surface energy coatings. Removal of young plants (sporelings) of Ulva under shear was positively correlated with reducing the surface energy of the coatings. The most hydrophobic coatings also showed good performance against a freshwater bacterium, Pseudomonas fluorescens, significantly reducing initial attachment and biofilm formation, and reducing the adhesion strength of attached bacterial cells under shear. Taken together the results indicate potential for further investigation of these coatings for applications such as heat exchangers and optical instruments.

  11. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance

    Science.gov (United States)

    Vaidya, Shyam V.; Yuan, Min; Narváez, Alfredo R.; Daghfal, David; Mattzela, James; Smith, David

    2016-02-01

    The protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating (Dursan®) were compared to that of an amorphous fluoropolymer (AF1600) coating and bare 316L grade stainless steel by studying non-specific adsorption of various proteins onto these surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D). A wash solution with nonionic surfactant, polyoxyethyleneglycol dodecyl ether (or Brij 35), facilitated 100% removal of the adsorbed bovine serum albumin (BSA), mouse immunoglobulin G (IgG), and normal human plasma proteins from the Dursan surface and of the adsorbed normal human plasma proteins from the AF1600 surface, whereas these proteins remained adsorbed on the bare stainless steel surface. Mechanical stress in the form of sonication demonstrated durability of the Dursan coating to mechanical wear and showed no negative impact on the coating's ability to prevent adsorption of plasma proteins. Surface delamination was observed in case of the sonicated AF1600 coating, which further led to adsorption of normal human plasma proteins.

  12. Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Qi, Xiaoben; Zhu, Shigen; Ding, Hao; Zhu, Zhengkun; Han, Zhibing

    2013-01-01

    WC–12%Co powders deposited on ductile iron by electric contact strengthening were studied. This technology was based on the application of the contact resistance heating between the electrode and work piece to form a wear resistant layer on ductile iron. The microstructure, microhardness distribution, phase transformation and wear behaviors of the coating were investigated using optical microscope, scanning electron microscope, Vickers hardness (HV 0.5 ), X-ray diffraction, rolling contact wear tests. The results showed that the WC–12%Co coating by electric contact strengthening was metallurgically bonded to the ductile iron. Additionally, the effect of experimental parameters on microhardness and wear resistance of coatings were studied using orthogonal experiment. The results showed that compared with (A) electric current and (B) rotating speed, (C) contact force displays the most significant effect on microhardness and wear resistance of coatings. The coatings produced at A = 19 kA, B = 0.3 r/min and C = 700 N possessed highest microhardness of 1073 HV 0.5 and wear resistance.

  13. Electrophoretic Deposition of Cu-SiO2 Coatings by DC and Pulsed DC for Enhanced Surface-Mechanical Properties

    Science.gov (United States)

    Maharana, H. S.; Lakra, Suprabha; Pal, S.; Basu, A.

    2016-01-01

    The present study explored the possibilities of improvement in the surface-mechanical properties of electrodeposited Cu-SiO2 composite coating and its underlying mechanism. Composite coatings were developed using SiO2-dispersed acidic copper sulfate electrolyte by direct current and pulse-current electro-codeposition techniques with variation of pulse frequencies at a fixed duty cycle. X-ray diffraction analysis of the coatings revealed information regarding the presence of various phases and crystallographic orientations of the deposited Cu matrix. Scanning electron microscopy and energy dispersive x-ray spectroscopy techniques were used to investigate the surface morphology and chemical composition of the coatings, respectively, and it was observed that SiO2 particles were uniformly distributed in the composite coatings. Surface roughness was found to be reduced with the increasing pulse frequency. The Vickers microhardness and ball-on-plate wear study showed improvement in surface-mechanical properties due to the formation of fine Cu matrix, dispersion strengthening due to homogeneously distributed SiO2 particles, and the preferred orientation of the Cu matrix. Marginal decrease in electrical conductivity with the increasing SiO2 content and pulse frequency was observed from the four-probe electrical conductivity measurement technique.

