WorldWideScience

Sample records for deposition transparent contact

  1. Large-Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics

    KAUST Repository

    Dai, Zhenyu

    2017-09-08

    2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large-area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band-offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible-range transmittance of 85%. The transistors show high mobility (4.2 cm2 V−1 s−1), fast switching speed (0.114 V dec−1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.

  2. Development of ZnO:Al-based transparent contacts deposited at low-temperature by RF-sputtering on InN layers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B.; Valdueza-Felip, S. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Abril, O. de [ISOM and Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politenica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2012-03-15

    Nitride semiconductors (Al,Ga,In)N attain material properties that make them suitable for photovoltaic and optoelectronics devices to be used in hard environments. These properties include an energy gap continuously tuneable within the energy range of the solar spectrum, a high radiation resistance and thermal stability. The developing of efficient devices requires contacts with low resistivity and high transmittance in visible region. ZnO:Al (AZO) emerges as a feasible candidate for transparent contact to nitride semiconductors, taking advantage of its low resistivity, high transparency in visible wavelengths and a very low lattice mismatch with respect to nitride semiconductors. This work presents a study of the applications of AZO films deposited at low-temperature by RF magnetron sputtering as transparent contact for InN layers. The optimization of AZO conditions deposition lead to the obtaining of contacts which shows an ohmic behaviour for the as-deposited layer, regardless the thickness of the ZnO:Al contact layer. Specific contact resistances of 1.6 {omega}.cm{sup 2} were achieved for the contact with 90 nm thick ZnO:Al layer without any post-deposition treatment (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M.J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa, 09790 México, D.F. (Mexico); Juárez, B.; González, J.; García-León, J.M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Escobar-Alarcón, L. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México, D.F. 11801 (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico)

    2016-04-30

    Aluminum doped-zinc oxide (ZnO:Al) thin films with thickness ~ 1000 nm have been deposited by the ultrasonic spray pyrolysis technique using low substrate temperatures in the range from 285 to 360 °C. The electrical and optical properties of the ZnO:Al (AZO) films were investigated by Uv–vis spectroscopy and Hall effect measurements. The crystallinity and morphology of the films were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution scanning electron microcopy (SEM). XRD results reveal that all the films are nanocrystalline with a hexagonal wurtzite structure with a preferential orientation in the (002) plane. The size of the grains calculated from Scherrer's formula was in the range from 28 to 35 nm. AFM and SEM analysis reveals that the grains form round and hexagonal shaped aggregates at high deposition temperatures and larger rice shaped aggregates at low temperatures. All the films have a high optical transparency (~ 82%). According to the Hall measurements the AZO films deposited at 360 and 340 °C had resistivities of 2.2 × 10{sup −3}–4.3 × 10{sup −3} Ω cm, respectively. These films were n-type and had carrier concentrations and mobilities of 3.71–2.54 × 10{sup 20} cm{sup −3} and 7.4–5.7 cm{sup 2}/V s, respectively. The figure of merit of these films as transparent conductors was in the range of 2.6 × 10{sup −2} Ω{sup −1}–4.1 × 10{sup −2} Ω{sup −1}. Films deposited at 300 °C and 285 °C, had much higher resistivities. Based on the thermogravimetric analysis of the individual precursors used for film deposition, we speculate on possible film growing mechanisms that can explain the composition and electrical properties of films deposited under the two different ranges of temperatures. - Highlights: • Aluminum doped zinc oxide thin films were deposited at low temperatures by pyrosol. • Low resistivity was achieved from 340 °C substrate temperature. • All films deposited

  4. Transparent conducting oxide top contacts for organic electronics

    KAUST Repository

    Franklin, Joseph B.

    2014-01-01

    A versatile method for the deposition of transparent conducting oxide (TCO) layers directly onto conjugated polymer thin film substrates is presented. Using pulsed laser deposition (PLD) we identify a narrow window of growth conditions that permit the deposition of highly transparent, low sheet resistance aluminium-doped zinc oxide (AZO) without degradation of the polymer film. Deposition on conjugated polymers mandates the use of low growth temperatures (<200°C), here we deposit AZO onto poly-3-hexylthiophene (P3HT) thin films at 150°C, and investigate the microstructural and electrical properties of the AZO as the oxygen pressure in the PLD chamber is varied (5-75 mTorr). The low oxygen pressure conditions previously optimized for AZO deposition on rigid substrates are shown to be unsuitable, resulting in catastrophic damage of the polymer films. By increasing the oxygen pressure, thus reducing the energy of the ablated species, we identify conditions that allow direct deposition of continuous, transparent AZO films without P3HT degradation. We find that uptake of oxygen into the AZO films reduces the intrinsic charge carriers and AZO films with a measured sheet resistance of approximately 500 Ω □-1 can be prepared. To significantly reduce this value we identify a novel process in which AZO is deposited over a range of oxygen pressures-enabling the deposition of highly transparent AZO with sheet resistances below 50 Ω □-1 directly onto P3HT. We propose these low resistivity films are widely applicable as transparent top-contacts in a range of optoelectronic devices and highlight this by demonstrating the operation of a semi-transparent photovoltaic device. © 2014 The Royal Society of Chemistry. 2014.

  5. Transparent contacts for stacked compound photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  6. Organic solar array with transparent contacts by spray

    Science.gov (United States)

    Lewis, Jason; Zhang, Jian; Jiang, Xiaomei

    2010-03-01

    Organic solar cells (OSC) based on pi-conjugated polymers (e.g., poly-3-hexylthiophene, P3HT) and fullerene derivatives (e.g.,6,6 -phenyl C61 butyric acid methyl ester, PCBM) have attracted attention over the past decades because they may provide a cost-effective route to wide use of solar energy for electrical power generation.These organic semiconductors have the advantage of being chemically flexible for material modifications, as well as mechanically flexible for the prospective of low-cost, large scale processing such as solution-cast on flexible substrates. However, one of the major challenges preventing the realization of complete solution-processable manufacturing of OSC is the metal cathode depostion invoving high vacuum. Althrough there have been several reports about apraying a thick layer of PEDOT:PSS as a replacement, the sacrifice of transparency will be problematic in certain appliactions such as window technology. Furthermore, fabrication of organic solar array (OSA) using spray method is still in its early stage. We have developed a novel procedure to fabricate transparent-contacts OSA using layer-by-layer spray technique, with a balance between conductivity and transparency for the spray-on contacts. Spray-on OSA performance will be compared side by side with OSA fabricated by conventional spin-coating and metal desposition procedure.

  7. Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition

    Science.gov (United States)

    Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi

    2015-09-01

    One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).

  8. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    Science.gov (United States)

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  9. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan Matthijn

    2007-01-01

    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  10. Indium-Free Fully Transparent Electronics Deposited Entirely by Atomic Layer Deposition.

    Science.gov (United States)

    Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    Indium-free, fully transparent thin-film transistors are fabricated entirely by the atomic layer deposition technique on rigid and flexible substrates at a low temperature of 160 °C. The transistors show high saturation mobility, large switching ratio, and small subthreshold swing value. The inverters and ring oscillators show large gain value and small propagation delay time, indicating the potential of this process in transparent electronic devices.

  11. High conductivity transparent carbon nanotube films deposited from superacid

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, David S; Lee, Roland; Hu Liangbing [Unidym Incorporated, 1244 Reamwood Drive, Sunnyvale, CA 94089 (United States); Heintz, Amy M; Moore, Bryon; Cucksey, Chad; Risser, Steven, E-mail: dhecht@gmail.com [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 {Omega}/sq and 90.9% respectively, which corresponds to a DC conductivity of 12 825 S cm{sup -1} and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  12. High conductivity transparent carbon nanotube films deposited from superacid.

    Science.gov (United States)

    Hecht, David S; Heintz, Amy M; Lee, Roland; Hu, Liangbing; Moore, Bryon; Cucksey, Chad; Risser, Steven

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 Ω/sq and 90.9% respectively, which corresponds to a DC conductivity of 12,825 S cm(-1) and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  13. Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; Nanayakkara, Sanjini U.; Pach, Gregory F.; Reese, Matthew O.; Hudson, Margaret H.; Dolzhnikov, Dmitriy S.; Tanygin, Vadim; Luther, Joseph M.; Talapin, Dmitri V.

    2017-01-13

    Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. We used scanning Kelvin probe microscopy to further show how the above approaches improved carrier collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A2CdTe2 (A = Na, K, Cs, N2H5), can be used in conjunction with current/light soaking to improve PCE further.

  14. Deposition of transparent, hydrophobic polydimethylsiloxane - nanocrystalline TiO2 hybrid films on glass substrate

    Directory of Open Access Journals (Sweden)

    On-uma Nimittrakoolchai

    2010-05-01

    Full Text Available Transparent, hydrophobic hybrid films were deposited on glass substrate from solution containing hydroxyl-terminatedpolydimethylsiloxane (PDMS and TiO2 sol by using a dip coating method. The effects of the film heat-treatment temperatureand PDMS/TiO2 component on surface properties of the hybrid films were investigated by water drop contact angle measurement,and by atomic force microscopy (AFM and scanning electron microscope (SEM analyses. Surface morphology of the hybrid film changed from smooth surface containing tiny spikes to rougher surface containing large protrusions during heattreatmenttemperatures of 60 - 300°C and became smooth surface containing very fine spikes at 500°C, corresponding to a change hydrophobicity behavior from contact angle measurement. The suitable condition for preparation of hydrophobic coating from this current recipe was at the PDMS/TiO2 volume ratio of 1.00 - 2.33 and heat-treatment temperature of 60°C. All the films were transparent regardless of post heat-treatment temperature. However, the films containing higher content of PDMS were slightly more transparent.

  15. Total Internal Reflection for Effectively Transparent Solar Cell Contacts

    CERN Document Server

    Jahelka, Phillip; Atwater, Harry

    2016-01-01

    A new strategy for eliminating photocurrent losses due to the metal contacts on the front of a solar cell was proposed, simulated, and tested. By placing triangular cross-section lines of low refractive index on top of the contacts, total-internal reflection at the interface of the low-index triangles and the surrounding material can direct light away from the metal and into the photoactive absorber. Simulations indicated that losses can be eliminated for any incident angle, and that yearly energy production improvements commensurate with the metallized area are possible. Proof of principle experiments were carried out to eliminate the reflective losses of a commercial solar cell's busbar contact. Spatially resolved laser beam induced current measurements demonstrated that reflection losses due to the busbar were reduced by voids with triangular cross-section.

  16. Electroless Nickel Deposition: An Alternative for Graphene Contacting.

    Science.gov (United States)

    Popescu, Sinziana M; Barlow, Anders J; Ramadan, Sami; Ganti, Srinivas; Ghosh, Biswajit; Hedley, John

    2016-11-16

    We report the first investigation into the potential of electroless nickel deposition to form ohmic contacts on single layer graphene. To minimize the contact resistance on graphene, a statistical model was used to improve metal purity, surface roughness, and coverage of the deposited film by controlling the nickel bath parameters (pH and temperature). The metalized graphene layers were patterned using photolithography and contacts deposited at temperatures as low as 60 °C. The contact resistance was 215 ± 23 Ω over a contact area of 200 μm × 200 μm, which improved upon rapid annealing to 107 ± 9 Ω. This method shows promise toward low-cost and large-scale graphene integration into functional devices such as flexible sensors and printed electronics.

  17. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel

    2016-01-01

    This article challenges the view of transparency as a matter of providing openness, insight, and clarity by conceptualizing it as a form of visibility management. We tend to think of transparency as a process of ensuring accountability through the timely and public disclosure of information....... But with the ubiquity of digital technology and data, transparency efforts have more elaborate and complex effects. To conceptualize these, this article discusses the technological and mediated foundations of transparency and the dynamics of visibility practices resulting from efforts to make people, objects......, and processes knowable and governable. This implies that we shift our attention away from the provision of information and consider the wider social processes and dynamics at work in transparency efforts. Using empirical illustrations from organizations with an explicit commitment to transparency, this article...

  18. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel; Albu, Oana Brindusa

    2017-01-01

    then outlines the most important dimensions of the concept of transparency by highlighting two paradigmatic positions underpinning contemporary research in this area: namely, informational approaches that focus on the sharing of information and the perceived quality of that information and social process...... orientations that explore the dynamics of transparency in organizational settings. The entry highlights emergent methodological and conceptual insights concerning transparency as a dynamic and paradoxical social process with performative characteristics – an approach that remains underexplored....

  19. Transparency

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel

    2016-01-01

    This article challenges the view of transparency as a matter of providing openness, insight, and clarity by conceptualizing it as a form of visibility management. We tend to think of transparency as a process of ensuring accountability through the timely and public disclosure of information......, and processes knowable and governable. This implies that we shift our attention away from the provision of information and consider the wider social processes and dynamics at work in transparency efforts. Using empirical illustrations from organizations with an explicit commitment to transparency, this article...

  20. Transparency

    NARCIS (Netherlands)

    Gupta, A.

    2012-01-01

    Transparency is commonly understood as openness and the “opposite of secrecy” (Florini 1998), to be secured through greater availability and increased flows of information. In our globalizing era, transparency seems to be implicated in every controversy of the moment, from the 2010 WikiLeaks disclos

  1. Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    The universality of the scaling laws that correlate the hydrodynamic slip length and static contact angle was investigated by introducing the concept of the wettability transparency of graphene-coated surfaces. Equilibrium molecular dynamics simulations of droplet wettability for Si(111), Si(100), and graphene-coated silicon surfaces were performed to determine the conditions required to obtain similar contact angles between bare and graphene-coated surfaces (wettability transparency). The hydrodynamic slip length was determined by means of equilibrium calculations for silicon and graphene-coated silicon nanochannels. The results indicate that the slip-wettability scaling laws can be used to describe the slip behavior of the bare silicon nanochannels in general terms; however, clear departures from a general universal description were observed for hydrophobic conditions. In addition, a significant difference in the hydrodynamic slippage was observed under wettability transparency conditions. Alternatively, the hydrodynamic boundary condition for silicon and graphene-coated silicon nanochannels was more accurately predicted by observing the density depletion length, posing this parameter as a better alternative than the contact angle to correlate with the slip length.

  2. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  3. Mass spectrometry-based proteomic analyses of contact lens deposition

    OpenAIRE

    Green-Church, Kari B.; Nichols, Jason J.

    2008-01-01

    Purpose The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. Methods This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (...

  4. Mass spectrometry-based proteomic analyses of contact lens deposition

    OpenAIRE

    Green-Church, Kari B.; Nichols, Jason J.

    2008-01-01

    Purpose The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. Methods This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (...

  5. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  6. Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts

    Science.gov (United States)

    Cavallari, Nicholas; Pattini, Francesco; Rampino, Stefano; Annoni, Filippo; Barozzi, Mario; Bronzoni, Matteo; Gilioli, Edmondo; Gombia, Enos; Maragliano, Carlo; Mazzer, Massimo; Pepponi, Giancarlo; Spaggiari, Giulia; Fornari, Roberto

    2017-08-01

    We report on the fabrication and characterization of Cu(In,Ga)Se2 (CIGS)-based thin film bifacial solar cells using Al-doped ZnO (AZO) as cost-effective and non-toxic transparent back contact. We show that, by depositing both CIGS and AZO by Low Temperature Pulsed Electron Deposition at a maximum temperature of 250 °C, a good ohmic contact is formed between the two layers and good quality solar cells can be fabricated as a result. Photovoltaic efficiencies as high as 9.3% (front illumination), 5.1% (backside illumination) and 11.6% (bifacial illumination) have been obtained so far. These values are remarkably higher than those previously reported in the literature. We demonstrate that this improvement is ascribed to the low-temperature deposition process that avoids the formation of Ga2O3 at the CIGS/AZO interface and favours the formation of a low-resistivity contact in agreement with device simulations.

  7. Pulsed electron beam deposition of transparent conducting Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Quang, Pham Hong, E-mail: phquang2711@yahoo.com [Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Sang, Ngo Dinh [National University of Civil Engineering, 55 Giai Phong Street, Hai Ba Trung, Hanoi (Viet Nam); Ngoc, Do Quang [Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam)

    2012-08-31

    Good quality transparent conducting Al-doped ZnO films were deposited on quartz substrates from a high purity target using pulsed electron deposition (PED). Two series of films were made, one deposited at room temperature but at four pressures, viz., 0.7, 1.3, 2.0 and 2.7 Pa of oxygen and one deposited at 1.3 Pa oxygen pressure but at the substrate temperature ranged from room temperature to 600 Degree-Sign C. In order to evaluate the effect of substrate temperature and oxygen pressure on the properties of obtained films, various characterization techniques were employed including X-ray diffraction, stylus profiler, scanning electron microscope, optical spectrophotometer and electrical resistivity. For the first series films, the optimal oxygen pressure of 1.3 Pa was found to bring about the appropriate energetic deposition atoms which results in the best crystallinity. For the second series films, the lowest resistivity was obtained in the film grown at 400 Degree-Sign C. An attempt was made to reduce the resistivity by lowering the oxygen pressure to 0.5 Pa which was the lower limit of working pressure of the PED system. The obtained results indicate that PED is a suitable technique for growing transparent conducting ZnO films. - Highlights: Black-Right-Pointing-Pointer Transparent conducting Al-doped ZnO films grown by pulsed electron deposition (PED). Black-Right-Pointing-Pointer The film properties were found to depend strongly on the deposition conditions. Black-Right-Pointing-Pointer The best film was grown at the oxygen pressure of 0.5 Pa and at 400 Degree-Sign C. Black-Right-Pointing-Pointer PED is found to be a suitable technique for growing transparent conducting ZnO films.

  8. Fabrication of a Transparent Anti-stain Thin Film Using an Atmospheric Pressure Cold Plasma Deposition System

    Directory of Open Access Journals (Sweden)

    Suzaki Y.

    2013-08-01

    Full Text Available Recently, outdoor-constructed solar panels have a problem such as power generation efficiency is reduced by the face plate dirt. On the other hand, electronic touch panels have a problem such as deterioration of visibility of the screen by finger grease stain. To solve these problems, we need to fabricate the anti-stain surfaces which have superhydrophobic and oil-repellent abilities without spoiling the transparency of the transparent substrate. In this study, we fabricated lotus leaves like surface on a glass substrate. Firstly, SiO2 particles of ca. 100 nm diameter were arranged on the glass substrates. Secondly, to obtain the fractal-like structure (ultra-micro-rough structure on the surface, ZnO thin film having a columnar structure was fabricated on the SiO2 particles by using an atmospheric pressure cold plasma deposition system. By using these processes, the ZnO columns formed radiantly on the spherical surface of the SiO2 particles. Furthermore, without spoiling the ultra-micro-rough structure, a transparent anti-stain monolayer with low surface energy was prepared by using a chemical adsorption technique onto the surface. Average value of the water droplet contact angles of the samples fabricated was 151.8 deg. Field emission scanning electron microscope (FE-SEM observation reviled that this sample has a raspberry structure in which columnar structure has grown radially on the SiO2 particles.

  9. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics.

    Science.gov (United States)

    Mokurala, Krishnaiah; Baranowski, Lauryn L; de Souza Lucas, Francisco W; Siol, Sebastian; van Hest, Maikel F A M; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  10. Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; Siol, Sebastian; van Hest, Maikel F. A. M.; Mallick, Sudhanshu; Bhargava, Parag; Zakutayev, Andriy

    2016-09-12

    Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.

  11. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  12. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate.

  13. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  14. Fabrication of nano-engineered transparent conducting oxides by pulsed laser deposition.

    Science.gov (United States)

    Gondoni, Paolo; Ghidelli, Matteo; Di Fonzo, Fabio; Li Bassi, Andrea; Casari, Carlo S

    2013-02-27

    Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O₂ pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO₂, Al₂O₃, WO₃ and Ag₄O₄.

  15. Annealing Effect of Pulsed Laser Deposited Transparent Conductive Ta-Doped Titanium Oxide Films

    Institute of Scientific and Technical Information of China (English)

    WU Bin-Bin; PAN Feng-Ming; YANG Yu-E

    2011-01-01

    Tantalum-doped TiO2 Rilms were deposited on glass at 300℃PG by pulsed laser deposition (PLD). After post-annealing in vacuum (~10-4 Pa) at temperatures ranging from 450℃ to 650℃, these films were crystallized into an anatase TiO2 structure and presented good conductive features. With increasing annealing temperature up to 550℃, the resistivity of the films was measured to be around 8.7 x 10-4 Ω·cm. Such films exhibit high transparency of over 80% in the visible light region. These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.%Tantalum-doped TiO2 films were deposited on glass at 300℃ by pulsed laser deposition (PLD).After postannealing in vacuum (~10-4 Pa) at temperatures ranging from 450℃ to 650℃,these films were crystallized into an anatase TiO2 structure and presented good conductive features.With increasing annealing temperature up to 550℃,the resistivity of the films was measured to be around 8.7 × 10-4 Ω·cm.Such films exhibit high transparency of over 80% in the visible light region.These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.Transparent conducting oxides (TCOs) have received much attention both in fundamental research and device applications due to their good combination of high electrical conductivity and excellent optical transparency.[1] Among various TCOs,indium tin oxide (ITO) is considered as the most beneficial TCO due to its excellent properties:low resistivity (~10-4 Ω·cm),high optical transmittance (80-90%)and simple preparation process.[2] However,due to the scarcity and high cost of indium,ITO may not be able to satisfy the demands in the future.Hence,it is necessary to explore new candidates of TCOs for expanding application usage.

  16. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  17. Physical properties of a non-transparent cadmium oxide thick film deposited at low fluence by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Quiñones-Galván, J.G., E-mail: erk_183@hotmail.com [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco C.P. 44430 (Mexico); Lozada-Morales, R. [Facultad de Ciencias Físico-Matemáticas, Postgrado en Física Aplicada, Benemérita Universidad Autónoma de Puebla, Av. 14 sur y Av. San Claudio, Col. San Manuel, Puebla (Mexico); Jiménez-Sandoval, S. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Apartado Postal 1-798 Querétaro, Qro 76001 (Mexico); Camps, Enrique [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apartado postal 18-1027, México D.F. C.P. 11801 (Mexico); and others

    2016-04-15

    Highlights: • A non-transparent cadmium oxide film has been deposited by pulsed laser deposition. • The CdO film is polycrystalline and highly oriented in the (2 0 0) direction. • Thermal treatment was applied in order to see the effect on its physical properties. - Abstract: A stable non-transparent CdO film was grown by pulsed laser deposition. The sample was thermally annealed at 500 °C in air. A (2 0 0) highly oriented polycrystalline film was obtained. The annealed sample has not preferred orientation. Scanning electron micrographs show a grain size reduction for the annealed sample. By Raman spectroscopy, the defects related second order vibrational modes of CdO were observed. Chemical composition analysis shows the presence of CdO together with a substoichiometric CdO{sub x} phase for the as-grown sample. For the annealed sample a compensation of oxygen vacancies was observed. Electrical resistivity measurements give a value of 8.602 × 10{sup −4} (Ω cm) for the as-grown film. For the annealed sample the electrical resistivity increased to a value of 9.996 × 10{sup −3} (Ω cm). Zero transmission has never been reported for CdO films. The photoluminescence spectra were measured in order to shed some light on the origin of the zero transmission.

  18. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions

    DEFF Research Database (Denmark)

    Li, Tao; Jevric, Martyn; Hauptmann, Jonas Rahlf

    2013-01-01

    A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules...

  19. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    Science.gov (United States)

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-09

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

  20. Contact-enhanced transparent silver nanowire network for all solution-based top-contact metal-oxide thin-film transistors.

    Science.gov (United States)

    Kim, Yong-Hoon; Kim, Tae-Hyoung; Lee, Yeji; Kim, Jong-Woong; Kim, Jaekyun; Park, Sung Kyu

    2014-11-01

    In this paper, we investigate contact-enhanced transparent silver nanowire (Ag NW) network for solution-processed metal-oxide thin-film transistors (TFTs). Mechanical roll pressing was applied to a bar-coated Ag NW film to enhance the inter-nanowire connectivity. As a result, the sheet resistance of the Ag NW film was decreased from 119.5 ψ/square to 92.4 ψ/square, and more stable and enhanced TFT characteristics were achieved when the roll-pressed Ag NW was employed as source/drain electrodes. In addition, a non-acidic wet etching method was developed to pattern the Ag NW electrodes to construct top-contact geometry indium-gallium-zinc oxide TFTs. From the results, it is believed that the mechanical roll pressing and non-acidic wet etching method may be utilized in realizing all solution-based transparent metal-oxide TFTs.

  1. Characterization of Plasma Enhanced Chemical Vapor Deposition-Physical Vapor Deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brunon, Celine [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Chadeau, Elise; Oulahal, Nadia [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Grossiord, Carol [Science et Surface, 64, Chemin des Mouilles, F-69130 Ecully (France); Dubost, Laurent [HEF, ZI SUD, Rue Benoit Fourneyron, F-42166 Andrezieux Boutheon (France); Bessueille, Francois [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France); Simon, Farida [TDV Industrie, 43 Rue du Bas des Bois, BP 121, F-53012 Laval Cedex (France); Degraeve, Pascal [Universite de Lyon, Universite Lyon 1, Laboratoire de Recherche en Genie Industriel Alimentaire (LRGIA, E.A. 3733), Rue Henri de Boissieu, F-01000 Bourg en Bresse (France); Leonard, Didier, E-mail: didier.leonard@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, Laboratoire des Sciences Analytiques (LSA), CNRS, UMR 5180, Bat. J. Raulin 5eme etage, F-69622 Villeurbanne Cedex (France)

    2011-07-01

    Textiles for the food industry were treated with an original deposition technique based on a combination of Plasma Enhanced Chemical Vapor Deposition and Physical Vapor Deposition to obtain nanometer size silver clusters incorporated into a SiOCH matrix. The optimization of plasma deposition parameters (gas mixture, pressure, and power) was focused on textile transparency and antimicrobial properties and was based on the study of both surface and depth composition (X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), as well as Transmission Electron Microscopy, Atomic Force Microscopy, SIMS depth profiling and XPS depth profiling on treated glass slides). Deposition conditions were identified in order to obtain a variable and controlled quantity of {approx} 10 nm size silver particles at the surface and inside of coatings exhibiting acceptable transparency properties. Microbiological characterization indicated that the surface variable silver content as calculated from XPS and ToF-SIMS data directly influences the level of antimicrobial activity.

  2. Mass spectrometry-based proteomic analyses of contact lens deposition.

    Science.gov (United States)

    Green-Church, Kari B; Nichols, Jason J

    2008-02-08

    The purpose of this report is to describe the contact lens deposition proteome associated with two silicone hydrogel contact lenses and care solutions using a mass spectrometric-based approach. This was a randomized, controlled, examiner-masked crossover clinical trial that included 48 participants. Lenses and no-rub care solutions evaluated included galyfilcon A (Acuvue Advance, Vistakon Inc., Jacksonville, FL), lotrafilcon B (O2 Optix, CIBA Vision Inc., Duluth, GA), AQuify (CIBA Vision Inc.), and ReNu MoistureLoc (Bausch and Lomb Inc., Rochester, NY). After two weeks of daily wear in each lens-solution combination, the left lens was removed by the examiner (using gloves and forceps) and placed in a protein precipitation buffer (acetone). The precipitate was quantitated for total protein concentration (per lens), and proteins were then identified using liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) and peptide sequencing. Between 7.32 and 9.76 microg/lens of protein was observed on average from each lens-solution combination. There were 19 total unique proteins identified across the two lens materials, and six proteins were identified in all four lens-solution combinations including lipocalin, lysozyme, lacritin, lactoferrin, proline rich 4, and Ig Alpha. Lotrafilcon B was associated with 15 individual proteins (across both care solutions), and 53% of these proteins were observed in at least 50% of the analyses. Galyfilcon A was associated with 13 individual proteins, and 38.5% of these proteins were observed in at least 50% of the analyses. There were three unique proteins identified from galyfilcon A and four unique proteins identified from lotrafilcon B. The total amount of proteins identified from silicone hydrogel materials is much less than the amount from traditional soft lens materials. For the most part, the deposition proteome across these lenses is similar, although the different polymer characteristics might be associated with some

  3. Electrochemically assisted deposition of transparent, mechanically robust TiO2 films for advanced applications

    Science.gov (United States)

    Maino, Giulia; Meroni, Daniela; Pifferi, Valentina; Falciola, Luigi; Soliveri, Guido; Cappelletti, Giuseppe; Ardizzone, Silvia

    2013-11-01

    In recent years, titanium dioxide has received ever growing interest, thanks to its promising applications in numerous fields such as environmental remediation, H2 generation and photovoltaics. Here, transparent and mechanically robust TiO2 films are deposited by a simple and inexpensive electrochemically assisted procedure on various kinds of substrates, both conductive and nonconductive (e.g., glass slides or different metal laminas with variable surface roughness). The obtained films are uniform, crack-free and exhibit excellent chemical, mechanical, and electrochemical robustness. The obtained layers are compared to films prepared by a routine preparation technique, such as dip coating, showing much better morphological, optical, and conductive properties. The photo-activity of TiO2 can be exploited to obtain transparent spectroelectrochemical systems and to control the wetting features of the surface. Applications concerning the modulation of the wettability are presented with respect to both the antifogging and antistain properties. The photoelectrochemical properties of TiO2 films are exploited to activate a photoelectrochemical polymerization of polypyrrole onto an unconductive support. These materials are promising for numerous applications such as smart windows, antifogging mirrors, solar cells, and optically transparent electrodes.

  4. Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis.

    Science.gov (United States)

    Golovin, Kevin; Lee, Duck H; Mabry, Joseph M; Tuteja, Anish

    2013-12-02

    See-through surfaces: High transparency is required to use superomniphobic surfaces, which can be self-cleaning, stain-proof, anti-bio-fouling, drag-reducing, or anti-fogging, for smartphone screens, eye glasses, windshields, or flat panel displays. A spray-based method has now been developed that can fabricate transparent, flexible, and highly superomniphobic surfaces. HD=hexadecane.

  5. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  6. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  7. Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique

    Indian Academy of Sciences (India)

    A A ATTA; M M EL-NAHASS; KHALED M ELSABAWY; M M ABD EL-RAHEEM; A M HASSANIEN; A ALHUTHALI; ALI BADAWI; AMAR MERAZGA

    2016-11-01

    Transparent metal oxide thin films of samarium oxide (Sm$_2$O$_3$) were prepared on pre-cleaned fused optically flat quartz substrates by radio-frequency (RF) sputtering technique. The as-deposited thin films were annealed at different temperatures (873, 973 and 1073 K) for 4 h in air under normal atmospheric pressure. The topological morphology of the film surface was characterized by using atomic force microscopy (AFM). The optical properties of the as-prepared and annealed thin films were studied using their reflectance and transmittance spectra at nearly normal incident light. The estimated direct optical band gap energy (E$^{d}_{g}$ ) values were found to increase by increasing the annealing temperatures. The dispersion curves of the refractive index of Sm$_2$O$_3$ thin films were found to obey the single oscillator model.

  8. A measurement method for distinguishing the real contact area of rough surfaces of transparent solids using improved Otsu technique

    Science.gov (United States)

    Song, Bao-Jiang; Yan, Shao-Ze; Xiang, Wu-Wei-Kai

    2015-01-01

    An experimental method of measuring the real contact area of transparent blocks based on the principle of total internal reflection is presented, intending to support the investigation of friction characteristics, heat conduction, and energy dissipation at the contact interface. A laser sheet illuminates the contact interface, and the transmitted laser sheet is projected onto a screen. Then the contact information is acquired from the screen by a camera. An improved Otsu method is proposed to process the data of experimental images. It can compute the threshold of the overall image and filter out all the pixels one by one. Through analyzing the experimental results, we describe the relationship between the real contact area and the positive pressure during a continuous loading process, at different loading rates, with the polymethyl methacrylate (PMMA) material. A hysteresis phenomenon in the relationship between the real contact area and the positive pressure is found and explained. Project supported by the National Natural Science Foundation of China (Grant No. 11272171), the Beijing Natural Science Foundation, China (Grant No. 3132030), and the Education Ministry Doctoral Fund of China (Grant No. 20120002110070).

  9. Non-contact measurement of the electrical conductivity and coverage density of silver nanowires for transparent electrodes using Terahertz spectroscopy

    Science.gov (United States)

    Park, Sung-Hyeon; Chung, Wan-Ho; Kim, Hak-Sung

    2017-02-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used for non-contact measurement of the conductivity and coverage density (D C) of silver nanowires (SNWs) as transparent electrodes. The reflection mode of THz-TDS with an incident angle of 30° was used, and the sheet resistance (R sh) of SNW films was measured using the four-point probe method. The correlations between the THz reflection ratio and R sh were studied by comparing the results of the four-point probe method and the measured THz reflection ratios. Also, the D C of SNWs was evaluated using THz waveforms with a general refractivity formula. This result matched well with a conventional approximation method using a scanning electron microscope image. Furthermore, defects in the SNWs could be easily detected using the THz-TDS imaging technique. The non-contact THz-TDS measurement method that we developed is expected to be a promising technique for non-contact measurement of the R sh and D C for transparent conductive electrodes.

  10. KTN thin films prepared by pulsed laser deposition on transparent single crystal quartz (100)

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiaodong; PENG; Xiaofeng; ZHANG; Duanming

    2005-01-01

    Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.

  11. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  12. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  13. Direct measurement of graphene contact resistivity to pre-deposited metal in buried contact test structure

    KAUST Repository

    Qaisi, Ramy M.

    2013-08-01

    We demonstrate a buried contact based novel test structure for direct contact resistivity measurement of graphene-metal interfaces. We also observe excellent contact resistivity 1 μO-cm2 without any additional surface modification suggesting that the intrinsic Au-graphene contact is sufficient for achieving devices with low contact resistance. The chemical mechanical polishing less test structure and data described herein highlights an ideal methodology for systematic screening and engineering of graphene-metal contact resistivity to enable low power high speed carbon electronics. © 2013 IEEE.

  14. Spray deposition of highly transparent fluorine doped cadmium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deokate, R.J.; Pawar, S.M.; Moholkar, A.V.; Sawant, V.S.; Pawar, C.A.; Bhosale, C.H. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India); Rajpure, K.Y. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India)], E-mail: kyr_phy@unishivaji.ac.in

    2008-01-30

    The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 deg. C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.

  15. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    Science.gov (United States)

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors.

  16. Preparation and characterization of transparent conducting Zn-Sn-O films deposited on organic substrates at low temperature

    Institute of Scientific and Technical Information of China (English)

    MA; Jin(马瑾); HUANG; ShuIai(黄树来); MA; Honglei(马洪磊); GAI; Lingyun(盖凌云)

    2003-01-01

    Transparent conducting Zn-Sn-O films were deposited on Polypropylene adipate thin-film substrates at Iow temperature by r. f. magnetron sputtering. The structural, electrical and optical properties of the deposited films were investigated. All the obtained films are of amorphous structure and have a very good adhesion to the substrates. The resistivity, carrier concentration and Hall mobility of the film are 1.3× 10-2 Ω @ cm, 4.1 × 1019 cm-3 and 12.4 cm2 @ V-1 @ s-1, respectively. The transmittance of the film reaches 82%.

  17. Effect of Magnetic Field on the Deposition of Transparent Diamond-Like Carbon ( DLC ) Films by RF-PCVD

    Institute of Scientific and Technical Information of China (English)

    HOU Hui-jun; ZhU Xia-gao; LIN Song-sheng; YUAN Zhen-hai; DAI Da-huang

    2004-01-01

    In order to deposit transparent and hard DLC films, magnetic field was introduced to enhance the plasma density of radiofrequency plasma chemical vapor deposition (RF-PCVD). In this paper, the configuration and computation of external magnetic field B are introduced. The restriction effect of magnetic field B on the charged particles and the effect of magnetic field B on the primary parameters-nonindependent power Pf and self-bias Uz were also studied. The mechanism of how magnetic field B affects self-bias Uz was analyzed.

  18. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuankun, E-mail: yuan.kun.zhu@gmail.com [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mendelsberg, Rueben J. [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Zhu Jiaqi, E-mail: zhujq@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Han Jiecai [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Anders, Andre [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer High quality CdO:In films were prepared on glass by pulsed filtered cathodic arc. Black-Right-Pointing-Pointer 230 nm thick films show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm and mobility of 142 cm{sup 2}/Vs. Black-Right-Pointing-Pointer In-doping significantly improves the conductivity and extends the transparent range. Black-Right-Pointing-Pointer Film crystalline quality is maintained with increasing In concentration. Black-Right-Pointing-Pointer The pulsed arc-grown CdO:In show excellent reproducibility of film properties. - Abstract: Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). It is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein-Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm, high electron mobility of 142 cm{sup 2}/Vs, and mean transmittance over 80% from 500 to 1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  19. Transparent heavy minerals in the coastal sediments of south Maharashtra and their significance in delineating source and environment of transportation and deposition

    Digital Repository Service at National Institute of Oceanography (India)

    Mislankar, P.G.; Gujar, A.R.; Ambre, N.V.

    of transportation and deposition. 16 transparent minerals have been identified which represent three different mineral assemblage viz. (1) tourmaline, amphibole, epidote and pyroxene (2) zircon, rutile and titanite (3) staurolite kynaite garnet and olivine...

  20. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  1. Properties of Vanadium-Doped Indium Oxide Deposited at Room Temperature as Transparent Conductor for Inverted Polymer Solar Cells

    Science.gov (United States)

    Choi, Min-Jun; Lim, Keun Yong; Park, Hyun-Woo; Kim, Han-Ki; Hwang, Do Kyung; Lim, Sung-Jin; Shim, Jae Won; Chung, Kwun-Bum

    2017-10-01

    The properties of vanadium-doped indium oxide (IVO) deposited at room temperature as a transparent conductor for inverted polymer solar cells have been investigated as a function of the vanadium doping concentration. IVO film prepared with V doping concentration of 0.03% showed optimal properties for use as a transparent conductor with figure of merit of 4.35 × 10-3 Ohm-1, related to altered band alignment between the Fermi level and conduction-band minimum. In the optimal optoelectrical conditions for the IVO film, performance optimization of PTB7:PC70BM inverted polymer solar cells resulted in maximum power conversion efficiency of 4.7 ± 0.4% under simulated air mass 1.5 global illumination at 100 mW/cm2.

  2. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.B. [Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeong, M.S. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeong, S.H., E-mail: shjeong@gist.ac.kr [Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-02-01

    Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO{sub 4} laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 {mu}m in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.

  3. Optical Properties and Electrochemical Performance of LiFePO4 Thin Films Deposited on Transparent Current Collectors.

    Science.gov (United States)

    Lee, HyunSeok; Yim, Haena; Kim, Kwang-Bum; Choi, Ji-Won

    2015-11-01

    LiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%. The initial specific discharge capacities of LiFePO4 thin films are 25.0 μAh/cm2 x μm on FTO, 33.0 μAh/cm2 x μm on ITO, and 13.0 μAh/cm2 x μm on AZO coated glass substrates. Interestingly, the retention capacities of LiFePO4 thin films are 76.0% on FTO, 31.2% on ITO, and 37.7% on AZO coated glass substrates at 20th cycle. The initial specific discharge capacity of the LiFePO4/FTO electrode is slightly lower, but the discharge capacities of the LiFePO4/FTO electrode relatively decrease less than those of the others such as LiFePO4/ITO and LiFePO4/AZO with cycling. The results reported here provide the high transparency of LiFePO4 thin films cathode materials and the good candidate as FTO current collector of the LiFePO4 thin film cathode of transparent thin film rechargeable batteries due to its high transparency and cyclic retention.

  4. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abrutis, Adulfas, E-mail: adulfas.abrutis@chf.vu.lt; Silimavicus, Laimis; Kubilius, Virgaudas; Murauskas, Tomas; Saltyte, Zita; Kuprenaite, Sabina; Plausinaitiene, Valentina [Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2014-03-15

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2 cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates were increased by a factor of ≈10–20 compared with those of traditional CVD at the same substrate temperature (400 °C). In-doped ZnO films with thickness of ≈150 nm deposited on sapphire-R grown at a wire current of 9 A exhibited a resistivity of ≈2 × 10{sup −3} Ωcm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.

