WorldWideScience

Sample records for depositing particulate material

  1. Severe particulate pollution from the deposition practices of the primary materials of a cement plant.

    Science.gov (United States)

    Kourtidis, K; Rapsomanikis, S; Zerefos, C; Georgoulias, A K; Pavlidou, E

    2014-01-01

    Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3-30.4 mg/m(3) total suspended particulates in the air and concentrations of particles with a diameter of 10 μm or less at 0.04-3 mg/m(3). These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33% decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.

  2. Severe particulate pollution from deposition practices of primary materials of cement plants

    Science.gov (United States)

    Kourtidis, Konstantinos; Rapsomanikis, Spyridon; Zerefos, Christos; Georgoulias, Aristeidis; Pavlidou, Eleni

    2014-05-01

    Analysis of ambient particulates sampled at a residential area near a cement manufacturing plant in Greece, showed total aerosol mass in the sampled air 1.3-30.4 mg/m3 and PM10 concentrations 0.04-3 mg/m3. These concentrations are very high and seriously exceed air quality standards. Morphological examination and elemental analysis of air samples and primary materials with Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDS) showed that ambient particulates shared appearance features and had similar elemental synthesis to clinker and fly ash, showing heavy impacts on the ambient aerosol load from the cement plant practice of open deposition of primary materials. Satellite-derived AOD over the area during the period 2000-2010 shows extended spatial impact, while satellite overpass data indicate a 33% decrease in AOD over this period, possibly due to changing production and primary material deposition practices. Although the sampling was performed more than one decade ago in Greece, environmental legislation and its reinforcement practices at that time in Greece are similar to current ones in many parts of the world. The global increase in cement production, especially in south-east Asia, make these measurements particularly relevant.

  3. Transporting particulate material

    Science.gov (United States)

    Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  4. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  5. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  6. Methods and apparatus for coating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  7. Particulate organic carbon and particulate humic material in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  8. Methods and apparatus for handling or treating particulate material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  9. Production, handling and characterization of particulate materials

    CERN Document Server

    Meesters, Gabriel

    2016-01-01

    This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale.  The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses  issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum...

  10. Pressure Interaction of Mixing Particulate Material Along the Blade Length

    OpenAIRE

    Peciar Peter; Peciar Marián; Fekete Roman; Úradníček Juraj

    2015-01-01

    To assess the energy intensity of particulate materials mixing, it is necessary to know the state of stress in the particulate material in front of mixing elements. The theoretical background of this process results from the theory of the equilibrium limit of the particulate material, and this state may by described by Mohr’s circle theory and the Novosad model. Based on the above assumptions, it is possible to derive the pressure distribution along the blade height, but only for an infinitel...

  11. Assessment of Internal Fabric of Particulate Materials

    Science.gov (United States)

    Alshibi, Khalid A.

    2000-01-01

    Particle arrangement and distribution within a soil matrix has long been recognized as having significant influence on the mechanical behavior of cohesionless soils. It is well known that two soil specimens having the same grain type (e.g., quartz, feldspar, etc.), same grain size distribution and relative density (or void ratio) can display completely different mechanical behavior. Because of the different fabric configurations in the otherwise similar specimens, they are likely to have different mechanical properties such as stress-strain response, anisotropy, dilatancy, etc. Soil Fabric is defined as the arrangement of particles, particle groups and associated pore space. In the literature, fabric analysis techniques are mainly classified as destructive (e.g., specimen stabilization, thin-sectioning, and microscopy), and nondestructive techniques (e.g., magnetic resonance imaging, ultrasonic testing, x-ray radiography, and computed tomography). Quantifying the void ratio and its distribution is the main parameter used to describe the fabric of particulate materials. This paper presents a comprehensive literature review of fabric analysis techniques applied to particulate materials. In addition, the results of a comprehensive investigation to quantify void ratio of sand specimens will be presented and discussed. The sand used in the experiments in a natural, uniform rounded to sub-rounded silica sand known as F-75 banding sand with mean particle size of 0.22 mm. Uniform specimens and specimens subjected to different axial-strain levels tested under triaxial and biaxial conditions are examined to evaluate void ratio evolution and its distribution using destructive thin-sectioning and nondestructive Computed Tomography (CT) techniques. Details of a new innovative polygon generation technique called Voronoi tessellation used to quantify void ratio of microscopic images of sand grains will be presented and compared to classical Oda's method. Finally, frequency

  12. Experiments to investigate particulate materials in reduced gravity fields

    Science.gov (United States)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  13. Simulations of dispersion and deposition of coarse particulate matter

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    In order to study the dispersion and deposition of coarse anthropogenic particulate matter (PMc, aerodynamic diameters> 10 mm), a FORTRAN simulator based on the numerical integrator of Bulirsch and Stoer has been developed. It calculates trajectories of particles of several shapes released into the atmosphere under very general conditions. This first version, fully three-dimensional, models the meteorology under neutral stability conditions. The simulations of such pollutants are also important because the standard software (usually originating in the United States Environmental Protection Agency-EPA-) describe only the behavior of PM10 (diameter less than 10 mm). Bulirsch and Stoer integrator of widespread use in astrophysics, is also very fast and accurate for this type of simulations. We present 2D and 3D trajectories in physical space and discuss the final deposition in function of various parameters. PMc simulations results in the range of 50-100 mm and densities of 5.5 g cm-3 emitted from chimneys, indi...

  14. Source contributions to radiocesium contaminated particulate matter deposited in a reservoir after the Fukushima accident

    Science.gov (United States)

    Laceby, J. Patrick; Huon, Sylvain; Hayashi, Seiji; Onda, Yuichi; Evrard, Olivier

    2017-04-01

    The Fukushima nuclear accident resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1,000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium contaminated sediment, and understanding the sources of this material is important for the ongoing management of contamination in the region. Accordingly, the source of contaminated particulate matter (i.e. cultivated, forest and subsoils) deposited in the Mano Dam reservoir, Japan, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios, total organic carbon and total nitrogen concentrations. Four sediment cores with lengths ranging from 29-41 cm were sampled in the Mano Dam, approximately 40 km northwest of the FDNPP. Source samples were taken from 46 forest soils, 28 cultivated soils and 25 subsoils in the region. Carbon-nitrogen parameters were analysed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48% (SD 7%) of the deposited fine particulate matter in the three cores with the radiocesium peaks, whereas forests were modelled to contribute 27% (SD 6%) and subsoil sources 25% (SD 4%). Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposited in reservoirs. More research is required to understand the potential ongoing source contributions from forested

  15. The distribution of particulate material on Mars

    Science.gov (United States)

    Christensen, Philip R.

    1991-01-01

    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.

  16. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Science.gov (United States)

    Baker, Alex R.; Kanakidou, Maria; Altieri, Katye E.; Daskalakis, Nikos; Okin, Gregory S.; Myriokefalitakis, Stelios; Dentener, Frank; Uematsu, Mitsuo; Sarin, Manmohan M.; Duce, Robert A.; Galloway, James N.; Keene, William C.; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh; Rohekar, Shital S.; Prospero, Joseph M.

    2017-07-01

    Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ˜ 2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995-2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than

  17. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  18. Fossil and contemporary aerosol particulate organic carbon in the eastern United States: Implications for deposition and inputs to watersheds

    Science.gov (United States)

    Wozniak, Andrew S.; Bauer, James E.; Dickhut, Rebecca M.

    2011-06-01

    Atmospheric particulate matter samples were collected from mid-Atlantic and northeastern U.S. (Virginia and New York, respectively) sites to assess the fossil versus contemporary sources contributing to aerosol organic carbon (OC) and the implications for its deposition to watersheds. Mean particulate matter total OC (TOC) deposition rates (wet + dry deposition) were calculated to be 1.6 and 2.4 mg C m-2 d-1 for the Virginia and New York sites, respectively. Wet deposition of particulate TOC was determined to be the dominant depositional mode, accounting for >65% (Virginia) and >80% (New York) of total aerosol TOC deposition. Isotopic mass balances suggest that, on average, the deposited aerosol TOC consisted of 66% (Virginia) and 68% (New York) contemporary biomass-derived material. The balance was fossil-derived material (34% and 32% for Virginia and New York, respectively), indicating significant anthropogenic fossil fuel contributions to aerosol TOC. When considered within representative northeastern U.S. watershed OC budgets, aerosol TOC depositional flux was up to 10% of net soil OC accumulation rates, and 5-70% of the OC throughfall flux for forested regions. When scaled to the entire Hudson and York River watersheds, estimated aerosol TOC depositional fluxes ranged from 6.1 to 9.7 × 1010 g C yr-1 and from 8.9 to 14 × 109 g C yr-1, respectively, and were similar in magnitude to the mean annual river OC export for these two systems (Hudson, 7.2 × 1010 g C yr-1; York, 8.4 × 109 g C yr-1). These findings underscore the potential importance of both natural and fossil fuel-derived aerosol OC inputs to watersheds.

  19. Self-healing of damaged particulate materials through sintering

    NARCIS (Netherlands)

    Luding, S.; Suiker, A.S.J.

    2008-01-01

    Particulate materials loaded under uniaxial compression and tension are studied using the discrete element method. Self-healing of the damaged samples is activated through sintering, a process that effectively increases the contact adhesion (i.e. the tensile strength) between particles. The initial

  20. Internal relaxation time in immersed particulate materials

    CERN Document Server

    Rognon, P; Gay, C

    2009-01-01

    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.

  1. Legal Deposit of Digital Materials

    Directory of Open Access Journals (Sweden)

    Erik Oltmans

    2003-09-01

    Full Text Available Digital publishing is causing a real paradigm shift for research institutions and publishers, as well as for libraries. As a consequence these institutions have to develop new policies, new business models and new infrastructures and techniques. A major problem is that, at the same rate at which our world is becoming digital, the digital information is threatened. New types of hardware, computer applications and file formats supersede each other, making our recorded digital information inaccessible in the long-term. In the past years libraries and archives have undertaken several actions and studies on digital preservation issues. For instance the Koninklijke Bibliotheek (KB has jointly with IBM developed a standard-based deposit system: Digital Information Archiving System ( DIAS. Using DIAS the KB realised in 2002 an electronic deposit (the e-Depot and signed archiving agreements with major science publishers for permanent keeping of their digital materials. In this paper I will discuss the fully operational e-Depot at the KB. I will focus on the data flow of processing the digital publications, and I will address the issue of digital preservation in detail.

  2. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  3. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    Science.gov (United States)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  4. Emission characters of particulate concentrations and dry deposition studies for incense burning at a Taiwanese temple.

    Science.gov (United States)

    Fang, Guor-Cheng; Chu, Chia-Chium; Wu, Yuh-Shen; Fu, Peter Pi-Cheng

    2002-05-01

    Suspended particulate concentrations were measured at the Tzu Yun Yen temple in the Taichung region of Taiwan. The temple performs traditional incense burning. A universal sampler and a micro-orifice uniform deposited impactor (MOUDI) sampler with a dry deposition plate were used to measure the particulate concentrations. The results show that the average PM2.5/PM10 ratio was 74% during the incense burning period at this temple. In addition, the average suspended particulate (PM10) element concentration of anthropogenic element Zn (495 ng/m3) was higher than the other anthropogenic elements (Pb, Mn, Ni, and Cd). Furthermore, the average mass size distribution was bimodal with major peaks occurring at 0.32-0.56 microm and 5.6-10 microm during the incense burning period. The dry deposition velocities of Cd used fine particulates (PM2.5) and suspended particulate (PM10) mode were 1.86 and 0.99 cm/s in this study, respectively.