  14. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Stefanic, Martin; Krnel, Kristoffer; Pribosic, Irena; Kosmac, Tomaz

    2012-03-01

    Octacalcium phosphate (OCP) coatings on zirconia oral implants have a great potential to improve the osseointegration of already existing ceramic implants, owing to high osteoconductive characteristics of OCP and its possibility of use as a drug delivery system. Such OCP coatings can be prepared with a simple two-step biomimetic procedure investigated in our study. In the first step, zirconia discs were immersed into the solution with a pH 7.4 and after 1 h of soaking a thin nanostructured calcium phosphate (Ca-P) layer was precipitated on the ceramic substrate via three stages: (i) precipitation of an amorphous Ca-P; (ii) precipitation of the OCP; and (iii) the transformation of the OCP to apatite. This Ca-P layer later served as a template for the rapid deposition of a thicker OCP coating in the second step of the synthesis where the substrate was immersed into the solution with pH 7.0. The main benefits of the method are a relatively quick synthesis, simplicity and a good reproducibility. Moreover, the coatings show good tensile adhesion strength according to the tape tests (ASTM D-3359). In addition, mild physiological conditions of the synthesis may allow incorporation of biologically active molecules in the coating.

  15. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mei; Xue, Bing; Liu, Jianhua, E-mail: yumei@buaa.edu.cn; Li, Songmei; Zhang, You

    2015-09-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10{sup 5} Ω·cm{sup 2}, at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The

  16. Electrophoretic deposition of hybrid coatings on aluminum alloy by combining 3-aminopropyltrimethoxysilan to silicon–zirconium sol solutions for corrosion protection

    International Nuclear Information System (INIS)

    Yu, Mei; Xue, Bing; Liu, Jianhua; Li, Songmei; Zhang, You

    2015-01-01

    Electrophoretic deposition (EPD) silicon–zirconium organic–inorganic hybrid coatings were applied on LC4 aluminum alloy for corrosion protection. 3-Glycidoxypropyl-trimethoxysilane (GTMS) and Zirconium (IV) n-propoxide (TPOZ) were used as precursors. 3-Aminopropyl-trimethoxysilane (APS) was added to enhance the corrosion protective performance of the coatings. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize morphology, microstructure and component. The results show that the addition of APS leads to the enhanced migration and deposition of positively charged colloidal particles on the surface of metal substrate, which results in the thickness increasing of coatings. However, loading an excessive amount of APS gives a heterogeneous coating surface. The corrosion protective performance of coatings were measured by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results indicate that the addition of APS improves corrosion protective performance of coatings. The optimal addition content of APS is about 15%. The 15% APS coating is uniform and dense, as well as has good corrosion protective performance. The impedance value (1.58 × 10 5 Ω·cm 2 , at the lowest frequency) of 15% APS coating is half order of magnitude higher than that of coating without APS, and 15% APS coating always keeps the best corrosion protective performance with prolonged immersion time. This kind of coating is identified with “double-structure” properties based on the analysis of EIS and potentiodynamic polarization. Furthermore, the equivalent circuit results indicate that the intermediate oxide layer plays a main role in corrosion protection. - Highlights: • Electrophoretic deposition hybrid coatings are prepared on LC4 aluminum alloy. • 3-Aminopropyl-trimethoxysilane (APS) enhances the corrosion protective performance. • The coating

  17. Double-ceramic-layer thermal barrier coatings of La{sub 2}Zr{sub 2}O{sub 7}/YSZ deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Beijing 100095 (China); He Limin; Mu Rende [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhong Xinghua; Zhang Yanfei; Zhang Jiangfeng [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: xcao@ciac.jl.cn

    2009-04-03

    Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La{sub 2}Zr{sub 2}O{sub 7} (LZ) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies and cyclic oxidation behavior of the DCL coating were studied. Both the X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) prove that LZ and YSZ have good chemical applicability to form a DCL coating. The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ coating, and even longer than that of the single layer YSZ coating. The failure of the DCL coating is a result of both the bond coat oxidation and the thermal strain between bond coat and ceramic layer generated by the thermal expansion mismatch. Additionally, the compressive stress initiated during cooling is also an important factor to control the cleavage of the interface between the LZ and YSZ coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature TBCs, DCL coating is an important development direction of TBCs.