  5. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  6. Optical spectroscopic analyses of CVD plasmas used in the deposition of transparent and conductive ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Espinos, J.P.; Yubero, F.; Barranco, A.; Gonzalez-Elipe, A.R. [Instituto de Ciencias de Materiales de Sevilla, CSIC-Universidad de Sevilla (Spain); Cotrino, J. [Universidad de Sevilla, Facultad de Fisica, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain)

    2001-07-01

    Transparent conducting ZnO:A1 thin films have been prepared by remote plasma enhanced chemical vapor deposition. Emission line profiles were recorded as a function of different plasma gas composition (oxygen and hydrogen mixtures) and different rates of precursors (Zn(C{sub 2}H{sub 5}){sub 2} and A1(CH{sub 3}){sub 3}) in the downstream zone of the plasma reactor. Optical emission spectroscopy were used to characterize the oxygen/hydrogen plasma as a function of hydrogen flow rate. The variation of plasma hydrogen content has an important influence in the resistivity of the films. (authors)

  7. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  8. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    Science.gov (United States)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  9. Grade and Tonnage Model of Contact Metasomatic Copper Deposit in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model, tonnage model, grade-tonnage model and tonnage-sequence model of contact metasomatic copper deposits in China. The mathematical properties of these models are described in detail.

  10. Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2012-03-01

    Full Text Available High quality bismuth (Bi nanowire and its ohmic contact free of interface damage are quite desired for its research and application. In this paper, we propose one new way to prepare high-quality single crystal Bi nanowires at a low deposition rate, by magnetron sputtering method without the assistance of template or catalyst. The slow deposition growth mechanism of Bi nanowire is successfully explained by an anisotropic corner crossing effect, which is very different from existing explanations. A novel approach free of interface damage to ohmic contact of Bi nanowire is proposed and its good electrical conductivity is confirmed by I-V characteristic measurement. Our method provides a quick and convenient way to produce high-quality Bi nanowires and construct ohmic contact for desirable devices.

  11. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah H.

    2017-08-04

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93% transparency in most of the visible range of the electromagnetic spectrum. Thin-film transistors fabricated with SnO2 gates show excellent transistor properties including saturation mobility of 15.3 cm2 V−1 s−1, a low subthreshold swing of ≈130 mV dec−1, a high on/off ratio of ≈109, and an excellent electrical stability under constant-voltage stressing conditions to the gate terminal. Moreover, the SnO2-gated thin-film transistors show excellent electrical characteristics when used in electronic circuits such as negative channel metal oxide semiconductor (NMOS) inverters and ring oscillators. The NMOS inverters exhibit a low propagation stage delay of ≈150 ns with high DC voltage gain of ≈382. A high oscillation frequency of ≈303 kHz is obtained from the output sinusoidal signal of the 11-stage NMOS inverter-based ring oscillators. These results show that SnO2 can effectively replace ITO in transparent electronics and sensor applications.

  12. Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Herrero, J.; Gutierrez, M.T. [Instituto de Energias Renovables CIEMAT, Madrid (Spain)

    1996-01-08

    The effect of the substrate temperature on the optoelectronic properties of ZnO-based thin films prepared by rf magnetron sputtering has been studied. Three different targets (Zn/Al 98/2 at%, ZnO:Al 98/2 at% and ZnO:Al{sub 2}O{sub 3} 98/2 wt%) have been investigated in order to compare resulting samples and try to reduce the substrate temperature down to room temperature. From the ZnO:Al{sub 2}O{sub 3} target, transparent conductive zinc oxide has been obtained at 25C with the average optical transmission in the 400-800 nm wavelength range, T=80-90% and resistivity, {rho}=3-5x10{sup -3} {Omega}cm. In Al:ZnO layers, the spatial distribution of the electrical properties across the substrate placed parallel to the target has been improved by depositing at high substrate temperatures, above 200C. Besides, owing to diffusion processes of CuInSe{sub 2} and CdS take place at 200C, an Al:ZnO/CdS/CuInSe{sub 2} polycrystalline solar cell made with the Al:ZnO deposited at 25C as the transparent conductive oxide, has shown a more efficient photovoltaic response, {eta}=6.8%, than the one measured when the aluminium-doped zinc oxide has been prepared at 200C, {eta}=1.8%

  13. Characterization of Deposited Platinum Contacts onto Discrete Graphene Flakes for Electrical Devices

    KAUST Repository

    Holguin Lerma, Jorge A.

    2016-05-03

    For years, electron beam induced deposition has been used to fabricate electrical contacts for micro and nanostructures. The role of the contact resistance is key to achieve high performance and efficiency in electrical devices. The present thesis reports on the electrical, structural and chemical characterization of electron beam deposited platinum electrodes that are exposed to different steps of thermal annealing and how they are used in four-probe devices of ultrathin graphite (uG) flakes (<100nm thickness). The device integration of liquid phase exfoliated uG is demonstrated, and its performance compared to devices made with analogous mechanically exfoliated uG. For both devices, similar contact resistances of ~2kΩ were obtained. The electrical measurements confirm a 99.5% reduction in contact resistance after vacuum thermal annealing at 300 °C. Parallel to this, Raman characterization confirms the formation of a nanocrystalline carbon structure over the electrode. While this could suggest an enhancement of the electrical transport in the device, an additional thermal annealing step in air at 300 °C, promoted the oxidation and removal of the carbon shell and confirmed that the contact resistance remained the same. Overall this shows that the carbon shell along the electrode has no significant role in the contact resistance. Finally, the challenges based on topographical analysis of the deposited electrodes are discussed. Reduction of the electrode’s height down to one-third of the initial value, increased surface roughness, formation of voids along the electrodes and the onset of platinum nanoparticles near the area of deposition, represent a challenge for future work.

  14. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Science.gov (United States)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-02-01

    Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  15. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  16. All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier

    NARCIS (Netherlands)

    Spee, D.A.; Schipper, M.R.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2013-01-01

    We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100 °C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6 g/m2/day at a temperature of 60 °C and a relative h

  17. Low-temperature deposition of transparent diamond films with a microwave cavity plasma reactor

    Science.gov (United States)

    Ulczynski, Michael J.

    1998-10-01

    Low-temperature diamond deposition with Microwave Cavity Plasma Reactor (MCPR) technology was investigated for application to temperature sensitive substrates. The substrate temperature during most CVD diamond deposition processes is typically greater then 600 C; however, there are some applications where temperature sensitive materials are used and the deposition temperature must be maintained below 550 C. These applications include materials like boro-silicate glass, which has a relatively low strain-point temperature, and integrated circuits that contain low melting point components. Experiments were conducted in three areas. The first area was MCPR development, the second was benchmark deposition and characterization of diamond films on silicon substrates and the third was deposition and characterization of diamond films on boro-silicate glass substrates. MCPR development included an investigation of various MCPR configurations that were designed and adapted for uniform, low-temperature diamond deposition over areas as large as 80-cm2. Reactors were investigated with end-feed microwave excitation and side-feed microwave excitation for maximum deposition area and uniformity. Various substrate receptor configurations were also investigated including a substrate heater and cooler. From these investigations, deposition parameters such as substrate temperature, deposition rate, deposition area and deposition uniformity were characterized. The benchmark silicon diamond deposition experiments were conducted for comparison to previous high temperature, >550 C, MCPR research and growth models. Here deposition results such as deposition rate and film quality were compared with applications of diamond growth models by Harris-Goodwin and Bachmann. Additionally, characterization experiments were conducted to investigate film attributes that are critical to optical applications, such as film surface roughness and deposition uniformity. Included as variables in these

  18. Transparent electric convection heater

    OpenAIRE

    Khalid, A.; Luck, J.L.

    2001-01-01

    An optically transparent electrically heated convection heater for use as a space heater in homes, offices, shops. Typically, said convection heater consists of a transparent layer 1 upon which is deposited a layer of a transparent electrically conductive material 2 such as indium-tin-oxide, electrodes 3 and 3a are formed on opposite edges of the transparent electrically conductive layer 2 and electrical wires 4 and 4a are connected to the electrodes. The transparent electrically conductive l...

  19. High quality ZnS/Au/ZnS transparent conductive tri-layer films deposited by pulsed laser deposition

    Science.gov (United States)

    Wang, Caifeng; Li, Qingshan; Wang, Jisuo; Zhang, Lichun; Zhao, Fengzhou; Dong, Fangying

    2016-07-01

    ZnS/Au/ZnS tri-layer films were deposited on quartz glass substrates by pulsed laser deposition. The influence of Au layer thickness on optical and electrical properties of the tri-layer ZnS/Au/ZnS was studied. X-ray diffractometer (XRD) and scanning electron microscope were employed to characterize the crystalline structure and surface morphology of the tri-layer films. Hall measurements, ultraviolet and visible spectrophotometer, four-point probe were used to explore the optoelectronic properties of the ZnS/Au/ZnS. The increase of Au layer thickness resulted in the decreased resistivity, the increased carrier concentration, and the declined transmittance in the visible light region.

  20. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    Science.gov (United States)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV-visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  1. Transparent Conducting ZnO:A1 Films on Different Organic Substrates Deposited by r.f. Sputtering

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transparent conducting ZnO:AI films with good adhesion, low resistivity and high transmittance have been prepared on polyptopylene adipate (PPA), polyisocyanate (PI) and polyester substrates by r.f. magnetron sputtering. The structural, electrical and optical properties of the obtained films were studied. The polycrystalline ZnO:AI films with resistivity as Iow as 5.76×10-4 Ω·cm,carrier concentration 9.06×1020 cm-a and Hall mobility 11.98 cm2 V-1s-1 were produced on PPA substrate by controlling the deposition parameters. The average transmittance of films on PPA is ~80% in the wavelength range of visible spectrum. The films on PPA substrates have better electrical and optical properties compared with the filmson other kinds of substrates.

  2. Investigations for an alternative to contact angle measurement after Hexamethyldisilazane deposition

    Science.gov (United States)

    Aßmann, H.; Krause, A.; Maurer, R.; Dankelmann, M.; Specht, M.; Usry, W.; Newcomb, R.

    2015-09-01

    The adhesion promoter Hexamethyldisilazane (HMDS) plays a crucial role in i-line lithography. According to HMDS deposition forms, a hydrophobic surface defines upwardly directed, non-polar trimethysilyl groups. This condition is of particular importance for wet chemical development and subsequent wet chemical etching processes, because the defined hydrophobic surface prevents water from creeping beneath the resist mask. Undesirable effects, such as (partial) loss of the resist structure or under etching can be prevented. Currently, a common and suitable method to control the success of HMDS deposition is the contact angle measurement. There, a drop of water is applied to the substrate and the contact angle / wetting angle is measured. As a result, conclusions can be drawn about the HMDS process. Unfortunately, however, this simple to implement measurement method raises some problems. The measurement is extremely dependent on the substrate, wherein the measurement results vary greatly. A possible reason for this is the different surface properties of the wafers which are due to adsorbate films. Typically, a contact angle measurement is performed just after the HMDS deposition. A difference between pre- and post-measurement cannot be determined. A deviation of the contact angle can be caused by either an insufficient HMDS seeding, or just as well by other, unknown surface properties. The studies presented here were performed with the measuring system ChemetriQ 5000 from Qcept Technologies. This measurement system was originally developed for Inspection on non-visible defects on the wafer level. It is able to detect differences of work functions as a result of surface coverage by thin film / adsorbate, materials or residues. The change in the surface work function due to the generated adsorbate layer during the HMDS deposition is determined by the measuring system by means of a difference between pre- and post-measurement.

  3. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Science.gov (United States)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  4. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    T. S. Tripathi

    2016-04-01

    Full Text Available We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD from Cu(thd2, Cr(acac3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  5. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    Science.gov (United States)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  6. ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions

    Science.gov (United States)

    Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Głodowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; Kruszewski, P.; Huby, N.; Tallarida, G.; Ferrari, S.

    2009-06-01

    We report on zinc oxide thin films grown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily n-type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnO thin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low n electron concentration is a result of lower number of defects rather than the self-compensation effect.

  7. Spray Deposited Nanocrystalline ZnO Transparent Electrodes: Role of Precursor Solvent

    Directory of Open Access Journals (Sweden)

    C.M. Mahajan

    2016-06-01

    Full Text Available Nanocrystalline ZnO thin films were deposited by intermittent spray pyrolysis using different alcoholic and aqua-alcoholic precursor solvents. The XRD analysis reveals the polycrystallinity of hexagonal wurtzite type ZnO films with preferred c-axis orientation along [002] direction. The polycrystallinity increased due to use of aqua-alcoholic precursor solvent. The crystallite size was found to vary from 41.7 nm to 59.4 nm and blue shift in band-gap energy (3.225 eV to 3.255 eV was observed due to aqua-alcoholic to alcoholic precursor solvent transition. The films deposited using alcoholic precursor solvent exhibited high transmittance (> 92 % with low dark resistivity (10 – 3 Ω·cm as compared to aqua-alcoholic precursor solvent. The effect of precursor solvent on resistivity, carrier concentration (η – /cm3, carrier mobility (μ – cm2V – 1s – 1, sheet resistance (Ω/ and figure of merit (ΦTC is also reported. We recommend ethanol or methanol as a superior precursor solvent over aqua-alcoholic precursor solvent for deposition of device quality ZnO thin films.

  8. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.

    Science.gov (United States)

    Zhang, Xiaoliang; Aitola, Kerttu; Hägglund, Carl; Kaskela, Antti; Johansson, Malin B; Sveinbjörnsson, Kári; Kauppinen, Esko I; Johansson, Erik M J

    2017-01-20

    Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer.

  9. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates.

    Science.gov (United States)

    Yu, Dongshan; Trad, Tarek; McLeskey, James T; Craciun, Valentin; Taylor, Curtis R

    2010-05-28

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20-80 nm in diameter, up to 6 μm in length, density oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  10. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  11. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques

    Science.gov (United States)

    Araki, Teppei; Mandamparambil, Rajesh; Martinus Peterus van Bragt, Dirk; Jiu, Jinting; Koga, Hirotaka; van den Brand, Jeroen; Sekitani, Tsuyoshi; den Toonder, Jaap M. J.; Suganuma, Katsuaki

    2016-11-01

    Silver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages. Here, we report a successful non-contact patterning of AgNWs-based stretchable and transparent electrodes by laser-induced forward transfer (LIFT) technique. The technique was used to fabricate a 100% stretchable electrode with a width of 200 μm and electrical resistivity 10-4 Ωcm. Experiments conducted integrating the stretchable electrode on rubber substrate in which LED was pre-fabricated showed design flexibility resulting from non-contact printing. Further, a patterned transparent electrode showed over 80% in optical transmittance and less than 100 Ω sq-1 in sheet resistance by the optimized LIFT technique.

  12. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques.

    Science.gov (United States)

    Araki, Teppei; Mandamparambil, Rajesh; van Bragt, Dirk Martinus Peterus; Jiu, Jinting; Koga, Hirotaka; van den Brand, Jeroen; Sekitani, Tsuyoshi; den Toonder, Jaap M J; Suganuma, Katsuaki

    2016-11-11

    Silver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages. Here, we report a successful non-contact patterning of AgNWs-based stretchable and transparent electrodes by laser-induced forward transfer (LIFT) technique. The technique was used to fabricate a 100% stretchable electrode with a width of 200 μm and electrical resistivity 10(-4) Ωcm. Experiments conducted integrating the stretchable electrode on rubber substrate in which LED was pre-fabricated showed design flexibility resulting from non-contact printing. Further, a patterned transparent electrode showed over 80% in optical transmittance and less than 100 Ω sq(-1) in sheet resistance by the optimized LIFT technique.

  13. On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition

    Science.gov (United States)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Barcones, Beatriz; Melskens, J.; Kessels, Wilhelmus M. M.

    2016-08-01

    Hydrogen-doped indium oxide (In2O3:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In2O3:H. This process consists of ALD of In2O3:H films at 100 °C, followed by a solid phase crystallization step at 150-200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  14. Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells

    Science.gov (United States)

    Kim, Jun Ho; Kang, Tae-Woon; Kwon, Sung-Nam; Na, Seok-In; Yoo, Young-Zo; Im, Hyeong-Seop; Seong, Tae-Yeon

    2016-09-01

    We investigated the optical and electrical properties of room-temperature-deposited indium-tin-oxide (ITO)/Ag (19 nm)/ITO multilayer films as a function of ITO layer thickness. The optical and electrical properties of the ITO/Ag/ITO films were compared with those of high-temperature-deposited ITO-only films for use as an anode in organic solar cells (OSCs). The ITO/Ag/ITO multilayer films had sheet resistances in the range 5.40-5.78 Ω/sq, while the ITO-only film showed 14.18 Ω/sq. The carrier concentration of the ITO/Ag/ITO films gradually decreased from 2.01 × 1022 to 7.20 × 1021 cm-3 as the ITO thickness increased from 17 nm to 83 nm. At 530 nm, the transmittance of the ITO/Ag/ITO (50 nm/19 nm/50 nm) films was ~90%, while that of the ITO-only film gave 96.5%. The multilayer film had a smooth surface with a root mean square (RMS) roughness of 0.49 nm. Poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methylester (PCBM) bulk heterojunction (BHJ)-based OSCs fabricated with the ITO/Ag/ITO (50 nm/19 nm/50 nm) film showed a power conversion efficiency (PCE) (2.84%) comparable to that of OSCs with a conventional ITO-only anode (3.48%).

  15. Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells

    Science.gov (United States)

    Kim, Jun Ho; Kang, Tae-Woon; Kwon, Sung-Nam; Na, Seok-In; Yoo, Young-Zo; Im, Hyeong-Seop; Seong, Tae-Yeon

    2017-01-01

    We investigated the optical and electrical properties of room-temperature-deposited indium-tin-oxide (ITO)/Ag (19 nm)/ITO multilayer films as a function of ITO layer thickness. The optical and electrical properties of the ITO/Ag/ITO films were compared with those of high-temperature-deposited ITO-only films for use as an anode in organic solar cells (OSCs). The ITO/Ag/ITO multilayer films had sheet resistances in the range 5.40-5.78 Ω/sq, while the ITO-only film showed 14.18 Ω/sq. The carrier concentration of the ITO/Ag/ITO films gradually decreased from 2.01 × 1022 to 7.20 × 1021 cm-3 as the ITO thickness increased from 17 nm to 83 nm. At 530 nm, the transmittance of the ITO/Ag/ITO (50 nm/19 nm/50 nm) films was 90%, while that of the ITO-only film gave 96.5%. The multilayer film had a smooth surface with a root mean square (RMS) roughness of 0.49 nm. Poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methylester (PCBM) bulk heterojunction (BHJ)-based OSCs fabricated with the ITO/Ag/ITO (50 nm/19 nm/50 nm) film showed a power conversion efficiency (PCE) (2.84%) comparable to that of OSCs with a conventional ITO-only anode (3.48%).

  16. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  17. Depositing aluminum as sacrificial metal to reduce metal-graphene contact resistance

    Science.gov (United States)

    Da-cheng, Mao; Zhi, Jin; Shao-qing, Wang; Da-yong, Zhang; Jing-yuan, Shi; Song-ang, Peng; Xuan-yun, Wang

    2016-07-01

    Reducing the contact resistance without degrading the mobility property is crucial to achieve high-performance graphene field effect transistors. Also, the idea of modifying the graphene surface by etching away the deposited metal provides a new angle to achieve this goal. We exploit this idea by providing a new process method which reduces the contact resistance from 597 Ω·μm to sub 200 Ω·μm while no degradation of mobility is observed in the devices. This simple process method avoids the drawbacks of uncontrollability, ineffectiveness, and trade-off with mobility which often exist in the previously proposed methods. Project by the National Science and Technology Major Project, China (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Grant No. 61136005), the Chinese Academy of Sciences (Grant No. KGZD-EW-303), and the Project of Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003).

  18. Paper supports in electrocatalysis. Weak contact catalysis with seed-mediated grown gold nanoparticle deposits

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Munetaka; Nakashima, Daisuke [Department of Material Chemistry, Graduate School of Engineering, Kyoto University (Japan); Cummings, Charles Y.; Marken, Frank [Department of Chemistry, University of Bath (United Kingdom)

    2011-01-15

    Paper surfaces (Whatman filter papers, Kimwipes, and Japanese Washi papers) were employed as support for gold nanoparticles (AuNPs) deposited by the seed-mediated growth method. The AuNP-modified paper or textile was brought into 'weak' (or non-permanent) contact with a glassy carbon electrode and immersed into aqueous electrolyte media. Electrochemical responses for the Fe(CN){sub 6}{sup 4-}/Fe(CN){sub 6}{sup 3-} redox system in 0.1 M phosphate buffer (pH 7.0) and 1.0 M KCl solutions were investigated by voltammetry and impedance methods. Even for weakly contacted AuNP catalysts of relatively low density faster electron transfer was observed. Particle sizes of at least 20 nm diameter were required. There was no permanent contact from AuNP catalysts to the electrode and the process was therefore termed 'weak contact catalysis'. The method is proposed as a rapid and novel catalyst screening tool with potential applications in fuel cell and sensor technologies. (author)

  19. New approach for fabricating hybrid-structured metal mesh films for flexible transparent electrodes by the combination of electrospinning and metal deposition

    Science.gov (United States)

    Huh, Jin Woo; Lee, Dong Kyu; Jeon, Hwan-Jin; Ahn, Chi Won

    2016-11-01

    In this study, hybrid-structured metal mesh (HMM) films as potential flexible transparent electrodes, composed of aligned micro-sized metal fibers integrated into random network of metal nanofibers, were fabricated by the combination of electrospinning and metal deposition. These naturally fiber-bridged HMMs, with a gold layer thickness of 85 nm, exhibited a high transmittance of around 90% and a sheet resistance of approximately 10 Ω sq-1, as well as favorable mechanical stability under bending stress. These results demonstrate that the approach employed herein is a simple, highly efficient, and facile process for fabricating, uniform, interconnected fiber networks with potential for producing high-performance flexible transparent electrodes.

  20. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  1. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    Science.gov (United States)

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10(-4) Ω·cm, the carrier concentration is high up to 2.2 × 10(21) cm(-3). optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al2O3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and Ion/Ioff ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  2. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  3. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors.

    Science.gov (United States)

    Pal, Bhola N; Dhar, Bal Mukund; See, Kevin C; Katz, Howard E

    2009-11-01

    Sodium beta-alumina (SBA) has high two-dimensional conductivity, owing to mobile sodium ions in lattice planes, between which are insulating AlO(x) layers. SBA can provide high capacitance perpendicular to the planes, while causing negligible leakage current owing to the lack of electron carriers and limited mobility of sodium ions through the aluminium oxide layers. Here, we describe sol-gel-beta-alumina films as transistor gate dielectrics with solution-deposited zinc-oxide-based semiconductors and indium tin oxide (ITO) gate electrodes. The transistors operate in air with a few volts input. The highest electron mobility, 28.0 cm2 V(-1) s(-1), was from zinc tin oxide (ZTO), with an on/off ratio of 2 x 10(4). ZTO over a lower-temperature, amorphous dielectric, had a mobility of 10 cm2 V(-1) s(-1). We also used silicon wafer and flexible polyimide-aluminium foil substrates for solution-processed n-type oxide and organic transistors. Using poly(3,4-ethylenedioxythiophene) poly(styrenesulphonate) conducting polymer electrodes, we prepared an all-solution-processed, low-voltage transparent oxide transistor on an ITO glass substrate.

  4. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics.

  5. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    Science.gov (United States)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  6. Au-free ohmic Ti/Al/TiN contacts to UID n-GaN fabricated by sputter deposition

    Science.gov (United States)

    Garbe, V.; Weise, J.; Motylenko, M.; Münchgesang, W.; Schmid, A.; Rafaja, D.; Abendroth, B.; Meyer, D. C.

    2017-02-01

    The fabrication and characterization of an Au-free Ti/Al/TiN (20/100/100 nm) contact stack to unintentionally doped n-GaN with TiN serving as the diffusion barrier is presented. Sputter deposition and lift-off in combination with post deposition annealing at 850 °C are used for contact formation. After annealing, contact shows ohmic behavior to n-GaN and a specific contact resistivity of 1.60 × 10-3 Ω cm2. To understand the contact formation on the microscopic scale, the contact was characterized by current-voltage measurements, linear transmission line method, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show the formation of Ti-N bonds at the GaN/Ti interface in the as-deposited stack. Annealing leads to diffusion of Ti, Al, Ga, and N, and the remaining metallic Ti is fully consumed by the formation of the intermetallic tetragonal Al3Ti phase. Native oxide from the GaN surface is trapped during annealing and accumulated in the Al interlayer. The TiN capping layer, however, was chemically stable during annealing. It prevented oxidation of the Ti/Al contact bilayer successfully and thus proved to be a well suitable diffusion barrier with ideal compatibility to the Ti/Al contact metallization.

  7. Plasmonic three-dimensional transparent conductor based on Al-doped zinc oxide-coated nanostructured glass using atomic layer deposition.

    Science.gov (United States)

    Malek, Gary A; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-29

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for designing plasmonic 3D transparent conductors. Transformation of the nonconducting 3D structure to a conducting porous surface network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electron-beam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO-coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to those of untextured two-dimensional AZO-coated glass substrates. In addition, transmittance measurements of the glass samples coated at various AZO thicknesses showed preservation of the transparent nature of each sample, and the AuNPs demonstrated enhanced light scattering as well as light-trapping capabilities.

  8. The Contact Ageing Effect on Fretting Damage of an Electro-Deposited Coating against an AISI52100 Steel Ball

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2016-09-01

    Full Text Available This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel. Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.

  9. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  10. Ternary spinel cadmium stannate, cadmium indate, and zinc stannate and binary tin oxide and indium oxide transparent conducting oxides as front contact materials for cadmium sulfide/cadmium tellurium photovoltaic devices

    Science.gov (United States)

    Mamazza, Robert, Jr.

    Transparent conducting oxides (TCO's) of Cd2SnO 4 (cadmium stannate), CdIn2O4 (cadmium indate), and Zn2SnO4 (zinc stannate) thin films were investigated from a materials and applications point of view through. All films were deposited by co-sputtering using either binary oxide or metallic (reactive sputtering) targets. The film properties were investigated as a function of film composition and stoichiometry. The effect of process parameters such as deposition temperatures, and post-deposition heat treatments on the structural and electro-optical properties of the films were also investigated extensively. All as-deposited films were found to be amorphous independent of substrate deposition temperature. The electro-optical and crystallographic properties were heavily dependant on the post deposition heat treatments. Cd2SnO4, Zn 2SnO4, and CdIn2O4 all produced highly transparent films with average transmission values (400--900 nm range) of 92%, 93%, and 90%, respectively. Cd2SnO4 and CdIn 2O4 were highly conductive with resistivity values as low as 2.01 x 10-4 O-cm and 2.90 x 10 -4 O-cm, respectively. Conversely, Zn2SnO 4 was not able to produce highly conductive films, with the lowest resistivity being 4.3 x 10-3 O-cm. CdTe solar cells were fabricated using al the above materials as front contacts or as high-ρ layers in bi-layer structures. All cells were of the superstrate configuration: Low-ρ TCO/high-ρ TCO/CdS/CdTe/Back contact. Only the TCO layers were varied; the remainder of the device was held constant. In most cases the inclusion of a high-ρ TCO layer was found to improve solar cell performance, especially in regard to the open circuit voltage. Cd2SnO4 was the exception. The incorporation of Zn2SnO4 as a high-ρ layer enabled a greatest current collection from high energy wavelengths through an apparent thinning effect on the CdS. This increased the overall short circuit current density to values in excess of 24.9 mA/cm2. The standard device consisted of

  11. Improvement of GaN light-emitting diodes with surface-treated Al-doped ZnO transparent Ohmic contacts by holographic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.F. [Xiamen University, Department of Physics, Xiamen (China); National University of Singapore, Department of Materials Science and Engineering, Singapore (Singapore); Liu, Z.G.; Xie, Y.N.; Cai, J.F.; Liu, S.; Wu, Z.Y. [Xiamen University, Department of Physics, Xiamen (China); Gong, H. [National University of Singapore, Department of Materials Science and Engineering, Singapore (Singapore)

    2012-06-15

    This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs. (orig.)

  12. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Science.gov (United States)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  13. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    Science.gov (United States)

    Batra, Nitin M.; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L.; Costa, Pedro M. F. J.

    2015-11-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  14. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  15. Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoO(x) as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells.

    Science.gov (United States)

    Jeon, Il; Cui, Kehang; Chiba, Takaaki; Anisimov, Anton; Nasibulin, Albert G; Kauppinen, Esko I; Maruyama, Shigeo; Matsuo, Yutaka

    2015-07-01

    Organic solar cells have been regarded as a promising electrical energy source. Transparent and conductive carbon nanotube film offers an alternative to commonly used ITO in photovoltaics with superior flexibility. This communication reports carbon nanotube-based indium-free organic solar cells and their flexible application. Direct and dry deposited carbon nanotube film doped with MoO(x) functions as an electron-blocking transparent electrode, and its performance is enhanced further by overcoating with PSS. The single-walled carbon nanotube organic solar cell in this work shows a power conversion efficiency of 6.04%. This value is 83% of the leading ITO-based device performance (7.48%). Flexible application shows 3.91% efficiency and is capable of withstanding a severe cyclic flex test.

  16. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  17. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Villar, F.; Bertomeu, J.; Andreu, J. [CeRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Roca-i-Cabarrocas, P. [LPICM-Ecole Polytechnique, CNRS 91128 Palaiseau (France)

    2008-08-30

    The growing interest in using thinner wafers (< 200 {mu}m) requires the development of low temperature passivation strategies for the back contact of heterojunction solar cells. In this work, we investigate low temperature deposited back contacts based on boron-doped amorphous silicon films obtained by Hot-Wire CVD. The influence of the deposition parameters and the use of an intrinsic buffer layer have been considered. The microstructure of the deposited thin films has been comprehensively studied by Spectroscopic Ellipsometry in the UV-visible range. The effective recombination velocity at the back surface has been measured by the Quasi-Steady-State Photoconductance technique. Complete double-side heterojunction solar cells (1 cm{sup 2}) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  18. High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering

    OpenAIRE

    Aritra Dhar; Alford, T. L.

    2013-01-01

    Multilayer structures of TiO2/Ag/TiO2 have been deposited onto flexible substrates by room temperature sputtering to develop indium-free transparent composite electrodes. The effect of Ag thicknesses on optical and electrical properties and the mechanism of conduction have been discussed. The critical thickness (tc) of Ag mid-layer to form a continuous conducting layer is 9.5 nm and the multilayer has been optimized to obtain a sheet resistance of 5.7 Ω/sq and an average optical transmittance...

  19. Conformal Coating of Three-Dimensional Nanostructures via Atomic Layer Deposition for Development of Advanced Energy Storage Devices and Plasmonic Transparent Conductors

    Science.gov (United States)

    Malek, Gary A.

    Due to the prodigious amount of electrical energy consumed throughout the world, there exists a great demand for new and improved methods of generating electrical energy in a clean and renewable manner as well as finding more effective ways to store it. This enormous task is of great interest to scientists and engineers, and much headway is being made by utilizing three-dimensional (3D) nanostructured materials. This work explores the application of two types of 3D nanostructured materials toward fabrication of advanced electrical energy storage and conversion devices. The first nanostructured material consists of vertically aligned carbon nanofibers. This three-dimensional structure is opaque, electrically conducting, and contains active sites along the outside of each fiber that are conducive to chemical reactions. Therefore, they make the perfect 3D conducting nanostructured substrate for advanced energy storage devices. In this work, the details for transforming vertically aligned carbon nanofiber arrays into core-shell structures via atomic layer deposition as well as into a mesoporous manganese oxide coated supercapacitor electrode are given. Another unique type of three-dimensional nanostructured substrate is nanotextured glass, which is transparent but non-conducting. Therefore, it can be converted to a 3D transparent conductor for possible application in photovoltaics if it can be conformally coated with a conducting material. This work details that transformation as well as the addition of plasmonic gold nanoparticles to complete the transition to a 3D plasmonic transparent conductor.

  20. A model for pattern deposition from an evaporating solution subject to contact angle hysteresis and finite solubility.

    Science.gov (United States)

    Zigelman, Anna; Manor, Ofer

    2016-06-29

    We propose a model for the pattern deposition of the solute from an evaporating drop of a dilute solution on a horizontal substrate. In the model we take into account the three-phase contact angle hysteresis and the deposition of the solute whenever its concentration exceeds the solubility limit. The evaporating drop is governed by a film equation. We show that unless for a very small three-phase contact angle or a very rapid evaporation rate the film adopts a quasi-steady geometry, satisfying the Young-Laplace equation to leading order. The concentration profile is assumed to satisfy an advection diffusion equation subject to the standard Fick's law for the diffusive flux. We further use an integral boundary condition to describe the dynamics of the concentration in the vicinity of the three-phase contact line; we replace an exact geometric description of the vicinity of the contact line, which is usually assumed such that mathematical singularities are avoided, with general insights about the concentration and its flux. We use our model to explore the relationships between a variety of deposition patterns and the governing parameters, show that the model repeats previous findings, and suggest further insights.

  1. Nanocrystalline sputter-deposited ZnMgO:Al transparent p-type electrode in GaN-based 385 nm UV LED for significant emission enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M.A., E-mail: mbory@ite.waw.pl; Wzorek, M.; Gołaszewska, K.; Kruszka, R.; Pągowska, K.D.; Kamińska, E.

    2015-10-15

    Graphical abstract: - Highlights: • Polycrystalline ZnMgO:Al films grown by room temperature cosputtering. • Increase of Mg content leads to grain disorientation and Mg precipitation. • The unexpected behavior suggested to be related to Al presence. • ZnMgO:Al transparent electrode to p-GaN: 250% increase in 385 nm LED efficiency. - Abstract: We demonstrate nanocrystalline ZnMgO:Al transparent conducting films grown by room temperature magnetron sputtering. Unlike in the usual ZnMgO films grown by sputtering, the crystal orientation perpendicular to the substrate surface is strongly disrupted with the addition of Mg, even well below the phase separation threshold of Mg/(Mg + Zn) = 0.43. We argue that the presence of Al in the films promotes disoriented growth. Using transmission, Rutherford Backscattering Spectroscopy and electron microscopy measurements, we prove that not all Mg in the films substitutes Zn in the ZnO lattice, but also forms of precipitates. We apply the highest transmission films as contact electrodes to the p-GaN layer in a GaN-based 385 nm UV LED structure. By replacing the common opaque Ni/Au ohmic contact to p-GaN in ring geometry by a circular ZnMgO:Al electrode we obtain a 250% increase in irradiated power, which is also 148% higher than when Ni/Al is replaced by ZnO:Al.

  2. Sol-gel deposited aluminum-doped and gallium-doped zinc oxide thin-film transparent conductive electrodes with a protective coating of reduced graphene oxide

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-04-01

    Using a traditional sol-gel deposition technique, we successfully fabricated aluminum-doped zinc oxide (AZO) and gallium-doped zinc oxide (GZO) thin films on glass substrates. Employing a plasma treatment method as the postannealing process, we produced thin-film transparent conductive electrodes exhibiting excellent optical and electrical properties, with transmittance greater than 90% across the entire visible spectrum and the near-infrared range, as well as good sheet resistance under 200 Ω/sq. More importantly, to improve the resilience of our fabricated thin-film samples at elevated temperatures and in humid environments, we deposited a layer of reduced graphene oxide (rGO) as protective overcoating. The stability of our composite AZO/rGO and GZO/rGO samples improved substantially compared to that of their counterparts with no rGO coating.

  3. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO{sub 2}:Sb for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Cranton, Wayne M. [School of Computing and Informatics, Nottingham Trent University, Nottingham, NG11 8NS (United Kingdom)], E-mail: wayne.cranton@ntu.ac.uk; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C. [School of Computing and Informatics, Nottingham Trent University, Nottingham, NG11 8NS (United Kingdom); Chi Kuangnan [Patterning Technologies Ltd., 58 Shrivenham Hundred Business Park, Watchfield, Oxon, SN6 8TY (United Kingdom)], E-mail: kuangnan.chi@pattech.com; Hedgley, Richard; Scott, John [Patterning Technologies Ltd., 58 Shrivenham Hundred Business Park, Watchfield, Oxon, SN6 8TY (United Kingdom); Lipiec, Stephen [Keeling and Walker Limited, Whieldon Road, Stoke-on-Trent, Staffordshire, ST4 4JA (United Kingdom)], E-mail: s.lipiec@keelingwalker.co.uk; Spiller, Andrew [Keeling and Walker Limited, Whieldon Road, Stoke-on-Trent, Staffordshire, ST4 4JA (United Kingdom); Speakman, Stuart [MDSL 7 Chapel Drive, Little Waltham, Chelmsford, Essex, CM3 3LW (United Kingdom)], E-mail: sps7859@btconnect.com

    2007-10-15

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO{sub 2}:Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm{sup -2} reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions.

  4. PLD deposition of tungsten carbide contact for diamond photodiodes. Influence of process conditions on electronic and chemical aspects

    Science.gov (United States)

    Cappelli, E.; Bellucci, A.; Orlando, S.; Trucchi, D. M.; Mezzi, A.; Valentini, V.

    2013-08-01

    Tungsten carbide, WC, contacts behave as very reliable Schottky contacts for opto-electronic diamond devices. Diamond is characterized by superior properties in high-power, high frequency and high-temperature applications, provided that thermally stable electrode contacts will be realized. Ohmic contacts can be easily achieved by using carbide-forming metals, while is difficult to get stable Schottky contacts at elevated temperatures, due to the interface reaction and/or inter-diffusion between metals and diamond. Novel type of contacts, made of tungsten carbide, WC, seem to be the best solution, for their excellent thermal stability, high melting point, oxidation and radiation resistance and good electrical conductivity. Our research was aimed at using pulsed laser deposition for WC thin film deposition, optimizing experimental parameters, to obtain a final device characterized by excellent electronic properties, as a detector for radiation in deep UV or as X-ray dosimeter. We deposited our films by laser ablation from a target of pure WC, using different reaction conditions (i.e., substrate heating, vacuum or reactive atmosphere (CH4/Ar), RF plasma activated), to optimize both the stoichiometry of the film and its structure. Trying to obtain a material with the best electronic response, we used also two sources of laser radiation for target ablation, i.e., nano-second pulsed excimer laser ArF, and ultra-short fs Ti:Sapphire laser. The structure and chemical aspects have been evaluated by Raman and X-ray photoelectron spectroscopy (XPS), while the dosimeter photodiode response has been tested by the I-V measurements, under soft X-ray irradiation.

  5. PLD deposition of tungsten carbide contact for diamond photodiodes. Influence of process conditions on electronic and chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@imip.cnr.it [CNR-IMIP, Montelibretti, via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-IMIP, Montelibretti, via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Orlando, S. [CNR-IMIP sez. Potenza, 85050 Tito Scalo, Potenza (Italy); Trucchi, D.M. [CNR-IMIP, Montelibretti, via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Mezzi, A. [CNR-ISMN, Montelibretti, via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Valentini, V. [CNR-IMIP, Montelibretti, via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2013-08-01

    Tungsten carbide, WC, contacts behave as very reliable Schottky contacts for opto-electronic diamond devices. Diamond is characterized by superior properties in high-power, high frequency and high-temperature applications, provided that thermally stable electrode contacts will be realized. Ohmic contacts can be easily achieved by using carbide-forming metals, while is difficult to get stable Schottky contacts at elevated temperatures, due to the interface reaction and/or inter-diffusion between metals and diamond. Novel type of contacts, made of tungsten carbide, WC, seem to be the best solution, for their excellent thermal stability, high melting point, oxidation and radiation resistance and good electrical conductivity. Our research was aimed at using pulsed laser deposition for WC thin film deposition, optimizing experimental parameters, to obtain a final device characterized by excellent electronic properties, as a detector for radiation in deep UV or as X-ray dosimeter. We deposited our films by laser ablation from a target of pure WC, using different reaction conditions (i.e., substrate heating, vacuum or reactive atmosphere (CH{sub 4}/Ar), RF plasma activated), to optimize both the stoichiometry of the film and its structure. Trying to obtain a material with the best electronic response, we used also two sources of laser radiation for target ablation, i.e., nano-second pulsed excimer laser ArF, and ultra-short fs Ti:Sapphire laser. The structure and chemical aspects have been evaluated by Raman and X-ray photoelectron spectroscopy (XPS), while the dosimeter photodiode response has been tested by the I–V measurements, under soft X-ray irradiation.