  5. Effects of urban particulate deposition on microbial communities living in bryophytes: an experimental study.

    Science.gov (United States)

    Meyer, C; Bernard, N; Moskura, M; Toussaint, M L; Denayer, F; Gilbert, D

    2010-10-01

    Our previous in situ study showed that bryophyte-microorganism complexes were affected by particulate atmospheric pollution. Here, the effect of urban particulate wet deposits on microbial communities living in bryophytes was studied under controlled conditions. An urban particulate solution was prepared with particles extracted from analyzer' filters and nebulized on bryophytes in treatments differing in frequency and quantity. The bryophytes did not accumulate metallic trace elements, which were present in very weak concentrations. However, in treated microcosms the total microbial biomass and the biomasses of cyanobacteria, active testate amoebae and fungi significantly decreased in response to the deposition of particles. These results confirm that microbial communities living in terrestrial bryophytes could be more sensitive indicators of atmospheric pollution than bryophytes. Moreover, they suggest that unicellular predators--such as testate amoebae--could be especially useful microbial indicators, since they seem to be both directly and indirectly affected by pollution.

  6. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2017-07-01

    Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be

  7. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Science.gov (United States)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  8. Metal removal via particulate material in a lowland river system.

    Science.gov (United States)

    Webster-Brown, J G; Dee, T J; Hegan, A F

    2012-01-01

    Twelve month surveys of acid-soluble and dissolved trace metal concentrations in the lower Waikato River (in 1998/9 and 2005/6) showed abnormally low particulate Fe, Mn, Cu, Pb and Zn concentrations and mass flux in autumn, when the suspended particulate material (SPM) had a relatively high diatom and organic carbon content, and low Fe and Al content. Dissolved Mn, Cu and Zn concentrations also decreased in autumn, while dissolved Fe and Pb concentrations were unaffected. While SPM settlement under the low river flow conditions present in autumn can explain the removal of particulate metals, it does not explain dissolved metal removal. SPM-metal interaction was therefore investigated using seasonal monitoring data, experimental adsorption studies, sequential extraction and geochemical modelling. Pb binding to SPM occurred predominantly via Fe-oxide surfaces, and could be reliably predicted using surface complexation adsorption modelling. Dissolved Mn concentrations were controlled by the solubility of Mn oxide, but enhanced removal during autumn could be attributed to uptake by diatoms. Zn and Cu were also adsorbed on Fe-oxide in the SPM, but removal from the water column in autumn appeared augmented by Zn adsorption onto Mn-oxide, and Cu adsorption onto the organic extracellular surfaces of the diatoms.

  9. Dynamic behavior of particulate/porous energetic materials

    Science.gov (United States)

    Nesterenko, Vitali F.; Chiu, Po-Hsun; Braithwaite, C. H.; Collins, Adam; Williamson, David Martin; Olney, Karl L.; Benson, David; McKenzie, Francesca

    2012-03-01

    Dynamic behavior of particulate/porous energetic materials in a broad range of dynamic conditions (low velocity impact and explosively driven expansion of rings) is discussed. Samples of these materials were fabricated using Cold Isostatic Pressing and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength and output of energy under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to undergo bulk distributed fracture resulting in small size reactive fragments. The mechanical properties of these materials and the fragment sizes produced by fracturing are highly sensitive to mesostructure. For example, the dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composites with coarse W particles at the same porosity. The morphology of W inclusions had a strong effect on the dynamic strength and fracture pattern. Experimental results are compared with numerical data.

  10. A photometric function for diffuse reflection by particulate materials

    Science.gov (United States)

    Meador, W. E.; Weaver, W. R.

    1975-01-01

    A photometric function is proposed to describe the diffuse reflection of radiation by particulate materials. Both multiple scattering and the dominant effects of particle shadowing are included and the function is verified by comparisons with the photometries of laboratory surfaces. Brightness measurements of planetary and other diffusely scattering surfaces can be used to calculate the brightness for geometries other than those used in the measurements and for which the Minnaert function does not apply. The measurements also can be directly related to such surface characteristics as particle size, single-particle albedo, and compactness.

  11. The regional lung deposition of thoron progeny attached to the particulate phase of environmental tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Strong, J.C.; Black, A.; Knight, D.A.; Dickens, C.J.; McAughey, J. (AEA Technology, Harwell (United Kingdom))

    1994-01-01

    The [gamma] emitting isotope of lead (([sup 212]Pb), a decay product of thoron ([sup 220]Rn)), has been used to radiolabel the particulate phase of aged and diluted sidestream tobacco smoke in situ. The radiolabelled aerosol is suitable for studies with human volunteers and as a marker for lung deposition and clearance of the attached fraction of thoron progeny, as well as environmental tobacco smoke (ETS) in a variety of environmental situations. Total mean deposition values for nine male volunteers varied from 22% to 59% under different breathing conditions, including nasal as against mouth breathing. These data are higher than previously reported values for environmental tobacco smoke but are consistent with models of particle deposition in the lung. Data for regional deposition and clearance show deposition principally in the pulmonary region of the lung. Preliminary studies using radon ([sup 222]Rn) to determine the degree of association of progeny in the presence of ambient particulate or environmental tobacco smoke confirm that the degree of attachment rises with increasing particle concentration, and is therefore likely to influence both the magnitude and site of deposition in the lung. (author).

  12. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  13. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Science.gov (United States)

    2010-07-01

    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...

  14. Thermal conductivity measurements of particulate materials under Martian conditions

    Science.gov (United States)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to

  15. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    Science.gov (United States)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  16. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    Science.gov (United States)

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.

  17. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  18. Dry deposition of gaseous radioiodine and particulate radiocaesium onto leafy vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Tschiersch, Jochen, E-mail: tschiersch@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Shinonaga, Taeko [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstr. 1, 85764 Neuherberg (Germany); Heuberger, Heidi [TU Muenchen, Center of Life and Food Sciences Weihenstephan, Duernast 2, 85350 Freising (Germany)

    2009-10-15

    Radionuclides released to the atmosphere during dry weather (e.g. after a nuclear accident) may contaminate vegetable foods and cause exposure to humans via the food chain. To obtain experimental data for an appropriate assessment of this exposure path, dry deposition of radionuclides to leafy vegetables was studied under homogeneous and controlled greenhouse conditions. Gaseous {sup 131}I-tracer in predominant elemental form and particulate {sup 134}Cs-tracer at about 1 {mu}m diameter were used to identify susceptible vegetable species with regard to contamination by these radionuclides. The persistence was examined by washing the harvested product with water. The vegetables tested were spinach (Spinacia oleracea), butterhead lettuce (Lactuca sativa var. capitata), endive (Cichorium endivia), leaf lettuce (Lactuca sativa var. crispa), curly kale (Brassica oleracea convar. acephala) and white cabbage (Brassica oleracea convar. capitata). The variation of radionuclides deposited onto each vegetable was evaluated statistically using the non-parametric Kruskal-Wallis Test and the U-test of Mann-Whitney. Significant differences in deposited {sup 131}I and {sup 134}Cs activity concentration were found among the vegetable species. For {sup 131}I, the deposition velocity to spinach normalized to the biomass of the vegetation was 0.5-0.9 cm{sup 3} g{sup -1} s{sup -1} which was the highest among all species. The particulate {sup 134}Cs deposition velocity of 0.09 cm{sup 3} g{sup -1} s{sup -1} was the highest for curly kale, which has rough and structured leaves. The lowest deposition velocity was onto white cabbage: 0.02 cm{sup 3} g{sup -1} s{sup -1} (iodine) and 0.003 cm{sup 3} g{sup -1} s{sup -1} (caesium). For all species, the gaseous iodine deposition was significantly higher compared to the particulate caesium deposition. The deposition depends on the sensitive parameters leaf area, stomatal aperture, and plant morphology. Decontamination by washing with water was very

  19. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    Science.gov (United States)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  20. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials

    Science.gov (United States)

    Pindera, Marek-Jerzy; Arnold, Steven M.

    2003-01-01

    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  1. Complex Materials by Atomic Layer Deposition.

    Science.gov (United States)

    Schwartzberg, Adam M; Olynick, Deirdre

    2015-10-14

    Complex materials are defined as nanostructured materials with combinations of structure and/or composition that lead to performance surpassing the sum of their individual components. There are many methods that can create complex materials; however, atomic layer deposition (ALD) is uniquely suited to control composition and structural parameters at the atomic level. The use of ALD for creating complex insulators, semiconductors, and conductors is discussed, along with its use in novel structural applications.

  2. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    Science.gov (United States)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  3. Understanding bulk behavior of particulate materials from particle scale simulations

    Science.gov (United States)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  4. Seasonal variability in particulate matter source and composition to the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight

    Science.gov (United States)

    Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.

    2017-01-01

    Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.

  5. Pollination Drop in Juniperus communis: Response to Deposited Material

    Science.gov (United States)

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  6. Thermal conductivity of particulate materials: A summary of measurements taken at the Marshall Space Flight Center

    Science.gov (United States)

    Fountain, J. A.

    1973-01-01

    Thermal conductivity measurements of particulate materials in vacuum are presented in summary. Particulate basalt and soda lime glass beads of various size ranges were used as samples. The differentiated line heat source method was used for the measurements. A comprehensive table is shown giving all pertinent experimental conditions. Least-squares curve fits to the data are presented.

  7. Templated Chemically Deposited Semiconductor Optical Fiber Materials

    Science.gov (United States)

    Sparks, Justin R.; Sazio, Pier J. A.; Gopalan, Venkatraman; Badding, John V.

    2013-07-01

    Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.

  8. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)

    2015-12-15

    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  9. Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident.

    Science.gov (United States)

    Huon, Sylvain; Hayashi, Seiji; Laceby, J Patrick; Tsuji, Hideki; Onda, Yuichi; Evrard, Olivier

    2017-09-06

    The Fukushima nuclear accident in Japan resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium-contaminated sediment. Therefore, characterizing the sources of contaminated particulate matter is important for the ongoing management of contamination in the region. Accordingly, the composition of particulate matter deposited in the Mano Dam reservoir, approximately 40km northwest of the power plant, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios (δ(13)C and δ(15)N), total organic carbon (TOC) and total nitrogen (TN) concentrations. Four sediment cores, with lengths ranging 29-41cm, were sampled in the Mano Dam. Source samples from 46 forest soils, 28 cultivated soils and 25 subsoils were used to determine the source contributions of particulate matter. Carbon and nitrogen parameters were analyzed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48±7% of the deposited fine particulate matter whereas forests were modelled to contribute 27±6% and subsoil sources 25±4%. Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposition in reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  11. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment.

    Science.gov (United States)

    Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying

    2017-02-12

    Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m(-3), while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m(-3), 0.15 ± 0.03 ng m(-3), 0.15 ± 0.05 ng m(-3) and 0.27 ± 0.26 ng m(-3), respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p < 0.01), respectively. While the strongest correlations between EPM and bromine and iodine were found in winter with r = 0.92 (Br) and 0.96 (I) (p < 0.01), respectively. The clustered 72-h backward trajectories of different seasons and the whole sampling period were categorized into 4 groups. In spring, the clusters passed a long distance across the East China Sea and brought about low concentration of mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island.