  18. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    Science.gov (United States)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  19. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  20. corrosion and wear resistant ternary Cr-C-N coatings deposited by the ARC PVD process for machining tools and machining parts

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Zimmermann, H.; Bobzin, K.

    1997-01-01

    With the deposition of PVD hard coatings on the tools applied in machining operations it is possible to achieve significant improvements in the performance and quality of the machining processes. Depending on the machined material and the operating principle, e.g. turning, milling or drilling, not only different machining parameters but also different coating materials are necessary. In interrupted cut machining of tempered steel, for example, the life time of Ti-C-N coated inserts is several times greater than the Ti-C-N coated ones. This is a result of the favourable thermophysical and tribological properties of Ti-N-C. The potential for tool protection by CrN coatings is a result of the high ductility and low internal stress of this coating materials. CrN films can be deposited with greater film thickness, still maintaining very good adhesion. This paper presents the development of new arc PVD coatings in the system Cr-C-N. Owing to the carbon content in the coating an increased hardness and a better wear behavior in comparison to CrN was expected. The effects of various carbon carrier gases on the coating properties were examined. The coating properties were investigated by mechanical tests. X-ray diffraction, SEM analysis and corrosion tests. Some of the coatings were tested in machining tests. The results of these tests are presented in this paper. (author)

  1. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    Science.gov (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  2. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    International Nuclear Information System (INIS)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R.

    2014-01-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF

  3. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R., E-mail: aldo.boccaccini@ww.uni-erlangen.de

    2014-07-01

    PVA reinforced alginate–bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate–Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. - Highlights: • PVA reinforced alginate–bioactive glass composite coating on stainless steel produced by EPD • The co-deposition mechanism was experimentally confirmed. • Homogeneous and compact coating microstructure obtained by the addition of PVA • Improved adhesion strength of PVA reinforced coatings confirmed qualitatively and quantitatively • Controlled degradation rate and rapid HA forming ability of PVA-containing coatings in SBF.

  4. Deposition mechanism and microstructure of laser-assisted cold-sprayed (LACS) Al-12 wt.%Si coatings: effects of laser power

    CSIR Research Space (South Africa)

    Olakanmi, EO

    2013-06-01

    Full Text Available at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS...

  5. Effect of corona pre-treatment on the performance of gas barrier layers applied by atomic layer deposition onto polymer-coated paperboard

    International Nuclear Information System (INIS)

    Hirvikorpi, Terhi; Vaehae-Nissi, Mika; Harlin, Ali; Marles, Jaana; Miikkulainen, Ville; Karppinen, Maarit

    2010-01-01

    The effect of corona pre-treatment on the performance of Al 2 O 3 and SiO 2 gas barrier layers applied by atomic layer deposition onto polymer-coated paperboards was studied. Both polyethylene and polylactide coated paperboards were corona treated prior to ALD. Corona treatment increased surface energies of the paperboard substrates, and this effect was still observed after several days. Al 2 O 3 and SiO 2 films were grown on top of the polymer coatings at temperature of 100 deg. C using the atomic layer deposition (ALD) technique. For SiO 2 depositions a new precursor, bis(diethylamido) silane, was used. The positive effect of the corona pre-treatment on the barrier properties of the polymer-coated paperboards with the ALD-grown layers was more significant with polyethylene coated paperboard and with thin deposited layers (shorter ALD process). SiO 2 performed similarly to Al 2 O 3 with the PE coated board when it comes to the oxygen barrier, while the performance of SiO 2 with the biopolymer-coated board was more moderate. The effect of corona pre-treatment was negligible or even negative with the biopolymer-coated board. The ALD film growth and the effect of corona treatment on different substrates require further investigation.