  6. Transparent and antibacterial Cu{sub 2}Y{sub 2}O{sub 5} thin films by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yung-Po [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan (China); Chiu, Te-Wei, E-mail: tewei@ntut.edu.tw [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan (China); Chang, Chih-Hao [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei 106, Taiwan (China); Xuan, Caihua; Cheng, Gary J. [Birck Nanotechnology Center and School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2014-11-03

    A chemical solution method was used to fabricate Cu–Y–O thin film on the glass substrate. The crystal structures, microstructures, optical properties and antibacterial activities of thin films were characterized and investigated by grazing-incidence X-ray diffraction, Scanning electron microscopy, transmittance spectra, and antibiotics test. The fabrication process involved the spinning of mixture of the metal nitrite salts solution and poly oxyethylene(10)octylphenyl ether on the glass substrates, followed by a two-step annealing in a furnace. The X-ray diffraction indicated that a single phase of Cu{sub 2}Y{sub 2}O{sub 5} was obtained at 800 °C, while the higher temperature, 900 °C, resulted in the mixture of delafossite-type CuYO{sub 2} and CuO phases. The bandgap of Cu{sub 2}Y{sub 2}O{sub 5} was found to be 3.52 eV as per the transmittance spectra in Tauc plot. The best transmission, 80%, was achieved by the transparent thin film coating of 70 nm thick Cu{sub 2}Y{sub 2}O{sub 5}. The antibacterial efficacy of Escherichia coli on Cu{sub 2}Y{sub 2}O{sub 5} film surface exceeded 99%, demonstrating its potential in the transparent antibacterial coatings. - Highlights: • Cu{sub 2}Y{sub 2}O{sub 5} thin films were prepared by chemical solution deposition method. • Cu{sub 2}Y{sub 2}O{sub 5} thin films show high transparency and excellent antibacterial properties. • The present study demonstrated a transparent antibacterial coating.

  7. High response Schottky ultraviolet photodetector formed by PEDOT:PSS transparent electrode contacts to Mg0.1Zn0.9O

    Institute of Scientific and Technical Information of China (English)

    胡佐富; 吴怀昊; 吕燕伍; 张希清

    2015-01-01

    In this paper, we report a Schottky ultraviolet photodetector based on poly (3,4-ethylenedioxy-thiophene) poly(styrenesulfonate) (PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I–V characteristic curves of the device are measured in the dark condition and under the illumination of a 340-nm UV light. The device shows a typical rectifying behavior with a current rectification ratio of 103 at ±2 V, which exhibits a good Schottky behavior. The photo-to-dark current ratio is high, which is 1×103 at−4 V. A peak response of 0.156 A/W at 340 nm is observed. The device also exhibits a wide response from 250 nm to 340 nm, with a response larger than 0.1 A/W. It covers the UV-B region (280 nm–320 nm), which makes the device very suitable for the detection of UV-B light.

  8. Fabrication of CdS/CdTe solar cells with transparent p-type conductive BaCuSeF back contact

    Science.gov (United States)

    Yamamoto, Koichi; Sakakima, Hiroshi; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Wada, Takahiro

    2015-08-01

    BaCuSeF films were applied to CdS/CdTe solar cells as back electrodes. The interfaces between the CdTe and BaCuSeF layers in the CdS/CdTe solar cells with BaCuSeF back contact deposited at substrate temperatures (TS) of 200 and 300 °C were analyzed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). We clearly observed many dislocations in the CdTe layer in the CdS/CdTe solar cell with the BaCuSeF layer deposited at TS = 300 °C. We also observed a reaction layer of Cu2.72Te2 between the BaCuSeF and CdTe layers in both solar cells. We concluded that (1) the substrate temperature for the pulsed laser deposition of the BaCuSeF layer and (2) the interface between the CdTe and BaCuSeF layers are important factors for the performance of the CdTe solar cells. We obtained high conversion efficiency of 8.31% for a solar cell with a BaCuSeF layer deposited at TS = 200 °C on a CdTe surface etched in a NH3 aqueous solution. The highest conversion efficiency of 9.91% was obtained for a solar cell with a CdTe surface etched in a bromide-bromate solution.

  9. Drop deposition on surfaces with contact-angle hysteresis: Liquid-bridge stability and breakup

    OpenAIRE

    Akbari, Amir; Hill, Reghan J.

    2015-01-01

    We study the stability and breakup of liquid bridges with a free contact line on a surface with contact-angle hysteresis under zero-gravity conditions. Theoretical predictions of the stability limits are validated by experimental measurements. Experiments are conducted in a water-methanol-silicon oil system where the gravity force is offset by buoyancy. We highlight cases where stability is lost during the transition from a pinned-pinned to pinned-free interface when the receding contact angl...

  10. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    Energy Technology Data Exchange (ETDEWEB)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.; McNeill, D. W. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH (United Kingdom); Modreanu, M.; Hurley, P. K. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2014-01-06

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  11. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  12. Magmatic ore deposits in layered intrusions - Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits

    Science.gov (United States)

    Zientek, Michael L.

    2012-01-01

    Layered, ultramafic to mafic intrusions are uncommon in the geologic record, but host magmatic ore deposits containing most of the world's economic concentrations of platinum-group elements (PGE) (figs. 1 and 2). These deposits are mined primarily for their platinum, palladium, and rhodium contents (table 1). Magmatic ore deposits are derived from accumulations of crystals of metallic oxides, or immiscible sulfide, or oxide liquids that formed during the cooling and crystallization of magma, typically with mafic to ultramafic compositions. "PGE reefs" are stratabound PGE-enriched lode mineralization in mafic to ultramafic layered intrusions. The term "reef" is derived from Australian and South African literature for this style of mineralization and used to refer to (1) the rock layer that is mineralized and has distinctive texture or mineralogy (Naldrett, 2004), or (2) the PGE-enriched sulfide mineralization that occurs within the rock layer. For example, Viljoen (1999) broadly defined the Merensky Reef as "a mineralized zone within or closely associated with an unconformity surface in the ultramafic cumulate at the base of the Merensky Cyclic Unit." In this report, we will use the term PGE reef to refer to the PGE-enriched mineralization, not the host rock layer. Within a layered igneous intrusion, reef-type mineralization is laterally persistent along strike, extending for the length of the intrusion, typically tens to hundreds of kilometers. However, the mineralized interval is thin, generally centimeters to meters thick, relative to the stratigraphic thickness of layers in an intrusion that vary from hundreds to thousands of meters. PGE-enriched sulfide mineralization is also found near the contacts or margins of layered mafic to ultramafic intrusions (Iljina and Lee, 2005). This contact-type mineralization consists of disseminated to massive concentrations of iron-copper-nickel-PGE-enriched sulfide mineral concentrations in zones that can be tens to hundreds

  13. A new model of organic solar cells reveals open circuit conditions and size dependent power loss induced by the finite conductivity of a transparent contact

    Science.gov (United States)

    Gotleyb, Dor; Shikler, Rafi

    2017-01-01

    We report on a new approach to modelling the effect of the size of organic solar cells on their efficiency. Experimental results show a drastic deterioration in performance when scaling up organic solar cells. This reduction reflects in key parameters such as the short circuit current (Is c ) , the maximum power point (Pm ) , and the Fill Factor (F F ) . It is attributed to the transparent anode that exhibits a relatively low conductivity (σ) . Our unique approach is to account for the interplay between the two sub-domains of the solar cell. In the first domain, containing the electro-optic active materials, we solve the drift-diffusion model using a simplified model for the recombination to emphasize the role of the anode resistance. In the second domain, representing the anode, we solve only the Laplace equation. We introduce the coupling between these layers using the current of the active layer as the boundary condition for the anode and the position dependent potential of the anode as the boundary condition for the active layer. Our results reveal that as the length of the cell increases, the parts that are farther from the contact exhibit near open circuit conditions and do not contribute to the current. We found that the efficiency of the cell altered from linear to sub-linear behavior already at cell lengths of a few millimeters. The transition point strongly depends on the conductivity of the anode. The sub-linearity starts at 0.4, 0.5, and 0.7 cm for σ=100 , 200 , and 500 S /cm , respectively. Additionally, the efficiency begins to saturate sooner than both the short circuit current and the Fill-Factor. The saturation is observed at device lengths of 0.8, 1.2, and 2.1 cm for σ=100 , 200 , and 500 S /cm , respectively.

  14. Properties of multilayer gallium and aluminum doped ZnO(GZO/AZO)transparent thin films deposited by pulsed laser deposition process

    Institute of Scientific and Technical Information of China (English)

    Jin-Hyum SHIN; Dong-Kyun SHIN; Hee-Young LEE; Jai-Yeoul LEE

    2011-01-01

    Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO GZO/AZO thin films linearly decreases with increasing the Al ratio.

  15. Combinatorial Optimization of Transparent Conducting Oxides (TCOS) for PV

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J. D.; Taylor, M. P.; van Hest, M.F.A.M.; Teplin, C. W.; Alleman, J. L.; Dabney, M. S.; Gedvilas, L. M.; Keyes, B. M.; To, B.; Readey, D. W.; Delahoy, A. E.; Guo, S.; Ginley, D. S.

    2005-02-01

    Transparent conducting oxides (TCOs) can serve a variety of important functions in thin-film photovoltaics such as transparent electrical contacts, antireflection coatings, and chemical barriers. Two areas of particular interest are TCOs that can be deposited at low temperatures and TCOs with high carrier mobilities. We have employed combinatorial high-throughput approaches to investigate both these areas. Conductivities of s = 2500 W-1-cm-1 have been obtained for In-Zn-O (IZO) films deposited at 100 C and s > 5000 W-1-cm-1 for In-Ti-O (ITiO) and In-Mo-O (IMO) films deposited at 550 C. The highest mobility obtained was 83 cm2/V-s for ITiO deposited at 550 C.

  16. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene.

    Science.gov (United States)

    Liu, Nan; Tian, He; Schwartz, Gregor; Tok, Jeffrey B-H; Ren, Tian-Ling; Bao, Zhenan

    2014-07-01

    Graphene is a highly promising material for high speed, broadband, and multicolor photodetection. Because of its lack of bandgap, individually gated P- and N-regions are needed to fabricate photodetectors. Here we report a technique for making a large-area photodetector on the basis of controllable fabrication of graphene P-N junctions. Our selectively doped chemical vapor deposition (CVD) graphene photodetector showed a ∼5% modulation of conductance under global IR irradiation. By comparing devices of various geometries, we identify that both the homogeneous and the P-N junction regions contribute competitively to the photoresponse. Furthermore, we demonstrate that our two-terminal graphene photodetector can be fabricated on both transparent and flexible substrates without the need for complex fabrication processes used in electrically gated three-terminal devices. This represents the first demonstration of a fully transparent and flexible graphene-based IR photodetector that exhibits both good photoresponsivity and high bending capability. This simple approach should facilitate the development of next generation high-performance IR photodetectors.

  17. Properties of Sb-doped SnO{sub 2} transparent conductive thin films deposited by radio-frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenhao; Yu, Shihui; Zhang, Yang; Zhang, Weifeng, E-mail: wfzhang@henu.edu.cn

    2013-09-02

    Transparent conducting Sb-doped SnO{sub 2} (ATO) thin films were prepared on quartz substrates by radio-frequency magnetron sputtering technique. The X-ray diffraction measurement shows that the as-deposited ATO film is of tetragonal crystal structure. Electrical and optical properties were investigated by Hall and optical measurements. The resistivity and optical transmittance of the ATO thin films are of the order of 10{sup −3} Ω · cm and over 85%, respectively. The lowest electrical resistivity of the films was found to be about 1.99 × 10{sup −3} Ω · cm. Finally, the organic solar cell with the ATO thin film as an anode was prepared, and a power conversion efficiency of 1.11% was achieved. - Highlights: • The Sb-doped SnO{sub 2} (ATO) thin films are prepared on quartz substrates by magnetron sputtering. • The ATO thin films have low resistivity and high optical transparency. • The power conversion efficiency of organic solar cells with ATO thin films is 1.11%.

  18. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Institute of Scientific and Technical Information of China (English)

    孙洪涛; 王小平; 寇志起; 王丽军; 王金烨; 孙义清

    2015-01-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10−5 Ω·cm and an average optical transmittance of 86%in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 ◦C reaches a minimum resistivity of 5.9×10−5 Ω·cm and an average optical transmittance of 88%in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications.

  19. Properties of doped ZnO transparent conductive thin films deposited by RF magnetron sputtering using a series of high quality ceramic targets

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; MA Ruixin; SHAO Wei; KANG Bo; WU Zhongliang

    2008-01-01

    To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets (ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency (RF) magnetron sputtering.X-ray diffraction (XRD) analysis shows that the films are polyerystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the (002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 x 10-3 Ω·cm was obtained.

  20. Humid environment stability of low pressure chemical vapor deposited boron doped zinc oxide used as transparent electrodes in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Jerome, E-mail: jerome.steinhauser@oerlikon.com [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Meyer, Stefan; Schwab, Marlene; Fay, Sylvie; Ballif, Christophe [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Kroll, U.; Borrello, D. [Oerlikon Solar-Lab, 2000 Neuchatel (Switzerland)

    2011-10-31

    The stability in humid environment of low pressure chemical vapor deposited boron doped zinc oxide (LPCVD ZnO:B) used as transparent conductive oxide in thin film silicon solar cells is investigated. Damp heat treatment (exposure to humid and hot atmosphere) induces a degradation of the electrical properties of unprotected LPCVD ZnO:B layers. By combining analyses of the electrical and optical properties of the films, we are able to attribute this behavior to an increase of electron grain boundary scattering. This is in contrast to the intragrain scattering mechanisms, which are not affected by damp heat exposure. The ZnO stability is enhanced for heavily doped films due to easier tunneling through potential barrier at grain boundaries.

  1. Pr and F co-doped SnO₂ transparent conductive films with high work function deposited by ion-assisted electron beam evaporation.

    Science.gov (United States)

    Wu, Shaohang; Li, Yantao; Luo, Jinsong; Lin, Jie; Fan, Yi; Gan, Zhihong; Liu, Xingyuan

    2014-02-24

    A transparent conductive oxide (TCO) Pr and F co-doped SnO2 (PFTO) film is prepared by ion-assisted electron beam deposition. An optimized PFTO film shows a high average visible optical transmittance of 83.6% and a minimum electrical resistivity of 3.7 × 10(-3) Ω·cm corresponding to a carrier density of 1.298 × 10(20) cm(-3) and Hall mobility of 12.99 cm(2)/V⋅s. This PFTO film shows a high work function of 5.147 eV and favorable surface morphology with an average roughness of 1.45 nm. Praseodymium fluoride is found to be an effective material to dope F into SnO2 that can simplify the fabrication process of SnO2-based TCO films.

  2. Organizational Transparency

    DEFF Research Database (Denmark)

    Albu, Oana Brindusa; Flyverbom, Mikkel

    2016-01-01

    with the sharing of information and the perceived quality of the information shared. This narrow focus on information and quality, however, overlooks the dynamics of organizational transparency. To provide a more structured conceptualization of organizational transparency, this article unpacks the assumptions......Transparency is an increasingly prominent area of research that offers valuable insights for organizational studies. However, conceptualizations of transparency are rarely subject to critical scrutiny and thus their relevance remains unclear. In most accounts, transparency is associated...... approaches and performativity approaches; (b) on an analytical level, we suggest a novel future research agenda for studying organizational transparency that pays attention to its dynamics, paradoxes, and performative characteristics....

  3. Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis.

    Science.gov (United States)

    Patel, Malkeshkumar; Ray, Abhijit

    2014-07-09

    The role of back metal (M) contact in sprayed SnS thin film solar cells with a configuration Glass/F:SnO2/In2S3/SnS/M (M = Graphite, Cu, Mo, and Ni) was analyzed and discussed in the present study. Impedance spectroscopy was employed by incorporating constant phase elements (CPE) in the equivalent circuit to investigate the degree of inhomogeneity associated with the heterojunction and M/SnS interfaces. A best fit to Nyquist plot revealed a CPE exponent close to unity for thermally evaporated Cu, making it an ideal back contact. The Bode phase plot also exhibited a higher degree of disorders associated with other M/SnS interfaces. The evaluation scheme is useful for other emerging solar cells developed from low cost processing schemes like spray deposition, spin coating, slurry casting, electrodeposition, etc.

  4. Spectral and Color Changes of Ag/TiO2 Photochromic Films Deposited on Diffusing Paper and Transparent Flexible Plastic Substrates.

    Science.gov (United States)

    Diop, Daouda K; Simonot, Lionel; Martínez-García, Juan; Hébert, Mathieu; Lefkir, Yaya; Abadias, Grégory; Guérin, Philippe; Babonneau, David; Destouches, Nathalie

    2016-12-12

    Giving paper and polymer photochromic properties under laser irradiation is challenging due to the low resistance of these materials to heat, their flexibility, and their possibly irregular structure. However, we could successfully deposit TiO2/Ag/TiO2 layers stacking on flexible white glossy paper and transparent polyethylene terephalate (PET) substrates using a reactive magnetron sputtering technique, and tailor coloration changes after laser irradiation, alternating visible and ultraviolet (UV) wavelengths. The sample colors are characterized by a panel of chromas depending on the irradiation conditions. We demonstrate that these chroma changes are due to morphological changes of Ag nanoparticles (NPs) after visible laser irradiation of the colored as-deposited sample. The process exhibits a good reversibility after subsequent UV irradiation due to the growth of new metallic Ag NPs. The colors displayed in diffuse reflection by the paper samples are more saturated than the ones displayed in regular transmission by PET samples. We demonstrate the efficiency of the photochromic process on such support by printing high resolution patterns exhibiting different colors depending on the observation conditions.

  5. High mobility In{sub 2}O{sub 3}:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Wu, Y.; Vanhemel, D. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2014-12-01

    The preparation of high-quality In{sub 2}O{sub 3}:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In{sub 2}O{sub 3}:H films were deposited by atomic layer deposition at 100 C, after which they underwent solid phase crystallization by a short anneal at 200 C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm{sup 2}/V s at a device-relevant carrier density of 1.8 x 10{sup 20} cm{sup -3}. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    Science.gov (United States)

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  7. Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells

    DEFF Research Database (Denmark)

    Jensen, Jens Arne Dahl; Møller, Per; Bruton, Tim

    2003-01-01

    by electrochemical deposition at a rate of up to 10 mm per min. With the newly developed process, void-free, superconformal Cu-filling of the laser-cut grooves was observed by scanning electron microscopy and focused ion beam techniques. The Cu microstructure in grooves showed both bottom and sidewall texture...

  8. The fate of Transparent Exopolymer Particles (TEP) in integrated membrane systems: removal through pre-treatment processes and deposition on reverse osmosis membranes.

    Science.gov (United States)

    Villacorte, Loreen O; Kennedy, Maria D; Amy, Gary L; Schippers, Jan C

    2009-12-01

    The abundance of Transparent Exopolymer Particles (TEP) in surface waters has been unnoticed for many years until recently as a potential foulant in reverse osmosis systems. Recent studies indicate that TEP may cause organic and biological fouling and may enhance particulate/colloidal fouling in reverse osmosis membranes. The presence of TEP was measured in the raw water, the pre-treatment processes and reverse osmosis (RO) systems of 6 integrated membrane installations. A spectrophotometric method was used to measure TEP in the particulate size range (>0.40microm) and was extended to measure TEP in the colloidal size range (0.05-0.40microm). Ultrafiltration pre-treatment applied in 4 plants, totally removed particulate TEP while microfiltration systems (2 plants) and coagulation/sedimentation/rapid sand filtration systems (3 plants) partially removed this fraction. None of the pre-treatment systems investigated totally removed colloidal TEP. Biopolymer analysis using LC-OCD showed consistency between colloidal TEP and polysaccharide removal by UF pre-treatment and further verified the presence of TEP in the RO feedwater. TEP deposition in the RO system was determined after measuring total TEP concentrations in the RO feed and concentrate. The TEP deposition factors and specific deposition rates indicate that TEP accumulation had occurred in all plants investigated. This observation was verified by an autopsy of RO modules from two RO plants. Further improvement and verification of the (modified) TEP method, in particular the calibration, is necessary so that it can be employed to investigate the role of TEP in the fouling of RO systems.

  9. Electrical and photoelectric properties of transparent Li-doped ZnO/ZnO homojunctions by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shihui; Ding, Linghong; Zheng, Haiwu; Xue, Chuang; Chen, Li; Zhang, Weifeng, E-mail: wfzhang@henu.edu.cn

    2013-07-01

    (002)-Preferred orientation ZnO and Li-doped ZnO thin films on glass substrates and Li-doped ZnO/ZnO bilayers on fluorine-doped SnO{sub 2} glass substrates are grown by pulsed laser deposition technique. These films are characterized by X-ray diffraction, UV–visible transmission spectroscopy, surface photovoltage spectroscopy, and electric measurements. The optical transmittance of Li-doped ZnO/ZnO bilayers is about 86%. The bilayer grown on FTO glass substrates exhibits a typical rectifying characteristic of p–n heterojunctions. In addition, the photovoltaic response of ZnO is blue-shifted from 380 to 363 nm and greatly enhanced resulting from the formation of p–n homojunctions based on ZnO. - Highlights: • Li-doped ZnO/ZnO p–n bilayers are grown on F-doped SnO{sub 2} by pulsed laser deposition. • The bilayers exhibit a typical rectifying characteristic of p–n heterojunctions. • Formation of homojunctions greatly enhanced the ZnO photovoltaic response.

  10. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukano, Tatsuo; Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories Inc., Nagakute, Aichi 480-1192 (Japan)

    2004-05-30

    Following the procedure by Sawada et al. (Thin Solid Films 409 (2002) 46), high-quality SnO{sub 2}:F films were grown on glass substrates at relatively low temperatures of 325-340C by intermittent spray pyrolysis deposition using a perfume atomizer for cosmetics use. Even though the substrate temperature is low, as-deposited films show a high optical transmittance of 92% in the visible range, a low electric resistivity of 5.8x10{sup -4}{omega}cm and a high Hall mobility of 28cm{sup 2}/Vs. The F/Sn atomic ratio (0.0074) in the films is low in comparison with the value (0.5) in the sprayed solution. The carrier density in the film is approximately equal to the F-ion density, suggesting that most of the F-ions effectively function as active dopants. Films' transmittance and resistivity show little change after a 450C 60min heat treatment in the atmosphere, evidencing a high heat resistance. The SnO{sub 2}:F films obtained in this work remove the difficulty to improve the figure of merit at low synthesis temperatures.

  11. Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots.

    Science.gov (United States)

    Kim, Jeehwan; Hong, Augustin J; Chandra, Bhupesh; Tulevski, George S; Sadana, Devendra K

    2012-04-10

    The viability of single-walled carbon nanotubes (SWCNTs) as a transparent conducting electrode on a-Si:H based single junction solar cells was explored. A Schottky barrier formed at a SWCNT/a-Si:H interface was removed by introducing high work function gold nanodots at the SWCNT/a-Si:H interface. This allows comparable device performance from SWCNT-electrode-based a-Si:H solar cells to that obtained by using conventional transparent conducting oxides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Improvement of transparent conducting materials by metallic grids on transparent conductive oxides

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.A.; Barink, M.; Rendering, H.; Voorthuijzen, P.; Hovestad, A.

    2013-01-01

    The trade-off between transparency and conductivity in transparent conductors used in optoelectronic devices is a major bottleneck towards higher device performances. Grid deposition on transparent conductive oxides was demonstrated using electrochemical deposition, which has the advantage of a high

  13. Room-temperature deposition of transparent conductive Al-doped ZnO thin films using low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C.G.; Yu, T.; Wang, F.; Wu, X.M. [Soochow University, Department of Physics, Soochow (China); Soochow University, The Key Laboratory of Thin Films of Jiangsu, Soochow (China); Wu, Z.F. [Yancheng Institute of Technology, Yancheng (China); Wu, M.Z. [Soochow University, Department of Physics, Soochow (China); Wang, Y.Y.; Yu, Y.M. [Wenzheng College of Soochow University, Soochow (China); Zhuge, L.J. [Soochow University, The Key Laboratory of Thin Films of Jiangsu, Soochow (China); Soochow University, Analysis and Testing Center, Soochow (China)

    2012-03-15

    Al-doped zinc oxide (AZO) films are prepared on quartz substrates by dual-ion-beam sputtering deposition at room temperature ({proportional_to}25 C). An assisting argon ion beam (ion energy E{sub i} =0-300 eV) directly bombards the substrate surface to modify the properties of AZO films. The effects of assisted-ion beam energy on the characteristics of AZO films were investigated in terms of X-ray diffraction, atomic force microscopy, Raman spectra, Hall measurement and optical transmittance. With increasing assisting-ion beam bombardment, AZO films have a strong improved crystalline quality and increased radiation damage such as oxygen vacancies and zinc interstitials. The lowest resistivity of 4.9 x 10 {sup -3}{omega} cm and highest transmittance of above 85% in the visible region were obtained under the assisting-ion beam energy 200 eV. It was found that the bandgap of AZO films increased from 3.37 to 3.59 eV when the assisting-ion beam energy increased from 0 to 300 eV. (orig.)

  14. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  15. Microstructural and optical properties of transparent conductive ZnO : Al : Mo films deposited by template-assisted sol–gel method

    Indian Academy of Sciences (India)

    H-Y He; J-F Huang; Z He; J Lu; Q Shen

    2014-05-01

    Transparent conductive ZnO : Al : Mo films with a molar ratio of Zn : Al : Mo = 99 : 0.99 : 0.01 were deposited on quartz glass substrate by a template-assisted sol-gel process and characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and UV–Vis and luminescent spectrophotometries. The four types of organic template have induced nanowire morphology with varying aspect ratio. Dip coating in one constant positive and reverse direction causes the parallel array of ZnO : Al : Mo nanowires on the quartz glass substrate. Long and parallel arrayed nanowire films show obviously blue shifts and enhanced transmittances in the UV-Vis light range. The PEG-1000 and PEG-2000 have optimal effects among four templates as constant weight content is used. The films show strong ultraviolet, violet and bluish violet emissions. The templates also lead to overall thicker film and more native defect and thereby remarkably enhancing photoluminescence of the films. Long chain organic template can be used to optimize the optical properties of the doped ZnO film.

  16. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    Directory of Open Access Journals (Sweden)

    U.S. Mbamara

    2016-06-01

    Full Text Available Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS and X-ray Diffraction (XRD. The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-face surfaces were examined to assess the wear dimension and failure mechanism. Both friction behavior and wear (in the ball counter-face were observed to be dependent on the crystallinity and thickness of the thin film coatings.

  17. Characteristics of Bilayer Molybdenum Films Deposited Using RF Sputtering for Back Contact of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Sea-Fue Wang

    2014-01-01

    Full Text Available Mo films prepared under a single deposition condition seldom simultaneously obtain a low resistivity and a good adhesion necessary for use in solar cells. In order to surmount the obstacle, bilayer Mo films using DC sputtering at a higher working pressure and a lower working pressure have been attempted as reported in the literature. In this study, RF sputtering with different powers in conjunction with different working pressures was explored to prepare bilayer Mo film. The first bottom layer was grown at a RF sputtering power of 30 W and a working pressure of 12 mTorr, and the second top layer was deposited at 100 W and 4.5 mTorr. The films revealed a columnar growth with a preferred orientation along the (110 plane. The bilayer Mo films reported an electrical resistivity of 6.35 × 10−5 Ω-cm and passed the Scotch tape test for adhesion to the soda-lime glass substrate, thereby qualifying the bilayer Mo films for use as back metal contacts for CIGS substrates.

  18. Tear film proteins deposited on high water content contact lenses identified with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Nielsen, Kim; Vorum, Henrik; Ehlers, Niels; Aagaard, Nicolaj; Hjortdal, Jesper; Honoré, Bent

    2015-11-01

    Tear film proteins adhere to the surface of contact lenses (CLs). While the proteins in the tears have been extensively studied with various proteomic techniques, adhered proteins to CLs are less studied. In this pilot study, we have separated proteins with 2D gel electrophoresis prior to the conventional mass spectrometry (MS) in order to analyse the deposited proteins on hydrogel CLs from myopic patients. pHEMA and PVA hydrogel CLs worn by 3 patients for different time lengths were analysed. After wear, the CLs were frozen at -20°C. Proteins were extracted in lysis buffer, separated on 12% polyacrylamide gels and silver-stained. Protein spots were excised and identified with liquid chromatography - tandem MS. Deposited proteins were extracted with a yield of 26-66 μg and separated by 2D gel electrophoresis. The silver-stained gels showed similar protein patterns independent of the patient, hydrogel type and wear time. Seventy-two spots were analysed with MS, representing at least 12 different tear film proteins or protein fragments. Deposited tear film proteins from a single set of CLs worn for 1 day can successfully be analysed first with 2D gel electrophoresis and subsequently with MS, thus making examination of individual patients possible. The protein composition appeared homogeneous between the test persons which is a necessity for additional comparison analysis. The molecular masses of the identified proteins indicate that protein degradation occurs only as a minor event. Myopic patients were investigated in this pilot study, but the combined techniques can easily be applied to other eye diseases. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Nanoparticle-electrode collision processes: Investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles

    Science.gov (United States)

    Cutress, Ian J.; Rees, Neil V.; Zhou, Yi-Ge; Compton, Richard G.

    2011-09-01

    Recent work on faradaic processes occurring during thermal nanoparticle-electrode collisions contrasts significantly from analogous research using ultrasonically-driven microparticles, where no faradaic signals were found. It is suggested that this might be explained by the differences in both particle size and contact time. To investigate this, we present results from adapted Monte Carlo random walk simulations. Using the underpotential deposition of thallium onto silver nanoparticles as a model system, it is found that an estimated minimum contact time of ca. 10-4 s is required to deposit a complete monolayer (from a 10 mM solution) onto a nanoparticle of radius 45 nm.

  20. Epitaxial Sb-doped SnO{sub 2} and Sn-doped In{sub 2}O{sub 3} transparent conducting oxide contacts on GaN-based light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Min-Ying [Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 (United States); Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Paul-Drude-Insitut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Speck, James S. [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2016-04-30

    We demonstrate the growth of epitaxial (100)-oriented, rutile Sb-doped SnO{sub 2} (ATO) and (111)-oriented, cubic Sn-doped In{sub 2}O{sub 3} (ITO) transparent conducting oxide (TCO) contacts on top of an InGaN/GaN(0001) light emitting diode (LED) by plasma-assisted molecular beam epitaxy (PAMBE). Both oxides form rotational domains. The in-plane epitaxial alignment of the two ITO(111) rotational domains to the GaN(0001) was: GaN [21-10]|| ITO{sub Domain1}[‐ 211]|| ITO{sub Domain2}[‐ 1‐12]. A growth temperature as low as 600 °C was necessary to realize a low contact resistance between ATO and the top p-GaN layer of the LED but resulted in non-optimal resistivity (3.4 × 10{sup −} {sup 3} Ω cm) of the ATO. The current–voltage characteristics of a processed LED, however, were comparable to that of a reference LED with a standard electron-beam evaporated ITO top contact. At short wavelengths, the optical absorption of ATO was lower than that of ITO, which is beneficial even for blue LEDs. Higher PAMBE growth temperatures resulted in lower resistive ATO but higher contact resistance to the GaN, likely by the formation of an insulating Ga{sub 2}O{sub 3} interface layer. The ITO contact grown by PAMBE at 600 °C showed extremely low resistivity (10{sup −4} Ω cm) and high crystalline and morphological quality. These proof-of-principle results may lead to the development of epitaxial TCO contacts with low resistivity, well-defined interfaces to the p-GaN to help minimize contact losses, and enable further epitaxy on top of the TCO. - Highlights: • Plasma-assisted molecular beam epitaxy of SnO{sub 2}:Sb (ATO) and In{sub 2}O{sub 3}:Sn (ITO) contacts • Working light emitting diodes processed with the ATO contact on the top p-GaN layer • Low growth temperature ensures low contact resistance (limiting interface reaction). • ITO showed significantly better structural and transport properties than ATO. • ATO showed higher optical transmission at short

  1. Formation of PdHg by reaction of palladium thin film contacts deposited onto mercuric iodide ({alpha}-HgI{sub 2}) radiation detector crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, D.L. [Sandia National Labs., Livermore, CA (United States); Van Scyoc, J.M. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Gilbert, T.S. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Schlesinger, T.E. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Boehme, D. [Sandia National Labs., Livermore, CA (United States); Schieber, M. [Sandia National Labs., Livermore, CA (United States); Natarajan, M. [TN Technologies, Inc., Round Rock, TX (United States); James, R.B. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    The microstructure and phase distribution of palladium thin films sputter deposited onto {alpha}-HgI{sub 2} for use as electrical contacts in radiation detectors are investigated using electron microscopy. Our results show a limited reaction to form palladium mercuride (PdHg). It is shown that the formation of PdHg via several reaction pathways is thermodynamically feasible. (orig.).

  2. Transparency microplates under impact.

    Science.gov (United States)

    Lau, Chun Yat; Roslan, Zulhanif; Cheong, Brandon Huey-Ping; Chua, Wei Seong; Liew, Oi Wah; Ng, Tuck Wah

    2014-07-15

    Transparency microplates enable biochemical analysis in resource-limited laboratories. During the process of transfer, the analytes tittered into the wells may undergo spillage from one well to another due to lateral impact. Sidelong impact tests conducted found the absence of non-linear effects (e.g., viscoelastic behavior) but high energy loss. Finite element simulations conducted showed that the rectangular plate holding the transparencies could undergo z-axis deflections when a normal component of the force was present despite constraints being used. High speed camera sequences confirmed this and also showed the asymmetrical z-axis deflection to cause the contact line closer to impact to displace first when the advancing condition was exceeded. Capillary waves were found to travel toward the contact line at the opposite end, where if the advancing contact angle condition was exceeded, also resulted in spreading. The presence of surface scribing was found to limit contact line movement better. With water drops dispensed on scribed transparencies, immunity from momentum change of up to 9.07 kgm/s on impact was possible for volumes of 40 μL. In the case of glycerol drops immunity from momentum change of up to 9.07 kgm/s on impact extended to volumes of 90 μL. The improved immunity of glycerol was attributed to its heightened dampening characteristics and its higher attenuation of capillary waves. Overall, scribed transparency microplates were able to better withstand spillage from accidental impact. Accidental impact was also found not to cause any detrimental effects on the fluorescence properties of enhanced green fluorescent protein samples tested.

  3. Effect of ageing of K-feldspar on its ice nucleating efficiency in immersion, deposition and contact freezing modes

    Science.gov (United States)

    Peckhaus, Andreas; Bachmann, Felix; Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2015-04-01

    Recently K-feldspar was identified as one of the most active atmospheric ice nucleating particles (INP) of mineral origin [1]. Seeking the explanation to this phenomena we have conducted extensive experimental investigation of the ice nucleating efficiency of K-feldspar in three heterogeneous freezing modes. The immersion freezing of K-feldspar was investigated with the cold stage using arrays of nanoliter-size droplets containing aqueous suspension of polydisperse feldspar particles. For contact freezing, the charged droplets of supercooled water were suspended in the laminar flow of the DMA-selected feldspar-containing particles, allowing for determination of freezing probability on a single particle-droplet contact [2]. The nucleation and growth of ice via vapor deposition on the crystalline surfaces of macroscopic feldspar particles have been investigated in the Environmental Scanning Electron Microscope (ESEM) under humidified nitrogen atmosphere. The ice nucleation experiments were supplemented with measurements of effective surface area of feldspar particles and ion chromatography (IC) analysis of the leached framework cations (K+, Na+, Ca2+, Mg2+). In this contribution we focus on the role of surface chemistry influencing the IN efficiency of K-feldspar, in particular the connection between the degree of surface hydroxylation and its ability to induce local structural ordering in the interfacial layer in water molecules (as suggested by recent modeling efforts). We mimic the natural process of feldspar ageing by suspending it in water or weak aqueous solution of carbonic acid for different time periods, from minutes to months, and present its freezing efficiency as a function of time. Our immersion freezing experiments show that ageing have a nonlinear effect on the freezing behavior of feldspar within the investigated temperature range (-40°C to -10°C). On the other hand, deposition nucleation of ice observed in the ESEM reveals clear different pattern

  4. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  5. Stoichiometry gradient, cation interdiffusion, and band alignment between a nanosized TiO2 blocking layer and a transparent conductive oxide in dye-sensitized solar cell front contacts.

    Science.gov (United States)

    Salvinelli, Gabriele; Drera, Giovanni; Baratto, Camilla; Braga, Antonio; Sangaletti, Luigi

    2015-01-14

    An angle-resolved photoemission spectroscopy study allowed us to identify cation interdiffusion and stoichiometry gradients at the interface between a nanosized TiO2 blocking layer and a transparent conductive Cd-Sn oxide substrate. A stoichiometry gradient for the Sn cations is already found in the bare Cd-Sn oxide layer. When TiO2 ultrathin layers are deposited by RF sputtering on the Cd-Sn oxide layer, Ti is found to partially replace Sn, resulting in a Cd-Sn-Ti mixed oxide layer with a thickness ranging from 0.85 to 3.3 nm. The band gap profile across the junction has been reconstructed for three TiO2 layers, resulting in a valence band offset decrease (and a conduction band offset increase) with the blocking layer thickness. The results are related to the cell efficiencies in terms of charge injection and recombination processes.

  6. Transparency International

    NARCIS (Netherlands)

    Hulten, van M. (Michel)

    2009-01-01

    Established in 1993, Transparency International (TI) defines itself as “the global civil society organization leading the fight against corruption, that brings people together in a powerful worldwide coalition to end the devastating impact of corruption on men, women and children around the wo

  7. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  8. High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition

    DEFF Research Database (Denmark)

    Winther-Jensen, B.; Krebs, Frederik C

    2006-01-01

    Transparent electrodes based on PEDOT were prepared using a variety of techniques suitable for large area applications from 3,4-ethylenedioxythiophene (EDT) and Fe(111)tosylate. High conductivities were obtained (similar to 20 Omega(-1)) with moderate transmission in the UVvisible range 350-600 nm...

  9. Electrical characterization of Al, Ag and In contacts on CuInS{sub 2} thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Peza-Tapia, Juan Manuel; Morales-Acevedo, Arturo; Ortega-Lopez, Mauricio [CINVESTAV del IPN, Electrical Engineering Department, Av. IPN No. 2508, Mexico 07360, D.F. (Mexico)

    2009-05-15

    The specific contact resistivity ({rho}{sub C}) for aluminum (Al), silver (Ag) and indium (In) metallic contacts on CuInS{sub 2} thin films was determined from I-V measurements, with the purpose of having the most appropriate ohmic contact for TCO/CdS/CuInS{sub 2} solar cells; {rho}{sub C} was measured using the transmission line method (TLM) for the metallic contacts evaporated on CuInS{sub 2} thin films deposited by spray pyrolysis with ratios x=[Cu]/[In]=1.0, 1.1, 1.3 and 1.5 in the spray solution. The results show that In contacts have the lowest {rho}{sub C} values for CuInS{sub 2} samples grown with x=1.5. The minimum {rho}{sub C} was 0.26 {omega} cm{sup 2} for the In contacts. This value, although not very low, will allow the fabrication of CuInS{sub 2} solar cells with a small series resistance. (author)

  10. Stable and transparent superhydrophobic nanoparticle films.

    Science.gov (United States)

    Ling, Xing Yi; Phang, In Yee; Vancso, G Julius; Huskens, Jurriaan; Reinhoudt, David N

    2009-03-01

    A superhydrophobic surface with a static water contact angle (theta(w)) > 150 degrees was created by a simple "dip-coating" method of 60-nm SiO2 nanoparticles onto an amine-terminated (NH2) self-assembled monolayer (SAM) glass/silicon oxide substrate, followed by chemical vapor deposition of a fluorinated adsorbate. For comparison, a close-packed nanoparticle film, formed by convective assembly, gave theta(w) approximately 120 degrees. The stability of the superhydrophobic coating was enhanced by sintering of the nanoparticles in an O2 environment at high temperature (1100 degress C). A sliding angle of cleaning properties of the surface. The dip-coating method can be applied to glass substrates to prepare surfaces that are superhydrophobic and transparent.

  11. Synchrotron radiation stimulated etching of SiO sub 2 thin films with a Co contact mask for the area-selective deposition of self-assembled monolayer

    CERN Document Server

    Wang, C

    2003-01-01

    The area-selective deposition of a self-assembled monolayer (SAM) was demonstrated on a pattern structure fabricated by synchrotron radiation (SR) stimulated etching of a SiO sub 2 thin film on the Si substrate. The etching was conducted by irradiating the SiO sub 2 thin film with SR through a Co contact mask and using a mixture of SF sub 6 + O sub 2 as the reaction gas. The SR etching stopped completely at the SiO sub 2 /Si interface. After the SR etching, the Si surface and the SiO sub 2 surface beneath the Co mask were evaluated by an atomic force microscope (AFM). A dodecene SAM was deposited on the Si surface, and trichlorosilane-derived SAMs (octadecyltrichlorosilane, and octenyltrichlorosilane) were deposited on the SiO sub 2 surface beneath the Co mask. The structure of the deposited SAMs showed a densely packed and well-ordered molecular architecture, which was characterized by infrared spectroscopy, ellipsometry, and water contact angle (WCA) measurements. (author)

  12. Imaging of oxide charges and contact potential difference fluctuations in Atomic Layer Deposited AL203 on Si

    NARCIS (Netherlands)

    Sturm, J.M.; Zinine, A.; Wormeester, H.; Poelsema, B.; Bankras, R.G.; Holleman, J.; Schmitz, J.