  12. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  13. Template-based growth of titanium dioxide nanorods by a particulate sol-electrophoretic deposition process

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Mohammadi; Farideh Ordikhani; Derek J. Fray; Farzad Khornamizadeh

    2011-01-01

    TiO2 nanorods have been successfully grown into a track-etched polycarbonate (PC) membrane by a particulate sol-electrophoretic deposition from an aqueous medium, The prepared sols had a narrow particle size distribution around 17 nm and excellent stability against aging, with zeta potentials in the range of 47-50 mV at pH 2. It was found that TiO2 nanorods were grown from dilute aqueous sol with a Iow, 0.1-M concentration. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide was obtained by hydrolysis, resulting in the formation of TiO2particles. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 100°C were a mixture of anatase and brookite phases, whereas they were a mixture of anatase and rutile structures at 500℃.Moreover, the futile content of the TiO2 nanorods was higher than that of TiO2 powders. Transmission electron microscope (TEM) images confirmed that TiO2 nanorods had a smooth morphology and longitudinal uniformity in diameter. Field emission scanning electron microscope (FE-SEM) images showed that Ti02 nanorods grown by sol-electrophoresis from the dilute aqueous sol had a dense structure with a uniform diameter of 200 nm, containing small particles with an average size of 15 nm. Simultaneous differential thermal (SDT) analysis verified that individual TiO2 nanorods, grown into a PC template, were obtained after annealing at 500℃. Based on kinetic studies, it was found that uniform TiO2 nanorods with high-quality morphology were obtained under optimum conditions at an applied potential of 0.3 V/cm and a deposition time or 60 min.

  14. Steel silos for particulate solid materials : part 2 - membrane forces at filling and discharge.

    OpenAIRE

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan

    2009-01-01

    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  15. Steel silos for particulate solid materials. Part 1, Actions at filling and discharge.

    OpenAIRE

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan

    2009-01-01

    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  16. Effect of the particle interactions on the structuration and mechanical strength of particulate materials

    Science.gov (United States)

    Sibrant, A. L. R.; Pauchard, L.

    2016-11-01

    We investigate the effect of the particles interaction on the mechanical strength of particulate materials. Starting from a dispersion of charged particles, the interparticle force can be modulated by the addition of ionic species. The structuration of the medium is then governed by the competition between drying and gelation processes. Rheological measurements show that addition of ionic species boosts the aggregation dynamics into a solid state and changes the structural properties of the final material. This last point is highlighted by precise measurements of i) the mechanical properties of particulate materials through crack pattern quantification, supported by indentation testing, and ii) the permeation properties during the drying process in a controlled geometry. In particular, these results show a decrease of the drained elastic modulus and an increase in the pore size when the ionic species content in the particulate material is increased. Hence, we show that the solid structure behaves mechanically as a network whose pore size increases when the electrostatic repulsion between particles is decreased. These results are consistent with the fact that the way particulate materials are structured determines their mechanical properties.

  17. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    Directory of Open Access Journals (Sweden)

    B. Dan-asabe

    2016-06-01

    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  18. Particulate pollution and stone deterioration

    OpenAIRE

    Kendall, Michaela

    1998-01-01

    The soiling and damage of building surfaces may be enhanced by particulate air pollution, reducing the aesthetic value and lifetimes of historic buildings and monuments. This thesis focuses on the deposition of atmospheric particulate material to building surfaces and identifies potential sources of this material. It also identifies environmental factors influencing two deterioration effects: surface soiling and black crust growth. Two soiling models have been compared to assess their effecti...

  19. Apparatus for handling micron size range particulate material

    Science.gov (United States)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  20. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    Science.gov (United States)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe quotas are in-line with those measured in

  1. Particle size analysis of prepared solutions and fingerprint deposits of high explosive materials

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J.; Hembree, P.B.

    1998-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) managed and operated by Lockheed Martin Idaho Technologies Company (LMITCO) was tasked via the Federal Aviation Administration (FAA) and US Department of Energy (DOE) to conduct various studies involving the detection and measurement of explosive materials and their associated residues. This report details the results of an investigation to determine the particle size characteristics of the explosive materials used in the design, development, and testing of trace explosives detection systems. These materials, in the form of water suspensions of plastic explosives, are used to provide a quantitative means of monitoring the performance characteristics of the detection systems. The purpose of this investigation is to provide data that allows a comparison between the particles deposited using the suspension standards and the particles deposited from fingerprints. This information may support the development of quality control aids, measurement methods, or performance criteria specifications for the use of trace explosives detection systems. For this report, particle size analyses were completed on explosives standard suspensions/solutions for composition C-4, Semtex-H, and Detasheet and fingerprints for C-4, Detasheet, and pentolite. Because of the difficulty in collecting microscopic images of the particles in the suspensions from test protocol surfaces, this paper discusses the characteristics of the particles as they are found on metal, glass, and paper. The results of the particle characterization analyses indicate that the water suspensions contain particulate composed of binder materials and dissolved portions of the explosive compounds. Upon drying of the water suspensions, significant particle nucleation and growth is observed. The nucleated particulate is comparable to the particulate deposited by fingerprints.

  2. Numerical Investigation for the Microstructural Effects on the Crack Growth Behavior of Particulate Composite Materials

    Science.gov (United States)

    2006-07-26

    When the damage constitutive law is adopted in an analysis, we perform an incremental analysis, just like the case of elastoplasticity (see Okada...isotropic elastoplasticity . 2.4 Some other issues associated with the damage constitutive law-initiation of nonlinear deformation Material...ABSTRACT In present investigation, analyses for the damage evolution behavior of particulate composite materials by using the finite element method

  3. Size-selective poorly soluble particulate reference materials for evaluation of quantitative analytical methods.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Turk, Gregory C; Dickerson, Robert M; Hoover, Mark D

    2008-07-01

    Owing to the absence of readily available certified particulate reference materials (RMs), most analytical methods used to determine particulate contaminant levels in workplace or other environments are validated using solution RMs, which do not assess the robustness of the digestion step for all forms and sizes of particles in a sample. A library of particulate RMs having a range of chemical forms and particle sizes is needed to support a shift in method evaluation strategies to include both solution and particulate RMs. In support of creating this library, we characterized bulk and physically size separated fractions of beryllium oxide (BeO) particles recovered from the machining fluid sludge of an industrial ceramic products grinding operation. Particles were large agglomerates of compact, crystalline BeO primary particles having diameters on the order of several micrometers. As expected, the particle surface area was independent of sieve size, with a range from 3.61 m(2)/g (53-63-microm fraction) to 4.82 m(2)/g (355-600-microm fraction). The density was near the theoretical value (3.01 g/cm(3)). The data support more detailed characterization of the sludge materials for use as size-selective RMs. This work illustrates an approach that can be used to develop RMs that are difficult to digest.

  4. Early detection of injuries in leaves of Clusia hilariana Schltdl. (Clusiaceae caused by particulate deposition of iron

    Directory of Open Access Journals (Sweden)

    Diego Ismael Rocha

    2014-06-01

    Full Text Available This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1 for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.

  5. Mechanical properties of Al-mica particulate composite material

    Science.gov (United States)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.

    1980-01-01

    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  6. The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available measured with Venier Caliper and the material efficiencies were determined using developed equations. The effect of the scanning speed on the material efficiency and deposit height were extensively studied and the results showed that for the set...

  7. Method for depositing high-quality microcrystalline semiconductor materials

    Science.gov (United States)

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  8. Matrix changes and side effects induced by electrokinetic treatment of porous and particulate materials

    DEFF Research Database (Denmark)

    Skibsted, Gry

    of porous stone materials to hinder decay. However, in addition to the removal of target ions in these systems, matrix changes may occur during the electrochemical treatment. For a broader implementation of the electrokinetic methods it is important to understand changes in the matrix composition...... for different types of materials. The overall aim of this PhD-project is to evaluate matrix changes and side effects induced by electrokinetic treatment of porous and particulate materials.During electro-remediation protons are produced at the anode and hydroxyl ions are produced at the cathode. The consequent...

  9. MONITORING OF PHOSPHORUS CONTENT IN “WATER-PARTICULATE MATERIALS-BOTTOM SEDIMENTS SYSTEM” FOR RIVER PRUT

    Directory of Open Access Journals (Sweden)

    VASILE RUSU

    2011-03-01

    Full Text Available Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented schemeallows the analysis of the phosphorus forms for the entirely system “water –particulate materials – bottom sediments”, extending possibilities for interpretationof phosphorus dynamics in natural waters.

  10. Characterization of undigested particulate material following microwave digestion of recycled document papers.

    Science.gov (United States)

    McGaw, Elizabeth A; Szymanski, David W; Smith, Ruth Waddell

    2009-09-01

    Recycled document paper was microwave digested in a solution of HNO(3) and H(2)O(2) prior to analysis by inductively coupled plasma mass spectrometry (ICP-MS) to determine the trace elemental concentrations within the paper. Undigested particulate material was observed and subsequently characterized as a mixture of kaolin (clay) and TiO(2) by Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy. The effect of the particulate material on the elemental concentrations was then investigated. Paper samples were completely digested in hydrofluoric acid (HF) and element concentrations determined in the HF and HNO(3)/H(2)O digests were statistically compared using Student's t-test (95% confidence limit). Statistical differences in element concentrations between the two digests were observed for only four elements and there was no evidence of element adsorption by the particulate material. Hence, the HNO(3)/H(2)O(2) digestion proved sufficient to digest paper for ICP-MS analysis, eliminating the need to use the hazardous and corrosive HF matrix.

  11. Depositing Materials on the Micro- and Nanoscale

    DEFF Research Database (Denmark)

    Mar, Mikkel Dysseholm; Herstrøm, Berit; Shkondin, Evgeniy

    2014-01-01

    on sequential introduction of precursor pulses with intermediate purging steps. The process proceeds by specific surface ligand-exchange reactions and this leads to layer-by-layer growth control. No other thin film deposition technique can approach the conformity achieved by ALD on high aspect ratio structures...

  12. The effect of large anthropogenic particulate emissions on atmospheric aerosols, deposition and bioindicators in the eastern Gulf of Finland region.

    Science.gov (United States)

    Jalkanen, L; Mäkinen, A; Häsänen, E; Juhanoja, J

    2000-10-30

    The effect of the emissions from large oil shale fuelled power plants and a cement factory in Estonia on the elemental concentration of atmospheric aerosols, deposition, elemental composition of mosses and ecological effects on mosses, lichens and pine trees in the eastern Gulf of Finland region has been studied. In addition to chemical analysis, fly ash, moss and aerosol samples were analysed by a scanning electron microscope with an energy dispersive X-ray spectrometer (SEM/EDS). The massive particulate calcium emissions, approximately 60 kton/year (1992), is clearly observed in the aerosols, deposition and mosses. The calcium deposition is largest next to the Russian border downwind from the power plants and in south-eastern part of Finland. This deposition has decreased due to the application of dust removal systems at the particulate emission sources. At the Virolahti EMEP station approximately 140 km north from the emission sources, elevated elemental atmospheric aerosol concentrations are observed for Al, Ca, Fe, K and Si and during episodes many trace elements, such as As, Br, Mo, Ni, Pb and V. The acidification of the soil is negligible because of the high content of basic cations in the deposition. Visible symptoms on pine trees are negligible. However, in moss samples close to the power plants, up to 25% of the leaf surface was covered by particles. Many epiphytic lichen species do not tolerate basic stemflow and on the other hand most species are also very sensitive for the SO2 content in air. Consequently a large lichen desert is found in an area of 2500 km2 in the vicinity of the power plants with only one out of the investigated 12 species growing.