  6. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    Science.gov (United States)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  7. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  8. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    International Nuclear Information System (INIS)

    Yang, Chi-Chuan; Lin, Chien-Chung; Liao, Jiunn-Wang; Yen, Shiow-Kang

    2013-01-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model

  9. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  10. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO₂ Composite Coatings on Stainless Steel (316L) Substrates.

    Science.gov (United States)

    Raddaha, Namir S; Cordero-Arias, Luis; Cabanas-Polo, Sandra; Virtanen, Sannakaisa; Roether, Judith A; Boccaccini, Aldo R

    2014-03-04

    This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO₂) composites on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time) and relative concentrations of chitosan, h-BN and TiO₂ in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO₂ particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO₂ and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO₂ and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  11. Electrophoretic Deposition of Chitosan/h-BN and Chitosan/h-BN/TiO2 Composite Coatings on Stainless Steel (316L Substrates

    Directory of Open Access Journals (Sweden)

    Namir S. Raddaha

    2014-03-01

    Full Text Available This article presents the results of an experimental investigation designed to deposit chitosan/hexagonal boron nitride (h-BN and chitosan/h-BN/titania (TiO2 composites on SS316L substrates using electrophoretic deposition (EPD for potential antibacterial applications. The influence of EPD parameters (voltage and deposition time and relative concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. The composition and structure of deposited coatings were investigated by FTIR, XRD and SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. The adhesion between the electrophoretic coatings and the stainless steel substrates was tested by using tape test technique, and the results showed that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed in simulated body fluid (SBF for 28 days. FTIR and XRD results showed no formation of hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which are therefore non bioactive but potentially useful as antibacterial coatings.

  12. The electrochemical deposition of tin-nickel alloys and the corrosion properties of the coating

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Møller, Per

    2005-01-01

    electrodeposition. The alloy has unique corrosion properties and exhibits surface passivation like stainless steel. The coating is decorative and non-allergic to the skin, can replace decorative nickel and nickel-chromium coatings in many cases and decreases the risk for allergic contact dermatitis. A number...

  13. Corrosion resistant Zn–Co alloy coatings deposited using saw-tooth ...

    Indian Academy of Sciences (India)

    Micro/nanostructured multilayer coatings of Zn–Co alloy were developed periodically on mild steel from acid chloride bath. Composition modulated multilayer alloy (CMMA) coatings, having gradual change in composition (in each layer) were developed galvanostatically using saw-tooth pulses through single bath ...

  14. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...

  15. ELECTRICAL FURNACE FOR PRODUCING CARBIDE COATINGS USING THE THERMOREACTIVE DEPOSITION/DIFFUSION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    FABIO CASTILLEJO

    2011-01-01

    the presence of VC and NbC, and as MEB results clearly show, the formation of regular thickness coatings. The results obtained allow for assessing that the designed and built furnace fulfills the requirements of the TRD technique for obtaining different types of hard coatings.

  16. The structure and mechanical properties of multilayer nanocrystalline TiN/ZrN coatings obtained by vacuum-arc deposition

    Directory of Open Access Journals (Sweden)

    A.V. Demchyshyn

    2007-12-01

    Full Text Available TiN/ZrN multilayered condensates on BK-8 carbide tips substrates (62 HRC were produced by the vacuumarc deposition technique, using Ti and Zr plasma flows in reactive nitrogen gas medium with working pressure of 6.6·10–1 Pa. The TiN/ZrN multilayered condensates consist of TiN and ZrN sublayers, which have a thickness of ~100 nm, controlled by the processing parameters of the used deposition technique. The obtained coatings have hardness of 45 GPa and Young’s modulus of 320 GPa. The obtained results show that mechanical properties of such multilayered composites are considerably improved in comparison to those for the single-component coatings, TiN and ZrN. The dependence of hardness and Young’s modulus of the composites on sublayer thickness within a range of 100 nm was determined. The investigated structure and improved mechanical properties of the TiN/ZrN multilayered condensates would be very good platform for finding their industrial application, such as hard coatings with different purposes.