    2005-01-01

    Ultrathin 2.5 nm high-k aluminum oxide (Al2O3) films on p-type silicon (001) deposited by atomic layer deposition (ALD) were investigated with noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum, using a conductive tip. Constant force gradient images revealed the presence of oxide charge

  13. High deposition rate of low resistive and transparent ZnO:Al on glass with an industrial moving belt APCVD reactor

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Beckers, E.H.A.; Deelen, J. van

    2012-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. ZnOx:Al films can be grown at very high deposition rates of ~ 14 nm/s for a substrate speed from 150 mm/min to 500 mm/mi

  14. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    Science.gov (United States)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  15. Highly conducting, transparent, and flexible indium oxide thin film prepared by atomic layer deposition using a new liquid precursor Et2InN(SiMe3)2.

    Science.gov (United States)

    Maeng, Wan Joo; Choi, Dong-Won; Chung, Kwun-Bum; Koh, Wonyong; Kim, Gi-Yeop; Choi, Si-Young; Park, Jin-Seong

    2014-10-22

    Highly conductive indium oxide films, electrically more conductive than commercial sputtered indium tin oxide films films, were deposited using a new liquid precursor Et2InN(SiMe3)2 and H2O by atomic layer deposition (ALD) at 225-250 °C. Film resistivity can be as low as 2.3 × 10(-4)-5.16 × 10(-5) Ω·cm (when deposited at 225-250 °C). Optical transparency of >80% at wavelengths of 400-700 nm was obtained for all the deposited films. A self-limiting ALD growth mode was found 0.7 Å/cycle at 175-250 °C. X-ray photoelectron spectroscopy depth profile analysis showed pure indium oxide thin film without carbon or any other impurity. The physical and chemical properties were systematically analyzed by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, optical spectrometer, and hall measurement; it was found that the enhanced electrical conductivity is attributed to the oxygen deficient InOx phases.

  16. Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Deelen, J. van; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Janssen, A.C.; Beckers, E.H.A.

    2011-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. Tertiary-butanol has been used as oxidant for diethylzinc and trimethylaluminium as dopant gas. ZnOx:Al films can be

  17. Industrial high-rate (~14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass

    NARCIS (Netherlands)

    Illiberi, A.; Kniknie, B.; Deelen, J. van; Steijvers, H.L.A.H.; Habets, D.; Simons, P.J.P.M.; Janssen, A.C.; Beckers, E.H.A.

    2011-01-01

    Aluminum doped ZnOx (ZnOx:Al) films have been deposited on glass in an in-line industrial-type reactor by a metalorganic chemical vapor deposition process at atmospheric pressure. Tertiary-butanol has been used as oxidant for diethylzinc and trimethylaluminium as dopant gas. ZnOx:Al films can be gro

  18. Rectification and tunneling effects enabled by Al{sub 2}O{sub 3} atomic layer deposited on back contact of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng, E-mail: panfeng@pkusz.edu.cn [School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055 (China)

    2015-07-06

    Atomic layer deposition (ALD) of Aluminum oxide (Al{sub 2}O{sub 3}) is employed to optimize the back contact of thin film CdTe solar cells. Al{sub 2}O{sub 3} layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al{sub 2}O{sub 3} deposition, compared with the efficiency of 10.7% without Al{sub 2}O{sub 3} modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al{sub 2}O{sub 3} maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al{sub 2}O{sub 3} modification layer features a desired low-density of interface state of 8 × 10{sup 10 }cm{sup −2} by estimation.

  19. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Son, Myoungwoo [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Ham, Moon-Ho [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Woong [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface-textured AZO films were achieved by combining PDMS method with wet etching. Black-Right-Pointing-Pointer The AZO film deposited at 230 Degree-Sign C by PDMS exhibited the best performance. Black-Right-Pointing-Pointer It is due to the higher plasma density supplied from PDMS system. Black-Right-Pointing-Pointer Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 Degree-Sign C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 Multiplication-Sign 10{sup -4} {Omega} cm with the carrier concentration of 1.65 Multiplication-Sign 10{sup 21} cm{sup -3} and Hall mobility of 11.3 cm{sup 2}/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  20. Effect of Nanoscale Ag Film Thickness on the Electrical and Optical Properties of Transparent IZTO/Ag/IZTO Multilayer Films Deposited on Glass Substrates.

    Science.gov (United States)

    Oh, Dohyun; Lee, Nam Hyun; Cho, Woon-Jo; Kim, Tae Whan

    2015-07-01

    The effect of nanoscale Ag film thickness on the electrical and optical properties in transparent conducting oxide films consisting of an IZTO/Ag/IZTO multilayer were investigated. The homoge- neous morphologies of the Ag films sandwiched between the IZTO films affected the optical and electrical properties of the IZTO/Ag/IZTO multilayer films. The transmittance and resistivity of the IZTO/Ag/IZTO multilayer films decreased with increasing Ag film thickness. The resistivities of the IZTO/Ag/IZTO multilayer films grown on glass substrates were decreased by using an Ag thin inter- layer in comparison with that of the IZTO single layer.

  1. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    OpenAIRE

    2005-01-01

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared ...

  2. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  3. Flexible CIGS solar cells on large area polymer foils with in-line deposition methods and application of alternative back contacts - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2009-08-15

    This illustrated report for the Swiss Federal Office of Energy (SFOE) summarises the work performed within this project and also reports on synergies with other projects that helped to make a significant contribution to the development of CIGS thin film solar cells on flexible substrates such as polymer foils. The project's aims were to learn more about up-scaling issues and to demonstrate the abilities required for the processing of layers on large area polyimide foils for flexible CIGS solar cells. Custom-built evaporators that were designed and constructed in-house are described. A CIGS system for in-line deposition was also modified for roll-to-roll deposition and alternative electrical back contacts to conventional ones were evaluated on flexible polyimide foils. The objectives of the project and the results obtained are looked at and commented on in detail.

  4. Metal nanowire-graphene composite transparent electrodes

    Science.gov (United States)

    Mankowski, Trent; Zhu, Zhaozhao; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine; Mansuripur, Masud; Falco, Charlies M.

    2014-10-01

    Silver nanowires with 40 nm diameter and copper nanowires with 150 nm diameter were synthesized using low-temperature routes, and deposited in combination with ultrathin graphene sheets for use as transparent conductors. A systematic and detailed analysis involving nature of capping agent for the metal nanowires, annealing of deposited films, and pre-treatment of substrates revealed critical conditions necessary for preparing high performance transparent conducting electrodes. The best electrodes show ~90% optical transmissivity and sheet resistance of ~10 Ω/□, already comparable to the best available transparent electrodes. The metal nanowire-graphene composite electrodes are therefore well suited for fabrication of opto-electronic and electronic devices.

  5. Investigation of material properties and thermal stabilities of magnetron-sputter-deposited ZnO:Al/Ag/ZnO:Al transparent conductive coatings for thin-film solar cell applications

    Science.gov (United States)

    Van Eek, Stella; Yan, Xia; Li, Weimin; Kreher, Sascha; Venkataraj, Selvaraj

    2017-08-01

    Transparent conductive oxides (TCOs) have been widely used in various optoelectronic devices. Among these TCOs, indium-tin oxide (ITO) is the most commonly used TCO material. However, owing to the scarcity of indium, there exists a strong need to replace ITO with an alternative transparent conductive coating. A TCO/metal/TCO-based multilayer structure has been considered as one promising candidate. In this work, several Al-doped ZnO (AZO) AZO/Ag/AZO samples were prepared with different Ag thicknesses. The AZO/Ag/AZO structure allows a low sheet resistance of around 10 Ω/sq and a visible transmission above 80% achieved with an overall thickness of ˜110 nm. The optimisation of front AZO thickness helps to reduce reflection via destructive interferences. We demonstrated that the adhesion strength of the stacks can be improved by modifying top AZO deposition conditions. The adhesive tape test confirms good film adhesion (i.e., peel-off strength) to the glass substrate. The annealing studies confirm good thermal stabilities of the fabricated sandwich structure.

  6. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  7. Pulsed direct flame deposition and thermal annealing of transparent amorphous indium zinc oxide films as active layers in field effect transistors.

    Science.gov (United States)

    Kilian, Daniel; Polster, Sebastian; Vogeler, Isabell; Jank, Michael P M; Frey, Lothar; Peukert, Wolfgang

    2014-08-13

    Indium-zinc oxide (IZO) films were deposited via flame spray pyrolysis (FSP) by pulsewise shooting a Si/SiO2 substrate directly into the combustion area of the flame. Based on UV-vis measurements of thin-films deposited on glass substrates, the optimal deposition parameters with respect to low haze values and film thicknesses of around 100 nm were determined. Thermal annealing of the deposited films at temperatures between 300 and 700 °C was carried out and staggered bottom gate thin-film transistors (TFT) were fabricated. The thin films were investigated by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and room-temperature photoluminescence measurements. The outcome of these investigations lead to two major requirements in order to implement a working TFT: (i) organic residues from the deposition process need to be removed and (ii) the net free charge carrier concentration has to be minimized by controlling the trap states in the semiconductor. The optimal annealing temperature was 300 °C as both requirements are fulfilled best in this case. This leads to field effect transistors with a low hysteresis, a saturation mobility of μSat = 0.1 cm(2)/(V s), a threshold voltage of Vth = -18.9 V, and an Ion/Ioff ratio on the order of 10(7). Depending on thermal treatment, the defect density changes significantly strongly influencing the transfer characteristics of the device.

  8. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  9. 改变沉积温度在玻璃衬底上沉积制备ZnO基透明导电薄膜的研究%Study on the ZnO-based Transparent Conductive Film Deposition on the Glass Substrate under Various Deposition Temperatures

    Institute of Scientific and Technical Information of China (English)

    郑洪; 鞠振河; 张东

    2015-01-01

    针对透明导电材料领域里在廉价的普通玻璃衬底上沉积制备ZnO光电透明导电薄膜的问题,采用了新的制备方法,将玻璃基片清洗送入气相沉积反应室,向反应室内同时通入携带有Zn( CH2 CH3)2的氩气和氧气,制备高透射率的ZnO透明导电薄膜。制备结束后在400℃高温高温环境下退火,形成性能优异的ZnO光电透明导电薄膜。该方法制备工艺简单,沉积过程易于控制,所制备的透明导电薄膜均匀性好,光电性能优异,可用于制造太阳能电池、发光二极管、LCD以及手机等光电器件的透明电极。%In this paper,a new method was presented that was used to the deposition of ZnO transparent conductive thin film photovoltaic on cheap ordinary glass substrate in the field of transparent conductive materials. The method is to car-ry the cleaned glass substrate with the argon and oxygen accompanied with Zn(CH2CH3)2 into the vapor deposition re-action chamber to deposit the ZnO transparent conductive thin films. After the as-grown films preparation,the 400 ℃high temperature annealing is adopt to enhance the performance of high transparent conductive. The preparation process is simple and easy to control. The as-grown films with the uniformity surface and excellent optical performance can be used for the manufacture of solar cells,light emitting diodes,and transparency electrodes of LCD and mobile phones.

  10. Effect of CeO{sub 2} addition on thermal shock resistance of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaoben [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); College of Mechanical Engineering, Shanghai Dianji University, Shanghai 200240 (China); Zhu, Shigen, E-mail: sgzhu@dhu.edu.cn [College of Mechanical Engineering, Donghua University, Shanghai 201620 (China); Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Shanghai 201620 (China)

    2015-09-15

    Highlights: • WC–Co powders with CeO{sub 2} were deposited by electric contact strengthening (ECS). • ECS is based on electric resistive heating between the electrode and work piece. • WC–Co coating with CeO{sub 2} by ECS was metallurgically bonded to the substrate. • The addition of CeO{sub 2} could refine the coating microstructure and increase the microhardness. • By the proper addition of cerium oxide, the thermal shock performance was enhanced. - Abstract: The WC–12%Co powders with different contents of CeO{sub 2} (0.1–2 wt.%) were deposited on ductile iron by electric contact surface strengthening. The coatings with and without CeO{sub 2} were examined and tested for microstructural characteristic, phase structure, microhardness and thermal shock resistance. The comparison concluded that the proper addition of CeO{sub 2} could refine the microstructure of coatings and increase the microhardness of the coatings. By the small amount addition of cerium oxide (0.5 wt.%), the solid solution strengthening effect and grain boundaries strengthening effect would delay the time of crack formation and propagation in the coatings and enhance the thermal shock performance.

  11. Isolating the Photovoltaic Junction: Atomic Layer Deposited TiO2-RuO2 Alloy Schottky Contacts for Silicon Photoanodes.

    Science.gov (United States)

    Hendricks, Olivia L; Scheuermann, Andrew G; Schmidt, Michael; Hurley, Paul K; McIntyre, Paul C; Chidsey, Christopher E D

    2016-09-14

    We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions ≥ 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.

  12. Superhydrophobic transparent films from silica powder: Comparison of fabrication methods

    KAUST Repository

    Liu, Li-Der

    2011-07-01

    The lotus leaf is known for its self-clean, superhydrophobic surface, which displays a hierarchical structure covered with a thin wax-like material. In this study, three fabrication techniques, using silicon dioxide particles to create surface roughness followed by a surface modification with a film of polydimethylsiloxane, were applied on a transparent glass substrate. The fabrication techniques differed mainly on the deposition of silicon dioxide particles, which included organic, inorganic, and physical methods. Each technique was used to coat three samples of varying particle load. The surface of each sample was evaluated with contact angle goniometer and optical spectrometer. Results confirmed the inverse relationships between contact angle and optical transmissivity independent of fabrication techniques. Microstructural morphologies also suggested the advantage of physical deposition over chemical methods. In summary, the direct sintering method proved outstanding for its contact angle vs transmissivity efficiency, and capable of generating a contact angle as high as 174°. © 2011 Elsevier B.V. All rights reserved.

  13. Transparent heaters made by ultrasonic spray pyrolysis of nanograined SnO2 layers on soda-lime glass substrates

    Science.gov (United States)

    Gharesi, Mohsen; Ansari, Mohammad; Akbari-Saatlu, Mehdi

    2017-07-01

    Transparent heaters have become important owing to the increasing demand in automotive and display device manufacturing industries. Indium tin oxide (ITO) is the most commonly used material for the production of transparent heaters, but the fabrication cost is high as the indium resources are diminishing fast. This has been the driving force behind the intense research for discovering more durable and cost-effective alternatives. Tin oxide, with its high temperature stability and coexisting high levels of conductivity and transparency, can replace expensive ITO in the fabrication of transparent heaters. Here, we propose nanograined tin oxide films deposited using ultrasonic spray pyrolysis as the raw material for the fabrication of transparent heaters. Silver contacts are paste printed on the deposited SnO2 layers, which provide the necessary connections to the external circuitry. Deposition of films having sheet resistance in the 120 Ω □-1 range takes only ~5 min and the utilized methods are fully scalable to the mass production level. Durability tests, carried out for weeks of continuous operation at different elevated temperatures, demonstrated the long load life of the produced heaters.

  14. Transparent Institutions

    Directory of Open Access Journals (Sweden)

    Javier Fombona

    2011-04-01

    Full Text Available The objective of this project is to create sets of media-based imagery that illustrate the internal workings of public institutions to the common citizen. This is an important need in countries that are seeking to open up their public and private institutions and bring them closer to their users. Method: There is a clear need to carry out proposals that tackle organizational lack of transparency; to this end, through an interdisciplinary approach, we propose the creation of a freeaccess Web-based portal that shows the interior of the institutions at hand, learning institutions to start with, this scope will be broadened later to institutions of health and public safety. The project chooses and shows a core selection of features capable of becoming international models for each kind of institutions, elementary schools in this phase. These features are shown in short videos, depicting every core element found: installations, governing bodies, documentation, samples of learning and teaching methodologies in use, etc. Results: the propossed project succeeds in getting institutions closer to their users. It has been developed in Spain, and translated to other Latin-American countries and the United States.

  15. Transparent Institutions

    Directory of Open Access Journals (Sweden)

    Javier Fombona

    2011-04-01

    Full Text Available The objective of this project is to create sets of media-based imagery that illustrate the internal workings of public institutions to the common citizen. This is an important need in countries that are seeking to open up their public and private institutions and bring them closer to their users. Method: There is a clear need to carry out proposals that tackle organizational lack of transparency; to this end, through an interdisciplinary approach, we propose the creation of a freeaccess Web-based portal that shows the interior of the institutions at hand, learning institutions to start with, this scope will be broadened later to institutions of health and public safety. The project chooses and shows a core selection of features capable of becoming international models for each kind of institutions, elementary schools in this phase. These features are shown in short videos, depicting every core element found: installations, governing bodies, documentation, samples of learning and teaching methodologies in use, etc. Results: the propossed project succeeds in getting institutions closer to their users. It has been developed in Spain, and translated to other Latin-American countries and the United States.

  16. Atomic layer deposition of HfO{sub 2} onto SiO{sub 2} substrates investigated in-situ by non-contact UHV/AFM

    Energy Technology Data Exchange (ETDEWEB)

    Kolanek, Krzysztof; Karavaev, Konstantin; Tallarida, Massimo; Schmeisser, Dieter [Brandenburgische Technische Universitaet, LS Angewandte Physik-Sensorik, Cottbus (Germany)

    2010-07-01

    We investigated in-situ the atomic layer deposition (ALD) of HfO{sub 2} onto SiO{sub 2} substrates with ultra high vacuum (UHV) non-contact atomic force microscope (NC-AFM). The ALD process was started after detailed analysis of the initial Si(001)/SiO{sub 2} substrate. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf (TDMAHf) and water as precursors, were performed on the SiO{sub 2} substrate maintained at 230 C. We studied the relation between the film growth and the root mean square surface roughness, surface skewness, kurtosis, fractal dimension and correlation length. In the initial stages of the ALD process with our analysis of the surface height histograms we were capable of determination: HfO{sub 2} layer thickness, surface coverage and surface roughness of a substrate and deposited material. Observation of the surface height histograms evolution during deposition allowed us to verify conformal and effective ALD growth on SiO{sub 2} substrate. With this detailed analysis of the surface topography we confirmed the completion of the first HfO{sub 2} layer after four ALD cycles.

  17. Electroless deposition of NiWB alloy on p-type Si(1 0 0) for NiSi contact metallization

    Energy Technology Data Exchange (ETDEWEB)

    Duhin, A. [Department of Physical Electronics, Engineer Faculty, Tel-Aviv University, Ramat-Aviv 69978 (Israel)], E-mail: alla.douhin@gmail.com; Sverdlov, Y. [Department of Physical Electronics, Engineer Faculty, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Feldman, Y. [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel); Shacham-Diamand, Y. [Department of Physical Electronics, Engineer Faculty, Tel-Aviv University, Ramat-Aviv 69978 (Israel)

    2009-10-30

    Recently, we have proposed a novel method to form NiSi contacts using electroless plating of Ni-alloys (NiP, NiWP, NiWB) on p-type Si(1 0 0) modified by aminopropyltriethoxysilane (APTS) activated with Pd-citrate [A. Duhin, Y. Sverdlov, Yishay Feldman, Y. Shacham-Diamand, Microelectron. Eng. 84 (2007) 2506]. In this work we focus on NiWB thin films that were formed by this method. Alkali metal free electroless plating was developed using dimethylamine-borane (DMAB) and tungstatic acid (H{sub 2}WO{sub 4}) as a reducing agent and a source of tungsten ions, respectively. Using this method we succeeded to receive relatively high tungsten concentration (maximum value of 19-21 at%) in the electroless deposited NiWB films with good adhesion to the Si-substrate. In this paper, the advantages of using the APTS activated with Pd-citrate for NiWB alloy deposition on the Si substrate is discussed. The chemically deposited NiWB samples were annealed for 1-2 h in vacuum (<10{sup -6} Torr) forming the silicide layer. The annealing temperatures were 650 deg. C for NiWB alloys. X-ray diffraction (XRD) measurement confirmed the presence of NiSi phase after annealing. In addition the WSi{sub 2} phase was formed. The results are reported and summarized.

  18. Combination of nitrogen mediated crystallisation with post-deposition annealing—Towards ultra-thin ZnO:Al contacts

    Energy Technology Data Exchange (ETDEWEB)

    Muydinov, R., E-mail: ruslan.muydinov@tu-berlin.de [Technical University Berlin, Institute for Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany); Ruske, F. [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany); Neubert, S. [Helmholtz-Zentrum Berlin, PVcomB, Schwarzschildstraße 3, 12489 Berlin (Germany); Steigert, A.; Klaus, M. [Helmholtz-Zentrum Berlin, Institute for Heterogeneous Material Systems, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Selve, S. [Technical University Berlin, ZELMI, Straße des 17. Juni 135, 10623 Berlin (Germany); Köppel, G. [Helmholtz-Zentrum Berlin, Institute Nanostructured Silicon for Photonic and Photovoltaic Implementations Kekuléstraße 5, 12489 Berlin (Germany); Szyszka, B. [Technical University Berlin, Institute for Semiconducting- and High-Frequency Technologies, Einsteinufer 25, 10587 Berlin (Germany)

    2015-08-31

    In order to improve the performance of doped zinc oxide thin films, the combination of a seed layer approach based on Nitrogen Mediated Crystallisation (NMC) with the post-deposition annealing of functional ZnO:Al films under a protective a-Si:H capping layer was applied in this work. The seed layers were prepared by magnetron sputtering and the effects of deposition parameters like power density, pressure and nitrogen content in the sputtering gas are reported. Optimised NMC seed layers were covered by ZnO:Al layers whose electrical transport properties have been investigated. Combination of these two approaches allowed decreasing resistivity to ≤ 350 μΩ cm and increasing charge-carrier mobility up to > 60 cm{sup 2}/V s for 230–280 nm thick films. Apparently, NMC-seed layer assists better relative crystallites' orientation, i.e. better out-of-plane texture, whereas the applied annealing helps to release the residual stresses in the film and decreases the concentration of scattering defects in ZnO:Al layers. - Highlights: • NMC was combined with the post-deposition annealing of ZnO:Al films under Si:H cap. • Both approaches work additively resulting in better Hall-mobility of electrons (μ{sub e}). • ZnO:Al films on glass are under measurable compressive stresses (~ 1 GPa). • Each of the both approaches allows decreasing compressive stresses in ZnO:Al films. • Very thin (250–280 nm) ZnO:Al films were obtained with μ{sub e} of more than 60 cm{sup 2}/Vs.

  19. Electrical and optical properties of transparent conducting In{sub x}Ga{sub 1−x}N alloy films deposited by reactive co-sputtering of GaAs and indium

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Brajesh S. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Mohanta, P. [Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Srinivasa, R.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Major, S.S., E-mail: syed@iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-03-31

    Thin films of In{sub x}Ga{sub 1–x}N alloys were deposited by reactive sputtering using a GaAs target, covered partially with indium and co-sputtered with nitrogen. X-ray and electron diffraction studies indicate the formation of single phase In{sub x}Ga{sub 1–x}N films at ∼ 500 °C. Hall effect and resistivity measurements show that the alloy films with x ≥ 0.5 have high carrier concentrations in the range of 10{sup 20}–10{sup 21} cm{sup −3} and mobility of ∼ 10 cm{sup 2} V{sup −1} s{sup −1}. Optical measurements of the alloy films show a strong dependence of the band gap on carrier concentration, which is attributed to the Burstein–Moss shift and free carrier effects in the near-infrared region. The values of electron effective mass obtained from plasma resonance data and the Burstein–Moss shift show good agreement. Over a limited composition window of x in the range of 0.5–0.6, the alloy films exhibit low electrical resistivity (≈ 10{sup −3} Ω-cm) and high transparency in part of the visible and near infrared regions, followed by high reflectance in the infrared region, which show their potential for applications as transparent electrodes in photovoltaic and photonic devices and as heat mirrors. - Highlights: • In{sub x}Ga{sub 1–x}N alloy films were deposited by co-sputtering of GaAs and In with 100% N{sub 2}. • Films deposited at ∼ 500 °C are polycrystalline single phase hexagonal In{sub x}Ga{sub 1–x}N. • In{sub x}Ga{sub 1–x}N alloy films with x > 0.5 exhibit a low resistivity of ∼ 10{sup −5} Ω-m. • Alloy films exhibit ∼ 80% transmittance in the wavelength range of 500–1500 nm. • Band gap and effective mass of alloy films depend on free electron concentration.

  20. CAB-DWTM for 5 μm trace-width deposition of solar cell metallization top-contacts

    Energy Technology Data Exchange (ETDEWEB)

    Justin Hoey; Drew Thompson; Matt Robinson; Zakaria Mahmud; Orven F. Swenson; Iskander S. Akhatov; Douglas L. Schulz

    2009-06-08

    This paper reviews methods for creating solar cell grid contacts and explores how cell efficiency can be increased using CAB-DW{trademark}. Specifically, the efficiency of p-i-n structure solar cells built in-house with 90 {micro}m sputtered lines and 5 {micro}m CAB-DW lines were compared. Preliminary results of the comparison show a marked improvement in solar cell efficiency using CAB-DW. In addition to this, a theoretical and experimental analysis of the dynamics of particle impaction on a substrate (i.e. whether particle stick or bounce) will be discussed including how this analysis may lead to further improvement of CAB-DW.

  1. Gestalt and phenomenal transparency.

    Science.gov (United States)

    Koenderink, Jan; van Doorn, Andrea; Pont, Sylvia; Richards, Whitman

    2008-01-01

    Phenomenal transparency is commonly studied by using a stimulus configuration introduced by Metelli: a bipartite patch, divided into equal left and right halves is overlaid with a smaller, concentric bipartite patch, divided along the same line. Observers are instructed to report either a transparent patch over an opaque bipartite field or a mosaic of four opaque patches. We show theoretically and empirically that these are only two of five generic perceptual categories, namely, transparent patch, transparent annulus (hole), mosaic, partial transparency, and multiple transparency (ambiguous) cases. Thus Gestalt factors complicate the interpretation "phenomenal transparency." We propose a framework that avoids this complication. There is excellent agreement between predictions and results.

  2. Sol-gel deposition and plasma treatment of intrinsic, aluminum-doped, and gallium-doped zinc oxide thin films as transparent conductive electrodes

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2015-09-01

    Zinc oxide and aluminum/gallium-doped zinc oxide thin films were deposited via sol-gel spin-coating technique. Employing plasma treatment as alternative to post thermal annealing, we found that the morphologies of these thin films have changed and the sheet resistances have been significantly enhanced. These plasma-treated thin films also show very good optical properties, with transmittance above 90% averaged over the visible wavelength range. Our best aluminum/gallium-doped zinc oxide thin films exhibit sheet resistances (Rs) of ~ 200 Ω/sq and ~ 150 Ω/sq, respectively.

  3. Improving low pressure chemical vapor deposited zinc oxide contacts for thin film silicon solar cells by using rough glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, J., E-mail: jerome.steinhauser@oerlikon.com; Boucher, J.-F.; Omnes, E.; Borrello, D.; Vallat-Sauvain, E.; Monteduro, G.; Marmelo, M.; Orhan, J.-B.; Wolf, B.; Bailat, J.; Benagli, S.; Meier, J.; Kroll, U.

    2011-12-01

    Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (R{sub sq}) of zinc oxide layers grown on it. We explain this R{sub sq} reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm{sup -2} were fabricated.

  4. Amorphous IZO-based transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Paine, David C. [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: David_Paine@Brown.edu; Yaglioglu, Burag; Beiley, Zach; Lee, Sunghwan [Division of Engineering, Brown University, Providence, RI 02912 (United States)

    2008-07-01

    Active electronics implemented on cheap flexible polymer substrates offer the promise of novel display technologies, wearable electronics, large area memory, and a multitude of other, as-yet-unthought-of applications that require low cost and high volume manufacturing. Thin film transistors (TFT's) fabricated on temperature-sensitive plastic substrates at low temperatures are the key to this technology. TFT's that use metal (In, Zn, Sn, Ga) oxide channels offer both high mobility (relative to amorphous Si) and the advantage of optical transparency in the visible regime. We report on the fabrication and performance of amorphous oxide transparent thin film transistors that use dc-magnetron sputter techniques to deposit IZO (In{sub 2}O{sub 3} - 10 wt.% ZnO) at low oxygen potential (0 vol.% O{sub 2}) for the source, drain, and gate-contact metallization and, at higher oxygen partial pressures (10 vol.% O{sub 2}), for the semi-conducting channel. The devices in this study were processed at room temperature except for a single 280 {sup o}C PECVD deposition step to deposit a 230 nm-thick SiO{sub x} gate dielectric. The devices are optically transparent and operate in depletion mode with a threshold voltage of - 5 V, mobility of 15 cm{sup 2}/V s, an on-off ratio of > 10{sup 6} and, a sub-threshold slope of 1.2 V/decade. In addition, we report persistent photo-conductivity in the channel region of these devices when exposed to UV illumination.

  5. Printed PEDOT layers as transparent emitter electrodes for application in flexible inorganic photovoltaic structures

    Science.gov (United States)

    Znajdek, Katarzyna; Sibiński, Maciej; Przymecki, Krzysztof; Wróblewski, Grzegorz; Lisik, Zbigniew

    2016-12-01

    The purpose of the work is to find an appropriate flexible material to replace commonly used transparent conductive oxides (TCO) in photovoltaic (PV) emitter electrode applications. Authors show the alternative, potential possibility of using PEDOT conductive polymer as transparent emitter contacts for thin-film, flexible photovoltaic structures. The vast majority of contacts made of TCO layers, dominantly indium tin oxide ITO, are electrically unstable under the influence of mechanical stresses [1,2,3]. This drawback inhibits their usage in flexible devices, such as solar cells. The need of the development in the field of flexible PV structures induces searching for new materials. Investigated transparent conductive layers (TCL) were made of organic compositions based on PEDOT polymer and their parameters were compared with equally measured parameters of carbon nanotube (CNT) layers, commercial ITO and AgHT ultra-thin silver layers. Transparent conductive layers based on PEDOT:PSS compound were deposited on flexible substrates by screen printing technique. The analysis of achieved results shows the broad spectrum of application possibilities for PEDOT layers.

  6. The role of multi-purpose solutions in prevention and removal of lipid depositions on contact lenses.

    Science.gov (United States)

    Tam, Ngai Keung; Pitt, William G; Perez, Krystian X; Handly, Erika; Glenn, Andrew A; Hickey, John W; Larsen, Brian G

    2014-12-01

    The sorption and desorption of radiolabeled dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CH) were measured on 5 types of commercial contact lenses. The lenses were soaked in vitro in an artificial tear fluid for 16h. The effects of borate buffered saline and two commercial multi-purpose lens-care solutions (MPSs) on reducing the lipid (DPPC and CH) sorption and increasing the lipid removal were examined. The results showed that silicone hydrogel (SiHy) lenses accumulated the most lipids, sorbing over an order of magnitude more than polymacon, a conventional hydrogel lens. Pre-soaking the SiHy lenses for 16h in MPSs reduced the DPPC sorption by up to 13% and the CH sorption by up to 11%, compared to controls that were not pre-soaked. However neither these reductions nor those on polymacon were statistically significant (p>0.05). In sorption experiments without presoaking, subsequent exposure to the MPSs removed some DPPC from the lenses (0-3.1% for SiHy lenses and 14-55% for polymacon), but CH removal was 0.0-0.8% for SiHy lenses and 0.6-28% for polymacon lenses. Some of these removals were statistically significant (p<0.05).

  7. Demonstration of transparent solar array module design

    Science.gov (United States)

    Pack, G. J.

    1984-01-01

    This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.

  8. Peering into Transparency

    DEFF Research Database (Denmark)

    Christensen, Lars Thøger; Cheney, George

    2015-01-01

    The current emphasis on organizational transparency signifies a growing demand for insight, clarity, accountability, and participation. Holding the promise of improved access to valid and trustworthy knowledge about organizations, the transparency pursuit has great potential for enhanced organiza......The current emphasis on organizational transparency signifies a growing demand for insight, clarity, accountability, and participation. Holding the promise of improved access to valid and trustworthy knowledge about organizations, the transparency pursuit has great potential for enhanced...

  9. Transparency and product variety

    DEFF Research Database (Denmark)

    Schultz, Christian

    2009-01-01

    We study long run effects of transparency on the consumer side in a differentiated market. Only some consumers know prices. Increasing transparency reduces the equilibrium price, profit and firm entry. This improves welfare and, in most cases, average consumer utility.......We study long run effects of transparency on the consumer side in a differentiated market. Only some consumers know prices. Increasing transparency reduces the equilibrium price, profit and firm entry. This improves welfare and, in most cases, average consumer utility....

  10. Optimal central bank transparency

    NARCIS (Netherlands)

    van der Cruijsen, C.A.B.; Eijffinger, S.C.W.; Hoogduin, L.

    2008-01-01

    Should central banks increase their degree of transparency any further? We show that there is likely to be an optimal intermediate degree of central bank transparency. Up to this optimum more transparency is desirable: it improves the quality of private sector inflation forecasts. But beyond the opt

  11. Optimal central bank transparency

    NARCIS (Netherlands)

    van der Cruijsen, C.A.B.; Eijffinger, S.C.W.; Hoogduin, L.H.

    2010-01-01

    Should central banks increase their degree of transparency any further? We show that there is likely to be an optimal intermediate degree of central bank transparency. Up to this optimum more transparency is desirable: it improves the quality of private sector inflation forecasts. But beyond the opt

  12. Innovative transparent armour concepts

    NARCIS (Netherlands)

    Carton, E.P.; Broos, J.P.F.

    2011-01-01

    Ever since WWII transparent armour consists of a multi-layer of glass panels bonded by thin polymer bond-films using an autoclave process. TNO has worked on the development of innovative transparent armour concepts that are lighter and a have better multi-hit capacity. Two new transparent armour con

  13. Innovative transparent armour concepts

    NARCIS (Netherlands)

    Carton, E.P.; Broos, J.P.F.

    2011-01-01

    Ever since WWII transparent armour consists of a multi-layer of glass panels bonded by thin polymer bond-films using an autoclave process. TNO has worked on the development of innovative transparent armour concepts that are lighter and a have better multi-hit capacity. Two new transparent armour

  14. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  15. The Art of Transparency

    Directory of Open Access Journals (Sweden)

    Bilge Sayim

    2011-09-01

    Full Text Available Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles.

  16. The art of transparency.

    Science.gov (United States)

    Sayim, Bilge; Cavanagh, Patrick

    2011-01-01

    Artists throughout the ages have discovered a number of techniques to depict transparency. With only a few exceptions, these techniques follow closely the properties of physical transparency. The two best known properties are X-junctions and the luminance relations described by Metelli. X-junctions are seen where the contours of a transparent material cross contours of the surface behind; Metelli's constraints on the luminance relations between the direct and filtered portions of the surface specify a range of luminance values that are consistent with transparency. These principles have been used by artists since the time of ancient Egypt. However, artists also discovered that stimuli can be seen as transparent even when these physical constraints are not met. Ancient Greek artists, for example, were able to depict transparent materials in simple black-and-white line drawings. Artists also learned how to represent transparency in cases where neither X-junctions nor Metelli's constraints could apply: for example, where no portions of the objects behind the transparent material extend beyond it. Many painters convincingly portrayed transparency in these cases by depicting the effects the transparent medium would have on material or object properties. Here, we show how artists employed these and other techniques revealing their anticipation of current formalizations of perceived transparency, and we suggest new, as-yet-untested principles.

  17. Thin Solid Films Topical Special Issue on ZnO related transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Jinn P.; Endo, Tamio; Ellmer, Klaus; Gessert, Tim; Ginley, David

    2016-04-01

    World-wide research activities on ZnO and related transparent conductive oxides (TCO) in thin film, nanostructured, and multilayered forms are driven by the vast potential of these materials for optoelectronic, microelectronic, and photovoltaic applications. Renewed interest in ZnO applications is partly stimulated by cost reduction in material processing and device development. One of the most important issues is doping and alloying with Al, Ga, In, Sn, etc. in order to tune properties. When highly doped, these materials are used as transparent-conducting contacts on solar cells, as well as in catalytic, spintronic, and surface acoustic wave devices. Film growth conditions, including substrate type and orientation, growth temperature, deposition rate, and ambient atmosphere, all play important roles in determining structural, electrical, magnetic, and optical properties.

  18. Superoleophilic Titania Nanoparticle Coatings with Fast Fingerprint Decomposition and High Transparency.

    Science.gov (United States)

    Choi, Hyungryul J; Park, Kyoo-Chul; Lee, Hyomin; Crouzier, Thomas; Rubner, Michael F; Cohen, Robert E; Barbastathis, George; McKinley, Gareth H

    2017-03-08

    Low surface tension sebaceous liquids such as human fingerprint oils are readily deposited on high energy surfaces such as clean glass, leaving smudges that significantly lower transparency. There have been several attempts to prevent formation of these dactylograms on glass by employing oil-repellent textured surfaces. However, nanotextured superoleophobic coatings typically scatter visible light, and the intrinsic thermodynamic metastability of the composite superoleophobic state can result in failure of the oil repellency under moderate contact pressure. We develop titania-based porous nanoparticle coatings that are superoleophilic and highly transparent and which exhibit short time scales for decomposition of fingerprint oils under ultraviolet light. The mechanism by which a typical dactylogram is consumed combines wicking of the sebum into the nanoporous titania structure followed by photocatalytic degradation. We envision a wide range of applications because these TiO2 nanostructured surfaces remain photocatalytically active against fingerprint oils in natural sunlight and are also compatible with flexible glass substrates.

  19. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating

    Science.gov (United States)

    Deng, Xu; Mammen, Lena; Butt, Hans-Jürgen; Vollmer, Doris

    2012-01-01

    Coating is an essential step in adjusting the surface properties of materials. Superhydrophobic coatings with contact angles greater than 150° and roll-off angles below 10° for water have been developed, based on low-energy surfaces and roughness on the nano- and micrometer scales. However, these surfaces are still wetted by organic liquids such as surfactant-based solutions, alcohols, or alkanes. Coatings that are simultaneously superhydrophobic and superoleophobic are rare. We designed an easily fabricated, transparent, and oil-rebounding superamphiphobic coating. A porous deposit of candle soot was coated with a 25-nanometer-thick silica shell. The black coating became transparent after calcination at 600°C. After silanization, the coating was superamphiphobic and remained so even after its top layer was damaged by sand impingement.

  20. Transparency and Product Variety

    DEFF Research Database (Denmark)

    Schultz, Christian

    We study the long run e¤ects of transparency in a circular town model of a differentiated market. The market is not fully transparent on the consumer side: A fraction of consumers are uninformed about prices. Increasing transparency reduces the equilibrium price, profit and entry of firms...... firm enters and acts like a monopolist. Consumers therefore prefer that market transparency is as high as possible under the restriction that the market should allow entry for two firms. If firms choose mixed entry strategies, consumers prefer full transparency....... This improves welfare. If consumers' transportation cost is high, it also improves the average utility of consumers. When transportation costs are very small, the fully transparent market features cut throat competition if there are several firms in the market, and if firms choose pure entry strategies only one...

  1. Peering into Transparency

    DEFF Research Database (Denmark)

    Christensen, Lars Thøger; Cheney, George

    The current emphasis on organizational and institutional transparency – driven by NGOs, inquisitive media, critical investors and other engaged stakeholders – signifies a growing demand for insight, clarity, participation and democracy. Holding the promise of improved access to valid and trustwor......The current emphasis on organizational and institutional transparency – driven by NGOs, inquisitive media, critical investors and other engaged stakeholders – signifies a growing demand for insight, clarity, participation and democracy. Holding the promise of improved access to valid...... and trustworthy knowledge about contemporary organizations, the transparency discourse has significant democratic potential. Yet, its most common operationalization – as information availability – reinstalls a “purified” notion of communication devoid of mystery, inaccuracy and misrepresentation. In this paper......, we apply transparency to itself by unpacking its implicit model of communication and critiquing its ignorance towards the representative nature of current transparency practices. The critique unfolds the ambiguous nature of the transparency pursuit and demonstrates how its desire for insight, clarity...

  2. Transparency and Product Variety

    DEFF Research Database (Denmark)

    Schultz, Christian

    We study the long run e¤ects of transparency in a circular town model of a differentiated market. The market is not fully transparent on the consumer side: A fraction of consumers are uninformed about prices. Increasing transparency reduces the equilibrium price, profit and entry of firms....... This improves welfare. If consumers' transportation cost is high, it also improves the average utility of consumers. When transportation costs are very small, the fully transparent market features cut throat competition if there are several firms in the market, and if firms choose pure entry strategies only one...... firm enters and acts like a monopolist. Consumers therefore prefer that market transparency is as high as possible under the restriction that the market should allow entry for two firms. If firms choose mixed entry strategies, consumers prefer full transparency...