  13. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    Science.gov (United States)

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  14. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    Directory of Open Access Journals (Sweden)

    Iwao Sugimoto

    2014-01-01

    Full Text Available Thin layers of pyroglutamic acid (Pygl have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  15. Sedimentation of particulate material in stratified and nonstratified water columns in the Bombay high area of the Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sawant, S.S.; Sankaran, P.D.; Wagh, A.B.

    Sedimentation of particulate material at 22, 42 and 62 m was recorded at a station in the Bombay High area of the Arabian Sea from September 1985 to March 1986. Diatom numbers and physical structure, especially thermal stratification, played...

  16. Fabrication of Porous Scaffolds Using NaHCO3 Particulates as the Porogen Material

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiongjun; RUAN Jianming; ZHOU Zhongcheng; ZHANG Haipo; ZHOU Zhihua

    2007-01-01

    A new method of fabricating porous polymer scaffolds was developed, using sodium hydrogen carbonate particulates as the porogen to foam. The pore structure of polymer scaffolds can easily be manipulated by controlling the size and weight fraction of sodium hydrogen carbonate particulates. The scaffolds are highly porous with a porosity greater than 90% and with a larger pore size ranging from 100-400 μm, and are well distributed with the interconnected and open pore wall structure which is necessary for tissue engineering. We investigated the effect of the porosity of scaffolds, the pore size of scaffolds and material of polymer on the mechanical properties of scaffolds. The scaffolds fabricated by the method have more big pores than those by the convenient method of salt leaching.

  17. Geochemical Characterization of Rain Water Particulate Material on a Coastal Sub-Tropical Region in SE: Brazil

    OpenAIRE

    Silva Filho, E. V.; Paiva, R. P.; WASSERMAN, J.C.; Lacerda,L. D.

    1998-01-01

    Airborne contamination has been of concern for a number of scientist in temperate regions. In the tropics, a very small amount of data is available. In this work, rain water particulate material was monitored in two sites in Rio de Janeiro State (Brazil): the first (Sepetiba), subjected to high inputs of metals from industrial activities and the second (Iguaba), subjected to very mild contamination. Particulate material was obtained by filtration of rain water samples. The filters were analys...

  18. MONITORING OF PHOSPHORUS CONTENT IN “WATER-PARTICULATE MATERIALS-BOTTOM SEDIMENTS SYSTEM” FOR RIVER PRUT

    OpenAIRE

    VASILE RUSU; LARISA POSTOLACHI

    2011-01-01

    Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented...

  19. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy.

    Science.gov (United States)

    Broaders, Kyle E; Cohen, Joel A; Beaudette, Tristan T; Bachelder, Eric M; Fréchet, Jean M J

    2009-04-07

    Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.

  20. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  1. The measurement of the charging properties of fine particulate materials in pneumatic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Armour-Chelu, D.I

    1998-11-01

    This document describes a programme of work that was designed to develop an improved understanding of the electrostatic charging properties of particulate materials with a view to applying this knowledge to the measurement of particulate concentrations in air-solid suspensions. An extensive literature review has been carried out. Some eighty published works were found and these concentrated on indirect charge measurement, the measurement of the two-phase pipe flow parameters, and on finding suitable models to explain tile work function given to insulators during metal to insulator contact. These areas are covered well in the field of electrostatics but data currently available in the area of programme of work being described here is very, limited, and so it is proposed that this research project will aim to improve such understanding. A test facility was developed to provide information from the flow of a particulate material under known conditions (particle velocity, suspension density). This test facility utilised three sensing probes, each with discrete charge amplifier units, at specific locations: one at the beginning and two further down the pipeline being utilised. Hence, the charging tendencies of any material were observed using this facility. The results obtained from this facility show the charging tendency of three particulate materials under various flow conditions. Signal processing techniques were developed to infer the suspension density for each flow condition and to estimate average particle velocity. Further analysis of the data resulted in tile derivation of a power spectral estimate for some of the flow conditions. This estimate was considered with the particle size distribution, as well as the estimate of tile average particle velocity, and there is a linkage. The main material selected for this programme was aluminium hydroxide. This was tested at environmental temperatures of 19 and 30 deg. C with relative humidity (RH) levels of 35, 45, and

  2. Seasonal variation of polychlorinated biphenyl congeners in surficial sediment, trapped settling material, and suspended particulate material in Lake Michigan, USA.

    Science.gov (United States)

    Robinson, Sander D; Landrum, Peter F; Van Hoof, Patricia L; Eadie, Brian J

    2008-02-01

    A unique time series of surface sediment, trapped settling material, and suspended particulate material polychlorinated biphenyl (PCB) samples were collected at a 45-m deep site off Grand Haven (MI, USA) over a 14-month period. Both concentrations and congener distributions remained constant for the sediments, although there were seasonal and interannual variability in the other matrices. Trapped settling material and suspended particulate material PCB concentrations were substantially lower (~50%) in 1997 than in the samples from December 1997 through July 1998. The cause could not be determined from the data collected, but there were some very large storms during the winter-spring period of 1998, resulting in major sediment resuspension throughout the southern basin. Observed seasonal variation in PCB concentration and congener distribution on particles likely was due to the changes in particle composition. These include particle size and the source of particles (such as the amount of resuspended sediment in trapped settling material), and the role of diagenesis of the organic matter on particles.

  3. Apparatus and method for removing particulate deposits from high temperature filters

    Science.gov (United States)

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  4. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    Science.gov (United States)

    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  5. Determination of fine particulate semi-volatile organic material at three eastern U.S. sampling sites.

    Science.gov (United States)

    Warner, K S; Eatough, D J; Stockburger, L

    2001-09-01

    Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm.

  6. GEOMAGNETIC PROSPECTING FOR DEPOSITS OF BUILDING MATERIALS

    OpenAIRE

    Željko Zagorac; Franjo Šumanovac

    1990-01-01

    Some characteristic examples are given of the magnetic prospecting for the rocks used as building materials. Conclusions are drawn about the applicability of the magnetic method for this purpose. Method proved to be very speedy and inexpensive, it gives important informations on the extension, position and depth of the magnetic rock. The quality of the rock is better determined by other methods (the paper is published in Croatian).

  7. Controlled deposition of sol–gel sensor material using hemiwicking

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Marie, Rodolphe; Hansen, Jan H

    2011-01-01

    Optical sensors are fabricated by depositing liquid sol–gel sensor material on a polycarbonate surface, which has been decorated with arrays of periodic micropillars. Using the principle of hemiwicking, the liquid material is spread, guided by the surface structures, to homogeneously fill...

  8. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing

    Science.gov (United States)

    Liu, Jiakai; Zhu, Lijuan; Wang, Huihui; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Ma, Wu; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    The dry deposition of particular matters from atmosphere to ecosystems is an undesirable consequence of this pollution while the deposition process is also influenced by different land use types. In current study, concentration of fine particles, coarse particles and meteorological data were collected during the daytime in an artificial forest, wetland and a water surface in the Beijing Olympic Park. Dry deposition velocity, fluxes and vegetation collection were calculated by different models and the results were compared. The results show: (1) the deposition velocity onto the forest canopy was higher than which onto the wetland and the water surface and the velocity varied in different seasons; (2) the fine particles deposited most in the winter while the coarse particles was in the spring; (3) the vegetation collection rates of fine particles were lower than coarse particles, and the forest collected more PMs than the wetland plants.

  9. Recent progress of atomic layer deposition on polymeric materials.

    Science.gov (United States)

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent.

    Science.gov (United States)

    Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Chipman, Veraun; Detwiler, Rebecca S; Emer, Dudley F; Kernan, Warnick J; Kirkham, Randy R; MacDougall, Matthew R; Milbrath, Brian D; Rishel, Jeremy P; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven "air cannon" was used to inject (140)La, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection.

  11. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Thomas, K C; Hynes, S H; Ingledew, W M

    1994-05-01

    The effects of osmoprotectants (such as glycine betaine and proline) and particulate materials on the fermentation of very high concentrations of glucose by the brewing strain Saccharomyces cerevisiae (uvarum) NCYC 1324 were studied. The yeast growing at 20 degrees C consumed only 15 g of the sugar per 100 ml from a minimal medium which initially contained 35% (wt/vol) glucose. Supplementing the medium with a mixture of glycine betaine, glycine, and proline increased the amount of sugar fermented to 30.5 g/100 ml. With such supplementation, the viability of the yeast cells was maintained above 80% throughout the fermentation, while it dropped to less than 12% in the unsupplemented controls. Among single additives, glycine was more effective than proline or glycine betaine. On incubating the cultures for 10 days, the viability decreased to only 55% with glycine, while it dropped to 36 and 27%, respectively, with glycine betaine and proline. It is suggested that glycine and proline, known to be poor nitrogen sources for growth, may serve directly or indirectly as osmoprotectants. Nutrients such as tryptone, yeast extract, and a mixture of purine and pyrimidine bases increased the sugar uptake and ethanol production but did not allow the population to maintain the high level of cell viability. While only 43% of the sugar was fermented in unsupplemented medium, the presence of particulate materials such as wheat bran, wheat mash insolubles, alumina, and soy flour increased sugar utilization to 68, 75, 81, and 82%, respectively.

  12. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Aare ARUNIIT

    2011-09-01

    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested. http://dx.doi.org/10.5755/j01.ms.17.3.593

  13. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  14. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  15. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    Directory of Open Access Journals (Sweden)

    J. P. Engelbrecht

    2017-09-01

    Full Text Available Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m−2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of  < 10 and  < 2.5 µm dust deposition rates, and it is suggested that these represent proxies for PM10 (coarse and PM2. 5 (fine particle size fractions in the dust deposits.X-ray diffraction (XRD analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF, while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from

  16. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    KAUST Repository

    Engelbrecht, Johann

    2017-09-27

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m−2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of  < 10 and  < 2.5 µm dust deposition rates, and it is suggested that these represent proxies for PM10 (coarse) and PM2. 5 (fine) particle size fractions in the dust deposits. X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the

  17. Spectral reflectance and emittance of particulate materials. I - Theory. II - Application and results

    Science.gov (United States)

    Emslie, A. G.; Aronson, J. R.

    1973-01-01

    The sizes, shapes, and complex refractive indices of particles are calculated in a study of the IR spectral reflectance of a semiinfinite medium composed of irregular particles of different materials. Geometric optics techniques with corrections for additional absorption due to particle edges and asperities is used in scattering and absorption calculations for particles larger than the wavelength. A Lorentz-Lorenz model is used to derive the averaged complex index of the medium, assuming that its individual particles are ellipsoids. Experimental results obtained on a Michelson interferometer for the spectral emittance of particulate mineral materials are compared with theoretical results. Good agreement between the experimental and theoretical results suggests the applicability, in remote IR spectroscopy, of the theoretical concepts applied in this study.