  17. INFLUENCE OF PLASMA NITRIDING ON THE CORROSION BEHAVIOUR AND ADHESION OF DLC COATINGS DEPOSITED ON AISI 420 STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Jorge N. Pecina

    2016-06-01

    Full Text Available In this work the corrosion behavior and adhesion of two DLC (“Diamond Like Carbon” films (“Soft” and “Hard” were studied. Both coatings were deposited by PACVD (“Plasma Assisted Chemical Vapour Deposition” on plasma-nitrided and non-nitrided AISI 420 stainless steel. Raman spectroscopy was conducted and surface hardness was measured. The microstructure by OM and SEM, was observed. Adhesion tests were performed with C. Rockwell indentation test. Salt Spray and immersion were performed in HCl. The “Soft” coating was 20 μm thick, the “Hard” film was about 2.5 μm. The hardness was of 500 HV in the “Soft” DLC and 1400 HV in the “Hard” DLC. Both coatings presented low friction coefficient and good adhesion when they were deposited on nitrided steel. Also presented good resistance to atmospheric corrosion. HCl DLC degradation slowed rapidly introduced uncoated samples.

  18. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes

    KAUST Repository

    Alhebshi, Nuha

    2013-01-01

    A novel supercapacitor electrode structure has been developed in which a uniform and conformal coating of nanostructured Ni(OH)2 flakes on carbon microfibers is deposited in situ by a simple chemical bath deposition process at room temperature. The microfibers conformally coated with Ni(OH) 2 nanoflakes exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflake electrodes prepared by drop casting of Ni(OH)2 powder on the carbon microfibers (1416 F g-1vs. 275 F g-1). This improvement in supercapacitor performance can be ascribed to the preservation of the three-dimensional structure of the current collector, which is a fibrous carbon fabric, even after the conformal coating of Ni(OH)2 nanoflakes. The 3-D network morphology of the fibrous carbon fabric leads to more efficient electrolyte penetration into the conformal electrode, allowing the ions to have greater access to active reaction sites. Cyclic stability testing of the conformal and planar Ni(OH)2 nanoflake electrodes, respectively, reveals 34% and 62% drop in specific capacitance after 10 000 cycles. The present study demonstrates the crucial effect that electrolyte penetration plays in determining the pseudocapacitive properties of the supercapacitor electrodes. © 2013 The Royal Society of Chemistry.

  19. Failure Strain and Strain-Stress Analysis in Titanium Nitride Coatings Deposited on Religa Heart Ext Ventricular Assist Device

    Directory of Open Access Journals (Sweden)

    Kopernik M.

    2015-04-01

    Full Text Available The Polish ventricular assist device is made of Bionate II with deposited TiN biocompatible nano-coating. The two scale finite element model is composed of a macro-model of blood chamber and a micro-model of the TiN/Bionate II. The numerical analysis of stress and strain states confirmed the possibility of fracture. Therefore, the identification of a fracture parameter considered as a failure strain is the purpose of the present work. The tensile test in a micro chamber of the SEM was performed to calibrate the fracture parameter of the material system TiN/Bionate II. The failure strain is a function of a temperature, a thickness of coating and parameters of surface's profile. The failure strain was calculated at the stage of the test, in which the initiation of fracture occurred. The finite element micro-model includes the surface roughness and the failure strain under tension condition for two thicknesses of coatings which will be deposited on the medical device.