  3. Gestalt and phenomenal transparency

    OpenAIRE

    2008-01-01

    Phenomenal transparency is commonly studied by using a stimulus configuration introduced by Metelli: a bipartite patch, divided into equal left and right halves is overlaid with a smaller, concentric bipartite patch, divided along the same line. Observers are instructed to report either a transparent patch over an opaque bipartite field or a mosaic of four opaque patches. We show theoretically and empirically that these are only two of five generic perceptual categories, namely, transparent p...

  4. Using transparency in visualization

    OpenAIRE

    2011-01-01

    Over the last two decades, there have been a growing number of applications for transparency in visualization. Transparency is a visual feature that provides solutions to certain fundamental visualization problems. Currently, there is insufficient research regarding the benefits and the limitations of using transparency in visualization. The lack of research on this topic becomes more apparent when we compare the amount of research done towards applying colour in visualization. This thesis at...

  5. Transparency in Organizing

    DEFF Research Database (Denmark)

    Albu, Oana Brindusa

    This dissertation provides a critical analysis of transparency in the context of organizing. The empirical material is based on qualitative studies of international cooperative organizations. The dissertation seeks to contribute to transparency and organizing scholarship by adopting a communication...... to being a solution for efficiency and democratic organizing, is a communicatively contested process which may lead to unintended consequences. The dissertation shows that transparency is performative: it can impact authority by de/legitimating action, shape the processes of organizational identity co...

  6. Plasmonic transparent conductors

    Science.gov (United States)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  7. INKJET PRINTING OF NICKEL AND SILVER METAL SOLAR CELL CONTACTS

    Energy Technology Data Exchange (ETDEWEB)

    Pasquarelli, R.; Curtis, C.; Van Hest, M.

    2008-01-01

    With about 125,000 terawatts of solar power striking the earth at any given moment, solar energy may be the only renewable energy resource with enough capacity to meet a major portion of our future energy needs. Thin-fi lm technologies and solution deposition processes seek to reduce manufacturing costs in order to compete with conventional coal-based electricity. Inkjet printing, as a derivative of the direct-write process, offers the potential for low-cost, material-effi cient deposition of the metals for photovoltaic contacts. Advances in contact metallizations are important because they can be employed on existing silicon technology and in future-generation devices. We report on the atmospheric, non-contact deposition of nickel (Ni) and silver (Ag) metal patterns on glass, Si, and ZnO substrates at 180–220°C from metal-organic precursor inks using a Dimatix inkjet printer. Near-bulk conductivity Ag contacts were successfully printed up to 4.5 μm thick and 130 μm wide on the silicon nitride antirefl ective coating of silicon solar cells. Thin, high-resolution Ni adhesion-layer lines were printed on glass and zinc oxide at 80 μm wide and 55 nm thick with a conductivity two orders of magnitude less than the bulk metal. Additionally, the ability to print multi-layered metallizations (Ag on Ni) on transparent conducting oxides was demonstrated and is promising for contacts in copper-indium-diselenide (CIS) solar cells. Future work will focus on further improving resolution, printing full contact devices, and investigating copper inks as a low-cost replacement for Ag contacts.

  8. Introduction: The Transparency Issue

    NARCIS (Netherlands)

    Teurlings, J.; Stauff, M.

    2014-01-01

    Besides giving an overview on the individual contributions, this introduction to the special issue on transparency delineates a conceptual context for a critical analysis of the contemporary discourse on transparency and the media mechanisms related to it. It focuses on three ambivalences inherent t

  9. Privacy transparency patterns

    NARCIS (Netherlands)

    Siljee B.I.J.

    2015-01-01

    This paper describes two privacy patterns for creating privacy transparency: the Personal Data Table pattern and the Privacy Policy Icons pattern, as well as a full overview of privacy transparency patterns. It is a first step in creating a full set of privacy design patterns, which will aid

  10. Subscribing to Transparency

    DEFF Research Database (Denmark)

    He, Yinghua; Nielsson, Ulf; Guo, Hong

    The paper empirically explores how more trade transparency affects market liquidity. The analysis takes advantage of a unique setting in which the Shanghai Stock Exchange offered more trade transparency to market participants subscribing to a new software package. First, the results show...

  11. Transparencies and Reflections.

    Science.gov (United States)

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  12. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    In a recent EU FP5 project, monolithic silica aerogel was further developed with respect to the production process at pilot-scale, its properties and the application as transparent insulation material in highly insulating and transparent windows. The aerogel production process has been optimised...

  13. Privacy transparency patterns

    NARCIS (Netherlands)

    Siljee B.I.J.

    2015-01-01

    This paper describes two privacy patterns for creating privacy transparency: the Personal Data Table pattern and the Privacy Policy Icons pattern, as well as a full overview of privacy transparency patterns. It is a first step in creating a full set of privacy design patterns, which will aid softwar

  14. Optically Induced Transparency

    CERN Document Server

    Zheng, Yuanlin; Shen, Zhenhua; Cao, Jianjun; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    Light-matter-light interactions serve as the backbone technology of all-optical information processing for both on-chip and long-haul communication purposes. The representative example of electromagnetically induced transparency has its unique ability of optically controlling transparency windows with relative low light in atomic systems, though its practical applications are limited due to rigid experimental requirements. Here we demonstrate a new form of optically induced transparency in a micro-cavity by introducing four-wave mixing gain in order to couple nonlinearly two separated resonances of the micro-cavity in ambient environment. A signature Fano-like resonance is also observed owing to the nonlinear interference of two coupled resonances. Moreover, we show that the unidirectional gain of four-wave mixing can lead to non-reciprocal transmission at the transparency windows. Optically induced transparency may offer a unique platform for a compact, integrated solution to all-optical processing and quant...

  15. Theory of absorption-induced transparency

    Science.gov (United States)

    Rodrigo, Sergio G.; Martín-Moreno, L.

    2014-09-01

    Absorption induced transparency consists in a transmission peak observed in holey metal films when a molecular dye is deposited on top of it [Hutchison et al., Angew. Chem. Int. Ed. 50, 2085 (2011)]. This transmission feature appears unexpectedly close to one of the absorption energies of the molecules, hence its name. Tentative explanations pointed to strong-coupling interactions between plasmons and molecules. However, we recently demonstrated the actual mechanism behind, which takes place through a strong modification of the propagation constant of holes. We also found that absorption induced transparency occurs in single holes and it is not restricted to the optical range.

  16. Dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    1999-01-01

    This paper studies product market competition under a strategic transparency decision. Dominant investors can influence information collection in the financial market, and thereby corporate transparency, by affecting market liquidity or the cost of information collection. More transparency on a firm

  17. Dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    1998-01-01

    This paper studies product market competition under a strategic transparency decision. Dominant investors can influence information collection in the financial market, and thereby corporate transparency, by affecting market liquidity or the cost of information collection. More transparency on a firm

  18. Contact dermatitis

    Science.gov (United States)

    Dermatitis - contact; Allergic dermatitis; Dermatitis - allergic; Irritant contact dermatitis; Skin rash - contact dermatitis ... There are 2 types of contact dermatitis. Irritant dermatitis: This ... with acids, alkaline materials such as soaps and detergents , ...

  19. Subscribing to Transparency

    DEFF Research Database (Denmark)

    He, Yinghua; Nielsson, Ulf; Guo, Hong

    2014-01-01

    The paper empirically explores how more trade transparency affects market liquidity. The analysis takes advantage of a unique setting in which the Shanghai Stock Exchange offered more trade transparency to market participants subscribing to a new software package. First, the results show that the......The paper empirically explores how more trade transparency affects market liquidity. The analysis takes advantage of a unique setting in which the Shanghai Stock Exchange offered more trade transparency to market participants subscribing to a new software package. First, the results show...... that the additional data disclosure increased trading activity, but also increased transactions costs through wider bid-ask spreads. Thus, in contrast to popular policy belief, the paper finds that more transparency need not improve market liquidity. Second, the paper finds a particularly strong immediate liquidity...... the functional form between market-wide transparency and liquidity. The relationship is non-monotonic, which can explain the lack of consensus in the existing literature where each empirical study is naturally confined to specific parts of the transparency domain....

  20. Hazy Transparent Cellulose Nanopaper

    Science.gov (United States)

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%).

  1. Toward transparent clinical policies.

    Science.gov (United States)

    Shiffman, Richard N; Marcuse, Edgar K; Moyer, Virginia A; Neuspiel, Daniel R; Hodgson, Elizabeth Susan; Glade, Gordon; Harbaugh, Norman; Miller, Marlene R; Sevilla, Xavier; Simpson, Lisa; Takata, Glenn

    2008-03-01

    Clinical policies of professional societies such as the American Academy of Pediatrics are valued highly, not only by clinicians who provide direct health care to children but also by many others who rely on the professional expertise of these organizations, including parents, employers, insurers, and legislators. The utility of a policy depends, in large part, on the degree to which its purpose and basis are clear to policy users, an attribute known as the policy's transparency. This statement describes the critical importance and special value of transparency in clinical policies, guidelines, and recommendations; helps identify obstacles to achieving transparency; and suggests several approaches to overcome these obstacles.

  2. Effects of the corona pretreatment of PET substrates on the properties of flexible transparent CNT electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Hoon; Kim, Bu-Jong; Park, Jin-Seok

    2014-12-01

    In this study, the effects of substrate pretreatment on the properties of carbon nanotubes (CNTs), which are used as flexible transparent electrodes, were investigated. CNTs were deposited on PET (polyethylene terephthalate) substrates using a spray coating method. Prior to the deposition of the CNTs, the PET substrates were corona-treated by varying the feeding directions of the PET substrate and the number of treatments. The variation in the surface morphology and roughness of the PET substrates due to the corona pretreatment were characterized via atomic force microscopy (AFM). The contact angles of the PET substrates were measured using polar and dispersive liquids, and the surface energies were estimated. Also, the sheet resistance of the CNTs deposited on the PET substrates was measured before and after the bending test. The experiment results provided strong evidence that the adhesive forces between the CNTs and the PET substrate can be substantially enhanced by corona pretreatment. - Highlights: • The surfaces of PET substrates have been treated via corona plasma. • The surface roughness and contact angle of PET substrate have been measured. • The effects of corona-treatment on the surface energy of PETs have been analyzed. • CNTs have been deposited on PET substrates using a spray coating method. • The variation in the sheet resistance of CNTs due to bending has been examined.

  3. Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings

    Science.gov (United States)

    Liu, Xiaojun; Wang, Lei; Hao, Jie; Chu, Liqiang

    2015-12-01

    Herein we report on the deposition of transparent hydrophobic thin coatings by radio frequency plasma polymerization (PP) of perfluorooctyl ethylene (PFOE) in both pulsed and continuous wave (CW) modes. The chemical compositions of the resulting PP-PFOE coatings were confirmed by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The thicknesses and surface morphologies of the coatings were examined using surface plasmon resonance spectroscopy and atomic force microscopy. The surface wetting properties and optical transmittance were measured using a water contact angle goniometer and UV-vis spectroscopy. The FT-IR and XPS data showed that the PP-PFOE coatings deposited in the pulsed mode had a higher retention of CF2 groups compared to those from the CW mode. While the water contact angle of the freshly deposited PP-PFOE from the pulsed mode showed a decrease from 120 degrees to 111 degrees in the first two days, it then remained almost unchanged up to 45 days. The UV-vis data indicated that a PP-PFOE coating 30.6 nm thick had a light transmittance above 90% in the UV and visible ranges. The deposition rates under various plasma conditions are also discussed. supported by the Tianjin Research Program of Application Foundation and Advanced Technology, China (No. 12JCYBJC31700) and the Program for New Century Excellent Talents in University, China (No. NCET-12-1064)

  4. Relevance of annealing on the stoichiometry and morphology of transparent thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prepelita, P., E-mail: prepelitapetro@yahoo.co.uk [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, 077125 Magurele, Ilfov (Romania); Craciun, V. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, 077125 Magurele, Ilfov (Romania); Sbarcea, G. [ICPE – CA, Splaiul Unirii 313, Sector 3, 74204 Bucharest (Romania); Garoi, F. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-36, 077125 Magurele, Ilfov (Romania)

    2014-07-01

    Transparent thin films of SnO{sub 2}, ZnO:Al, and ITO were deposited onto glass substrate by vacuum thermal evaporation technique, from 0.5 cm diameter grains (i.e. ITO, ZnO:Al (3%) and SnO{sub 2}) with 99.99% purity. To improve the quality (i.e. stoichiometry and morphology) of these thin films, they were annealed at 400 °C in air for 2 h. Following this annealing, the samples become suitable to be used as contact electrodes for solar cells. The investigations were performed on samples having a polycrystalline structure, as revealed by X-ray diffraction analysis after annealing process. Moreover, these thin films had a strong orientation with the following planes parallel to the substrate: (1 0 1) for SnO{sub 2}, (0 0 2) for ZnO:Al and (2 2 2) for ITO film respectively. Atomic force microscopy (AFM) investigations of the ZnO:Al (R{sub rms} = 2.8 nm) and ITO samples (R{sub rms} = 11 nm) show they are homogeneous and a slightly higher roughness (R{sub rms} = 51 nm) for the SnO{sub 2} thin film surface. The size and shape of the grains were also observed and investigated by scanning electron microscopy (SEM). All SnO{sub 2}, ZnO:Al and ITO transparent thin films are uniform and dense.The values obtained for electrical resistivity, transmission and energy bandgap as well as conductivity and transparency properties of these thin films, make them suitable to be used as transparent contact electrodes for solar cells.

  5. Transparent layer constancy.

    Science.gov (United States)

    Faul, Franz; Ekroll, Vebjørn

    2012-11-14

    In transparency perception the visual system assigns transmission-related attributes to transparent layers. Based on a filter model of perceptual transparency we investigate to what extent these attributes remain constant across changes of background and illumination. On a computational level, we used computer simulations to test how constant the parameters of the filter model remain under realistic changes in background reflectances and illumination and found almost complete constancy. This contrasts with systematic deviations from constancy found in cross-context matches of transparent filters. We show that these deviations are of a very regular nature and can be understood as a compromise between a proximal match of the mean stimulus color and complete constancy as predicted by the filter model.

  6. Composition and doping control for metal-organic chemical vapor deposition of InP-based double heterojunction bipolar transistor with hybrid base structure consisting of GaAsSb contact and InGaAsSb graded layers

    Science.gov (United States)

    Hoshi, Takuya; Kashio, Norihide; Sugiyama, Hiroki; Yokoyama, Haruki; Kurishima, Kenji; Ida, Minoru; Matsuzaki, Hideaki

    2017-07-01

    We report on a method for composition and doping control for metalorganic chemical vapor deposition of a double heterojunction bipolar transistor (DHBT) with a hybrid base structure consisting of a compositionally graded InGaAsSb for boosting an average electron velocity and a heavily doped thin GaAsSb for lowering the base contact resistivity. The GaAsSb contact layer can be formed by simply turning off the supply of In precursor tetramethylindium (TMIn) after the growth of the composition and doping graded InGaAsSb base. Consequently, the solid composition and hole concentration of hybrid base can be properly controlled by just modulating the supply of only TMIn and carbon tetrabromide. Secondary ion mass spectroscopy for the DHBT wafer reveals that the contents of In, Ga, and C inside the base are actually modulated from the collector side to the emitter side as expected. Transmission-line-model measurements were performed for the compositionally graded-InGaAsSb/GaAsSb hybrid base. The contact resistivity is estimated to be 5.3 Ω µm2, which is lower than half the value of a compositionally graded InGaAsSb base without the GaAsSb contact layer. The results indicate that the compositionally-graded-InGaAsSb/GaAsSb-contact hybrid base structure grown by this simple method is very advantageous for obtaining DHBTs with a very high maximum oscillation frequency.

  7. Supporting Transparency between Students

    DEFF Research Database (Denmark)

    Dalsgaard, Christian

    The paper presents the results of a case study that explores the potentials of weblogs and social bookmarking to support transparency in a university course. In the course, groups of students used weblogs and social bookmarking in their work. The objective of the case was to empower students...... students in a course, but that the challenge is to create a balance between personal tools and tools for collaborative group work that are also suitable for transparency between students....

  8. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  9. RF Sputtering of Gold Contacts On Niobium

    Science.gov (United States)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  10. Aerosol assisted depositions of polymers using an atomiser delivery system.

    Science.gov (United States)

    Crick, Colin R; Clausen-Thue, Victoria; Parkin, Ivan P

    2011-09-01

    The hydrophobicity, robustness and anti-microbial properties of Sylgard 184 polymer films deposited via AACVD were optimised by using aerosol droplets from an atomiser delivery system, polymer coating substrates and the swell encapsulation of methylene blue. By using an atomiser deposition system (average droplet size 0.35 microm) rather than a misting aerosol system (45 microm) lead to a surface with smaller surface features, which improved hydrophobicity (water contact angle 165 degrees) in addition to increasing the films transparency from ca 10 to 65%. Pre-treating the substrates with the same Sylgard 184 elastomer lead to a highly consistent surface hydrophobicity and an increase in average water contact angle measured (169 degrees). This paper shows the first example of dye incorporation in a CVD derived polymer film-these films have potential as antimicrobial surfaces.

  11. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeiðarárjökull, Iceland

    Science.gov (United States)

    Russell, Andrew J.; Knudsen, Óskar

    1999-08-01

    This paper presents new evidence of coarse-grained deposition from a turbulent suspension within a low-energy `slack-water' location during a recent well-documented, volcanically related, high-magnitude glacier outburst flood or jökulhlaup, Skeiðarárjökull, Iceland. This study uses established spatial and temporal constraints on processes observed during the November 1996 jökulhlaup to interpret resultant flood sediments. Coarse-grained sediments were deposited within flood slack-water conditions from suspension load by repeated turbulent flow pulses with durations of seconds-minutes. Depositional processes are thought to be analogous to turbidity currents. A minimum thickness of 15 m of rhythmites record suspended sediment dynamics at a conduit mouth during the late rising and early falling stages of the jökulhlaup. The morphology and sedimentology of deposits in a large ice-walled chamber are consistent with previous models proposed for bar deposition during cataclysmic floods. Flood flows within subglacial conduits and ice-walled open channels were sufficiently powerful to carry material up to boulder size in suspension. Macro-turbulent flows carried huge quantities of suspended sediment to high levels within the main outlet channel. High-frequency, short-duration flow pulses entering a complex ice-walled channel geometry generated highly unsteady and non-uniform flows capable of both erosional and depositional work. This study lends support to the deposition of multiple rhythmites per flood under main flow slack-water conditions. Identification of high-magnitude jökulhlaups in the ice-marginal sedimentary record will depend on the identification and correct interpretation of feeder channel and slack-water turbidite sediments. The results described here may also have application to rhythmic deposits formed by large turbulent flows in other environmental settings.

  12. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  13. Preserving Privacy in Transparency Logging

    OpenAIRE

    Pulls, Tobias

    2015-01-01

    The subject of this dissertation is the construction of privacy-enhancing technologies (PETs) for transparency logging, a technology at the intersection of privacy, transparency, and accountability. Transparency logging facilitates the transportation of data from service providers to users of services and is therefore a key enabler for ex-post transparency-enhancing tools (TETs). Ex-post transparency provides information to users about how their personal data have been processed by service pr...

  14. Fiscal Transparency and Economic Outcomes

    OpenAIRE

    International Monetary Fund

    2005-01-01

    This paper develops indices of fiscal transparency for a broad range of countries based on the IMF's Code of Good Practices on Fiscal Transparency, using data derived from published fiscal transparency modules of the Reports on the Observance of Standards and Codes (ROSCs). The indices covers four clusters of fiscal transparency practices: data assurances, medium-term budgeting, budget execution reporting, and fiscal risk disclosures. More transparent countries are shown to have better credit...

  15. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers.

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M; Kordas, Krisztian

    2015-09-03

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 10(5) cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  16. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-01-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated. PMID:26333520

  17. Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers

    Science.gov (United States)

    Mohl, Melinda; Dombovari, Aron; Vajtai, Robert; Ajayan, Pulickel M.; Kordas, Krisztian

    2015-09-01

    The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 105 cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

  18. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  19. Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy.

    Science.gov (United States)

    Reithmeier, Martina; Erbe, Andreas

    2010-11-28

    By depositing a continuous, thin metal film on a substrate coated with a mid-infrared (IR) transparent dielectric film that fulfils the role of an index-matching, anti-reflective coating for the metal, the transparency of the metal in the IR wavelength range can be significantly enhanced. This effect is used to yield enhanced absorption in attenuated total internal reflection infrared (ATR-IR) spectroscopy in the presence of continuous thin metal films. The main limitation of the ATR technique when using continuous metal films is the low transparency of metals, especially for infrared light. Computations and experiments show an enhancement in the absorbance of a sample in contact with the metal at certain wavenumbers when the dielectric interlayer is present. The realisation of the setup is the stratified system consisting of zinc selenide-germanium (~1 μm)-gold (40 nm and 20 nm) using the organic solvent acetonitrile as sample. Enhancement is stronger in s- than in p-polarisation. In s-polarisation, enhancement factors of up to 4 have been observed so far in experiments, but calculations show a route to higher enhancements. In addition to the increased absorption, the absorbance spectra show interference fringes which are due to a mismatch in the real part of the refractive index of the sample in contact with the metal film compared to a reference measurement.

  20. Optomechanically induced transparency

    CERN Document Server

    Weis, S; Deleglise, S; Gavartin, E; Arcizet, O; Schliesser, A; Kippenberg, T J

    2010-01-01

    Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically induced transparency (EIT), in which a control laser induces a narrow spectral transparency window for a weak probe laser beam. The concomitant rapid variation of the refractive index in this spectral window can give rise to dramatic reduction of the group velocity of a propagating pulse of probe light. Dynamic control of EIT via the control laser enables even a complete stop, that is, storage, of probe light pulses in the atomic medium. Here, we demonstrate optomechanically induced transparency (OMIT)--formally equivalent to EIT--in a cavity optomechanical system operating in the resolved sideband regime. A control laser tuned to the lower motional sideband of the cavity resonance induces a dipole-like interaction of optical and mechanical degrees of freedom. Under...

  1. Peering into Transparency

    DEFF Research Database (Denmark)

    Christensen, Lars Thøger; Cheney, George

    The current emphasis on organizational and institutional transparency – driven by NGOs, inquisitive media, critical investors and other engaged stakeholders – signifies a growing demand for insight, clarity, participation and democracy. Holding the promise of improved access to valid and trustwor......The current emphasis on organizational and institutional transparency – driven by NGOs, inquisitive media, critical investors and other engaged stakeholders – signifies a growing demand for insight, clarity, participation and democracy. Holding the promise of improved access to valid...... and trustworthy knowledge about contemporary organizations, the transparency discourse has significant democratic potential. Yet, its most common operationalization – as information availability – reinstalls a “purified” notion of communication devoid of mystery, inaccuracy and misrepresentation. In this paper...

  2. Towards an Accurate Measurement of Thermal Contact Resistance at Chemical Vapor Deposition-Grown Graphene/SiO2 Interface Through Null Point Scanning Thermal Microscopy.

    Science.gov (United States)

    Chung, Jaehun; Hwang, Gwangseok; Kim, Hyeongkeun; Yang, Wooseok; Kwon, Ohmyoung

    2015-11-01

    In the development of graphene-based electronic devices, it is crucial to characterize the thermal contact resistance between the graphene and the substrate precisely. In this study, we demonstrate that the thermal contact resistance between CVD-grown graphene and SiO2 substrate can be obtained by measuring the temperature drop occurring at the graphene/SiO2 interface with null point scanning thermal microscopy (NP SThM), which profiles the temperature distribution quantitatively with nanoscale spatial resolution (-50 nm) without the shortcomings of the conventional SThM. The thermal contact resistance between the CVD-grown graphene and SiO2 substrate is measured as (1.7 ± 0.27) x 10(-6) M2K/W. This abnormally large thermal contact resistance seems to be caused by extrinsic factors such as ripples and metal-based contamination, which inevitably form in CVD-grown graphene during the production and transfer processes.

  3. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    In a recent EU FP5 project, monolithic silica aerogel was further developed with respect to the production process at pilot-scale, its properties and the application as transparent insulation material in highly insulating and transparent windows. The aerogel production process has been optimised...... the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most of the chemicals involved in the production process. A large number of aerogel glazing prototypes have been made with partly evacuated aerogel in between two layers of low iron...

  4. PML Inspired Transparent Metamaterials

    CERN Document Server

    Chamanara, Nima

    2016-01-01

    Perfectly transparent metamaterial structures of arbitrary shapes, constructed from coordinate stretching and contractions, are presented. Coordinate stretching has been used for 2 decades in perfectly matched layers (PMLs) to electromagnetically simulate infinite domains in numerical techniques, but this concept is applied here for the first time to realize a physical transmission medium. The transparent medium does not scatter electromagnetic waves, i.e. it is reflection-less for all incidence angles and all excitation frequencies. It may be implemented in the form of metasurfaces and will clearly find a myriad of applications if it can be efficiently manufactured.

  5. Sinterless Formation Of Contacts On Indium Phosphide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  6. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    Science.gov (United States)

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  7. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors

    OpenAIRE

    Wang, A.; Babcock, J. R.; Edleman, N. L.; Metz, A. W.; Lane, M A; Asahi, R.; Dravid, V. P.; Kannewurf, C. R.; Freeman, A.J.; Marks, T. J.

    2001-01-01

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for...

  8. Voluntarism and transparent deliberation

    DEFF Research Database (Denmark)

    Steglich-Petersen, Asbjørn

    2006-01-01

    It is widely assumed that doxastic deliberation is transparent to the factual question of the truth of the proposition being considered for belief, and that this sets doxastic deliberation apart from practical deliberation. This feature is frequently invoked in arguments against doxastic voluntar...... theoretical from practical rationality....

  9. Trust transparency and PPP

    NARCIS (Netherlands)

    Lousberg, L.H.M.J.; Noorderhaven, N.

    2014-01-01

    This paper argues how transparency can increase trust and therefore indirectly enhances the results of Public Private Partnerships in complex construction projects. Complex construction projects, e.g. large infrastructure or urban development projects, with public client organizations and private co

  10. Transparency and imaginary colors

    NARCIS (Netherlands)

    Richards, W.; Koenderink, J.J.; Van Doorn, A.

    2009-01-01

    Unlike the Metelli monochrome transparencies, when overlays and their backgrounds have chromatic content, the inferred surface colors may not always be physically realizable, and are in some sense “imaginary.” In these cases, the inferred chromatic transmittance or reflectance of the overlay lies ou

  11. Gestalt and phenomenal transparency

    NARCIS (Netherlands)

    Koenderink, J.J.; van Doorn, A.J.; Pont, S.C.; Richards, W.

    2008-01-01

    Phenomenal transparency is commonly studied by using a stimulus configuration introduced by Metelli: a bipartite patch, divided into equal left and right halves is overlaid with a smaller, concentric bipartite patch, divided along the same line. Observers are instructed to report either a transparen

  12. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  13. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  14. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111705 An Junbo(Team 603,Bureau of Nonferrous Metals Geological Exploration of Jilin Province,Hunchun 133300,China);Xu Renjie Geological Features and Ore Genesis of Baishilazi Scheelite Deposit in Yanbian Area(Jilin Geology,ISSN1001-2427,CN22-1099/P,29(3),2010,p.39-43,2 illus.,2 tables,7 refs.)Key words:tungsten ores,Jilin ProvinceThe Baishilazi scheelite deposit is located in contacting zone between the marble of the Late Palaeozoic Qinglongcun Group and the Hercynian biotite granite.The vein and lenticular major ore body is obviously controlled by NE-extending faults and con

  15. The Causes of Fiscal Transparency

    DEFF Research Database (Denmark)

    Alt, James E.; Lassen, David Dreyer; Rose, Shanna

    influence the level of transparency. More equal political competition and power sharing are associated with both greater levels of fiscal transparency and increases in fiscal transparency during the sample period. Political polarization and past fiscal conditions, in particular state government debt...

  16. Hydrophobic and high transparent honeycomb diamond-like carbon thin film fabricated by facile self-assembled nanosphere lithography

    Science.gov (United States)

    Peng, Kai-Yu; Wei, Da-Hua; Lin, Chii-Ruey; Yu, Yueh-Chung; Yao, Yeong-Der; Lin, Hong-Ming

    2014-01-01

    In this paper, we take advantage of a facile fabrication technique called self-assembled nanosphere lithography (SANSL) combining with proper two-step reactive ion etching (RIE) method and radio frequency (RF) sputtering deposition process for manufacturing honeycomb diamond-like carbon (DLC) thin film structures with hydrophobic and high transparent properties. It is found that the DLC thin films deposited on clean glass substrates at the RF power of 100 W with the surface roughness (Ra) of 2.08 nm and the ID/IG ratio of 1.96 are realized. With a fill-factor of 0.691, the honeycomb DLC patterned thin film shows the best transmittance performance of 87% in the wavelength of visible light, and the optimized contact angle measurement is ˜108°. Compared with the pure DLC thin film and original glass substrate, the hydrophobic property of the patterned DLC films is significantly improved by 80 and 160%, respectively.

  17. Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating

    Science.gov (United States)

    Teshima, Katsuya; Sugimura, Hiroyuki; Inoue, Yasushi; Takai, Osamu; Takano, Atsushi

    2005-05-01

    Wettability of solid surfaces with water is well-known to be governed by chemical properties and nanotextures of the surfaces. A proper nanotexture of surfaces enhances their hydrophobicity. In this study, a novel method consisting of two dry process techniques, that is, nanotexturing by an oxygen plasma treatment and subsequent hydrophobic coating by means of low temperature chemical vapor deposition or plasma-enhanced chemical vapor deposition, was employed to form ultra water-repellent polymer sheets. A nanotexture was formed on a poly(ethylene terephthalate) substrate surface via selective oxygen plasma etching. This surface nanotexture remained after the hydrophobic coatings using organosilane precursors. The surface-modified substrate was transparent and ultra water-repellent, showing a water contact angle greater than 150°.

  18. Price Transparency in the Online Age.

    Science.gov (United States)

    Kaplan, Jonathan L; Mills, Parker H

    2016-05-01

    Plastic surgeons are sometimes hesitant to provide their pricing information online, due to several concerns. However, if implemented right, price transparency can be used as a lead generation tool that provides consumers with the pricing information they want and gives the physician the consumer's contact information for follow-up. This study took place during the author's first year in private practice in a new city. An interactive price transparency platform (ie, cost estimator) was integrated into his website, allowing consumers to submit a "wishlist" of procedures to check pricing on these procedures of interest. However, the consumer must submit their contact information to receive the desired breakdown of costs that are tailored based on the author's medical fees. During that first year, without any advertising expenditure, the author's website received 412 wishlists from 208 unique consumers. Consumers (17.8%) that submitted a wishlist came in for a consultation and 62% of those booked a procedure. The average value of a booked procedure was over US $4000 and cumulatively, all of the leads from this one lead source in that first year generated over US $92,000 in revenue. When compared with non-price-aware patients, price-aware patients were 41% more likely to book a procedure. Price transparency led to greater efficiency and reduced consultations that ended in "sticker shock." When prudently integrated into a medical practice, price transparency can be a great lead generation source for patients that are (1) paying out of pocket for medically necessary services due to a high-deductible health plan or (2) paying for services not typically covered by insurance, such as cosmetic services.

  19. Transparent User Authentication

    CERN Document Server

    Clarke, Nathan

    2011-01-01

    This groundbreaking text examines the problem of user authentication from a completely new viewpoint. Rather than describing the requirements, technologies and implementation issues of designing point-of-entry authentication, the book introduces and investigates the technological requirements of implementing transparent user authentication -- where authentication credentials are captured during a user's normal interaction with a system. This approach would transform user authentication from a binary point-of-entry decision to a continuous identity confidence measure. Topics and features: discu

  20. Government information transparency

    OpenAIRE

    Esteban, Joan; Albornoz, Facundo; Vanin, Paolo

    2009-01-01

    This paper studies a model of announcements by a privately informed government about the future state of the economic activity in an economy subject to recurrent shocks and with distortions due to income taxation. Although transparent communication would ex ante be desirable, we find that even a benevolent government may ex-post be non-informative, in an attempt to countervail the tax distortion with a 'second best' compensating distortion in information. This result provides a rationale for ...

  1. Plasmonic Graphene Transparent Conductors

    Science.gov (United States)

    2012-01-01

    www.MaterialsViews.com www.advopticalmat.de FU LL P A P ER Guowei Xu,* Jianwei Liu, Qian Wang , Rongqing Hui, Zhijun Chen, Victor A. Maroni, and Judy Wu Plasmonic...decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. UU...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS surface plasmon, graphene, transparent conductors Guowei Xu, Jianwei Liu, Qian

  2. Transparent and conductive paper from nanocellulose fibers

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate. © The Royal Society of Chemistry 2013.

  3. Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk

    Science.gov (United States)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2015-01-01

    The effects of using radio-frequency (RF)-superimposed direct-current (DC) magnetron sputtering deposition on the structural, electrical, and optical properties of aluminum-doped ZnO (AZO)-based highly transparent conducting oxide films have been examined. AZO films were deposited on heated non-alkaline glass substrates (200 °C) using ZnO:Al2O3 (2 wt. % Al2O3) ceramic oxide targets with the total power varied from 150 to 300 W, and at various RF to DC power ratios, AZO films deposited by a mixed approach with the RF to the total power ratio of 0.14 showed the lowest resistivity of 2.47 × 10-4 Ω cm with the highest carrier concentration of 6.88 × 1020 cm-3 and the highest Hall mobility (μH) of 36.8 cm2/Vs together with the maximum value of an average transmittance in the visible spectral range from 400 to 700 nm. From the analysis of optical data based on the simple Drude model combined with the Tauc-Lorentz model and the results of Hall effect measurements, the optical mobility (μopt) was determined. A comparison of μopt with μH clarified the effects of the mixed approach not only on the reduction of the grain boundary contribution to the carrier transport but also on retaining high carrier mobility of in-grains for the AZO films.

  4. The Causes of Fiscal Transparency

    DEFF Research Database (Denmark)

    Alt, James E.; Lassen, David Dreyer; Rose, Shanna

    We use unique panel data on the evolution of transparent budget procedures in the American states over the past three decades to explore the political and economic determinants of fiscal transparency. Our case studies and quantitative analysis suggest that both politics and fiscal policy outcomes...... influence the level of transparency. More equal political competition and power sharing are associated with both greater levels of fiscal transparency and increases in fiscal transparency during the sample period. Political polarization and past fiscal conditions, in particular state government debt...

  5. Flexible, transparent electrodes using carbon nanotubes

    Science.gov (United States)

    2012-01-01

    We prepare thin single-walled carbon nanotube networks on a transparent and flexible substrate with different densities, using a very simple spray method. We measure the electric impedance at different frequencies Z(f) in the frequency range of 40 Hz to 20 GHz using two different methods: a two-probe method in the range up to 110 MHz and a coaxial (Corbino) method in the range of 10 MHz to 20 GHz. We measure the optical absorption and electrical conductivity in order to optimize the conditions for obtaining optimum performance films with both high electrical conductivity and transparency. We observe a square resistance of 1 to 8.5 kΩ for samples showing 65% to 85% optical transmittance, respectively. For some applications, we need flexibility and not transparency: for this purpose, we deposit a thick film of single-walled carbon nanotubes on a flexible silicone substrate by spray method from an aqueous suspension of carbon nanotubes in a surfactant (sodium dodecyl sulphate), thereby obtaining a flexible conducting electrode showing an electrical resistance as low as 200 Ω/sq. When stretching up to 10% and 20%, the electrical resistance increases slightly, recovering the initial value for small elongations up to 10%. We analyze the stretched and unstretched samples by Raman spectroscopy and observe that the breathing mode on the Raman spectra is highly sensitive to stretching. The high-energy Raman modes do not change, which indicates that no defects are introduced when stretching. Using this method, flexible conducting films that may be transparent are obtained just by employing a very simple spray method and can be deposited on any type or shape of surface. PMID:23074999

  6. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability.

  7. Optically transparent, superhydrophobic, biocompatible thin film coatings and methods for producing same

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Beth L.; Aytug, Tolga; Paranthaman, Mariappan Parans; Simpson, John T.; Hillesheim, Daniel A.; Trammell, Neil E.

    2017-09-05

    An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.

  8. Transparent Conductive Oxides for Thin-Film Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.

    2005-04-25

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150C and 350C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the

  9. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  10. Polarization-independent transparency window induced by complementary graphene metasurfaces

    Science.gov (United States)

    Lu, Wei Bing; Liu, Ji Long; Zhang, Jin; Wang, Jian; Liu, Zhen Guo

    2017-01-01

    A fourfold symmetric graphene-based complementary metasurface featuring a polarization-independent transparency window is proposed and numerically analysed in this paper. The unit cell of the metamaterial consists of a monolayer graphene perforated with a cross and four identical split-ring resonators deposited on a substrate. Our analysis shows that the transparency window can be interpreted as a plasmonic analogy of Autler-Townes splitting. The polarization independence is achieved due to the fourfold symmetry of graphene’s complementary structure. In addition, the frequency range of the transparency window can be dynamically tuned over a broad band by changing the chemical potential of graphene, and the width of the transparency window can also be controlled by changing the split-gap orientation. This work may lead to potential applications in many area, such as slow-light devices and optical sensing.

  11. ZnO nanorods for simultaneous light trapping and transparent electrode application in solar cells

    KAUST Repository

    Khan, Yasser

    2011-10-01

    Efficacy of using vertically grown ZnO nanorod array in enhancing electromagnetic field intensity and serving as the top contact layer (transparent electrodes) for solar cells was investigated. © 2011 IEEE.

  12. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  13. Stable and Transparent Superhydrophobic Nanoparticle Films

    NARCIS (Netherlands)

    Ling, Xing Yi; Phang, In Yee; Vancso, G. Julius; Huskens, Jurriaan; Reinhoudt, David N.

    2009-01-01

    A superhydrophobic surface with a static water contact angle (θw) > 150° was created by a simple “dip-coating” method of 60-nm SiO2 nanoparticles onto an amine-terminated (NH2) self-assembled monolayer (SAM) glass/silicon oxide substrate, followed by chemical vapor deposition of a fluorinated adsorb

  14. Stable and transparent superhydrophobic nanoparticle films

    NARCIS (Netherlands)

    Ling, X.Y.; Phang, In Yee; Vancso, Gyula J.; Huskens, Jurriaan; Reinhoudt, David

    2009-01-01

    A superhydrophobic surface with a static water contact angle (θw) > 150° was created by a simple “dip-coating” method of 60-nm SiO2 nanoparticles onto an amine-terminated (NH2) self-assembled monolayer (SAM) glass/silicon oxide substrate, followed by chemical vapor deposition of a fluorinated adsorb

  15. Towards energy transparent factories

    CERN Document Server

    Posselt, Gerrit

    2016-01-01

    This monograph provides a methodological approach for establishing demand-oriented levels of energy transparency of factories. The author presents a systematic indication of energy drivers and cost factors, taking into account the interdependencies between facility and production domains. Particular attention is given to energy flow metering and monitoring. Readers will also be provided with an in-depth description of a planning tool which allows for systematically deriving suitable metering points in complex factory environments. The target audience primarily comprises researchers and experts in the field of factory planning, but the book may also be beneficial for graduate students.

  16. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  17. Between Transparency and Censorship

    DEFF Research Database (Denmark)

    Uldam, Julie; Krause Hansen, Hans

    Internet technologies have been celebrated for their potential to help civil society actors expose discrepancies between companies’ words and practices (Bennett, 2005). Recent reporting on dangerous and unethical business practices gestures towards an increased visibility of corporations vis...... on the extractive industries and draws on the case of the Extractive Industries Transparency Initiative (EITI) and examples of oil companies’ surveillance of individual activists’ online communication. We draw on media theory, on theories of hidden organizing and theories of post-political regulation to discuss...

  18. Portugal; Fiscal Transparency Evaluation

    OpenAIRE

    International Monetary Fund

    2014-01-01

    EXECUTIVE SUMMARY Portugal’s practices meet most of the principles of the revised Fiscal Transparency Code at good or advanced levels. A number of areas still present practices at a basic level, but in most of these cases this reflects reforms that have recently been launched and have not yet been fully implemented so as to affect current practices. Indeed, if measured against the practices observed prior to the recent financial crisis, there has been remarkable progress. The challenge is t...