  18. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    Science.gov (United States)

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  19. Sieveless particle size distribution analysis of particulate materials through computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Columbus, Eugene P [ORNL; Batchelor, William D [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-05-01

    This paper explores the inconsistency of length-based separation by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based separation of particles using standard sieves with manual measurements, which showed deviations of 17 22 times. In addition, we have demonstrated the falling through effect of particles cannot be avoided irrespective of the wall thickness of the sieve. We proposed and utilized a computer vision with image processing as an alternative approach; wherein a user-coded Java ImageJ plugin was developed to evaluate PSD based on length of particles. A regular flatbed scanner acquired digital images of particulate material. The plugin determines particles lengths from Feret's diameter and width from pixel-march method, or minor axis, or the minimum dimension of bounding rectangle utilizing the digital images after assessing the particles area and shape (convex or nonconvex). The plugin also included the determination of several significant dimensions and PSD parameters. Test samples utilized were ground biomass obtained from the first thinning and mature stand of southern pine forest residues, oak hard wood, switchgrass, elephant grass, giant miscanthus, wheat straw, as well as Basmati rice. A sieveless PSD analysis method utilized the true separation of all particles into groups based on their distinct length (419 639 particles based on samples studied), with each group truly represented by their exact length. This approach ensured length-based separation without the inconsistencies observed with mechanical sieving. Image based sieve simulation (developed separately) indicated a significant effect (P < 0.05) on number of sieves used in PSD analysis, especially with non-uniform material such as ground biomass, and more than 50 equally spaced sieves were required to match the sieveless all distinct particles PSD analysis

  20. Effects of Al2O3-Particulate-Contained Composite Filler Materials on the Shear Strength of Alumina Joints

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    All2O3/Al2O3 joints were brazed with a new kind of filler materials, which were formed by adding Al2O3 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(Al2O3p 0 vol. pct) to 135.32 MPa(Al2O3p 15 vol. pct).

  1. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    Energy Technology Data Exchange (ETDEWEB)

    Artinano, B.; Gomez-Moreno, F.J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martin, F.; Guerra, A.; Luaces, J.A.; Basora, J. [CIEMAT, Madrid (Spain)

    2007-09-15

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size ({lt}2.5 {mu}m). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 {mu} m). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  2. Development and set-up of a portable device to monitor airway exhalation and deposition of particulate matter.

    Science.gov (United States)

    Goldoni, Matteo; Caglieri, Andrea; De Palma, Giuseppe; Longo, Sonia; Acampa, Olga; Poli, Diana; Manini, Paola; Apostoli, Pietro; Franchini, Innocente; Corradi, Massimo; Mutti, Antonio

    2009-08-01

    The aim of this study was to assess and monitor airway exhalation and deposition of particulate matter (PM). After standardizing inspiratory/expiratory flow and volumes, a novel device was tested on a group of 20 volunteers and in a field study on workers exposed to cristobalite. Both male and female subjects showed a higher percentage of deposition in the 0.5 microm channel than in the 0.3 microm channel on a laser particle counter, but it was higher in the males because of their higher exhaled lung volumes. The device was tested on a wider range of particles (0.3-0.5-1.0-2.5 microm) in the cristobalite productive division. The device has low intrasubject variability and good reproducibility, with geometric mean of %CV < 5%. Such a measure can be used to assess individual susceptibility to PM, making repeated measures in different environments, and examining the persistence of particles in the airways after a period in polluted environments.

  3. Electro-spark deposited coatings for protection of materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  4. Experimental study of porosity reduction in high deposition-rate Laser Material Deposition

    Science.gov (United States)

    Zhong, Chongliang; Gasser, Andres; Schopphoven, Thomas; Poprawe, Reinhart

    2015-12-01

    For several years, the interest in Additive Manufacturing (AM) is continuously expanding, owing to the paradigm shift that new production processes, such as Laser Material Deposition (LMD), provide over conventional manufacturing technologies. With LMD, three-dimensional, complex components out of a wide range of materials can be manufactured consecutively layer-by-layer. Despite the technological advantages of the LMD process, currently achieved deposition-rates of approx. 0.5 kg/h for Inconel 718 (IN 718) remain a major concern in regards to processing times and economic feasibility. Moreover, processing conditions need to be chosen carefully or else material defects can be systematically formed either at the interface separating two adjacent clad layers, at the bonding zone or within the bulk of the layer. In this respect, the effects of powder humidity, laser power, nominal powder particle size, powder morphology and shielding gas flow rate on the porosity in laser deposited single tracks at an increased deposition-rate of approx. 2 kg/h was investigated through experiments. Based on experimental results, several approaches of reducing porosity in high deposition-rate LMD are proposed in this paper.

  5. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees

    Science.gov (United States)

    Muñoz, David; Aguilar, Bertha; Fuentealba, Raúl; Préndez, Margarita

    2017-03-01

    Emissions from motor vehicles are considered to be one of the main sources of airborne particulate matter in Santiago. International researchers have shown that particulate matter contains metal oxides and magnetic particles, both of which are emitted mainly from vehicles exhaust pipes. On the other hand, trees are effective in reducing such contamination, so that they act as passive collectors of particulate matter. This work presents the results obtained from the first magnetic study of the particulate matter collected in two areas of the city of Santiago de Chile. Magnetic susceptibility and Saturation Isothermic Remanent Magnetization (SIRM) were determined in leaves from abundant urban trees and from urban dust samples. Results indicate that most of the samples contain ferromagnetic minerals with magnetite (Fe3O4) as the main carrier. Values of magnetic susceptibility (SI ×10-6 m3/kg) in the range 0.04-0.24 for leaves and in the range 10-45 for urban dust were determinated. In one of the city areas studied, significant correlation between the particulate matter deposited on leaves of Platanus orientalis and measured traffic flows was obtained. In addition, it was possible to estimate that the species Platanus orientalis and Acer negundo have a better ability to capture particulate matter than the species Robinia pseudoacacia.

  6. Effect of Pore Structure on Soot Deposition in Diesel Particulate Filter

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2016-12-01

    Full Text Available Nowadays, in the after-treatment of diesel exhaust gas, a diesel particulate filter (DPF has been used to trap nano-particles of the diesel soot. However, as there are more particles inside the filter, the pressure which corresponds to the filter backpressure increases, which worsens the fuel consumption rate, together with the abatement of the available torque. Thus, a filter with lower backpressure would be needed. To achieve this, it is necessary to utilize the information on the phenomena including both the soot transport and its removal inside the DPF, and optimize the filter substrate structure. In this paper, to obtain useful information for optimization of the filter structure, we tested seven filters with different porosities and pore sizes. The porosity and pore size were changed systematically. To consider the soot filtration, the particle-laden flow was simulated by a lattice Boltzmann method (LBM. Then, the flow field and the pressure change were discussed during the filtration process.

  7. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  8. Partitioning and granulometric distribution of metal leachate from urban traffic dry deposition particulate matter subject to acidic rainfall and runoff retention.

    Science.gov (United States)

    Sansalone, J; Ying, G

    2008-09-01

    Vehicular transportation coupled with urban hydrology is a significant source as well as vector of particulate matter (PM) and particulate-bound metal inventories in urban systems. This study examines the granulometric distribution of metals from dry deposition PM generated from 17 dryfall periods and equilibrium metal partitioning with runoff PM distribution from eight rainfall-runoff events at an urban inter-state watershed in Baton Rouge, LA. Dry deposition PM is a coarse non-uniform gradation with a d(50 m)=304 microm and a peak surface area at 106 microm. Results indicate acid rain is not a significant metal contributor to runoff but is capable of leaching metals from PM to runoff. Retained runoff partitioning resulted in particulate-bound predominance for As, Cd, Cr, Cu, Pb, and Zn while Ca and Mg remained predominately dissolved. The finer PM fraction (75 microm). This coarse fraction is also the most labile when exposed to acidic rainfall; generating up to 90% of the total metal mass leached from the entire PM gradation. Comparing dry deposition and runoff PM of equal mass and size gradation, retained runoff PM is enriched with metals (except Pb). Results indicate the labile coarse fraction of dry deposition PM can be a significant source of metal leaching while runoff PM (mobilized dry deposition PM) stored in a BMP can be metal-enriched with the potential for re-leaching or scour.

  9. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  10. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  11. Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China.

    Science.gov (United States)

    Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Du, Enzai

    2015-07-01

    In a recent publication in the journal Science of the Total Environment, Zhu et al. (2015) reported the composition, spatial patterns, and factors influencing atmospheric wet nitrogen (N) deposition based on one year's data from 41-monitoring sites in China. We suspect their results may largely underestimate dissolved organic N (DON) but overestimate total particulate N (TPN) in wet deposition due to the uncertainty resulting from the sampling, storage and analysis methods in their study. Our suspicions are based mainly on our experience from earlier measurements and the literature. We therefore suggest that enhanced data quality control on atmospheric N deposition measurements should be taken into account in future studies.

  12. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    Science.gov (United States)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  13. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    Science.gov (United States)

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  14. Hard Coal Fly Ash and Silica-Effect of Fine Particulate Matter Deposits on Brassica chinensis

    Directory of Open Access Journals (Sweden)

    Christian Ulrichs

    2009-01-01

    Full Text Available Problem statement: One focus in recent atmospheric pollution research is on fine Particle Matter (PM, especially as result of increasing traffic and anthropogenic activity in urban areas. Here, the impact on animal and human health has been in the center of many studies. Despite the fact that PM depositions can affect plants on the long term, there are only few studies about the impact on plants conducted. Approach: Therefore we studied the impact of PM on plants, using naturally occurring silica dusts (diatomaceous earth and hard Coal Fly Ash (CFA from burning processes. Dusts were applied onto Brassica chinensis L. using a simple duster (covering upper leaf surfaces or electrostatically (covering leaf upper and -underside. Results: Main components of the tested CFA are SO42-, K, Ca and NH4+. The pH value of eluates was found to be around 9.5 in CFA and 5.7 in silica. B. chinensis was insensitive towards the high pH and showed no growth reduction when grown in silica or CFA substrate. PM deposition on leaf surfaces results through shading in a reduced photosynthetic activity. The reduction is relatively higher at higher light intensities. Photosynthesis stays reduced after removal of silica PM from leaf surfaces. We assume that stomata get cloaked by small particles and that silica absorbs lipids from the epicuticle resulting in a general stress reaction. Smaller sized silica particles resulted in a higher reduction of CO2-absorption. Next to particle size is the photosynthesis negatively correlated with exposure time for silica PM. The chlorophyll fluorescence data indicate that dust-covered leaves exhibited significantly lower quantum yield of PS II and a reduced quantum efficiency of PS II and therefore supported the gas exchange data. Conclusion: Reduced photosynthetic performance would be expected to reduce growth and productivity of B. chinensis. In contrast to silica hard coal fly ash

  15. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    Science.gov (United States)

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  16. Synthesis of SiV-diamond particulates via the microwave plasma chemical deposition of ultrananocrystalline diamond on soda-lime glass fibers

    Science.gov (United States)

    Kunuku, Srinivasu; Chen, Yen-Chun; Yeh, Chien-Jui; Chang, Wen-Hao; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I.-Nan

    2016-10-01

    We report the synthesis of silicon-vacancy (SiV) incorporated spherical shaped ultrananocrystalline diamond (SiV-UNCD) particulates (size ∼1 μm) with bright luminescence at 738 nm. For this purpose, different granular structured polycrystalline diamond films and particulates were synthesized by using three different kinds of growth plasma conditions on the three types of substrate materials in the microwave plasma enhanced CVD process. The grain size dependent photoluminescence properties of nitrogen vacancy (NV) and SiV color centers have been investigated for different granular structured diamond samples. The luminescence of NV center and the associated phonon sidebands, which are usually observed in microcrystalline diamond and nanocrystalline diamond films, were effectively suppressed in UNCD films and UNCD particulates. Micron sized SiV-UNCD particulates with bright SiV emission has been attained by transfer of SiV-UNCD clusters on soda-lime glass fibers to inverted pyramidal cavities fabricated on Si substrates by the simple crushing of UNCD/soda-lime glass fibers in deionized water and ultrasonication. Such a plasma enhanced CVD process for synthesizing SiV-UNCD particulates with suppressed NV emission is simple and robust to attain the bright SiV-UNCD particulates to employ in practical applications.