  20. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition

    International Nuclear Information System (INIS)

    Han, Young-Soo; Lee, Jai-Young

    2003-01-01

    The electrochemical characteristics of graphite coated with pyrolytic carbon materials using tumbling chemical vapor deposition (CVD) process have been studied for the active material of anodes in lithium ion secondary batteries. Coating of pyrolytic carbons on the surface of graphite particles, which tumble in a rotating reactor tube, was performed through the pyrolysis of liquid propane gas (LPG). The surface morphology of these graphite particles coated with pyrolytic carbon has been observed with scanning electron microscopy (SEM). The surface of graphite particles can well be covered with pyrolytic carbon by tumbling CVD. High-resolution transmission electron microscopy (HRTEM) image of these carbon particles shows that the core part is highly ordered carbon, while the shell part is disordered carbon. We have found that the new-type carbon obtained from tumbling CVD has a uniform core (graphite)-shell (pyrolytic carbon) structure. The electrochemical property of the new-type carbons has been examined using a charge-discharge cycler. The coating of pyrolytic carbon on the surface of graphite can effectively reduce the initial irreversible capacity by 47.5%. Cyclability and rate-capability of theses carbons with the core-shell structure are much better than those of bare graphite. From electrochemical impedance spectroscopy (EIS) spectra, it is found that the coating of pyrolytic carbon on the surface of graphite causes the decrease of the contact resistance in the carbon electrodes, which means the formation of solid electrolyte interface (SEI) layer is suppressed. We suggest that coating of pyrolytic carbon by the tumbling CVD is an effective method in improving the electrochemical properties of graphite electrodes for lithium ion secondary batteries

  1. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  2. Zr-ZrO sub 2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    CERN Document Server

    Zhang Qi Chu; Lee, K D; Shen, Y G

    2003-01-01

    High solar performance Zr-ZrO sub 2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO sub 2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO sub 2 or Al sub 2 O sub 3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80 deg. C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO sub 2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al sub 2 O sub 3 /Zr-ZrO sub 2 /Al solar coating film w...

  3. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  4. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  5. Progress on channel spark development and application of pulsed electron beam deposition (PED) in the field of medical coating work

    International Nuclear Information System (INIS)

    Schultheiss, Christoph; Buth, Lothar-H.-O.; Frey, Wolfgang; Bluhm, Hansjoachim; Mayer, Hanns-G.

    2002-01-01

    A promising source for Pulsed Electron Beam Deposition (PED) is the channel spark. Recent improvements helped to reduce beam instabilities which up to now have limited the life time of the system. The beam power could be increased and because of better beam quality the transport length of the beam is increased from 1 to several centimeters (up to 10 cm). Together with other improvements on the triggering system and beam transport in dielectric tubes, the channel spark approaches industrial standards. An overview of actual applications in research and industry will be presented. An attractive feature of the pulsed electron beam thin film deposition is the conservation of stoichiometry even during deposition of multi-component earth-alkali and alkali glasses. Specially developed glasses like BIOGLAS registered have the ability to anchor soft living tissue at the surface. In form of a bulk material bio active glasses are brittle limiting its applications. Contrary to brittle bulk material a thin layers on medical implants exhibits reliable bio-functionality. Coating of implants with this category of materials is subject of the European INCOMED project (Innovative Coating of Medical Implants with Soft Tissue Anchoring Ability) which just has started

  6. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  7. Influence of high temperature processing of sol-gel derived barium titanate thin films deposited on platinum and strontium ruthenate coated silicon wafers

    NARCIS (Netherlands)

    Stawski, Tomasz; Vijselaar, Wouter Jan, Cornelis; Göbel, Ole; Veldhuis, Sjoerd; Smith, B.F.; Blank, David H.A.; ten Elshof, Johan E.

    2012-01-01

    Thin films of barium titanate (BTO) of 200 nm thickness, derived from an alkoxide¿carboxylate sol¿gel pro