  19. Transparency in Parliamentary Voting

    OpenAIRE

    2015-01-01

    We use a change in the voting procedures of one of the two chambers of the Swiss parliament to explore how transparency affects the voting behavior of its members. Until 2013, the Council of States (Ständerat) had voted by a show of hands. While publicly observable at the time of the vote, legislators’ decisions could only be verified ex post through the time-consuming screening of online videos. In 2014, halfway through the legislative period, the chamber switched to electronic voting. Since...

  20. Nanostructured transparent conducting oxide electrochromic device

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  1. Transparent nanocrystalline diamond coatings and devices

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  2. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  3. A comparison of transmittance properties between ZnO∶Al films for transparent conductors for solar cells deposited by sputtering of AZO and cosputtering of AZO/ZnO

    Institute of Scientific and Technical Information of China (English)

    LEE Chongmu; YIM Keunbin; CHO Youngjoon; Lee J.G.

    2006-01-01

    Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) andglass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Effects ofcrystallinity, surface roughness, PL on the transmittance of the AZO films werealso explained using the X-ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results.

  4. Occlusion, transparency, and lightness.

    Science.gov (United States)

    Albert, Marc K

    2007-11-01

    The lightness of a visual surface is its perceived achromatic reflectance [Adelson, E. H., (2000). Lightness perception and lightness illusions. In M. Gazzaniga (Ed.), The new cognitive neuroscience (2nd ed.) (pp. 339-351) Berlin: Springer; Gilchrist, A. (1999). Lightness perception. In R. W. F. Keil (Ed.), MIT encyclopedia of cognitive science (pp. 471-472). Cambridge: MIT press]. Lightness ranges from black, through various shades of grey, up to white. Anderson and Winawer [Anderson, B., Winawer, J. (2005). Image segmentation and lightness perception. Nature, 434, 79-83] suggested that perceptual decomposition of image luminance into multiple sources in different layers (e.g., perceptual transparency) is critical to the their lightness illusions. However, I show that simple perceptual occlusion evoked by T-junctions will work as well, suggesting that perceptual scission of luminance into multiple layers is unnecessary for such effects. I argue that the lightness illusions presented by Anderson and Winawer involve fundamentally different mechanisms than previously studied lightness illusions, including those involving perceptual transparency.

  5. Budget transparency in local governments

    OpenAIRE

    Giménez Perona, Paloma

    2014-01-01

    Treball Final de Grau en Finances i Comptabilitat. Codi: FC1049. Curs acadèmic 2013-2014 This work will study the socio-demographic determinants, political, budgetary and economic, that affect the transparency of local entities. To perform the study, we have chosen the transparency index data for the 110 largest municipalities of Spain, in 2012 has been chosen from the information offered by the website of the organization Transparency International Spain. The results indica...

  6. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene-silicon oxide substrates

    Science.gov (United States)

    Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana

    2016-10-01

    A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  7. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  8. Photometric determinants of perceived transparency.

    Science.gov (United States)

    Singh, Manish; Anderson, Barton L

    2006-03-01

    Photometric constraints for the perception of transparency were investigated using stereoscopic textured displays. A contrast discontinuity divided the textured displays into two lateral halves, with one (reference) half fixed. Observers adjusted the luminance range within the other (test) half in order to perform two tasks: (i) indicate the highest luminance range for which the test side is perceived to be transparent, and (ii) indicate the lowest luminance range for which the test side is seen as being in plain view. Settings were obtained for multiple values of test mean luminance, in order to map out the perceptual locus of transition between transparency and non-transparency. The results revealed a systematic violation of Metelli's magnitude constraint in predicting the percept of transparency. Observer settings were approximated instead by a constraint based on perceived contrast (which matched Michelson contrast for the textures used). The results also revealed large asymmetries between darkening and lightening transparency. When the test was darker than the reference, settings were highly consistent across observers and closely followed the Michelson-contrast prediction. When the test was lighter, however, there was greater variability across observers, with two observers exhibiting shifts toward Metelli's magnitude constraint. Moreover, each observer's setting reliability was significantly worse for lightening transparency than darkening transparency. These results suggest that (polarity-preserving) darkening serves as an additional cue to perceptual transparency.

  9. The Transparency-Power Nexus

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel; Christensen, Lars Thøger; Krause Hansen, Hans

    Transparency has emerged as a mainstay in the quest for more accountable and sustainable forms of organization and governance. This paper problematizes widespread assumptions about the virtues and downsides of transparency, including simplified notions of insight, control and surveillance. We argue......-power nexus” and illustrates how and with which power effects transparency has emerged a key concern in and around contemporary organizations. The main contribution of the paper is to unpack the relationship between transparency and power both along the lines of more conventional concerns with observational...

  10. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  11. Monocular transparency generates quantitative depth.

    Science.gov (United States)

    Howard, Ian P; Duke, Philip A

    2003-11-01

    Monocular zones adjacent to depth steps can create an impression of depth in the absence of binocular disparity. However, the magnitude of depth is not specified. We designed a stereogram that provides information about depth magnitude but which has no disparity. The effect depends on transparency rather than occlusion. For most subjects, depth magnitude produced by monocular transparency was similar to that created by a disparity-defined depth probe. Addition of disparity to monocular transparency did not improve the accuracy of depth settings. The magnitude of depth created by monocular occlusion fell short of that created by monocular transparency.

  12. Fully solution-processing route toward highly transparent polymer solar cells.

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-10-22

    We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

  13. Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells.

    Science.gov (United States)

    La Notte, Luca; Villari, Enrica; Palma, Alessandro Lorenzo; Sacchetti, Alberto; Michela Giangregorio, Maria; Bruno, Giovanni; Di Carlo, Aldo; Bianco, Giuseppe Valerio; Reale, Andrea

    2017-01-07

    A five-layer (5L) graphene on a glass substrate has been demonstrated as a transparent conductive electrode to replace indium tin oxide (ITO) in organic photovoltaic devices. The required low sheet resistance, while maintaining high transparency, and the need of a wettable surface are the main issues. To overcome these, two strategies have been applied: (i) the p-doping of the multilayer graphene, thus reaching 25 Ω□(-1) or (ii) the O2-plasma oxidation of the last layer of the 5L graphene that results in a contact angle of 58° and a sheet resistance of 134 Ω□(-1). A Nd:YVO4 laser patterning has been implemented to realize the desired layout of graphene through an easy and scalable way. Inverted Polymer Solar Cells (PSCs) have been fabricated onto the patterned and modified graphene. The use of PEDOT:PSS has facilitated the deposition of the electron transport layer and a non-chlorinated solvent (ortho-xylene) has been used in the processing of the active layer. It has been found that the two distinct functionalization strategies of graphene have beneficial effects on the overall performance of the devices, leading to an efficiency of 4.2%. Notably, this performance has been achieved with an active area of 10 mm(2), the largest area reported in the literature for graphene-based inverted PSCs.

  14. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  15. Silk protein as a new optically transparent adhesion layer for an ultra-smooth sub-10 nm gold layer

    Science.gov (United States)

    Min, Kyungtaek; Umar, Muhammad; Ryu, Shinyoung; Lee, Soonil; Kim, Sunghwan

    2017-03-01

    Ultra-thin and ultra-smooth gold (Au) films are appealing for photonic applications including surface plasmon resonances and transparent contacts. However, poor adhesion at the Au–dielectric interface prohibits the formation of a mechanically stable, ultra-thin, and ultra-smooth Au film. A conventional solution is to use a metallic adhesion layer, such as titanium and chromium, however such layers cause the optical properties of pure Au to deteriorate. Here we report the use of silk protein to enhance the adhesion at the Au–dielectric interface, thus obtaining ultra-smooth sub-10 nm Au films. The Au films that were deposited onto the silk layer exhibited superior surface roughness to those deposited on SiO2, Si, and poly(methyl methacrylate), along with improved adhesion, electrical conductivity, and optical transparency. Additionally, we confirm that a metal–insulator–metal optical resonator can be successfully generated using a silk insulating layer without the use of a metallic adhesion layer.

  16. Flexible, transparent, and conductive defrosting glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Fang, Zhiqiang; Zhu, Hongli; Gao, Binyu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Garner, Sean; Cimo, Pat [Corning Incorporated, Corning, NY 14831 (United States); Barcikowski, Zachary [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Mignerey, Alice [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 (United States); Hu, Liangbing, E-mail: binghu@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2014-04-01

    Flexible and transparent electronics play a predominant role in the next-generation electrical devices. In this study, a printable aqueous graphene oxide (GO) ink that enables direct deposition of GO onto flexible glass substrates is demonstrated and its application on fabricating a transparent, conductive, and flexible glass device by solution coating process is investigated as well. A uniform GO layer is formed on the flexible glass through Meyer-rod coating followed by an annealing process to reduce GO into graphene. The obtained thermally reduced graphene oxide (RGO) flexible glass has a transmittance of over 40%, as well as a sheet resistance of ∼ 5 × 10{sup 3} Ω/sq. In addition, a defrosting window fabricated from the RGO coated flexible glass is demonstrated, which shows excellent defrosting performance. - Highlights: • A facile synthesis of aqueous graphene oxide (GO) suspension is demonstrated. • Scalable printing of GO suspension is achieved with Meyer-rod coating technique. • A flexible glass is utilized as a substrate for the deposition of GO suspension. • Reduced graphene oxide films show improved conductivity with great transmittance. • Its potential to be applied in window defrosting is demonstrated and illustrated.

  17. Dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    2005-01-01

    This article proposes a theory of corporate transparency and its determinants. We show that under imperfect product market competition, the corporate transparency decision affects the value of equity and debt claims differently. We then em- bed this insight in a model of endogenous investor influenc

  18. Phenomenal transparency in achromatic checkerboards.

    Science.gov (United States)

    Masin, S C

    1999-04-01

    The study explored the luminance relations that determine the occurrence of achromatic transparency in phenomenal surfaces on complex backgrounds. Let the luminances of the left and right parts of a transparent surface on a bipartite background and those of the left and right parts of the bipartite background be p and q and m and n, respectively. Metelli proposed that this surface looks transparent when the rule p q if m > n) is satisfied, and Masin and Fukuda that it looks transparent when the inclusion rule is satisfied, that is, when p epsilon (m, q) or q epsilon (p, n). These rules also apply to achromatic checkerboards formed by one checkerboard enclosed in another checkerboard. This study shows that only the inclusion rule correctly predicted the occurrence of transparency in these checkerboards.

  19. A comparative study of fluid inclusions from coexisting transparent minerals and opaque minerals in Xihuashan tungsten deposit%西华山钨矿床共生透明矿物与不透明矿物中流体包裹体的对比研究

    Institute of Scientific and Technical Information of China (English)

    黄惠兰; 常海亮; 李芳; 张春红; 谭靖; 周云

    2012-01-01

    The Xihuashan tungsten deposit, which has a mining history of more than 100 years, is a large vein-type deposit in Yanshanian granite. There exists controversy concerning the metallogenic conditions and ore-forming fluid properties. The fluid inclusions in nine groups of coexisting transparent minerals (quartz, beryl and fluo-rite) and opaque minerals (wolframite and pyrite) of the Xihuashan tungsten deposit were studied by using infrared microscopy and other related equipment. The data obtained show that characteristics of fluid inclusions in coexisting transparent and opaque minerals can be similar to or obviously different from each other. Generally, wolframite can effectively preserve primary inclusions (with only small amounts of secondary inclusions), whereas primary inclusions have almost been destroyed in associated quartz. The inclusions observed should be mainly secondary inclusions or inclusions captured during late crystallization. Only the crystals and associated wolframite in drusy cavities subjected to no late stress and fluid transformation have the same result. There are abundant both secondary inclusions and primary inclusions in beryls. Silicate melt inclusions were found in wolframite and beryl, indicating that the mineralization of the Xihuashan tungsten deposit began at the magma- hydrothermal transition stage. The initial ore-forming fluid was probably a magmatic- hydrothermal transitional fluid, which subsequently evolved into single hydrothermal solutions. In the authors' opinion, the comparative research on fluid inclusions in coexisting transparent minerals and opaque minerals is important for the study of metal deposits. Detailed basic geological study and petrographic observation are essential. Cautiousness must be taken when we explain the geological significance of a metal deposit, especially when we only use the transparent mineral inclusion data.%西华山钨矿床是一个产于燕山期花岗岩中的大脉型钨矿床.笔者利

  20. Novel transparent conducting oxide technology for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, P.T.; Sutton, P.A.; Gardener, M.; Wakefield, G.

    2005-07-01

    This report outlines the development of both n- and p-type transparent Conducting Oxide (TCO) materials and the demonstrated feasibility of economic production of TCO films by deposition techniques. Descriptions are given of the four main tasks of the project with Task A concentrating on material design and synthesis covering the new precursor to zinc oxide thin films and selection of polymers for formulation; Task B dealing with film formation involving film deposition by spin coating, screen printing, inkjet printing, dip coating and chemical vapour deposition; Task C concerning performance evaluation; and Task D examining manufacturing process development. The prospects for commercialisation are explored and recommendation for future work are considered.

  1. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Landin, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Departamento de Fisica, Universidad de Sonora, Apdo. Postal 88, 83190 Hermosillo, Son. (Mexico); Sastre-Hernandez, J.; Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional UP Adolfo Lopez Mateos, Edif. 9, 07738 Mexico, DF (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  2. Air transparent soundproof window

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Kim

    2014-11-01

    Full Text Available A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  3. Lightness and perceptual transparency.

    Science.gov (United States)

    Albert, Marc K

    2006-01-01

    To estimate intrinsic descriptors of objects in the environment, effective biological vision systems must 'discount' extrinsic image properties that arise from changes in viewing conditions. In particular, to estimate the reflectance of surfaces, human vision must discount, or 'take account of', likely differences in the illumination of surfaces between one image region and another. If human vision possesses any significant degree of lightness constancy, then we would expect a target perceived to be in low illumination to appear lighter than an identical target perceived to be in higher illumination. In this paper, I present lightness illusions that run directly counter to this expectation. I suggest that mid-level and higher-level factors such as image junction structure and perceived illumination and transparency, are ineffective for generating strong lightness illusions on their own, and that these factors are not 'stronger' than luminance contrast in determining lightness. I discuss the implications of these results for current models of lightness perception. I also suggest a statistical justification for the highest-luminance anchoring rule for lightness.

  4. Is the Universe transparent?

    Science.gov (United States)

    Liao, Kai; Avgoustidis, A.; Li, Zhengxiang

    2015-12-01

    We present our study on cosmic opacity, which relates to changes in photon number as photons travel from the source to the observer. Cosmic opacity may be caused by absorption or scattering due to matter in the Universe, or by extragalactic magnetic fields that can turn photons into unobserved particles (e.g., light axions, chameleons, gravitons, Kaluza-Klein modes), and it is crucial to correctly interpret astronomical photometric measurements like type Ia supernovae observations. On the other hand, the expansion rate at different epochs, i.e., the observational Hubble parameter data H (z ), are obtained from differential ageing of passively evolving galaxies or from baryon acoustic oscillations and thus are not affected by cosmic opacity. In this work, we first construct opacity-free luminosity distances from H (z ) determinations, taking into consideration correlations between different redshifts for our error analysis. Moreover, we let the light-curve fitting parameters, accounting for distance estimation in type Ia supernovae observations, free to ensure that our analysis is authentically cosmological-model independent and gives a robust result. Any nonzero residuals between these two kinds of luminosity distances can be deemed as an indication of the existence of cosmic opacity. While a transparent Universe is currently consistent with the data, our results show that strong constraints on opacity (and consequently on physical mechanisms that could cause it) can be obtained in a cosmological-model-independent fashion.

  5. Transparency masters for mathematics revealed

    CERN Document Server

    Berman, Elizabeth

    1980-01-01

    Transparency Masters for Mathematics Revealed focuses on master diagrams that can be used for transparencies for an overhead projector or duplicator masters for worksheets. The book offers information on a compilation of master diagrams prepared by John R. Stafford, Jr., audiovisual supervisor at the University of Missouri at Kansas City. Some of the transparencies are designed to be shown horizontally. The initial three masters are number lines and grids that can be used in a mathematics course, while the others are adaptations of text figures which are slightly altered in some instances. The

  6. Configuration effects on texture transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Miura, Kayo

    2004-01-01

    This study examined the factors producing the perception of transparency between overlaid regions composed of Gabor micro-patterns as functions of their spatial frequency, separation of overlaid regions, and types of orientation modulation. The results showed that the likelihood of perceiving transparency was high both when (1) the difference in Gabor spatial frequency between regions was large, and (2) the region boundary, which was formed by short-range orientation differences in the Gabor micro-patterns, clearly emerged. We conclude that texture transparency appears to result from an interaction between a boundary-detection mechanism defining the shape of each region and a surface-detection mechanism assigning the boundary.

  7. Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide

    Science.gov (United States)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-01

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after ∼48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  8. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha; Sigdel, Ajaya K.; Giordano, Anthony J.; Marder, Seth R.; Berry, Joseph J.; Graham, Samuel; Ginger, David S.; Pemberton, Jeanne E.

    2016-12-15

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only after -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.

  9. Optically transparent membrane based on bacterial cellulose/polycaprolactone

    Directory of Open Access Journals (Sweden)

    H. S. Barud

    2013-01-01

    Full Text Available Optically transparent membranes from bacterial cellulose (BC/polycaprolactone (PCL have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.

  10. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  11. The photoelectrochemical properties of `Q-state` CdS{sub x} Se{sub (1-x)} particles in Langmuir-Blodgett films deposited onto optically transparent glass electrodes (OTE); Propriedades fotoeletroquimicas de particulas `Q-state`em filmes de Langmuir-Blodgett depositados sobre eletrodos de vidro opticamente transparente (OTE)

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Herman S.; Vasconcelos, Wander L. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica e Engenharia Metalurgica; Grieser, Franz; Urquhart, Robert S.; Furlong, D. Neil [Melbourne Univ., Parkville, VIC (Australia). School of Chemistry

    1995-12-31

    CdS `Q-state` particles, with average diameters varying from 2 nm to 10 nm, grown in arachidic acid Langmuir-Blodgett (LB) films, deposited onto optically transparent glass electrodes (OTES), were exposed to H{sub 2} Se(g) to form the corresponding Q-state Cd S{sub x} Se{sub (1-x)} particles. Those particles are considered to be made up of a core of CdS and coated with a monolayer of Cd Se. Q-state Cd S-x Se{sub (1-x)} particle formation was verified by X-ray photoelectron spectroscopy (XPS) and by monitoring a red shift in the UV-visible absorbance spectra relative to that of Cds. XPS results on 5 nm diameter CdS particles that had been grown in an LB film and then extensively exposed to H{sub 2} S (g) revealed a stable average composition of Cd S{sub 0}.{sub 4} Se{sub 06}. A study of the photoelectrochemical behaviour of these systems was conducted through current the open-circuit voltage and a marked increase in the short-circuit current was observed when LB films with Q-state CdS particles were exposed to H{sub 2} Se(g). (author) 4 figs.

  12. Lattice Induced Transparency in Metasurfaces

    CERN Document Server

    Manjappa, Manukumara; Singh, Ranjan

    2016-01-01

    Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.

  13. Transparency in Cooperative Online Education

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Paulsen, Morten Flate

    2009-01-01

    The purpose of this article is to discuss the following question: What is the potential of social networking within cooperative online education? Social networking does not necessarily involve communication, dialogue, or collaboration. Instead, the authors argue that transparency is a unique...... learning can be supported by transparency. To illustrate this with current examples, the article presents NKI Distance Education’s surveys and experiences with cooperative learning. The article discusses by which means social networking and transparency may be utilized within cooperative online education...... feature of social networking services. Transparency gives students insight into each other’s actions. Cooperative learning seeks to develop virtual learning environments that allow students to have optimal individual freedom within online learning communities. This article demonstrates how cooperative...

  14. Flexible Transparent Electronic Gas Sensors.

    Science.gov (United States)

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas.

  15. Graphene, a promising transparent conductor

    National Research Council Canada - National Science Library

    Wassei, Jonathan K; Kaner, Richard B

    2010-01-01

    New electronic devices such as touch screens, flexible displays, printable electronics, solid-state lighting and thin film photovoltaics have led to a rapidly growing market for flexible transparent conductors...

  16. Designing Passivating, Carrier-Selective Contacts for Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Matthieu [Arizona State Univ., Tempe, AZ (United States); Koswatta, Priyaranga [Arizona State Univ., Tempe, AZ (United States); Holman, Zachary [Arizona State Univ., Tempe, AZ (United States)

    2015-04-06

    "The first step towards building a high-efficiency solar cell is to develop an absorber with few recombination-active defects. Many photovoltaic technologies have already achieved this (monocrystalline Si, III-V materials grown on lattice-matched substrates, perovskites, polycrystalline CdTe and CIGS); those that have not (a-Si:H, organics) have been limited to low open-circuit voltage. The second step is to develop contacts that both inhibit surface recombination and allow for low-resistance collection of either only electrons or only holes. For most photovoltaic technologies, this step is both more difficult and less explored than the first, and we are unaware of a prescribed methodology for selecting materials for contacts to solar cells. We elucidate a unified, conceptual understanding of contacts within which existing contacting schemes can be interpreted and future contacting schemes can be imagined. Whereas a split of the quasi-Fermi levels of holes and electrons is required in the absorber of any solar cell to generate a voltage, carriers are eventually collected through a metallic wire in which no such quasi-Fermi-level split exists. We define a contact to be all layers between the bulk of the absorber and the recombination-active interface through which carriers are extracted. The quasi-Fermi levels must necessarily collapse at this interface, and thus the transition between maximal quasi-Fermi-level splitting (in the absorber) and no splitting occurs entirely in the contact. Depending on the solar cell architecture, the contact will usually extend from the surface of the absorber to the surface of a metal or transparent conductive oxide layer, and may include deposited or diffused doped layers (e.g., as in crystalline and thin-film Si cells) and heterostructure buffer layers (e.g., the CdS layer in a CdTe device). We further define a passivating contact as one that enables high quasi-Fermi-level splitting in the absorber (large “internal” voltage

  17. Mineral deposits in western Saudi Arabia; a preliminary report

    Science.gov (United States)

    Roberts, Ralph Jackson; Greenwood, William R.; Worl, Ronald G.; Dodge, F.C.W.; Kiilsgaard, Thor H.

    1975-01-01

    Mineral deposits in Saudi Arabia include a variety of deposits which were formed in many geologic environments. These include magmatic and late magmatic deposits in igneous masses, contact metamorphic deposits along the margins of igneous bodies, and stratiform sulfide deposits and veins. Notable deposits of sedimentary origin include deposits of iron oxides and phosphate.

  18. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  19. Transparent Oxide Semiconductors for Emerging Electronics

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-11-01

    Transparent oxide electronics have emerged as promising materials to shape the future of electronics. While several n-type oxides have been already studied and demonstrated feasibility to be used as active materials in thin film transistors, high performance p-type oxides have remained elusive. This dissertation is devoted to the study of transparent p-type oxide semiconductor tin monoxide and its use in the fabrication of field effect devices. A complete study on the deposition of tin monoxide thin films by direct current reactive magnetron sputtering is performed. Carrier density, carrier mobility and conductivity are studied over a set of deposition conditions where p-type conduction is observed. Density functional theory simulations are performed in order to elucidate the effect of native defects on carrier mobility. The findings on the electrical properties of SnO thin films are then translated to the fabrication of thin films transistors. The low processing temperature of tin monoxide thin films below 200 oC is shown advantageous for the fabrication of fully transparent and flexible thin film transistors. After careful device engineering, including post deposition annealing temperature, gate dielectric material, semiconductor thickness and source and drain electrodes material, thin film transistors with record device performance are demonstrated, achieving a field effect mobility >6.7 cm2V-1s-1. Device performance is further improved to reach a field effect mobility of 10.8 cm2V-1s-1 in SnO nanowire field effect transistors fabricated from the sputtered SnO thin films and patterned by electron beam lithography. Downscaling device dimension to nano scale is shown beneficial for SnO field effect devices not only by achieving a higher hole mobility but enhancing the overall device performance including better threshold voltage, subthreshold swing and lower number of interfacial defects. Use of p-type semiconductors in nonvolatile memory applications is then

  20. Lines that induce phenomenal transparency.

    Science.gov (United States)

    Grieco, Alba; Roncato, Sergio

    2005-01-01

    Three neighbouring opaque surfaces may appear split into two layers, one transparent and one opaque beneath, if an outline contour is drawn that encompasses two of them. The phenomenon was originally observed by Kanizsa [1955 Rivista di Psicologia 69 3-19; 1979 Organization in Vision: Essays on Gestalt Psychology (New York: Praeger)], for the case where an outline contour is drawn to encompass one of the two parts of a bicoloured figure and a portion of a background of lightest (or darkest) luminance. Preliminary observations revealed that the outline contour yields different effects: in addition to the stratification into layers described by Kanizsa, a second split, opposite in depth order, may occur when the outline contour is close in luminance to one of the three surfaces. An initial experiment was designed to investigate what conditions give rise to the two phenomenal transparencies: this led to the conclusion that an outline contour superimposed on an opaque surface causes this surface to emerge as a transparent layer when the luminances of the contour and the surface differ, in absolute value, by no more than 13.2 cd m(-2). We have named this phenomenon 'transparency of the intercepted surface', to distinguish it from the phenomenal transparency arising when the contour and surface are very different in luminance. When such a difference exists, the contour acts as a factor of surface definition and grouping: the portion of the homogeneous surface it bounds emerges as a fourth surface and groups with a nearby surface if there is one close in luminance. The transparency phenomena ('transparency of the contoured surface') perceived in this context conform to the constraints of Metelli's model, as demonstrated by a second experiment, designed to gather 'opacity' ratings of stimuli. The observer judgments conformed to the values predicted by Metelli's formula for perceived degree of transparency, alpha. The role of the outline contour in conveying figural and

  1. Microgenetic analysis of transparency perception

    OpenAIRE

    2004-01-01

    In this study the microgenesis of transparency perception was investigated. Two intersecting squares were used as a basic stimulus model. Three surfaces was defined: surface which had the shape of capital Greek letter gamma, surface which had the shape of mirrored L and the little square nested between gamma and L. The gray levels of these surfaces were varied, whereas the background was constantly black. The gray levels variation can produce either transparency, spotlight or mosaic perceptio...

  2. Simple nanofabrication of a superhydrophobic and transparent biomimetic surface

    Institute of Scientific and Technical Information of China (English)

    LIM Hyuneui; JUNG Dae-Hwan; NOH Jung-Hyun; CHOI Gyeong-Rin; KIM Wan-Doo

    2009-01-01

    This paper describes a simple fabrication method for creating superhydrophobic and transparent glass surfaces that mimic natural surfaces such as lotus leaves, moth eyes or cicada wings. Nanostructured glass surfaces were created by a combination of colloidal lithography and plasma etching. A colloidal mask was formed simply by the spin coating of the polystyrene beads and with modification of the interparticle distance between the beads. The etching of the glasses was conducted by CF_4 plasma. Tower-shaped nanostructures at an aspect ratio of 1:4 were treated using fluoroalkylsilane self-assembled monolayers (SAMs) to obtain the hydrophobic surfaces. The treated glass surfaces showed superhydrophobicity with a water contact angle of around 150° and a hexadecane contact angle of around 110°. Furthermore, the nanostructured glass was transparent to visible light.

  3. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Vosgueritchian, Michael; Lipomi, Darren J.; Bao, Zhenan [Department of Chemical Engineering, Stanford University, CA (United States)

    2012-01-25

    Highly conductive and transparent poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant-treated PEDOT:PSS films show a 35% improvement in sheet resistance (R{sub s}) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre-deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four-layer PEDOT:PSS films have an R{sub s} of 46 {omega} per square with 82% transmittance (at 550 nm). These films, deposited on a pre-strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to R{sub s}, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)-free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A Concise Dictionary of Transparency

    Directory of Open Access Journals (Sweden)

    Jakub Misun

    2013-01-01

    Full Text Available The article discusses an essay collection by Marek Bieńczyk, Przeźroczystość [Transparency]. The concept, placed in various context, shows various aspects and is seen in various shades. The author does not put forward a statement, but rather proposes a work to be done: to determine the modality of transparency. The concept initially seems to be mainly epistemological: the cognizant subject would like to make the world transparent, to discover all possible mysteries. Before that, however, the subject must know itself, and here the dream of trans­parency also plays the key role. Lack of epistemological transparency is the main cause of melancholy and its reverse — hysteria. The concept turns out to be important in the domain of love — the loer thinks that (she knows the desired person more better anybody else, that (she has entirely penetrated the subjectivity of the Other. Ultimately, however, the dream of transparency goes down to a slow demise of the subject: as self-discovery progresses, there is less and less of the discoverer. In conclusion of this work, the border of modality of the concept turns out to be horrifyingly obvious. The desire for transparency consequently searches not for knowledge, but for an escape whose name is death.

  5. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  6. Lignin-Retaining Transparent Wood.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Rojas, Ramiro; Yan, Min; Lawoko, Martin; Berglund, Lars

    2017-09-11

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30 wt % of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80 wt % of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83 %, haze of 75 %, thermal conductivity of 0.23 W mK(-1) , and work-tofracture of 1.2 MJ m(-3) (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Surface Property and Stability of Transparent Superhydrophobic Coating Based on SiO2-Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Sunisa JINDASUWAN

    2016-05-01

    Full Text Available Artificial superhydrophobic films were deposited onto a glass slide by performing layer-by-layer deposition of 3.5 bilayers of poly(allylamine hydrochloride/ poly(acrylic acid polyelectrolyte, followed by a layer of SiO2 nanoparticles of various amounts to enhance the surface roughness and a fluorosilane to reduce the surface free energy. Higher SiO2 content incorporated into the films resulted in rougher surface and higher water contact angle. The total surface free energy determined by using the Owens-Wendt equation dramatically decreased from 31.46 mJ·m-2 for the film having the relatively flat surface to only 1.16 mJ·m-2 for the film having the highest surface roughness of 60.2 ± 1.1 nm. All the films were optically transparent and had excellent adhesion based on the peel test. Indoor and accelerated weathering tests revealed good weathering stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12952

  8. Surface Property and Stability of Transparent Superhydrophobic Coating Based on SiO2-Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Sunisa JINDASUWAN

    2016-05-01

    Full Text Available Artificial superhydrophobic films were deposited onto a glass slide by performing layer-by-layer deposition of 3.5 bilayers of poly(allylamine hydrochloride/ poly(acrylic acid polyelectrolyte, followed by a layer of SiO2 nanoparticles of various amounts to enhance the surface roughness and a fluorosilane to reduce the surface free energy. Higher SiO2 content incorporated into the films resulted in rougher surface and higher water contact angle. The total surface free energy determined by using the Owens-Wendt equation dramatically decreased from 31.46 mJ·m-2 for the film having the relatively flat surface to only 1.16 mJ·m-2 for the film having the highest surface roughness of 60.2 ± 1.1 nm. All the films were optically transparent and had excellent adhesion based on the peel test. Indoor and accelerated weathering tests revealed good weathering stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12952

  9. Study of a sandwich structure of transparent conducting oxide films prepared by electron beam evaporation at room temperature

    OpenAIRE

    Chiu, Po Kai; Cho, Wen Hao; Chen, Hung Ping; Hsiao, Chien Nan; Yang, Jer Ren

    2012-01-01

    Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm ...

  10. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  11. Diabatic flow boiling in circular transparent microchannels

    Science.gov (United States)

    Silvério, V.; Moreira, A. L. N.

    2012-11-01

    The horizontally assembled circular microchannel (Dh= 543μm, LHT = 60mm) made of transparent borosilicate glass is kept under constant wall heat flux conditions by means of a transparent metallic thin film deposit at the channel external wall as in Silvério and Moreira [1]. Heat transfer and pressure drop measurements are achieved by measuring the temperature and pressure at the channel inlet and outlet. Temperature is also measured along the channel outer wall. Experiments are carried with two different fluids, ethanol and methanol. Inlet liquid subcooling is of 297K, mass fluxes, G, up to 689kg.m-2.s-1 and imposed heat fluxes, q"s, up to 12.5W.cm-2 at ΔTsub from 0.8 to 50K. Synchronized high-speed visualization and microscope optics are used to determine dominant two-phase flow patterns and characterize hydrodynamic instabilities. Vapor qualities, χ, of -0.1 (indicating a subcooled liquid state) to 0.5 are under investigation. Semi-periodic variation of the flow patterns is noticeable for different flow conditions.

  12. Transparent and flexible force sensor array based on optical waveguide.

    Science.gov (United States)

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  13. Effect of Oxygen on the Structural/Electrical Properties of NIZO Films on Transparent Flexible Substrates.

    Science.gov (United States)

    Lim, Byung-Wook; Lee, Young-Jun; Kim, Joo-Hyung; Jeong, Hyeon-Taek; Ha, Tae-Won; Kim, Eun-Mi; Heo, Gi-Seok; Kim, Young-Baek; Kim, Hyeon-Ju; Lee, Ho-Saeng

    2015-10-01

    Thin film transparent oxides have attracted considerable attention over the last few decades for transparent electronic applications, such as flat panel displays, solar cells, touch-pads, and mobile devices. Metallic doped InZnO (IZO) films have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications. Thin NIZO films were deposited on cellulose, PES and glass substrates using a sputtering system with a single NIZO target (In2O3 73.8/ZnO 15.7/NiO 10.5 mol.%) at room temperature. During deposition of the NIZO films, the total flow rate of the carrier gas was maintained using a regulating system. The effects of the oxygen content in the carrier gas on the structural, electrical and optical properties of the thin films deposited on flexible substrates was characterized. The results highlight the feasibility of the transparent NIZO oxide layer on flexible substrates as a flexible electrode with a relatively high sheet resistance, which is strongly related to the crystallographic structure and oxygen content during the film deposition process.

  14. A ratio model of perceptual transparency.

    Science.gov (United States)

    Tommasi, M

    1999-12-01

    A ratio model of the achromatic transparency of a phenomenal surface on a bipartite background is proposed. The model asserts that transparency corresponds to the evaluation of the ratio of the lightness difference inside the transparent surface to the difference in reference lightness inside the background. It applies to both balanced and unbalanced transparency. The ratio model was compared experimentally with the previous perceptual model of achromatic transparency proposed by Metelli. Each model was tested by comparing the rated with the predicted transparency. Analysis shows that the ratio model provides better predictions of transparency than those provided by Metelli's model.

  15. /Au Back Contacts

    Science.gov (United States)

    Paudel, Naba R.; Compaan, Alvin D.; Yan, Yanfa

    2014-08-01

    We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3- x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda-lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3- x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3- x layer was found to improve the open circuit voltage ( V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.

  16. Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics

    Science.gov (United States)

    Yu, Kilho; Park, Byoungwook; Kim, Geunjin; Kim, Chang-Hyun; Park, Sungjun; Kim, Jehan; Jung, Suhyun; Jeong, Soyeong; Kwon, Sooncheol; Kang, Hongkyu; Kim, Junghwan; Yoon, Myung-Han; Lee, Kwanghee

    2016-12-01

    Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future “flexible” and “transparent” electronics (FTEs). Here, by blending only a small amount (˜15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.

  17. Carrier-selective contacts for Si solar cells

    Science.gov (United States)

    Feldmann, F.; Simon, M.; Bivour, M.; Reichel, C.; Hermle, M.; Glunz, S. W.

    2014-05-01

    Carrier-selective contacts (i.e., minority carrier mirrors) are one of the last remaining obstacles to approaching the theoretical efficiency limit of silicon solar cells. In the 1980s, it was already demonstrated that n-type polysilicon and semi-insulating polycrystalline silicon emitters form carrier-selective emitters which enabled open-circuit voltages (Voc) of up to 720 mV. Albeit promising, to date a polysilicon emitter solar cell having a high fill factor (FF) has not been demonstrated yet. In this work, we report a polysilicon emitter related solar cell achieving both a high Voc = 694 mV and FF = 81%. The passivation mechanism of these so-called tunnel oxide passivated contacts will be outlined and the impact of TCO (transparent conductive oxide) deposition on the injection-dependent lifetime characteristic of the emitter as well as its implications on FF will be discussed. Finally, possible transport paths across the tunnel oxide barrier will be discussed and it will be shown that the passivating oxide layer does not lead to a relevant resistive loss and thus does not limit the solar cell's carrier transport. Contrary to amorphous silicon-based heterojunction solar cells, this structure also shows a good thermal stability and, thus, could be a very appealing option for next generation high-efficiency silicon solar cells.

  18. Controlling the Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Polymer Surfaces

    Science.gov (United States)

    Dunning, Peter David

    A colloidal suspension is a small constituent of insoluble solid particles suspended in a liquid medium. Control over the wetting, evaporation, and deposition patterns left by colloidal suspensions is valuable in many biological, medical, industrial, and agricultural applications. Understanding the governing principles of wetting and evaporative phenomena of these colloidal suspensions may lead to greater control over resultant deposition patterns. Perhaps the most familiar pattern forms when an initially heterogeneous colloidal suspension leaves a dark ring pattern at the edge of a drop. This pattern is referred to as a coffee-stain and it can be seen from dried droplets of spilled coffee. This coffee-stain effect was first investigated by Deegan et. al. who discovered that these patterns occur when outward radial flows driven by evaporation at the triple contact line dominate over other effects. While the presence of coffee-stain patterns is undesirable in many printing and medical diagnostic processes, it can also be advantageous in the production of low cost transparent conductive films, the deposition of metal vapor, and the manipulation of biological structures. Controlling the interactions between the substrate, liquid, vapor, and particles can lead to control over the size and morphology of evaporative deposition patterns left by aqueous colloidal suspensions. Several methods have been developed to control the evaporation of colloidal suspensions to either suppress or enhance the coffee stain effect. Electrowetting on Dielectric (EWOD) is one promising method that has been used to control colloidal depositions by applying either an AC or DC electric field. EWOD actuation has the potential to dynamically control colloidal deposition left by desiccated droplets to either suppress or enhance the coffee stain effect. It may also allow for independent control of the fluidic interface and deposition of particles via electrowetting and electrokinetic forces

  19. Nanowire CdS-CdTe Solar Cells with Molybdenum Oxide as Contact

    Science.gov (United States)

    Dang, Hongmei; Singh, Vijay P.

    2015-10-01

    Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm2 and efficiency of 8.67%. Our results demonstrate use of a thin layer transition metal oxide as a potential way for a transparent back contact to nanowire CdS-CdTe solar cells. This work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.

  20. Microgenetic analysis of transparency perception

    Directory of Open Access Journals (Sweden)

    Marković Slobodan S.

    2004-01-01

    Full Text Available In this study the microgenesis of transparency perception was investigated. Two intersecting squares were used as a basic stimulus model. Three surfaces was defined: surface which had the shape of capital Greek letter gamma, surface which had the shape of mirrored L and the little square nested between gamma and L. The gray levels of these surfaces were varied, whereas the background was constantly black. The gray levels variation can produce either transparency, spotlight or mosaic perception. All three categories can be described both locally (three juxtaposed surfaces and globally (two overlapping squares. The primed matching paradigm and the same-different task were used. The global (squares and the local (gammas or mirrored Ls test stimuli were given as same or different pairs. There were the two prime types: identical (equal to test stimuli and perceptual (related to the transparency, spotlight or mosaic. Prime duration were 50 ms and 400 ms, and the ISI was 30 ms. Ten subjects were asked to respond whether the test stimuli are same or different. The main result indicate that the difference in RT between perceptually primed global and local test stimuli is highly significant in both prime duration conditions and for transparency and spotlight patterns, and is marginally significant for mosaic patterns. The difference was such that the global tests were processed faster than the local tests. These results suggest that complex perceptual descriptions (transparency and the spotlight are generated very early in the perceptual process (50 ms.

  1. Transparent polycrystalline cubic silicon nitride

    Science.gov (United States)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  2. Organic solar cells with solution-processed graphene transparent electrodes

    Science.gov (United States)

    Wu, Junbo; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2008-06-01

    We demonstrate that solution-processed graphene thin films can serve as transparent conductive anodes for organic photovoltaic cells. The graphene electrodes were deposited on quartz substrates by spin coating of an aqueous dispersion of functionalized graphene, followed by a reduction process to reduce the sheet resistance. Small molecular weight organic solar cells can be directly deposited on such graphene anodes. The short-circuit current and fill factor of these devices on graphene are lower than those of control device on indium tin oxide due to the higher sheet resistance of the graphene films. We anticipate that further optimization of the reduction conditions will improve the performance of these graphene anodes.

  3. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  4. Transparent Memory For Harsh Electronics

    KAUST Repository

    Ho, C. H.