  17. Systematic Evaluation of Dissolved Lead Sorption Losses to Particulate Syringe Filter Materials

    Science.gov (United States)

    Distinguishing between soluble and particulate lead in drinking water is useful in understanding the mechanism of lead release and identifying remedial action. Typically, particulate lead is defined as the amount of lead removed by a 0.45 µm filter. Unfortunately, there is little...

  18. Map of critical raw material deposits in Europe

    Science.gov (United States)

    Guillaume, Bertrand

    2016-04-01

    Map of critical raw material deposits in Europe Guillaume BERTRAND1, Daniel CASSARD1, Nikolaos ARVANITIDIS2, Gerry STANLEY3 and the EuroGeoSurvey Mineral Resources Expert Group4. 1 - Bureau de Recherches Géologiques et Minières (BRGM), Georesources Divison, 3 avenue Claude Guillemin, 45060 Orléans cedex 2, FRANCE. 2 - Sveriges Geologiska Undersökning (SGU), Box 670, SE-751 28, Uppsala, SWEDEN 3 - Geological Survey of Ireland (GSI), Beggars Bush, Haddington Road, Dublin D04 K7X4, IRELAND 4 - EuroGeoSurveys, Rue Joseph II 36-38, 1000 Brussels, BELGIUM The Critical Raw Material (CRM) Deposit Map of Europe, prepared by EuroGeoSurvey's Mineral Resources Expert Group (MREG), shows European mineral deposits from the ProMine Mineral Deposit database containing critical commodities, according to the 2014 list of critical raw materials of the European Commission. EuroGeoSurveys (EGS), The Geological Surveys of Europe, is a not-for-profit organization representing 37 National Geological Surveys and some regional Geological Surveys in Europe. It provides the European Institutions with expert, independent, balanced and practical pan-European advice and information as an aid to problem-solving, policy development, regulatory and programme formulation in areas such as natural resources, energy and geo-hazards. The EGS MREG is actively involved in contributing to policy and strategy-making processes aimed at identifying, characterizing and safeguarding resource potential, especially for critical raw materials through data provision, research, technological development and innovation. The European Union aspires to reducing the import dependency of raw materials, especially CRM, that are essential to Europe's industries. In this respect, mineral resource information, data sharing and networking by European Geological Surveys is crucial. The Strategic Implementation Plan of the European Innovation Partnership on Raw Materials highlights the need for establishing and maintaining a

  19. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents.

    Science.gov (United States)

    Schantz, Michele M; Cleveland, Danielle; Heckert, N Alan; Kucklick, John R; Leigh, Stefan D; Long, Stephen E; Lynch, Jennifer M; Murphy, Karen E; Olfaz, Rabia; Pintar, Adam L; Porter, Barbara J; Rabb, Savelas A; Vander Pol, Stacy S; Wise, Stephen A; Zeisler, Rolf

    2016-06-01

    Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (Particulate Matter (particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter.

  20. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific

    Science.gov (United States)

    Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy

    Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.

  1. Density-Driven Currents and Deposition of Fine Materials

    DEFF Research Database (Denmark)

    Saremi, Sina

    Dredging is a key element in river, ports, coastal and offshore development. In general dredging is conducted for excavation at the river,lake or seabed, relocation of the material, maintenance of the navigation channels, mining underwater deposits, land reclamation or cleaning up the environment....... Dredging activities always make changes to the environment, such as alteration of the coastal or river morphology, currents and wave climates, and water quality. Such changes may be considered improving or degrading to the environment. The type of material being dredged, type of the dredging equipment...... and type of sediments change along and into the seabed. Variations in the material entering the hopper have been studied by assuming fluctuating inflow concentrations. The fluctuations impose a mean net change on the overflow concentrations. In the third part of this study, the above described CFD model...

  2. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park

    Science.gov (United States)

    McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, J.S.; Schiff, S.

    1997-01-01

    The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.

  3. Pharmaceuticals in settleable particulate material in urban and non-urban waters.

    Science.gov (United States)

    Lahti, Marja; Oikari, Aimo

    2011-10-01

    Wastewater treatment plants (WWTP) are important sources of settleable particulate material (SPM), heading to sediments with natural suspended solids. To date, there is little information about the fate of pharmaceuticals in sediment systems. In this study, the objective was to determine if pharmaceuticals are detected in SPM at locations near WWTPs or even in rural areas, thus being susceptible for sedimentation. SPM samples were collected from 10 sites in Finland, grouped as reference, rural and wastewater effluent sites. SPM collectors were placed about 35 cm above bottom for about 2 months during summer. After extraction, a set of 17 pharmaceuticals was analyzed. Several pharmaceuticals were detected in SPM accumulated at sites next to WWTPs. The concentration of citalopram was notably high (300-1350 ng g⁻¹ dw). Also bisoprolol and ciprofloxacin were detected at high concentrations (6-325 and 9-390 ng g⁻¹ dw, respectively). In contrast, none of the pharmaceuticals were detected from reference sites and only two were found from a single rural site. There is no previous information about the presence of pharmaceuticals in SPM. The results showed that pharmaceuticals are sorbed to particles in WWTP and nearby, eventually ending up in sediments. These results also indicate that pharmaceuticals are not markedly contaminating sediments of rural areas in Finland.

  4. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  5. Oil-suspended particulate material aggregates as a tool in preventing potential ecotoxicological impacts in the São Paulo river, Todos os Santos Bay, Bahia, Brazil: Influence of salinity and suspended particulate material.

    Science.gov (United States)

    Miranda, Lorena S; Moreira, Ícaro T A; Oliveira, Olívia M C; Santos, Carlito P; Pinheiro, Samires M M; Oliveira, Lua M L; Martins, Adriele B O; Filho, Milton S C

    2016-11-15

    Recent studies have revealed the occurrence of a natural process of interaction between oil droplets and suspended particulate material, resulting in the formation of aggregates which are dispersed in the water column, known as oil-suspended particulate material aggregates (OSAs). The experiments aimed to investigate the contribution of OSAS in indicating where most likely is the oil sedimentation in the São Paulo river, Todos os Santos Bay, Brazil, in order to predict possible ecotoxicological risks caused by oil spills. The results showed that salinity and MPS concentration interfere on the formation of aggregates. In addition, the point 3 was nominated as the most vulnerable area to the potential ecotoxicological impacts of oil spills and should be treated as a priority area for the application of preventive and mitigating techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  7. Simulating Dry Deposition Fluxes of PM10 and Particulate Inorganic Nitrogen over the Eastern China Seas During a Severe Asian Dust Event Using WRF-Chem Model

    Institute of Scientific and Technical Information of China (English)

    YAN Han; GAO Huiwang; YAO Xiaohong; WANG Zifa

    2012-01-01

    A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March,2002.The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom.The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system.The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event,respectively.However,the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea.Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March.The dust plume arrived in the Yellow Sea on 20 March,decreasing the particulate inorganic nitrogen in mass concentration accordingly.The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival,respectively.In contrast,when the dust plume crossed over the Yangtze Delta area,it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea,where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.

  8. Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material

    Institute of Scientific and Technical Information of China (English)

    Ren Wan-Chun; Liu Bo; Song Zhi-Tang; Xiang Yang-Hui; Wang Zong-Tao; Zhang Bei-Chao; Feng Song-Lin

    2012-01-01

    Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture.Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality,purity,and accurate composition control.However,the conventional physical vapor deposition process cannot meet the gapfilling requirement with the critical device dimension scaling down to 90 nm or below.In this study,we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process,especially at the nano-scale critical dimension.The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed.We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling.We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process.We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.

  9. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    A similar work carried out by Domack et al [14] showed macroscopic cracking in powder blends containing 40-60 percent Inconel 718 on Ti6Al4V...composition of Fe-82 wt% V (powder-1) and Inconel -625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel -625 deposits showed macro-cracks

  10. Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems.

    Science.gov (United States)

    Cerrato, José M; Reyes, Lourdes P; Alvarado, Carmen N; Dietrich, Andrea M

    2006-08-01

    Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.

  11. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Shapiro, Darien; Romero, Erin G; Stockmann, Chris; Bevans, Tatjana S; Phan, Quang M; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2015-12-01

    Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.

  12. Analysis of Particulate and Chemical Residue Resulting from Exposure to Burning and Abrading Composite Materials

    Science.gov (United States)

    2013-05-31

    glass-graphite, and boron -graphite hybrid composites due to combinations of burning and impact. The results were inconclusive regarding threats to...particulates produced in the fire. Physiologic tests were not performed as part of this study, so it cannot be confirmed that the rod-shaped

  13. Distribution and geochemical composition of suspended particulate material in the shallow embayment of northern Thermaikos Gulf, Greece

    Science.gov (United States)

    Tsompanoglou, K.; Anagnostou, Ch.; Krasakopoulou, E.; Pagou, K.; Karageorgis, A. P.; Pavlidou, A.; Albanakis, K.; Tsirambides, A.