    2017-03-14

    As a new class of non-volatile memory, resistive random access memory (RRAM) offers not only superior electronic characteristics, but also advanced functionalities, such as transparency and radiation hardness. However, the environmental tolerance of RRAM is material-dependent, and therefore the materials used must be chosen carefully in order to avoid instabilities and performance degradation caused by the detrimental effects arising from environmental gases and ionizing radiation. In this work, we demonstrate that AlN-based RRAM displays excellent performance and environmental stability, with no significant degradation to the resistance ratio over a 100-cycle endurance test. Moreover, transparent RRAM (TRRAM) based on AlN also performs reliably under four different harsh environmental conditions and 2 MeV proton irradiation fluences, ranging from 1011 to 1015 cm-2. These findings not only provide a guideline for TRRAM design, but also demonstrate the promising applicability of AlN TRRAM for future transparent harsh electronics.

  5. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  6. A FRAMEWORK FOR TRANSPARENCY IN INTERNATIONAL TRADE

    Directory of Open Access Journals (Sweden)

    Bernal Turnes, Paloma

    2015-01-01

    Full Text Available The aim of this paper is to cover the gap in literature about transparency in the context of international trade facilitation. It focuses on the importance of transparency in achieving growth in international trade and the differences between non-transparent practices and corruption in global trade. Managing the disclosure of information about rules, regulations and laws is not the only trade policy instrument where transparency becomes important. To build a framework on levels of transparency we developed a matrix classifying the transparency of each country based on ease of doing business and levels of bribery. Four different strategies are explained based on the different scenarios of transparency in international trade. The main conclusions reflect that disclosure of information is not enough to guarantee transparency and monitoring of transparency must be improved.

  7. The transparent microstrip gas counter

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki, E-mail: leo@q.t.u-tokyo.ac.j [University of Tokyo, Tokyo 113-8656 (Japan); Fujita, Kaoru; Fujiwara, Takeshi [University of Tokyo, Tokyo 113-8656 (Japan); Niko, Hisako; Guerard, Bruno [Institute of Max von Laue and Paul Langevin, BP 156, 38042 Grenoble, Cedex 9 (France); Fraga, Francisco [Departamento de Fisica, LIP-Coimbra, Universidade de Coimbra, 3000 Coimbra (Portugal); Iyomoto, Naoko [University of Tokyo, Tokyo 113-8656 (Japan)

    2010-11-01

    Conventional MSGCs are made of metal electrodes that might absorb or reflect optical photons. If the electrodes are made of transparent material like ITO, we could take advantage of optical readout. A gas scintillation proportional counter made of ITO MSGC is fabricated and tested where both optical and charge signals are obtained. We have selected a multi-grid structure that can avoid charge-up problem with normal transparent glass substrate. Test results with Ar and CF{sub 4} gas mixture showed a stable gas gain of {approx}2800 and {approx}110 optical photons for 6 keV X-rays. Position sensing with PSPMT has successfully been demonstrated.

  8. Graphene, a promising transparent conductor

    Directory of Open Access Journals (Sweden)

    Jonathan K. Wassei

    2010-03-01

    Full Text Available New electronic devices such as touch screens, flexible displays, printable electronics, solid-state lighting and thin film photovoltaics have led to a rapidly growing market for flexible transparent conductors. Standard indium tin oxide films are unlikely to satisfy future needs due to losses in conductivity on bending and the escalating cost of indium which is in limited supply. Recent advances in the synthesis and characterization of graphene indicate that it may be suitable for many electronic applications including as a transparent conductor. Graphene hybrids with, for example, carbon nanotubes, may prove to be especially interesting.

  9. Partial transparency of compressed wood

    Science.gov (United States)

    Sugimoto, Hiroyuki; Sugimori, Masatoshi

    2016-05-01

    We have developed novel wood composite with optical transparency at arbitrary region. Pores in wood cells have a great variation in size. These pores expand the light path in the sample, because the refractive indexes differ between constituents of cell and air in lumen. In this study, wood compressed to close to lumen had optical transparency. Because the condition of the compression of wood needs the plastic deformation, wood was impregnated phenolic resin. The optimal condition for high transmission is compression ratio above 0.7.

  10. Method for producing high carrier concentration p-Type transparent conducting oxides

    Science.gov (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  11. Effect of contact angle and humidity on evaporation of inkjet-printed colloidal drops

    Science.gov (United States)

    Sun, Ying; Bromberg, Vadim; Gawande, Sailee; Singler, Timothy

    2009-11-01

    Inkjet printing has attracted much attention in recent years due to its ability to dispense precise amounts of functional materials onto targeted areas. Although evidence exists for a multi-stage evaporation of a sessile drop, the actual evaporation behavior of an inkjetted colloidal drop is not well understood. In this study, a novel visualization technique is developed wherein aqueous suspensions of fluorescent particles are inkjetted onto transparent surfaces and the evaporation dynamics are observed in real-time using a high-power microscope. Two influencing parameters, the ambient humidity and substrate wettability, are systematically varied. It has been confirmed that jetted drops follow a pinned, dewetting, and mixed multi-stage evaporation process. The results also show that the relative humidity acts mainly to accelerate or decelerate the process whereas its relationship to contact angle is not as direct. Contact angle hysteresis plays an important role in controlling the initial pinned mode. For lower contact angle substrates, evaporation drives a flow of particles to deposit near the contact line which set the conditions for the dewetting stage that follows. Finally, a diffusion-controlled evaporation model is used to predict the time internals for each evaporation stage. The model agrees well with the experimental data, especially for the dewetting mode.

  12. Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics.

    Science.gov (United States)

    Vohra, Akhil; Carmichael, R Stephen; Carmichael, Tricia Breen

    2016-10-11

    Transparent butyl rubber is a new elastomer that has the potential to revolutionize stretchable electronics due to its intrinsically low gas permeability. Encapsulating organic electronic materials and devices with transparent butyl rubber protects them from problematic degradation due to oxygen and moisture, preventing premature device failure and enabling the fabrication of stretchable organic electronic devices with practical lifetimes. Here, we report a methodology to alter the surface chemistry of transparent butyl rubber to advance this material from acting as a simple device encapsulant to functioning as a substrate primed for direct device fabrication on its surface. We demonstrate a combination of plasma and chemical treatment to deposit a hydrophilic silicate layer on the transparent butyl rubber surface to create a new layered composite that combines Si-OH surface chemistry with the favorable gas-barrier properties of bulk transparent butyl rubber. We demonstrate that these surface Si-OH groups react with organosilanes to form self-assembled monolayers necessary for the deposition of electronic materials, and furthermore demonstrate the fabrication of stretchable gold wires using nanotransfer printing of gold films onto transparent butyl rubber modified with a thiol-terminated self-assembled monolayer. The surface modification of transparent butyl rubber establishes this material as an important new elastomer for stretchable electronics and opens the way to robust, stretchable devices.

  13. Transparent Oxide TFTs Fabricated by Atomic Layer Deposition

    Science.gov (United States)

    2014-04-17

    Fabrication of ZnO TFTs A diagram of the bottom-gate-type ZnO TFTs fabricated in this study is shown in Fig. 3. Fifty-nanometer-thick SiO2 or Al2O3 gate...Hattori, N. Miyatake, M. Horita, Y. Ishikawa and Y. Uraoka: Jpn. J. Appl. Phys. 51 (2012) 02BF04. [19] R. Martins, P. Barquinha, I. Ferreira, L

  14. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  15. Could Transparency Bring Economic Diversity?

    Science.gov (United States)

    Kahlenberg, Richard D.

    2007-01-01

    The Spellings Commission report calls for greater access to higher education for low- and moderate-income students, greater transparency in the way higher education works and greater accountability for producing results. These recommendations are all significant in their own right, but the three concepts also converge to provide powerful support…

  16. Transparency in Cooperative Online Education

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Paulsen, Morten Flate

    2009-01-01

    The purpose of this article is to discuss the following question: What is the potential of social networking within cooperative online education? Social networking does not necessarily involve communication, dialogue, or collaboration. Instead, the authors argue that transparency is a unique feat...

  17. Does doxastic transparency support evidentialism?

    DEFF Research Database (Denmark)

    Steglich-Petersen, Asbjørn

    2008-01-01

    Nishi Shah has recently argued that transparency in doxastic deliberation supports a strict version of evidentialism about epistemic reasons. I argue that Shah’s argument relies on a principle that is incompatible the strict version of evidentialism Shah wishes to advocate....

  18. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N. [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Schwenk, Johannes [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Nanoscale Materials Science, Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  19. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  20. Outside finance, dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    2000-01-01

    This paper studies optimal financial contracts and product market competition under a strategic transparency decision. When firms seeking outside finance resort to actively monitored debt in order to commit against opportunistic behaviour, the dominant lender can influence corporate transparency. Mo

  1. Assessing Government Transparency : An Interpretive Framework

    NARCIS (Netherlands)

    Meijer, A.J.; t Hart, P.; Worthy, Benjamin

    2015-01-01

    How can we evaluate government transparency arrangements? While the complexity and contextuality of the values at stake defy straightforward measurement, this article provides an interpretative framework to guide and structure assessments of government transparency. In this framework, we discern cri

  2. Nanowire CdS-CdTe Solar Cells with Molybdenum Oxide as Contact

    OpenAIRE

    Hongmei Dang; Singh, Vijay P

    2015-01-01

    Using a 10 nm thick molybdenum oxide (MoO3−x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3−x/Au side, the nanowire solar cells yielded Jsc of 21 mA...

  3. Organizational Transparency in the Internet Industry

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel

    Reporting from an empirical investigation at Google and Facebook, this paper conceptualizes the stabilization of transparency as a form and norm conduct connecting and shaping technical, financial, cultural and political processes in the Internet industry. Rather than approach transparency...... on transparency, we have very few in-depth empirical investigations of its organizational and regulatory ramifications, particularly in the Internet industry. Based on interviews and extensive empirical material about Google's and Facebook's engagement with transparency idea(l)s, the paper shows how...

  4. Electrochemically induced sol-gel deposition of ZnO films on Pt-nanoparticle modified FTO surfaces for enhanced photoelectrocatalytic energy conversion.

    Science.gov (United States)

    Gutkowski, Ramona; Schuhmann, Wolfgang

    2016-04-28

    The low conductivity of transparent conductive oxides such as fluorine-doped tin oxides (FTO) has a high impact on the electrochemically induced deposition of semiconductor films for photoelectrocatalytic investigations. Furthermore, the often high recombination rate of photogenerated electron-hole pairs influences the photoelectrochemical performance of semiconductor films. In order to improve the semiconductor deposition process as well as to decrease electron-hole pair recombination, we propose modification of FTO by electrochemically induced deposition of Pt nanoparticles. The deposited Pt nanoparticles improve on the one hand the conductivity of the FTO and on the other hand they create nuclei at which the sol-gel semiconductor deposition starts. We use ZnO as a well-characterised material to evaluate the effect of the influencing parameters during electrochemically induced sol-gel deposition with respect to the incident photon-to-current efficiency (IPCE) derived from wavelength dependent photocurrent spectroscopy. Using optimised deposition parameters a substantially decreased recombination rate of photogenerated charge carriers is demonstrated, if Pt-nanoparticles are first deposited on the FTO surface. By improving the diffusion of photogenerated electrons to the Pt nanoparticles and hence to the back contact the photoelectrochemical performance of the deposited ZnO films is substantially increased.

  5. Solid on liquid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Charmet, J., E-mail: jerome.charmet@he-arc.c [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Banakh, O.; Laux, E.; Graf, B.; Dias, F.; Dunand, A.; Keppner, H. [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Gorodyska, G.; Textor, M. [BioInterface group, ETHZ, Wolfgang-Pauli-Strasse 10, ETH Hoenggerberg HCI H 525 8093 Zuerich (Switzerland); Noell, W.; Rooij, N.F. de [Ecole Polytechnique Federale de Lausanne, Institute of Microengineering, Sensors, Actuators and Microsystems laboratory, Rue Jaquet Droz 1, 2000 Neuchatel (Switzerland); Neels, A.; Dadras, M.; Dommann, A.; Knapp, H. [Centre Suisse d' Electronique et de Microtechnique SA, Rue Jacquet-Droz 1, 2002 Neuchatel (Switzerland); Borter, Ch.; Benkhaira, M. [COMELEC SA, Rue de la Paix 129, 2300 La Chaux-de-Fonds (Switzerland)

    2010-07-01

    A process for the deposition of a solid layer onto a liquid is presented. The polymer poly-di-chloro-para-xylylene, also known as Parylene C, was grown on low vapour pressure liquids using the conventional low pressure chemical vapour deposition process. A reactor was built and a process developed to enable the deposition of Parylene C at atmospheric pressure over high vapour pressure liquids. It was used to deposit Parylene C over water among others. In all cases Parylene C encapsulated the liquid without influencing its initial shape. The results presented here show also that the Parylene C properties are not affected by its growth on liquid templates and the roughness of the Parylene C surface in contact with the liquid during the deposition is extremely low.

  6. The principle of transparency in EU law

    NARCIS (Netherlands)

    Buijze, A.W.G.J.

    2013-01-01

    ‘The principle of transparency in EU law’ explores a variety of transparency obligations in European law, and offers a comprehensive framework to classify and understand those obligations. The principle of transparency is ubiquitous and multifaceted. The obligations derived from it range from a duty

  7. Transparency in Port-Hamiltonian-Based Telemanipulation

    NARCIS (Netherlands)

    Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare

    2008-01-01

    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of p

  8. Supra-amphiphilic transparent mesoporous silica coating

    Institute of Scientific and Technical Information of China (English)

    MA Jin; YANG Zhenglong; QU Xiaozhong; YANG Zhenzhong

    2006-01-01

    Transparent mesoporous silica coatings were achieved by conventional sol-gel process. The obtained coatings display permanent supraamphiphilicity, transparent appearance and good wetting property with very fast spread rate. Incorporation of functional materials such as crystalline titania nanoparticles into the coatings was also carried out without affecting the transparency and supraamphiphilicity.

  9. Pixel masks for screen-door transparency

    NARCIS (Netherlands)

    Mulder, J.D.; Groen, F.C.A.; Wijk, J.J. van

    1998-01-01

    Rendering objects transparently gives additional insight in complex and overlapping structures. However, traditional techniques for the rendering of transparent objects such as alpha blending are not very well suited for the rendering of multiple transparent objects in dynamic scenes. Screen-door tr

  10. The economic impact of central bank transparency

    NARCIS (Netherlands)

    van der Cruijsen, C.A.B.

    2008-01-01

    During the last decades a lot of central banks have become more transparent about their monetary policy. The research question that is addressed in this book is whether central bank transparency is desirable from an economic viewpoint. It is shown that transparency increases have been beneficial.

  11. Influence of the growth conditions on the transparent conductive properties of ZnO:Al thin films grown by pulsed laser deposition%生长条件对脉冲激光沉积制备ZnO:Al薄膜光电性能的影响

    Institute of Scientific and Technical Information of China (English)

    韩军; 张鹏; 巩海波; 杨晓朋; 邱智文; 自敏; 曹丙强

    2013-01-01

    本文研究了脉冲激光沉积(PLD)生长过程中,铝掺量、氧压及衬底温度等实验参数对ZnO:Al(AZO)薄膜生长的影响,并利用扫描电子显微镜、原子力显微镜、X射线衍射、霍尔效应、光透射光谱等实验手段对其透明导电性能进行了探讨.变温霍尔效应和光透射测量表明,当靶材中铝掺量大于0.5 wt%时,所制备AZO薄膜中铝施主在80 K时已完全电离,因Bernstein-Moss (BM)效应其带隙变大,均为重掺杂简并半导体.进一步系统研究了氧压和衬底温度对AZO薄膜透明导电性能的影响,实验发现当氧压为1 Pa,衬底温度为200◦C时, AZO导电性能最好,其霍尔迁移率为28.8 cm2/V·s,薄膜电阻率最小可达2.7×10−4Ω·cm,且在可见光范围内光透过率超过了85%.氧压和温度的增加,都会导致薄膜电阻率变大.%The influences of aluminum doping, oxygen pressure, and substrate temperature on the transparent conductive properties of ZnO:Al (AZO) films grown by pulsed laser deposition (PLD) were investigated using scanning electron microscope, atomic force microscope, X-ray diffraction, Hall effect measurements, and optical transmission spectrum. When the aluminum doping concentration is over 0.5 wt%, all the PLD grown AZO films are degenerated and the aluminum donors are thermal ionized even at a low temperature of 80 K. As a result, the bandgap of AZO film shows blue shifts due to the Bernstein-Moss effect as further confirmed by optical transmission spectrum. The influences of the oxygen pressure and substrate temperature on the transparent conductive property of AZO films were further studied. When the oxygen pressure is 1 Pa and the substrate temperature is 200 ◦C, the best conductivity property of AZO thin film is obtained with Hall mobility of 28.8 cm2/V·s and film resistivity of 2.7 × 10−4Ω·cm. Moreover, the light transmittance in the visible range exceeds 85%. However, as the oxygen pressure and temperature

  12. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  13. Electrostatic force assisted deposition of graphene

    Science.gov (United States)

    Liang, Xiaogan [Berkeley, CA

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  14. Lipstick Induced Contact Leucoderma

    OpenAIRE

    Gupta Lalit Kumar; Jain Suresh Kumar; Khare Ashok Kumar

    2001-01-01

    Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  15. Lipstick Induced Contact Leucoderma

    Directory of Open Access Journals (Sweden)

    Gupta Lalit Kumar

    2001-01-01

    Full Text Available Lipstick is a commonly used cosmetic. Its use may sometimes lead to contact dermatitis. Contact leucoderma to lipsticks however, is not common. We report a patient developing contact leucoderma to lipstick in association with contact dermatitis.

  16. Spatially dependent electromagnetically induced transparency

    CERN Document Server

    Radwell, Neal; Piccirillo, Bruno; Barnett, Stephen M; Franke-Arnold, Sonja

    2014-01-01

    Recent years have seen vast progress in the generation and detection of structured light, with potential applications in high capacity optical data storage and continuous variable quantum technologies. Here we measure the transmission of structured light through cold rubidium atoms and observe regions of electromagnetically induced transparency (EIT). We use q-plates to generate a probe beam with azimuthally varying phase and polarisation structure, and its right and left circular polarisation components provide the probe and control of an EIT transition. We observe an azimuthal modulation of the absorption profile that is dictated by the phase and polarisation structure of the probe laser. Conventional EIT systems do not exhibit phase sensitivity. We show, however, that a weak transverse magnetic field closes the EIT transitions, thereby generating phase dependent dark states which in turn lead to phase dependent transparency, in agreement with our measurements.

  17. Optically transparent, scratch-resistant, diamond-like carbon coatings

    Science.gov (United States)

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  18. Why is Transparency Greenland Necessary?

    DEFF Research Database (Denmark)

    Jensen, Boris Brorman

    2012-01-01

    Greenland is facing significant changes in the composition of its economy, and is moving rapidly in the direction of becoming a commodities economy. Studies conducted by Transparency International in other parts of the world suggest that oil exploration and mining are among the areas of economic...... activity, which carry the greatest risk of corruption. It is therefore important that Greenlandic society is prepared for the new economic players, and the risks this may entail....

  19. Transparent garnet ceramic scintillators for gamma-ray detection

    Science.gov (United States)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  20. Barrier Enhancement Effect of Postannealing in Oxygen Ambient on Ni/AlGaN Schottky Contacts

    Institute of Scientific and Technical Information of China (English)

    SANG Li-Wen; QIN Zhi-Xin; CEN Long-Bin; CHEN Zhi-Zhong; YANG Zhi-Jian; SHEN Bo; ZHANG Guo-Yi

    2007-01-01

    Al0.2Ga0.sN/GaN samples are grown by metalorganic chemical vapour deposition (MOCVD) method on (0001) sapphire substrates. A 10nm-thick Ni layer is deposited on AlGaN as the transparent Schottky contact. The effect of postannealing in oxygen ambient on the electrical properties of Ni/AlGaN is studied by current voltagetemperature (I-V-T) measurement. The annealing at a relatively low temperature of 300℃ for 90 s results in a decrease of the ideality factor from 2.03 to 1.30 and an increase of the Schottky barrier height from 0.77eV to 0.954 eV. The I-V-T analysis confirms the improvement originated from the formation of NiO, a layer with higher resistatce, which could passivate the surface states of AlGaN and suppress the tunnelling current. Furthermore,the annealing also leads to an increase of the transmittance of the contacts from 57.5% to 78.2%, which would be favourable for AlGaN-based photodetectors.

  1. Perceptual transparency in neon color spreading displays.

    Science.gov (United States)

    Ekroll, Vebjørn; Faul, Franz

    2002-08-01

    In neon color spreading displays, both a color illusion and perceptual transparency can be seen. In this study, we investigated the color conditions for the perception of transparency in such displays. It was found that the data are very well accounted for by a generalization of Metelli's (1970) episcotister model of balanced perceptual transparency to tristimulus values. This additive model correctly predicted which combinations of colors would lead to optimal impressions of transparency. Color combinations deviating slightly from the additive model also looked transparent, but less convincingly so.

  2. XBRL and Financial Reporting Transparency

    Directory of Open Access Journals (Sweden)

    Mihaela Enachi

    2013-02-01

    Full Text Available Using eXtensible Business Reporting Language (XBRL in financial reporting increases transparency by allowing viewing the details of the information provided by organizations without subdividing it and the possibility of easy access and processing information, even if it is presented in different languages or it results from the application of different regulations. Through this paper we try to emphasize the transparency ensured to financial reporting by using XBRL, which is why we
    transposed in this modern format, partially, the contents of one of the components of financial reports, namely, the balance sheet. In this process we based on the requirements of the Romanian accounting
    regulations in compliance with European directives, XML requirements and XBRL requirements concerning schemas, linkbase files and instances, and we used three of the modules of Altova MissionKit application (XMLSpy, MapForce and StyleVision, while taking into account the best practices in the field.
    Keywords: financial reporting, XBRL, transparency, specification, taxonomy, instance

  3. A transparent nanostructured optical biosensor.

    Science.gov (United States)

    He, Yuan; Li, Xiang; Que, Long

    2014-05-01

    Herein we report a new transparent nanostructured Fabry-Perot interferometer (FPI) device. The unique features of the nanostructured optical device can be summarized as the following: (i) optically transparent nanostructured optical device; (ii) simple and inexpensive for fabrication; (iii) easy to be fabricated and scaled up as an arrayed format. These features overcome the existing barriers for the current nanopore-based interferometric optical biosensors by measuring the transmitted optical signals rather than the reflected optical signals, thereby facilitating the optical testing significantly for the arrayed biosensors and thus paving the way for their potential for high throughput biodetection applications. The optically transparent nanostructures (i.e., anodic aluminum oxide nanopores) inside the FPI devices are fabricated from 2.2 microm thick lithographically patterned Al thin film on an indium tin oxide (ITO) glass substrate using a two-step anodization process. Utilizing the binding between Protein A and porcine immunoglobulin G (IgG) as a model, the detection of the bioreaction between biomolecules has been demonstrated successfully. Experiments found that the lowest detection concentration of proteins is in the range of picomolar level using current devices, which can be easily tuned into the range of femtomolar level by optimizing the performance of devices.

  4. "Bottom-up" transparent electrodes.

    Science.gov (United States)

    Morag, Ahiud; Jelinek, Raz

    2016-11-15

    Transparent electrodes (TEs) have attracted significant scientific, technological, and commercial interest in recent years due to the broad and growing use of such devices in electro-optics, consumer products (touch-screens for example), solar cells, and others. Currently, almost all commercial TEs are fabricated through "top-down" approaches (primarily lithography-based techniques), with indium tin oxide (ITO) as the most common material employed. Several problems are encountered, however, in this field, including the cost and complexity of TE production using top-down technologies, the limited structural flexibility, high-cost of indium, and brittle nature and low transparency in the far-IR spectral region of ITO. Alternative routes based upon bottom-up processes, have recently emerged as viable alternatives for production of TEs. Bottom up technologies are based upon self-assembly of building blocks - atoms, molecules, or nanoparticles - generating thin patterned films that exhibit both electrical conductivity and optical transparency. In this Feature Article we discuss the recent progress in this active and exciting field, including bottom-up TE systems produced from carbon materials (carbon nanotubes, graphene, graphene-oxide), silver, gold, and other metals. The current hurdles encountered for broader use of bottom-up strategies along with their significant potential are analyzed.

  5. EDITORIAL: Close contact Close contact

    Science.gov (United States)

    Demming, Anna

    2010-07-01

    The development of scanning probe techniques, such as scanning tunnelling microscopy [1], has often been touted as the catalyst for the surge in activity and progress in nanoscale science and technology. Images of nanoscale structural detail have served as an invaluable investigative resource and continue to fascinate with the fantastical reality of an intricate nether world existing all around us, but hidden from view of the naked eye by a disparity in scale. As is so often the case, the invention of the scanning tunnelling microscope heralded far more than just a useful new apparatus, it demonstrated the scope for exploiting the subtleties of electronic contact. The shrinking of electronic devices has been a driving force for research into molecular electronics, in which an understanding of the nature of electronic contact at junctions is crucial. In response, the number of experimental techniques in molecular electronics has increased rapidly in recent years. Scanning tunnelling microscopes have been used to study electron transfer through molecular films on a conducting substrate, and the need to monitor the contact force of scanning tunnelling electrodes led to the use of atomic force microscopy probes coated in a conducting layer as studied by Cui and colleagues in Arizona [2]. In this issue a collaboration of researchers at Delft University and Leiden University in the Netherlands report a new device architecture for the independent mechanical and electrostatic tuning of nanoscale charge transport, which will enable thorough studies of molecular transport in the future [3]. Scanning probes can also be used to pattern surfaces, such as through spatially-localized Suzuki and Heck reactions in chemical scanning probe lithography. Mechanistic aspects of spatially confined Suzuki and Heck chemistry are also reported in this issue by researchers in Oxford [4]. All these developments in molecular electronics fabrication and characterization provide alternative

  6. Polymers pipeline study (PP and PEAD) for paraffin deposits inhibition: static (contact angle) and with flow (depolarization of the petroleum fluorescence); Estudo de dutos polimericos (PP e PEAD) para inibicao de depositos parafinicos: estatico (angulo de contato) e com fluxo (despolarizacao da fluorescencia do petroleo)

    Energy Technology Data Exchange (ETDEWEB)

    Quintella, Cristina M.; Castro, Martha T.P.O.; Musse, Ana Paula S. [Universidade Federal da Bahia, Salvador, BA (Brazil)

    2003-07-01

    This work evaluated the formation of paraffin deposits as a function of the chemical constitution of the pipeline walls. Two low cost polymers, available in the Brazilian market either as solids or as extruded films, were studied: polypropylene (PP) and high density polyethylene (PEAD). The static interfacial interactions were evaluated by contact angle and showed that the interaction between crude oil and PEAD was 16% stronger than with PP. For the dynamic studies a flow cell was developed in order to observe mainly the boundary layers. The paraffin deposits were identified through the decrease of the intermolecular alignment within the flowing oil. PEAD proved to be 43% more efficient that PP in interacting with the crude oil. Under flowing conditions, the chemical interfacial effects became more pronounced due to the molecular effects overcoming the hydrodynamic effects. Photos of the cell walls showed globular paraffin deposits on PEAD and their absence on PP. As both polymers are linear, the higher tendency of PEAD to yield paraffin deposits was attributed to the absence of lateral branches of methyl groups. There by PP was found to be better than PEAD to avoid paraffin deposition. (author)

  7. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    Science.gov (United States)

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-04

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure.

  8. At first glance, transparency enhances assimilation.

    Science.gov (United States)

    Koning, Arno; de Weert, Charles M M; van Lier, Rob

    2008-01-01

    We investigated the role of transparency, perceptual grouping, and presentation time on perceived lightness. Both transparency and perceptual grouping have been found to result in assimilation effects, but only for ambiguous stimulus displays and with specific attentional instructions. By varying the presentation times of displays with two partly overlapping transparent E-shaped objects, we measured assimilation in unambiguous stimulus displays and without specific attentional instructions. The task was to judge which of two simultaneously presented E-shaped objects was darker. With unrestrained presentation times, if a transparency interpretation was possible, assimilation was not found. Inhibiting a transparency interpretation by occluding the local junctions between the two E-shaped objects, did lead to assimilation. With short presentation times, if a transparency interpretation was possible, assimilation was now also found. Thus, we conclude that, although transparency appears to enhance assimilation, with unambiguous stimulus displays and without specific attentional instructions, perceptual grouping is more important for assimilation to occur.

  9. Optically transparent high temperature shape memory polymers.

    Science.gov (United States)

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

  10. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    Science.gov (United States)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj; Kim, Joondong; Sohn, Ahrum; Kim, Dong-Wook

    2016-09-01

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu2O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu2O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route of high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.

  11. Preparation of Transparent TiO2 Nanoporous Coating with Highly Photocatalytic Activity by Anodizing Ti Film with Loose Structure

    Directory of Open Access Journals (Sweden)

    LIANG Yin

    2016-07-01

    Full Text Available The Ti film with special structure was deposited onto glass substrate by magnetron sputtering, then via the process of electrochemical anodization and annealing, a transparent TiO2 nanoporous coating (denoted as TNP with high photocatalytic activity can be directly formed on glass substrate. The crystal structure of the TNP was detected by X-ray diffractometry (XRD and the morphology of the coating was observed by scanning electron microscopy (SEM. The transmittance, wettability and adhesion of TNP were investigated by UV-Vis spectrophotometer, contact angle meter and scratch tester respectively. Finally, the photocatalytic activity of TNP was evaluated by degradation of methylene blue solution under UV illumination. The results show that the prepared TNP coating has a nanoporous structure and only anatase can be found after annealing, the transmittance of TNP coating can reach 80% or more in visible region, with a super hydrophilic surface (contact angleC0=1×10-5mol/L can reach 94% in 2 hours and the photocatalysis reaction rate constant is 1.47h-1.

  12. Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors.

    Science.gov (United States)

    Wang, A; Babcock, J R; Edleman, N L; Metz, A W; Lane, M A; Asahi, R; Dravid, V P; Kannewurf, C R; Freeman, A J; Marks, T J

    2001-06-19

    Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. In(x)Cd(1-x)O films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

  13. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Martin, E-mail: martin.theuring@next-energy.de; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-05-02

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes.

  14. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates.

    Science.gov (United States)

    Ishikawa, Fumiaki N; Chang, Hsiao-Kang; Ryu, Koungmin; Chen, Po-Chiang; Badmaev, Alexander; Gomez De Arco, Lewis; Shen, Guozhen; Zhou, Chongwu

    2009-01-27

    We report high-performance fully transparent thin-film transistors (TTFTs) on both rigid and flexible substrates with transfer printed aligned nanotubes as the active channel and indium-tin oxide as the source, drain, and gate electrodes. Such transistors have been fabricated through low-temperature processing, which allowed device fabrication even on flexible substrates. Transparent transistors with high effective mobilities (approximately 1300 cm(2) V(-1) s(-1)) were first demonstrated on glass substrates via engineering of the source and drain contacts, and high on/off ratio (3 x 10(4)) was achieved using electrical breakdown. In addition, flexible TTFTs with good transparency were also fabricated and successfully operated under bending up to 120 degrees . All of the devices showed good transparency (approximately 80% on average). The transparent transistors were further utilized to construct a fully transparent and flexible logic inverter on a plastic substrate and also used to control commercial GaN light-emitting diodes (LEDs) with light intensity modulation of 10(3). Our results suggest that aligned nanotubes have great potential to work as building blocks for future transparent electronics.

  15. High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics

    Directory of Open Access Journals (Sweden)

    Young Ki Hong

    2016-05-01

    Full Text Available Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS2 thin-film transistor (TFT, which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS2 TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS2 and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  16. Robust Cassie state of wetting in transparent superhydrophobic coatings.

    Science.gov (United States)

    Tuvshindorj, Urandelger; Yildirim, Adem; Ozturk, Fahri Emre; Bayindir, Mehmet

    2014-06-25

    This paper investigates the stability of the Cassie state of wetting in transparent superhydrophobic coatings by comparing a single-layer microporous coating with a double-layer micro/nanoporous coating. Increasing pressure resistance of superhydrophobic coatings is of interest for practical use because high external pressures may be exerted on surfaces during operation. The Cassie state stability against the external pressure of coatings was investigated by squeezing droplets sitting on surfaces with a hydrophobic plate. Droplets on the single-layer coating transformed to the Wenzel state and pinned to the surface after squeezing, whereas droplets on the double-layer micro/nanoporous coating preserved the Cassie state and rolled off the surface easily. In addition, the contact angle and contact-line diameter of water droplets during evaporation from surfaces were in situ investigated to further understand the stability of coatings against Wenzel transition. A droplet on a microporous coating gradually transformed to the Wenzel state and lost its spherical shape as the droplet volume decreased (i.e., the internal pressure of the droplet increased). The contact line of the droplet during evaporation remained almost unchanged. In contrast, a water droplet on a double-layer surface preserved its spherical shape even at the last stages of the evaporation process, where pressure differences as high as a few thousand pascals were generated. For this case, the droplet contact line retracted during evaporation and the droplet recovered the initial water contact angle. The demonstrated method for the preparation of robust transparent superhydrophobic coatings is promising for outdoor applications such as self-cleaning cover glasses for solar cells and nonwetting windows.

  17. Transparency

    Institute of Scientific and Technical Information of China (English)

    HUHONGQI

    2005-01-01

    Results for the first quarter, due in mid-April,will undoubtedly show a trend already visible in the two first months - GDP-growth will be slightly lower than last year, while inflation is (for the time being at least)more or less under control.

  18. Hard Transparent Arrays for Polymer Pen Lithography.

    Science.gov (United States)

    Hedrick, James L; Brown, Keith A; Kluender, Edward J; Cabezas, Maria D; Chen, Peng-Cheng; Mirkin, Chad A

    2016-03-22

    Patterning nanoscale features across macroscopic areas is challenging due to the vast range of length scales that must be addressed. With polymer pen lithography, arrays of thousands of elastomeric pyramidal pens can be used to write features across centimeter-scales, but deformation of the soft pens limits resolution and minimum feature pitch, especially with polymeric inks. Here, we show that by coating polymer pen arrays with a ∼175 nm silica layer, the resulting hard transparent arrays exhibit a force-independent contact area that improves their patterning capability by reducing the minimum feature size (∼40 nm), minimum feature pitch (<200 nm for polymers), and pen to pen variation. With these new arrays, patterns with as many as 5.9 billion features in a 14.5 cm(2) area were written using a four hundred thousand pyramid pen array. Furthermore, a new method is demonstrated for patterning macroscopic feature size gradients that vary in feature diameter by a factor of 4. Ultimately, this form of polymer pen lithography allows for patterning with the resolution of dip-pen nanolithography across centimeter scales using simple and inexpensive pen arrays. The high resolution and density afforded by this technique position it as a broad-based discovery tool for the field of nanocombinatorics.

  19. Ultrathin, transparent, and flexible graphene films for supercapacitor application

    Science.gov (United States)

    Yu, Aiping; Roes, Isaac; Davies, Aaron; Chen, Zhongwei

    2010-06-01

    This study reports the preparation of ultrathin, transparent graphene films for use in supercapacitor applications. The surface morphology of the films was investigated by scanning electron microscopy and transmission electron microscopy, revealing a very homogeneous surface with intimate contact between graphene sheets. Electrochemical characterization demonstrated nearly ideal electrical double layer capacitive behavior. The capacitance obtained from charge-discharge analysis is 135 F/g for a film of approximately 25 nm which has a transmittance of 70% at 550 nm and a high power density of 7200 W/kg in 2 M KCl electrolyte.

  20. Infrared Transparent Spinel Films with p -Type Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Exarhos, Gregory J.; Ferris, Kim F.; Engelhard, Mark H.; Stewart, Donald C.

    2001-11-29

    Spinel oxide films containing at least two transition metal cations were found to exhibit p-type conductivity with high optical transparency from the visible to wavelengths near 15 micrometers. Resistivities as low as 0.003 ohm-cm were measured on 100 nm thick rf sputter deposited films that contained nickel and cobalt. Optical spectra, Raman scattering and XPS measurements indicated the valency of nickel localized on octahedral sites within the spinel lattice determines these properties. Electronic band structure calculations corroborated the experimental results. A resistivity minimum was found at the composition NiCo2O4 deposited from aqueous or alcoholic solutions followed by subsequent annealing at 400 degrees C in air. Solution deposited films richer in nickel than this stoichiometry always were found to phase separate into nickel oxide and a spinel phase with concomitant loss in conductivity. However, the phase stability region could be extended to higher nickel contents when rf-sputter deposition techniques were used. Sputter deposited spinel films having a nickel to cobalt ratio less than 2 were found to exhibit the highest conductivity. Results suggest that the phase stability region for these materials can be extended through appropriate choice of deposition conditions. A possible mechanism that promotes high conductivity in this system is thought to be charge transfer between the resident di- and trivalent cations that may be assisted by the magnetic nature of the oxide film.

  1. Modeling the transparent shape memory gels by 3D printer Acculas

    Science.gov (United States)

    Kumagai, Hiroaki; Arai, Masanori; Gong, Jin; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In our group, highly transparent shape memory gels were successfully synthesized for the first time in the world. These gels have the high strength of 3MPs modulus even with the water content of 40wt% water and high transparency. We consider that these highly transparent and high strength gels can be applied to the optical devices such as intraocular-lenses and optical fibers. In previous research by our group, attempts were made to manufacture the gel intraocular-lenses using highly transparent shape memory gels. However, it was too difficult to print the intraocular-lens finely enough. Here, we focus on a 3D printer, which can produce objects of irregular shape. 3D printers generally we fused deposition modeling (FDM), a stereo lithography apparatus (SLA) and selective laser sintering (SLS). Because highly transparent shape memory gels are gelled by light irradiation, we used 3D printer with stereo lithography apparatus (SLA). In this study, we found the refractive index of highly transparent shape memory gels depend on monomer concentration, and does not depend on the cross-linker or initiator concentration. Furthermore, the cross-linker and initiator concentration can change the gelation progression rate. As a result, we have developed highly transparent shape memory gels, which can have a range of refractive indexes, and we defined the optimal conditions that can be modeling in the 3D printer by changing the cross-linker and initiator concentration. With these discoveries we were able to produce a gel intraocular-lens replica.

  2. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1)

    Science.gov (United States)

    Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio

    2016-12-01

    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ~1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq-1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ~30 dB attenuation up to 18 GHz was achieved.

  3. Graphene as a transparent conducting and surface field layer in planar Si solar cells.

    Science.gov (United States)

    Kumar, Rakesh; Mehta, Bodh R; Bhatnagar, Mehar; S, Ravi; Mahapatra, Silika; Salkalachen, Saji; Jhawar, Pratha

    2014-01-01

    This work presents an experimental and finite difference time domain (FDTD) simulation-based study on the application of graphene as a transparent conducting layer on a planar and untextured crystalline p-n silicon solar cell. A high-quality monolayer graphene with 97% transparency and 350 Ω/□ sheet resistance grown by atmospheric pressure chemical vapor deposition method was transferred onto planar Si cells. An increase in efficiency from 5.38% to 7.85% was observed upon deposition of graphene onto Si cells, which further increases to 8.94% upon SiO2 deposition onto the graphene/Si structure. A large increase in photon conversion efficiency as a result of graphene deposition shows that the electronic interaction and the presence of an electric field at the graphene/Si interface together play an important role in this improvement and additionally lead to a reduction in series resistance due to the conducting nature of graphene.

  4. Soft lithography contacts to organics

    Directory of Open Access Journals (Sweden)

    Julia W.P. Hsu

    2005-07-01

    Full Text Available Organic materials play an increasingly important role in (optoelectronics, particularly in low-cost or flexible devices. A major challenge is the contact between the electrodes and the organic material. Processes developed for inorganic semiconductors are inapplicable because of the sensitivity of organic materials to heat, radiation, and chemicals. Deposition of metal(s through shadow masks onto organic materials is commonly used, despite problems with ill-controlled interfaces and material damage. In addition, conventional approaches restrict device size to >1 μm. Clearly, a better technique is needed. In this article, two soft lithography methods for making contacts to organic materials are reviewed: nanotransfer printing (nTP and soft-contact lamination (ScL. These new approaches produce devices that outperform those made by conventional methods. The link between better device performance and better interfacial control is explained, and nanoscale devices are described.

  5. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  6. Oxide/ metal/oxide nanolaminate structures for application of transparent electrodes

    Science.gov (United States)

    Dikov, Hr; Ivanova, T.; Vitanov, P.

    2016-10-01

    Transparent and conductive oxide/ metal/ oxide nanolaminate structures were deposited on glass and polymer substrate by RF magnetron sputtering without substrate heating. The Ag nanoparticles with different size and distance between neighboring particles were located on the interface of two thin oxide layers. This sputtering configuration allows obtaining thin films with homogeneous thickness. The three targets give the opportunity to deposit successively three different layers without opening the chamber. The developed process for transparent conducting coating is a low temperature and it is suitable for application on organic materials as substrate and foils. The experiment with different substrates manifest that the optical transparency of the conducting coating depends on substrate material. The obtained results have demonstrated that the nanolaminate structures oxide/metal/oxide (OMO) as TCO coating are especially suitable for applications in flexible electronics and optoelectronics

  7. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode.

    Science.gov (United States)

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang

    2016-03-04

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.

  8. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode

    Science.gov (United States)

    Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Perumal Veeramalai, Chandrasekar; Guo, Tailiang

    2016-03-01

    In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.

  9. Price transparency for medical devices.

    Science.gov (United States)

    Pauly, Mark V; Burns, Lawton R

    2008-01-01

    Hospital buyers of medical devices contract with manufacturers with market power that sell differentiated products. The medical staff strongly influences hospitals' choice of devices. Sellers have sought to limit disclosure of transaction prices. Policy-makers have proposed legislation mandating disclosure, in the interest of greater transparency. We discuss why a manufacturer might charge different prices to different hospitals, the role that secrecy plays, and the consequences of secrecy versus disclosure. We argue that hospital-physician relationships are key to understanding what manufacturers gain from price discrimination. Price disclosure can catalyze a restructuring of those relationships, which, in turn, can improve hospital bargaining.

  10. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  11. Flank transparency: transparent filters seen in dynamic two-color displays.

    Science.gov (United States)

    Wollschläger, D; Rodriguez, A M; Hoffman, D D

    2001-01-01

    Flank transparency is the perception of a colored transparent filter evoked by apparent-motion displays containing as few as two colors. Displays of flank transparency contain a random array of line segments placed on a uniform background. Small flanks are added to the line segments if the segments fall in the interior of a moving virtual shape, such as a virtual disk. This leads to the perception of a colored transparent disk with well-defined boundaries moving over the array of lines. Current qualitative and quantitative models of luminance and color conditions for perceptual transparency do not account for flank transparency as they require displays containing at least three different colors.

  12. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    Science.gov (United States)

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  13. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    the sheet resistance of HNO3 treated carbon-nanotube films than the removal of residual N-methylpyrrolidone. Unsurprisingly graphene, the latest carbon wonder material, has also shown remarkable potential as a transparent conducting film. Chemical vapour deposition (CVD) synthesis of graphene has the advantage that it allows fabrication of the sheets to be scaled up. A collaboration of researchers in the USA, Singapore and Korea demonstrated that the conductivity of CVD graphene sheets can be improved by p-doping with AuCl3 [9]. The potential of graphene in a range of applications is also being demonstrated, as researchers in Australia and China show in a report on graphene in transparent conducting electrodes for GaN LED devices [10]. The review in this issue [4] provides a comprehensive overview of graphene as an electrode, including the synthesis, chemical doping and work function engineering of the material, as well as applications in transistors, memories, molecular junctions, touch screens, LCDs, LEDs and solar cells. Back in the early 1950s Gillham and Preston saw the possibility of using their gold sputtered bismuth oxide films for windows that could be electrically heated and took out a patent on their discovery [11]. While they saw potential applications for conducting transparent films, it could be argued that even Gillham and Preston would have been surprised at the extent to which transparent conducting films have infiltrated everyday technology over the 60 years since. It is tempting to wonder what wide reaching ramifications the current fruitful activity in graphene device research may have in the decades to come. References [1] Ayrton W E and Mather T 1894 J. Int. Elec. Eng. 23 376-80 [2] Gillham E J and Preston J S 1952 Proc. Phys. Soc. B 65 649 [3] Ishiguro K, Sasaki T, Arai T and Imai I 1958 J. Phys. Soc. Jpn. 13 296-304 [4] Jo G, Choe M, Lee S, Park W, Kahng Y H and Lee T 2012 Nanotechnology 23 112001 [5] Guo P and Aegerter M A 1999 Thin Solid

  14. Low-temperature atomic layer deposition of MoO{sub x} for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Vos, M.F.J.; Thissen, N.F.W.; Bol, A.A. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2015-07-15

    The preparation of high-quality molybdenum oxide (MoO{sub x}) is demonstrated by plasma-enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 C. The films are amorphous, slightly substoichiometric with respect to MoO{sub 3}, and free of other elements apart from hydrogen (<11 at%). The films have a high transparency in the visible region and their compatibility with a-Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoO{sub x} in hole-selective contacts for silicon heterojunction solar cells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Development of atmospheric pressure CVD processes for highquality transparent conductive oxides

    NARCIS (Netherlands)

    Graaf, A. de; Deelen, J. van; Poodt, P.W.G.; Mol, A.M.B. van; Spee, C.I.M.A.; Grob, F.; Kuypers, A.

    2010-01-01

    For the past decade TNO has been involved in the research and development of atmospheric pressure CVD (APCVD) and plasma enhanced CVD (PECVD) processes for deposition of transparent conductive oxides (TCO), such as tin oxide and zinc oxide. It is shown that by combining precursor development, fundam

  16. An epitaxial transparent conducting perovskite oxide: double-doped SrTiO3

    NARCIS (Netherlands)

    Ravichandran, Jayakanth; Siemons, W.; Heijmerikx, Herman; Huijben, Mark; Majumdar, Arun; Ramesh, Ramamoorthy

    2010-01-01

    Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5−15% La doping and a critical growth pressure of 1−10 mTorr showed high transparency (>70−95%) in the

  17. Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen

    1999-01-01

    Thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO) were deposited on glass substrates by laser ablation in an oxygen environment. The electrical and optical properties of films grown at various oxygen pressures were compared. With no substrate heating, highly transparent...

  18. Ferromagnetic tunnel contacts to graphene: Contact resistance and spin signal

    Energy Technology Data Exchange (ETDEWEB)

    Cubukcu, M.; Laczkowski, P.; Vergnaud, C.; Marty, A.; Attané, J.-P.; Notin, L.; Vila, L., E-mail: laurent.vila@cea.fr; Jamet, M. [University Grenoble Alpes, CEA, INAC-SP2M, F-38054 Grenoble (France); Martin, M.-B.; Seneor, P.; Anane, A.; Deranlot, C.; Fert, A. [Unité Mixte de Physique CNRS-Thales, F-91767 Palaiseau (France); Auffret, S. [University Grenoble Alpes, CNRS, CEA, INAC-SPINTEC, Grenoble F-38054 (France); Ducruet, C. [Crocus Technology, 4 place Robert Schuman, 38000 Grenoble (France)

    2015-02-28

    We report spin transport in CVD graphene-based lateral spin valves using different magnetic contacts. We compared the spin signal amplitude measured on devices where the cobalt layer is directly in contact with the graphene to the one obtained using tunnel contacts. Although a sizeable spin signal (up to ∼2 Ω) is obtained with direct contacts, the signal is strongly enhanced (∼400 Ω) by inserting a tunnel barrier. In addition, we studied the resistance-area product (R.A) of a variety of contacts on CVD graphene. In particular, we compared the R.A products of alumina and magnesium oxide tunnel barriers grown by sputtering deposition of aluminum or magnesium and subsequent natural oxidation under pure oxygen atmosphere or by plasma. When using an alumina tunnel barrier on CVD graphene, the R.A product is high and exhibits a large dispersion. This dispersion can be highly reduced by using a magnesium oxide tunnel barrier, as for the R.A value. This study gives insight in the material quest for reproducible and efficient spin injection in CVD graphene.

  19. Graphene Transparent Conductive Electrodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphene thin films will be fabricated using Low Pressure Chemical Vapor Deposition (LPCVD), Films will be selected and doped to reduce sheet resistance. The films...

  20. Toward a perceptual theory of transparency.

    Science.gov (United States)

    Singh, Manish; Anderson, Barton L

    2002-07-01

    Theories of perceptual transparency have typically been developed within the context of a physical model that generates the percept of transparency (F. Metelli's episcotister model, 1974b). Here 2 fundamental questions are investigated: (a) When does the visual system initiate the percept of one surface seen through another? (b) How does it assign surface properties to a transparent layer? Results reveal systematic deviations from the predictions of Metelli's model, both for initiating image decomposition into multiple surfaces and for assigning surface attributes. Specifically, results demonstrate that the visual system uses Michelson contrast as a critical image variable to initiate percepts of transparency and to assign transmittance to transparent surfaces. Findings are discussed in relation to previous theories of transparency, lightness, brightness, and contrast-contrast.

  1. Influence of Bond Number on the Contact Angle of Liquid Drops Deposited on Solid Substrates%Bond数变化对固壁液滴接触角的影响

    Institute of Scientific and Technical Information of China (English)

    朱志强; 汪洋; 刘秋生

    2012-01-01

    本文利用微重力落塔实验研究了Bond数改变时,PTFE和铝板表面上正滴和倒滴接触角的动态变化。实验发现液滴接触角与Bond数的大小有关,当Bond数趋于0时,还与其放置状态有关。本文采用VOF方法对Bond数变化引起的液滴形状及内部流动变化进行二维数值模拟,结果显示液滴内部的流动控制着液滴的外形和接触角。%The behaviors of liquid drops in microgravity have been experimentally performed in Beijing 3.6 s Drop Tower. Contact angle dynamic behaviors of sessile and pendant liquid drops on PTFE and Aluminum were measured and analyzed for varying Bond number. It was found that Bond number had direct influence on the drop contact angle. And the drops with different status (sessile or pendant) also exhibited dissimilar contact angle behaviors when Bond number closed to zero. For comparison, the VOF methodology was introduced to analyze numerically the influence of Bond number on the shapes and inner bulk flow fields of liquid drops. It indicated that the bulk flow could influence the shape and contact angle of drops evidently.

  2. Metamaterial transparency induced by cooperative electromagnetic interactions

    CERN Document Server

    Jenkins, Stewart D

    2013-01-01

    We propose a cooperative asymmetry-induced transparency, CAIT, formed by collective excitations in metamaterial arrays of discrete resonators. CAIT can display a sharp transmission resonance even when the constituent resonators individually exhibit broad resonances. We further show how dynamically reconfiguring the metamaterial allows one to actively control the transparency. While reminiscent of electromagnetically induced transparency, which can be described by independent emitters, CAIT relies on a cooperative response resulting from strong radiative couplings between the resonators.

  3. Transparent metals for ultrabroadband electromagnetic waves.

    Science.gov (United States)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Li, Jia; Liu, Yongmin; Hu, Qing; Wang, Mu; Zhang, Xiang

    2012-04-17

    Making metals transparent, which could lead to fascinating applications, has long been pursued. Here we demonstrate that with narrow slit arrays metallic plates become transparent for extremely broad bandwidths; the high transmission efficiency is insensitive to the metal thickness. This work provides a guideline to develop novel devices, including transparent conducting panels, broadband metamaterials, and antireflective solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Central Bank Transparency: Causes, Consequences and Updates

    OpenAIRE

    Nergiz Dincer; Barry Eichengreen

    2009-01-01

    We present updated estimates of central bank for 100 countries up through 2006 and use them to analyze both the determinants and consequences of monetary policy transparency in an integrated econometric framework. We establish that there has been significant movement in the direction of greater central bank transparency in recent years. Transparent monetary policy arrangements are more likely in countries with strong and stable political institutions. They are more likely in democracies, with...

  5. At first glance, transparency enhances assimilation

    OpenAIRE

    2008-01-01

    We investigated the role of transparency, perceptual grouping, and presentation time on perceived lightness. Both transparency and perceptual grouping have been found to result in assimilation effects, but only for ambiguous stimulus displays and with specific attentional instructions. By varying the presentation times of displays with two partly overlapping transparent E-shaped objects, we measured assimilation in unambiguous stimulus displays and without specific attentional instructions. T...

  6. Fabrication and characterization of an electrically contacted vapor cell.

    Science.gov (United States)

    Daschner, R; Ritter, R; Kübler, H; Frühauf, N; Kurz, E; Löw, R; Pfau, T

    2012-06-15

    We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thin-film-based electric feedthroughs, which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

  7. Fabrication and characterization of an electrically contacted vapor cell

    CERN Document Server

    Daschner, Renate; Kübler, Harald; Frühauf, Norbert; Kurz, Eberhard; Löw, Robert; Pfau, Tilman

    2012-01-01

    We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thinfilm based electric feedthroughs which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

  8. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  9. Categories and Dimensions of Organizational Transparency

    DEFF Research Database (Denmark)

    Albu, Oana Brindusa; Flyverbom, Mikkel

    Transparency is a distinctive area of research across disciplines and presents significant importance for organization studies. However, transparency is rarely subject to structured and critical scrutiny and as a result its relevance for organizational analysis is underestimated. In an attempt......-clearing effort: we set out to problematize current assumptions that shape the literature on transparency in important ways, but are rarely addressed in a structured manner. On the backdrop of this review, we point to the value of conceptualizing transparency as a dynamic, performative and paradoxical phenomenon...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals ...

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  12. Are shadows transparent? An investigation on white, shadows and transparency in pictures

    OpenAIRE

    2009-01-01

    Shadow perception and transparency perception appear to use very similar rules, to the point that from the perceptual point of view shadows have been considered an instance of transparent objects. We claim that in spite of the similarities, shadows ought not to be considered transparent entities. The discussion has consequences both for the issue of the location of shadows, and for the conceptualization of transparency, and it provides insight into the inner complexities of the conceptual str...

  13. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc.

  14. Study of electrical transport properties of ZnO thin films used as front contact of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, C.; Gordillo, G.; Olarte, J. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2005-07-01

    This work is focused on the study of possible mechanisms affecting the electrical transport properties of ZnO thin films. The films were deposited using the reactive evaporation technique, obtaining transmittances greater than 80% and resistivities of the order of 8 x 10{sup -4} {omega}cm without using extrinsic doping. This films are suitable for transparent front contact of solar cells. Measurements of resistivity and Hall coefficient, as a function of temperature, were performed on the films. The interpretation of these results was done with the help of a theoretical calculation of the carrier mobility as a function of the temperature. Several scattering mechanisms affecting the electrical transport in the temperature range studied (90 K-680 K) were found. The most important are processes occurring in the grain boundaries and interactions of free carriers with ionized impurities. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  16. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Ostfeld, Aminy E.; Arias, Ana Claudia, E-mail: acarias@eecs.berkeley.edu [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Catheline, Amélie [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, California 92078 (United States); Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Siân [Linde Nanomaterials, Linde LLC, 1970 Diamond Street, San Marcos, California 92078 (United States); Chen, Zhihua [Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077 (United States); Facchetti, Antonio [Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077 (United States); Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  17. A Hydrodynamic Model of Dynamic Contact Angle Hysteresis.

    Science.gov (United States)

    contact angle hysteresis is developed in terms of the interaction of capillary, viscous, and...used to obtain the equations which describe the contact angle region and thereby to define the dynamic contact angle . The analysis is limited to...velocity dependence of the receding contact angle and of the thickness of the deposited film of the receding interface of a wetting liquid are determined as functions of the capillary, viscous, and disjoining forces.

  18. Pursuing transparency through science courts

    Energy Technology Data Exchange (ETDEWEB)

    Field, Thomas G. Jr. [Franklin Pierce Law Center, Concord, NH (United States)

    1999-12-01

    Many, disappointed with traditional ways to assess and manage health, safety and environmental risks, have sought alternatives that might better serve democratic values and truth. Arthur Kantrowitz proposed one in 1967. Named the 'Science Court' by the media, it sought to air opposing viewpoints publicly before an independent, neutral and technically competent panel of scientists. The idea has received considerable attention over the years, but some see it as too opaque and elitist. Ironically, others may view it as too transparent. Beyond that, as proposed it might have been too time-consuming and expensive, and few scientists would have welcomed a suggestion for cross-examination. Yet, its key features still offer promise for resolving difficult policy disputes and might be usefully integrated with notions since leading to the creation and endorsement of advisory science boards.

  19. A Simple, Transparent Fume Hood

    Science.gov (United States)

    Fredericks, John

    1998-10-01

    An inexpensive transparent fume hood can be constructed from a clear-plastic two-liter soft drink bottle that is cut just above the base. A length of vacuum tubing is secured to the opening of the bottle using black electrical tape. The tubing is then connected to a water aspirator. Beakers or flasks easily fit inside the bottle, and the bottle may be secured with a clamp and ring stand for added stability. This device has been used to collect the noxious NO2 gas generated from the reaction of copper metal with nitric acid. It also may be used in the collection of other gases. It should not be used to collect gases that are not water-soluble or in experiments that involve open flames.

  20. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Schelhas, L. T. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA; Siah, S. C. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Brandt, R. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Zakutayev, A. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Lany, S. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Gorman, B. [Department of Materials Science and Engineering, Colorado School of Mines, Golden, Colorado 80401, USA; Sun, C. J. [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA; Ginley, D. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Buonassisi, T. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Toney, M. F. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    2016-10-03

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga2O3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga2O3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Ga2O3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. These observations suggest that to obtain transparent Ga2O3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.

  1. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K.; Schelhas, L. T.; Siah, S. C.; Brandt, R. E.; Zakutayev, A.; Lany, S.; Gorman, B.; Sun, C. J.; Ginley, D.; Buonassisi, T.; Toney, M. F.

    2016-10-03

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga2O3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga2O3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Ga2O3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. These observations suggest that to obtain transparent Ga2O3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.

  2. The effect of sub-oxide phases on the transparency of tin-doped gallium oxide

    Science.gov (United States)

    Lim, K.; Schelhas, L. T.; Siah, S. C.; Brandt, R. E.; Zakutayev, A.; Lany, S.; Gorman, B.; Sun, C. J.; Ginley, D.; Buonassisi, T.; Toney, M. F.

    2016-10-01

    There have been a number of studies on the fabrication of Sn-doped gallium oxide (Ga2O3:Sn) films with both conductive and transparent properties using a variety of deposition methods. However, often, synthesis results in films that are not transparent. In this paper, we examine the mechanisms underlying these results in Ga2O3:Sn thin films prepared at various growth temperatures, Sn concentrations, and oxygen partial pressures. With X-ray absorption spectroscopy, transmission electron microscopy and energy dispersive spectroscopy, we find that when films are grown under the oxygen deficient conditions there are Ga sub-oxide and SnOx phases in the Ga2O3:Sn thin film. These Ga sub-oxide phases are only found in non-transparent films, and so we infer that the Ga sub-oxide is responsible for the non-transparency. These observations suggest that to obtain transparent Ga2O3:Sn, films deposition or subsequent annealing must be carefully controlled in both temperature and oxygen partial pressure to avoid the formation of Ga sub-oxide phases.

  3. Template-assisted growth of transparent plasmonic nanowire electrodes

    Science.gov (United States)

    Caterina Giordano, Maria; Repetto, Diego; Mennucci, Carlo; Carrara, Angelica; Buatier de Mongeot, Francesco

    2016-12-01

    Self-organized nanowire arrays are confined by glancing-angle Au deposition on nanopatterned glass templates prepared by ion beam sputtering. The semi-transparent 1D nanowire arrays are extended over large cm2 areas and are endowed with excellent electrical conductivity competitive with the best transparent conductive oxides (sheet resistance in the range of 5-20 Ohm sq-1). In addition, the nanowires support localized surface plasmon (LSP) resonances, which are easily tunable into the visible and near infrared spectrum and are selectively excited with incident light polarized perpendicularly to the wires. Such substrates, thus, behave as multifunctional nanoelectrodes, which combine good optoelectronic performance with dichroic plasmonic excitation. The electrical percolation process of the Au nanoelectrodes was monitored in situ during growth at glancing angle, both on flat and nanopatterned glass templates. In the first case, we observed a universal scaling of the differential percolation rate, independently of the glancing deposition angle, while deviations from the universal scaling were observed when Au was confined on nanopatterned templates. In the latter case, the pronounced shadowing effect promotes the growth of locally connected 1D Au nanosticks on the ‘illuminated’ ripple ridges, thus, introducing strong anisotropies with respect to the case of a 2D percolating network.

  4. 78 FR 14149 - 2012 Fiscal Transparency Report

    Science.gov (United States)

    2013-03-04

    ... the government's fiscal policy-making process.'' For the United States, reviews of the fiscal... Fiscal Transparency Report AGENCY: Department of State. ACTION: Notice. SUMMARY: The Department of State hereby presents the findings from the 2012 Fiscal Transparency review process in its first annual Fiscal...

  5. Transparency in netchains : evaluation and perspective

    NARCIS (Netherlands)

    Hofstede, G.J.; Schepers, H.E.; Trienekens, J.H.

    2003-01-01

    This paper was written for KLICT to evaluate the focus area Transparency in Netchains. It revisits the definitions and research agenda in the review paper with which the focal area started (Hofstede 2002). The definition of transparency has turned out to serve its purpose. The research has progresse

  6. Outside finance, dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    2001-01-01

    This Paper studies the incentives for transparency under different forms of corporate governance in a context of product market competition. This Paper endogenizes the governance and financial structure of firms and determines a strategic decision on the degree of transparency in a context of produc

  7. Outside finance, dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    2001-01-01

    This paper studies the incentives for transparency under different forms of corporate governance in a context of product market competition. This paper endogenizes the governance and financial structure of firms and determines a strategic decision on the degree of transparency in a context of produc

  8. At first glance, transparency enhances assimilation

    NARCIS (Netherlands)

    Koning, A.R.; Weert, C.M.M. de; Lier, R.J. van

    2008-01-01

    We investigated the role of transparency, perceptual grouping, and presentation time on perceived lightness. Both transparency and perceptual grouping have been found to result in assimilation effects, but only for ambiguous stimulus displays and with specific attentional instructions. By varying th

  9. Narrative Transparency: Adopting a Rhetorical Stance

    DEFF Research Database (Denmark)

    Arnould, Eric; Press, Melea

    2014-01-01

    In this paper, we look at how alternative marketing organisations communicate transparency in a climate of generalised risk and scepticism. We contrast the traditional numeric approach to transparency, which involves auditing and third-party certifications; with an alternative approach that we call...

  10. Optimised Design of Transparent Optical Domains

    DEFF Research Database (Denmark)

    Hanik, N.; Caspar, C.; Schmidt, F.;

    2000-01-01

    Three different design concepts for transparent, dispersion compensated, optical WDM transmission links are optimised numerically and experimentally for 10 Gbit/s data rate per channel. It is shown that robust transparent domains of 1,500 km in diameter can be realised using simple design rutes....

  11. Transparency and Its Determinants at Colombian Universities

    Science.gov (United States)

    Flórez-Parra, Jesús Mauricio; López-Pérez, María Victoria; López-Hernández, Antonio Manuel

    2017-01-01

    Over the past decade, one of the demands upon public institutions, among which we find universities, has been for transparency and improvement of accountability. In this context, Colombian universities are introducing different methods of management and governance aimed at addressing the demands of society generally in relation to transparency and…

  12. Transparency in netchains : evaluation and perspective

    NARCIS (Netherlands)

    Hofstede, G.J.; Schepers, H.E.; Trienekens, J.H.

    2003-01-01

    This paper was written for KLICT to evaluate the focus area Transparency in Netchains. It revisits the definitions and research agenda in the review paper with which the focal area started (Hofstede 2002). The definition of transparency has turned out to serve its purpose. The research has

  13. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070291 Gong Ping (Northern Fujian Geological Party, Shaozou 354000) Discussion on Geological Characteristics and Control Factors of the Shimen Au-polymetallic Deposit in Zhenghe County, Fujian Province (Geology of Fujian, ISSN1001-3970, CN38-1080/P, 25(1), 2006, p.18-24, 2 illus., 2 tables, 1 ref.) Key words: gold deposits, polymetallic deposits, Fujian Province

  14. Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3.

    Science.gov (United States)

    Li, Peng; Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Liu, Yichun

    2016-04-01

    Due to their high flexibility, high conductivity and high transparency in a wide spectrum range, metal nanowires and meshes are considered to be two of the most promising candidates to replace the traditional transparent conducting films, such as tin doped indium oxide. In this paper, transparent conducting films made from copper nanotroughs are prepared by the electrospinning of polymer fibers and subsequent thermal evaporation of copper. The advantages of the technique include low junction resistance, low cost and low preparation temperature. Although the copper nanotrough transparent conducting films exhibited a low sheet resistance (19.2 Ω/sq), with a high transmittance (88% at 550 nm), the instability of copper in harsh environments seriously hinders its applications. In order to improve the stability of the metal transparent conducting films, copper nanotroughs were coated with 39 nm thick aluminum-doped zinc oxide and 1 nm thick aluminum oxide films by atomic layer deposition. The optical and electrical measurements show that coating copper nanotrough with oxides barely reduces the transparency of the films. It is worth noting that conductive oxide coating can effectively protect copper nanotroughs from thermal oxidation or acidic corrosion, whilst maintaining the same flexibility as copper nanotroughs on its own.

  15. Design and fabrication of wraparound contact silicon solar cells

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1972-01-01

    Both dielectric insulation and etched junction contact techniques were evaluated for use in wraparound contact cell fabrication. Since a suitable process for depositing the dielectrics was not achieved, the latter approach was taken. The relationship between loss of back contact and power degradation due to increased series resistance was established and used to design a simple contact configuration for 10 ohm-cm etched wraparound junction contact N/P cells. A slightly deeper junction significantly improved cell curve shape and the associated loss of current was regained by using thinner contact grid fingers. One thousand cells with efficiencies greater than 10.5% were fabricated to demonstrate the process.

  16. Antimony sulphide thin film as an absorber in chemically deposited solar cells

    Science.gov (United States)

    Messina, Sarah; Nair, M. T. S.; Nair, P. K.

    2008-05-01

    Antimony sulfide thin films (thickness, 500 nm) were deposited on chemically deposited CdS thin films (100 nm) obtained on 3 mm glass substrates coated with a transparent conductive coating of SnO2:F (TEC-15 with 15 Ω sheet resistance). Two different chemical formulations were used for depositing antimony sulfide films. These contained (i) antimony trichloride dissolved in acetone and sodium thiosulfate, and (ii) potassium antimony tartrate, triethanolamine, ammonia, thioacetamide and small concentrations of silicotungstic acid. The films were heated at 250 °C in nitrogen. The cell structure was completed by depositing a 200 nm p-type PbS thin film. Graphite paint applied on the PbS thin film and a subsequent layer of silver paint served as the p-side contact. The cell structure: SnO2:F/CdS/Sb2S3 (i or ii)/PbS showed open circuit voltage (Voc) of 640 mV and short circuit current density (Jsc) above 1 mA cm-2 under 1 kW m-2 tungsten-halogen radiation. Four cells, each of 1.7 cm2 area, were series-connected to give Voc of 1.6 V and a short circuit current of 4.1 mA under sunlight (1060 W m-2).

  17. Tunable Broadband Printed Carbon Transparent Conductor

    Science.gov (United States)

    Xu, Yue; Wan, Jiayu

    Transparent conductors have been widely applied in solar cells, transparent smart skins, and sensing/imaging antennas, etc. Carbon-based transparent conductor has attracted great attention for its low cost and broad range transparency. Ion intercalation has been known to highly dope graphitic materials, thereby tuning materials' optoelectronic properties. For the first time, we successfully tune the optical transmittance of a reduced graphene oxide (RGO)/CNT network from mid-IR range to visible range by means of Li-ion intercalation/deintercalation. We also observed a simultaneous increase of the electrical conductivity with the Li-ion intercalation. This printed carbon hybrid thin film was prepared through all solution processes and was easily scalable. This study demonstrates the possibility of using ion intercalation for low cost, tunable broadband transparent conductors.

  18. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.].

  19. Dynamics of clusters and molecules in contact with an environment

    CERN Document Server

    Dinh, P M; Suraud, E

    2009-01-01

    We present recent theoretical investigations on the dynamics of metal clusters in contact with an environment, deposited of embedded. This concerns soft deposition as well as irradiation of the deposited/embedded clusters by intense laser pulses. We discuss examples of applications for two typical test cases, Na clusters deposited on MgO(001) surface and Na clusters in/on Ar substrate. Both environments are insulators with sizeable polarizability. They differ in their geometrical and mechanical properties.

  20. Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review

    Directory of Open Access Journals (Sweden)

    Vu Binh Nam

    2016-03-01

    Full Text Available Cu nanowires (NWs are attracting considerable attention as alternatives to Ag NWs for next-generation transparent conductors, replacing indium tin oxide (ITO and micro metal grids. Cu NWs hold great promise for low-cost fabrication via a solution-processed route and show preponderant optical, electrical, and mechanical properties. In this study, we report a summary of recent advances in research on Cu NWs, covering the optoelectronic properties, synthesis routes, deposition methods to fabricate flexible transparent conducting films, and their potential applications. This review also examines the approaches on protecting Cu NWs from oxidation in air environments.

  1. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  2. Self-cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO(2)-ZnO coatings on polycarbonate.

    Science.gov (United States)

    Fateh, Razan; Dillert, Ralf; Bahnemann, Detlef

    2014-02-26

    Transparent layers containing TiO2 have been intensively studied because of their interesting application potential including photocatalytically active and self-cleaning surfaces. In the present work, transparent TiO2-ZnO thin films on a SiO2 interlayer were successfully deposited on the surface of polycarbonate to provide polymeric sheets with a self-cleaning, superhydrophilic, and photocatalytically active surface layer. To ensure a good adhesion of the SiO2 interlayer, the polycarbonate sheets were first modified by irradiation with UV(C) light. The prepared films were characterized by UV/vis spectrophotometry, SEM, XRD, Raman spectroscopy, ellipsometry, and water contact-angle measurements. All prepared films are transparent, have thicknesses in the range between 120 and 250 nm, and possess superhydrophilic properties. Moreover, they exhibit good adhesion qualities as defined quantitatively by cross-cut tests. However, their mechanical strengths, checked by felt-abrasion tests, differ by changing the molar TiO2-ZnO ratio. The photocatalytic activity, expressed as photonic efficiency, of the coated surfaces was estimated from the kinetics of the photocatalytic degradation of methylene blue and methyl stearate. The combination between superhydrophilic properties and photocatalytic activity was determined by studying the change of water contact angle during the storage of the prepared films in the dark under an ambient atmosphere and under an atmosphere containing either acetone or isopropanol followed by UV(A) irradiation. In addition, self-cleaning properties were examined by determining the changes in the contact angle during the irradiation time after applying oleic acid to the surface. The results show that increasing the molar ratio of ZnO in TiO2 coatings up to 5% yields maximum photonic efficiency values of 0.023%, as assessed by the photocatalytic degradation of methylene blue. Moreover, the superhydrophilic coating with a molar TiO2-ZnO ratio of 1

  3. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L. [Arizona State Univ., Tempe, AZ (United States); Boccard, Matthieu [Arizona State Univ., Tempe, AZ (United States); Holman, Zachary [Arizona State Univ., Tempe, AZ (United States); Bertoni, M. [Arizona State Univ., Tempe, AZ (United States)

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  4. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual technical report, April 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G.; Sato, H.; Liang, H.; Liu, X.; Thornton, J. [Harvard Univ., Cambridge, MA (United States)

    1996-08-01

    The general objective is to develop methods to deposit materials which can be used to make more efficient solar cells. The work is organized into three general tasks: Task 1. Develop improved methods for depositing and using transparent conductors of fluorine-doped zinc oxide in amorphous silicon solar cells Task 2. Deposit and evaluate titanium oxide as a reflection-enhancing diffusion barrier between amorphous silicon and an aluminum or silver back-reflector. Task 3. Deposit and evaluate electrically conductive titanium oxide as a transparent conducting layer on which more efficient and more stable superstrate cells can be deposited. About one-third of the current project resources are allocated to each of these three objectives.

  5. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    Science.gov (United States)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  6. Barrier/Cu contact resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.S.; Nicolet, M.A. [California Inst. of Tech., Pasadena, CA (United States); Angyal, M.S.; Lilienfeld, D.; Shacham-Diamand, Y. [Cornell Univ., Ithaca, NY (United States); Smith, P.M. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-17

    The specific contact resistivity of Cu with ({alpha} + {beta})-Ta, TiN, {alpha}-W, and amorphous-Ta{sub 36}Si{sub 14}N{sub 50} barrier films is measured using a novel four-point-probe approach. Geometrically, the test structures consist of colinear sets of W-plugs to act as current and voltage probes that contact the bottom of a planar Cu/barrier/Cu stack. Underlying Al interconnects link the plugs to the current source and voltmeter. The center-to-center distance of the probes ranges from 3 to 200 {micro}m. Using a relation developed by Vu et al., a contact resistivity of roughly 7 {times} 10{sup {minus}9} {Omega} cm{sup 2} is obtained for all tested barrier/Cu combinations. By reflective-mode small-angle X-ray scattering, the similarity in contact resistivity among the barrier films may be related to interfacial impurities absorbed from the deposition process.

  7. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  8. Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Colina, M., E-mail: monicacolinb@gmail.com; Morales-Vilches, A.; Voz, C.; Martín, I.; Ortega, P.; Orpella, A.; López, G.; Alcubilla, R.

    2015-05-01

    Highlights: • LIFT technique is investigated to improve heterojunction HJ solar cells. • Doped silicon films are adequate precursors for LIFT application in HJ cells. • LIFT leads to a reduction of the series resistance of a-Si HJ diodes. • LIFT allows the improvement of the front contact resistance in a-Si HJ solar cells. - Abstract: In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064 nm, lamp-pumped system, working at pulse durations of 100 and 400 ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n + p local junctions were created by LIFT and the resulting J–V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency.

  9. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    Science.gov (United States)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  10. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.

    2016-01-26

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\\\bar{2}\\\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  11. Transparent conducting silver nanowire networks

    CERN Document Server

    van de Groep, Jorik; Polman, Albert; 10.1021/nl301045a

    2013-01-01

    We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and pitch of 500, 700 and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 {\\Omega}/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For these latter, we disc...

  12. Sino-U. S. Military Transparency in a New Security Concept

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Military transparency is a complicated and sensitive issue in the Sino-U. S. relations and also a touchstone testing the degree of their interest coincidence. One can hardly gain a full and profound insight into the essential implication of military transparency if he is dominated by the realist logic and putting undue emphasis on the importance of it in the bilateral military relation.Given the fact that China and the United States are two important powers shouldering critical responsibilities for maintaining global peace and security, this article argues that only by adopting a new security concept toward military transparency could the two countries forge a consensus on the international security situation and remove misunderstanding, misgivings and distrust in their military contacts and cooperation. Only by actively seeking and constructing a new security regime could the two sides strengthen the institutional base for their military cooperation.

  13. One-step preparation of transparent superhydrophobic coatings using atmospheric arc discharge

    Science.gov (United States)

    Li, Jian; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wei, Yuan

    2015-08-01

    In this letter, we report a fast, simple, and single step approach to the preparation of transparent super-hydrophobic coatings on a copper conductor via atmosphere pressure arc discharges. The preparation procedures, hydrophobic characteristics, anti-pollution capability, and transparency of the super-hydrophobic coating are presented. A dual micro- and nano-scale hierarchical structure is observed on the super-hydrophobic coating with a water contact angle greater than 150°. The coating is, thus, capable of removing a significant amount of contaminants with a small quantity of water droplets. Attenuated total reflection Fourier transform infrared spectroscopy indicates that hydrophobic methyl groups exist on the surface of the coating. The surface roughness measurement results prove that the super-hydrophobic surface obeys the Cassie-Baxter model and its light scattering is very weak. Results demonstrate the conceptual feasibility of production of optically transparent super-hydrophobic coating by arc spraying of polymers under the atmospheric pressure.

  14. Can graphene outperform indium tin oxide as transparent electrode in organic solar cells?

    Science.gov (United States)

    Paletti, Paolo; Pawar, Ravinder; Ulisse, Giacomo; Brunetti, Francesca; Iannaccone, Giuseppe; Fiori, Gianluca

    2015-12-01

    Graphene holds promises as a transparent electrode in flexible solar cells due to its high mobility and transparency. However, the experimental power conversion efficiency of cells with graphene electrode is still small (power conversion efficiency, by means of multi-scale simulation approach including ab-initio simulations of graphene contacts to improve electrode workfunction and conductance, electromagnetic simulations to improve light management, and electrical simulations of complete cells. We find that the combined effect of using a transparent electrode of graphene with a few monolayers of MoO3 on top to optimize work function and resistivity, and of applying optimized grating to the graphene electrode, can increase power efficiency by up to 29%-47%, with respect to the ITO benchmark, depending on the material used for the hole transport layer (P3HT,PTB7, and Perovskite).

  15. Junction and Back Contact Properties of Spray-Deposited M/SnS/In2S3/SnO2:F/Glass (M = Cu, Graphite) Devices: Considerations to Improve Photovoltaic Performance

    Science.gov (United States)

    Patel, Malkeshkumar; Ray, Abhijit

    2015-01-01

    SnS/In2S3 heterojunction devices were fabricated entirely by chemical spray pyrolysis in a superstrate configuration on SnO2:F/glass. The SnS/In2S3 junction was found to exhibit strong rectification behavior, and the Mott-Schottky characteristics showed it was abrupt. The photovoltaic behavior of the junction was investigated under air mass 1.5G illumination, showing a short-circuit current of 4.8 mA/cm2 and an open-circuit voltage of 0.29 V, reportedly the highest to date among similar devices with a Cd-free buffer layer and processed by a nonvacuum technique. However, the device suffers from low fill factor due to high series resistance originating from interface inhomogeneities. A Cu back contact was associated with a low level of inhomogeneities at the interface, as demonstrated by impedance analysis.

  16. Fiscal Transparency, Elections and Public Employment

    DEFF Research Database (Denmark)

    Aaskoven, Lasse

    2016-01-01

    There is considerable variation in levels and changes in public employment within and between developed democracies. This article highlights the importance of fiscal transparency in determining changes in public employment. It argues that economic growth increases public employment under low fiscal...... transparency and that this effect is strongest in years of election. These hypotheses are tested on a panel of 20 OECD countries from 1995 to 2010. The analyses show substantial evidence in favor of the arguments. Fiscal transparency lowers the positive effect of growth on public employment, a relationship...

  17. Fiscal Transparency and Procyclical Fiscal Policy

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Nielsen, Lasse Holbøll Westh

    This paper examines why fiscal policy is procyclical in developing as well as developed countries. We introduce the concept of fiscal transparency into a model of retrospective voting, in which a political agency problem between voters and politicians generates a procyclical bias in government...... spending. The introduction of fiscal transparency generates two new predictions: 1) the procyclical bias in fiscal policy arises only in good times; and 2) a higher degree of fiscal transparency reduces the bias in good times. We find solid empirical support for both predictions using data on both OECD...

  18. Optimal Degrees of Transparency in Monetary Policymaking

    DEFF Research Database (Denmark)

    Jensen, Henrik

    2002-01-01

    According to most academics and policymakers, transparency in monetary policymaking is desirable. I examine this proposition in a small theoretical model emphasizing forward-looking private sector behavior. Transparency makes it easier for price setters to infer the central bank's future policy......-inflation credibility, and there is need for active monetary stabilization policy...... intentions, thereby making current inflation more responsive to policy actions. This induces the central bank to pay more attention to inflation rather than output gap stabilization. Then, transparency may be disadvantageous. It may actually be a policy-distorting straitjacket if the central bank enjoys low...

  19. Transparent Analogs for Alloy Phase Studies

    Science.gov (United States)

    Frazier, D. O.; Smith, James E., Jr.

    1987-01-01

    Report describes experiments to add information to data base supporting use of transparent, partially miscible liquids and solids as analogs in studies of alloy solidification. Behavior of these materials observed directly while they undergo liquid/liquid and liquid/solid phase transformations. Light-scattering techniques used to determine phase boundaries. Transparent analogs allow observation of both solidification patterns and processes leading to those patterns, whereas metal alloys require tedious post-solidification metallographic analyses because processes not generally observed. Experiments with transparent substances safer and cheaper since conducted at much lower temperatures.

  20. Induced transparency in optomechanically coupled resonators

    CERN Document Server

    Duan, Zhenglu; Stace, Thomas M; Milburn, G J; Holmes, Catherine A

    2015-01-01

    In this work we theoretically investigate a hybrid system of two optomechanically coupled resonators, which exhibits induced transparency. This is realized by coupling an optical ring resonator to a toroid. In the semiclassical analyses, the system displays bistabilities, isolated branches (isolas) and self-sustained oscillation dynamics. Furthermore, we find that the induced transparency transparency window sensitively relies on the mechanical motion. Based on this fact, we show that the described system can be used as a weak force detector and the optimal sensitivity can beat the standard quantum limit without using feedback control or squeezing under available experimental conditions.