    2017-07-01

    The distribution and the chemical composition of Suspended Particulate Matter (SPM), in the northern Thermaikos Gulf, were studied during an annual experiment, carried out from June 2004 to June 2005. Water samples were collected at three depths (1 m below surface, 10 m depth, and 2 m above bottom) and filtered to obtain SPM, particulate organic carbon (POC), total particulate nitrogen (PNtot) and particulate phosphorus (PP) concentrations. SPM and POC concentrations exhibited strong spatial and temporal variations, related to the different environmental characteristics in the study area such as river network, biological productivity, anthropogenic interferences, wind regime, and resuspension of the bottom sediments. The highest SPM concentrations were recorded at the surface (mean = 1.45 ± 0.75 mg/l, maximum value = 11.60 mg/l) and close to the bottom (mean = 1.49 ± 0.67 mg/l, maximum value = 11.72 mg/l), creating surface and bottom nepheloid layers (SNL and BNL), respectively. The maximum values were recorded close to the river mouths; the rivers are identified as the major sources of SPM. The Axios and Aliakmon rivers supplied the gulf with particulate matter, during the entire sampling period. Chemical analysis has revealed the significant correlation among the elements Al, Si, Fe, Ti, K, V, Mg and Ba suggesting the presence of terrigenous aluminosilicate minerals. Silica and Ca have terrigenous origin, but also come from autochthonous biogenic fraction. Chromium, Ni and Co, are of natural origin and derived from mafic and ultramafic rocks of the Axios and Aliakmon watersheds. Copper and Zn are correlated with each other and their distributions follow that of POC; these two metals are derived from partially treated domestic and industrial effluents. The vertical distribution of organic matter implies increased primary production within the upper layer of the water column. Phosphorus is present mainly in an organic form. During the sampling period, the water

  14. Erosion of particulate organic material from an Andean river and its delivery to the Amazon Basin

    Science.gov (United States)

    Clark, Kathryn; Hilton, Robert; West, A. Joshua; Robles Caceres, Arturo; Grocke, Darren; Marthews, Toby; Asner, Greg; New, Mark; Mahli, Yadvinder

    2016-04-01

    Organic carbon and nutrients discharged by mountainous rivers can play an important role in biogeochemical cycles from regional to global scales. The eastern Andes host productive forests on steep, rapidly eroding slopes, a combination that is primed to deliver sediment, carbon and nutrients to the lowland Amazon River. We quantify clastic sediment and particulate organic carbon (POC) discharge for the Kosñipata River, Peru, an Andean tributary of the Madre de Dios River, using suspended sediment samples and discharge measurements over one year at two gauging stations. Calculations of sediment yield on the basis of this data suggest that the Madre de Dios basin may have erosion rates ˜10 times greater than the Amazon Basin average. The total POC yield over the sampling period was up to five times higher than the yield in the lowland Amazon Basin, with most POC (70-80%) exported between December and March in the wet season. We use radiocarbon, stable C isotopes and C/N ratios to distinguish between the erosion and discharge of POC from sedimentary rocks (petrogenic POC) and POC eroded from the modern terrestrial biosphere, from vegetation and soil (biospheric POC). We find that biospheric POC discharge was significantly enhanced during flood events, over that of clastic sediment and petrogenic POC. The ultimate fate of the eroded POC may play a central role in the net carbon budget of Andean forest. In these forests, net productivity minus heterotrophic respiration is close to zero at the scale of forest plots, and the erosion of biospheric POC by this Andean river is sufficiently rapid that its fate downstream (sedimentary burial/preservation versus oxidation/degradation) may determine whether the mountain forest is a carbon sink or source to the atmosphere. In addition, the measured discharge of petrogenic POC suggests that fluxes from the Andes may be considerably higher than measured downstream in the Madeira River. If this petrogenic POC is oxidised rather

  15. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  16. Synthesis of functionally graded materials via electrophoretic deposition and sintering

    Science.gov (United States)

    Wang, Xuan

    In this research, both the experiments and the modeling aspects of the net-shape fabrication of Functionally Graded Materials (FGM) by Electrophoretic Deposition (EPD) and consecutive sintering have been investigated. In order to obtain FGMs with desired final shape and properties, the issues regarding the shape evolution during sintering, the optimization of initial properties and composition profiles, and the fabrication of green components by EPD have been analyzed. In order to fabricate FGMs by the proposed technological sequence (EPD with the following sintering), the initial shape has to be optimized prior to sintering. In this research, the formulations to simulate sintering of an FGM were developed based on the continuum theory of sintering. A finite element sintering-modeling subroutine has been created and linked to the commercial finite element package ABAQUS. The shape changes of FGM disks during sintering were simulated. In order to obtain the desired final shape after sintering, an inverse modeling methodology was developed to optimize the initial shape. In order to fabricate the optimized initial shape of a green FGM specimen determined by the inverse continuum modeling of sintering, EPD of a number of FGMs was investigated. The FGM green specimens made of Al2O 3 and ZrO2 with the initial shape predicted by the inverse modeling, were deposited using self-designed equipments. The acetone-based suspension with n-butylamine as a particle-charging additive was used. The comparison of the shape between the sintered and the green FGM indicated that the developed experimental-theoretical methodology provided a reliable solution for near net shaping of complex 3-D FGM components. Other applications of EPD, such as in electronic packaging materials and zeolites, were also investigated. In order to fabricate functionally graded materials based on aligned porous structures, unidirectional freezing followed by freeze-drying and sintering has been investigated

  17. Experimental study on particulate materials collected by a concave of sea floor; Kaitei kubochi ni hoshusareru ryujobutsu ni kansuru jikkenteki kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hoshika, A.; Tanimoto, T. [Government Industrial Research Chugoku, Hiroshima (Japan)

    1996-07-10

    As one of the method of sea cleaning method, an idea where concave is dredged on the sea floor and suspended substances and polluted sediment particles are collected, is popular. In this research, simple experiment was carried out for collecting the materials by using a polyvinylchloride cylindrical vessel (50cm in diameter, 70cm in depth) set on the sea floor of Osaka Bay area and fundamental study about the quality of collected materials, collection effectiveness and so forth was carried out. Further, along with the collection experiment, measurement of degree of pollution and investigation of bottom laminar flow which is thought to be the direct outer force for particulate material movement were carried out in order to study the flow mechanism of particulate materials. As a result, with the setting of collection vessel, particulate materials about 9 times more than that of estimated natural sedimentation amount were collected. This corresponds to the 5% of the horizontal flux of suspended substances in the bottom layer water. Among the collected particulate materials, about 30% are suspended substances, about 70% are surface sediment substances. This kind of method, when combined suitably with the method for removing collected particulate materials, can be one of the effective method for the purification of polluted sediment materials. 8 refs., 9 figs., 3 tabs.

  18. A COMPUTER-CONTROLLED SYSTEM FOR GENERATING UNIFORM SURFACE DEPOSITS TO STUDY THE TRANSPORT OF PARTICULATE MATTER

    Science.gov (United States)

    Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...

  19. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.

    2016-03-01

    Ti6Al4V is an important Titanium alloy that is mostly used in many applications such as: aerospace, petrochemical and medicine. The excellent corrosion resistance property, the high strength to weight ratio and the retention of properties at high temperature makes them to be favoured in most applications. The high cost of Titanium and its alloys makes their use to be prohibitive in some applications. Ti6Al4V can be cladded on a less expensive material such as steel, thereby reducing cost and providing excellent properties. Laser Metal Deposition (LMD) process, an additive manufacturing process is capable of producing complex part directly from the 3-D CAD model of the part and it also has the capability of handling multiple materials. Processing parameters play an important role in LMD process and in order to achieve desired results at a minimum cost, then the processing parameters need to be properly controlled. This paper investigates the role of processing parameters: laser power, scanning speed, powder flow rate and gas flow rate, on the material utilization efficiency in laser metal deposited Ti6Al4V. A two-level full factorial design of experiment was used in this investigation, to be able to understand the processing parameters that are most significant as well as the interactions among these processing parameters. Four process parameters were used, each with upper and lower settings which results in a combination of sixteen experiments. The laser power settings used was 1.8 and 3 kW, the scanning speed was 0.05 and 0.1 m/s, the powder flow rate was 2 and 4 g/min and the gas flow rate was 2 and 4 l/min. The experiments were designed and analyzed using Design Expert 8 software. The software was used to generate the optimized process parameters which were found to be laser power of 3.2 kW, scanning speed of 0.06 m/s, powder flow rate of 2 g/min and gas flow rate of 3 l/min.

  20. Glassy Carbon Coating Deposited on Hybrid Structure of Composite Materials

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available This paper presents a method of production metal matrix composites with aluminum oxide foam covered by glassy carbon layer used as reinforcement. The glassy carbon coating was formed for decreasing of friction coefficient and reducing the wear. In first step of technology liquid glassy carbon precursor is on ceramic foam deposited, subsequently cured and carbonated at elevated temperature. In this way ceramic foam is covered with glassy carbon coating with thickness of 2-8 μm. It provides desirable amount of glassy carbon in the structure of the material. In the next step, porous spheres with carbon coating are infiltrated by liquid matrix of Al-Cu-Mg alloy. Thereby, equable distribution of glassy carbon in composite volume is achieved. Moreover, typical problems for composites reinforced by particles like sedimentation, agglomeration and clustering of particles are avoided. Tribological characteristics during friction in air versus cast iron as a counterpart were made. Produced composites with glassy carbon layer are characterised by friction coefficient between 0.08-0.20, thus meeting the typical conditions for solid lubricants.

  1. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Wessing, Bastian; Lettner, Stefan; Zechner, Werner

    2017-09-22

    The aim of this meta-analysis was to evaluate different methods for guided bone regeneration using collagen membranes and particulate grafting materials in implant dentistry. An electronic database search and hand search were performed for all relevant articles dealing with guided bone regeneration in implant dentistry published between 1980 and 2014. Only randomized clinical trials and prospective controlled studies were included. The primary outcomes of interest were survival rates, membrane exposure rates, bone gain/defect reduction, and vertical bone loss at follow-up. A meta-analysis was performed to determine the effects of presence of membrane cross-linking, timing of implant placement, membrane fixation, and decortication. Twenty studies met the inclusion criteria. Implant survival rates were similar between simultaneous and subsequent implant placement. The membrane exposure rate of cross-linked membranes was approximately 30% higher than that of non-cross-linked membranes. The use of anorganic bovine bone mineral led to sufficient newly regenerated bone and high implant survival rates. Membrane fixation was weakly associated with increased vertical bone gain, and decortication led to higher horizontal bone gain (defect depth). Guided bone regeneration with particulate graft materials and resorbable collagen membranes is an effective technique for lateral alveolar ridge augmentation. Because implant survival rates for simultaneous and subsequent implant placement were similar, simultaneous implant placement is recommended when possible. Additional techniques like membrane fixation and decortication may represent beneficial implications for the practice.

  2. Characterization and estimation of human airway deposition of size-resolved particulate-bound trace elements during a recent haze episode in Southeast Asia.

    Science.gov (United States)

    Behera, Sailesh N; Betha, Raghu; Huang, Xian; Balasubramanian, Rajasekhar

    2015-03-01

    Toxic elements present in airborne particulate matter (PM) are associated with human health effects; however, their toxic characteristics depend on the source of their origins and their concentrations in ambient air. Twenty four elements (Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Te, Tl, and Zn) in 12 different size fractions of PM ranging from 10 nm to 10 μm were characterized in Singapore during two different atmospheric conditions (smoke haze and non-haze periods) in 2012 for the first time. In addition, their possible sources were identified based on backward air trajectory analysis and principal component analysis (PCA). The health implications of inhalable particles were assessed using a human airway deposition model, the Multiple-Path Particle Dosimetry model (MPPD). The results concerning particle-bound trace elements are interpreted in terms of coarse (PM2.5-10), fine (PM2.5), ultrafine (PM0.01-0.1, 0.01 μm haze episode and the non-haze period in coarse, fine, ultrafine, and nano particles varied from 1.2 (Bi) to 6.6 (Co). Both the PCA and backward trajectory analysis revealed that trans-boundary biomass-burning emissions from Indonesia were primarily responsible for enhanced concentrations of particulate-bound elements during the smoke haze episode. The particle depositions in the respiratory system were higher during the smoke haze episode compared to the non-haze period. The study finds that ultrafine and nano particles present in the atmosphere have higher tendencies to be deposited into the deeper parts of the respiratory system, compared to coarse and fine particles.

  3. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  4. Direct determination of lead in urban particulate material and lubricating oil with thin silver films electrically vaporized from membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Swan, J.M.; Sacks, R.D.

    1985-06-01

    A rapid, direct method for the determination of lead in suspended solid particles is described. Particles are collected on a polycarbonate membrane filter coated with a thin film of high-purity Ag. The metal film does not affect filtration properties of the membrane. The thin film and sample are atomized and excited in the high-temperature plasma produced by the electrical vaporization of the Ag film. The Pb concentration is determined by emission spectroscopy. Sample introduction and standardization techniques are presented. Sample particle size and loading effects are considered. A high-inductance, longer-duration discharge is more useful for larger samples and for larger particles than a low-inductance, shorter-duration discharge. Analytical results are presented for Pb in NBS standard reference material SRM 1648 (urban particulate material) and lubricating oil spiked with Pb powder. 14 references, 4 figures, 3 tables.

  5. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Jingwei WU; Hongyuan FANG

    2003-01-01

    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.

  6. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, A.; Embrachts, A.; Baltrusaitis, J.

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using X

  7. THE CONTROL ALGORITHM OF THE DRYING PROCESS PARTICULATE MATERIALS IN THE APPARATUS WITH THE SWIRLING FLOW OF COOLANT AND MICROWAVE ENERGY SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The technical task of the process is to improve the drying quality of the final product, increasing the precision and reliability of control, the reduction of specific energy consumption. One of the ways to improve the process is complex and i ts local automation. This paper deals with the problems of development and creation of a new control algorithm drying process of the particulate material. Identified a number of shortcomings of the existing methods of automatic control of the process. As a result, the authors proposed a method for drying particulate materials in the device with swirling flow and the microwave energy supply and its automatic control algorithm. The description of the operating principle of the drying apparatus consists in that the particulate material is wet by using a tangential flow of coolant supplied to the cylinder-drying apparatus which also serves the axial coolant flow, whereby the heat transfer fluid with the particulate material begins to undergo a complex circular movement along the circumference apparatus, thereby increasing its speed and its operation control algorithm. The work of this scheme is carried out at three levels of regulation on the basis of determining the coefficient of efficiency of the dryer, which makes it possible to determine the optimal value of the power equipment and to forecast the cost of electricity. All of the above allows you to get ready for a high quality product while minimizing thermal energy and material costs by optimizing the operating parameters of the drying of the particulate material in the dryer with a combined microwave energy supply and ensure the rational use of heat energy by varying their quantity depending on the characteristics to be dried particulate material and the course of the process.

  8. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Institute of Scientific and Technical Information of China (English)

    Jianguo YANG; Hongyuan FANG; Xin WAN

    2005-01-01

    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  9. Gain and loss enhancement in active and passive particulate composite materials

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    Two active dielectric materials may be blended together to realize a homogenized composite material (HCM) which exhibits more gain than either component material. Likewise, two dissipative dielectric materials may be blended together to realize an HCM which exhibits more loss than either component material. Sufficient conditions for such gain/loss enhancement were established using the Bruggeman homogenization formalism. Gain/loss enhancement arises when (i) the imaginary parts of the relative permittivities of both component materials are similar in magnitude and (ii) the real parts of the relative permittivities of both component materials are dissimilar in magnitude.

  10. Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs).

    Science.gov (United States)

    Nocun, Margarete S; Schantz, Michele M

    2013-06-01

    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) have recently received much attention in discussions regarding the negative impacts of particulate matter (PM) on human health and the environment. The National Institute of Standards and Technology provides several environmental matrix standard reference materials (SRMs) with certified and reference values for polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs. In this study, the concentrations of oxygenated PAHs are determined in three air PM SRMs (1649b, 1648a, and 2786) and three diesel PM SRMs (1650b, 2975, and 1975) using two independent gas chromatography-mass spectrometry methods. Concentrations of oxy-PAHs were at the milligrams per kilogram level with higher overall concentrations in diesel PM (up to 50 mg/kg for 9,10-anthraquinone). One of the highest oxy-PAH concentrations (up to 5 mg/kg) measured in the air particulate SRMs was for 7,12-benz[a]anthracenquinone. These results suggest that oxygenated PAHs should not be neglected in the analysis of PM as their concentrations can be as high as those of some PAHs and are one to two orders of magnitude higher than those for nitro-PAHs.

  11. Organic particulate material levels in the atmosphere: conditions favoring sensitivity to varying relative humidity and temperature.

    Science.gov (United States)

    Pankow, James F

    2010-04-13

    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) as those levels may potentially be affected by changes in relative humidity and temperature. In a given system, for each partitioning compound, f(g) and f(p) represent the gaseous and particulate fractions (f(g) + f(p) = 1). Sensitivity in the M(o) levels becomes dampened as the compounds contributing significantly to M(o) are increasingly found in the particle phase (f(p) --> 1). Thus, although local maxima in sensitivity can be encountered as M(o) levels increase, because as M(o) increases each f(p) --> 1, then increasing M(o) levels generally tend to reduce sensitivity in M(o) levels to changes in relative humidity and temperature. Experiments designed to elucidate the potential magnitudes of the effects of relative humidity and temperature on M(o) levels must be carried out at M(o) levels that are relevant for the ambient atmosphere: The f(p) values for the important partitioning compounds must not be elevated above ambient-relevant values. Systems in which M(o) levels are low (e.g., 1-2 microg m(-3)) and/or composed of unaged secondary organic aerosol are the ones most likely to show sensitivity to changing relative humidity and temperature. Results from two published chamber studies are examined in the above regard: [Warren B, et al. (2009) Atmos Environ 43:1789-1795] and [Prisle NL, et al. (2010) Geophys Res Lett 37:L01802].

  12. Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material.

    Science.gov (United States)

    Marvin, Christopher H; Hewitt, L Mark

    2007-01-01

    The combination of short-term bioassays and analytical chemical techniques has been successfully used in the identification of a variety of mutagenic compounds in complex mixtures. Much of the early work in the field of bioassay-directed fractionation resulted from the development of a short-term bacterial assay employing Salmonella typhimurium; this assay is commonly known as the Ames assay. Ideally, analytical methods for assessment of mutagenicity of any environmental matrix should exhibit characteristics including high capacity, good selectivity, good analytical resolution, non-destructiveness, and reproducibility. A variety of extraction solvents have been employed in investigations of mutagenicity of air particulate; sequential combination of dichloromethane followed by methanol is most popular. Soxhlet extraction has been the most common extraction method, followed by sonication. Attempts at initial fractionation using different extraction solvents have met with limited success and highlight the need for fractionation schemes applicable to moderately polar and polar mutagenic compounds. Fractionation methods reported in the literature are reviewed according to three general schemas: (i) acid/base/neutral partitioning followed by fractionation using open-column chromatography and/or HPLC; (ii) fractionation based on normal-phase (NP) HPLC using a cyanopropyl or chemically similar stationary phase; and (iii) fractionation by open-column chromatography followed by NP-HPLC. The HPLC methods may be preparative, semi-preparative, or analytical scale. Variations based on acid/base/neutral partitioning followed by a chromatographic separation have also been employed. Other lesser-used approaches involve fractionation based on ion-exchange and thin-layer chromatographies. Although some of the methodologies used in contemporary studies of mutagenicity of air particulate do not represent significant advances in technology over the past 30 years, their simplicity, low

  13. A model study on changes of European and Swiss particulate matter, ozone and nitrogen deposition between 1990 and 2020 due to the revised Gothenburg protocol

    Science.gov (United States)

    Aksoyoglu, S.; Keller, J.; Ciarelli, G.; Prévôt, A. S. H.; Baltensperger, U.

    2014-12-01

    We report a study of changes in air quality due to emission reductions using the chemical transport model CAMx. The model domain includes all of Europe with a nested domain over Switzerland. The model simulations were performed with emissions for 1990 (the reference year for the Gothenburg Protocol), 2005 (the reference year for the revised Gothenburg Protocol), 2006 (for model validation) and 2020 (the target year for the revised Gothenburg Protocol) using three emission scenarios prepared by IIASA/GAINS. Changes in ozone, particulate matter and nitrogen deposition are the central theme of the study. The modelled relative changes in the annual average PM2.5 concentrations between 1990 and 2005 look reasonable based on various PM10 and PM2.5 observations in the past. The results obtained in this study suggest that annual mean concentrations of PM2.5 decreased by about 20-50% in Europe. Simulations using the baseline scenario (BL 2020) suggest that PM2.5 concentrations in 2020 will be about 30% lower than those in 2005. The largest predicted decrease in PM2.5, based on the MTFR (maximum technically feasible reduction) scenario, was about 60% and was located mainly in the eastern part of Europe. In the case of ozone, both model results and measurements show an increase in the mean ozone mixing ratios between 1990 and 2005. The observations, however, suggest a larger increase, indicating the importance of background ozone levels. Although emission reductions caused a decrease in peak ozone values, average ozone levels in polluted regions increased due to reduced titration with nitric oxide (NO). This caused a change in the frequency distribution of ozone. Model simulations using emission scenarios for 2020 suggest that annual average ozone mixing ratios will continue to increase. Changes in the levels of the damage indicators AOT40 for forests and SOMO35 are reported as well. The model results suggest that nitrogen deposition has decreased by 10-30% in the eastern

  14. A model study on changes of European and Swiss particulate matter, ozone and nitrogen deposition between 1990 and 2020 due to the revised Gothenburg protocol

    Directory of Open Access Journals (Sweden)

    S. Aksoyoglu

    2014-06-01

    Full Text Available We report a study of changes in air quality due to emission reductions using the chemical transport model CAMx. The model domain includes all of Europe with a nested domain over Switzerland. The model simulations were performed for 1990 (the reference year for the Gothenburg Protocol, 2005 (the reference year for the revised Gothenburg Protocol, 2006 (for model validation and 2020 (the target year for the revised Gothenburg Protocol using three emission scenarios prepared by IIASA/GAINS. Changes in ozone, particulate matter and nitrogen deposition are the central theme of the study. The relative changes in the annual average PM2.5 concentrations between 1990 and 2005 were reproduced very well. Both model results and observations show that annual mean concentrations of PM2.5 decreased by about 20–50% in Europe. Simulations using the baseline scenario (BL 2020 suggest that PM2.5 concentrations in 2020 will be about 30% lower than those in 2005. The largest predicted decrease in PM2.5, based on the MTFR (Maximum Technically Feasible Reduction scenario, was about 60% and was located mainly in the eastern part of Europe. In the case of ozone, both model results and measurements show an increase in the mean ozone mixing ratios between 1990 and 2005. The observations, however, suggest a larger increase, indicating the importance of background ozone levels. Although emission reductions caused a decrease in peak ozone values, ozone levels in polluted regions increased due to reduced titration with nitric oxide (NO. This caused a change in the frequency distribution of ozone. Model simulations using emission scenarios for 2020 suggest that annual average ozone mixing ratios will continue to increase. Changes in the levels of the damage indicators AOT40 for forests and SOMO35 are reported as well. The model results suggest that nitrogen deposition decreased by 10–30% in the eastern part of Europe since 1990, while it increased by about 20% in the

  15. Association of individual-level concentrations and human respiratory tract deposited doses of fine particulate matter with alternation in blood pressure.

    Science.gov (United States)

    Yin, Wenjun; Hou, Jian; Xu, Tian; Cheng, Juan; Wang, Xiaoying; Jiao, Shilin; Wang, Lin; Huang, Cheng; Zhang, Youjian; Yuan, Jing

    2017-11-01

    Fine particulate matter (PM2.5) contributes to the risk of cardiovascular events, partially owing to its deposition in the human respiratory tract. To investigate short-term effects of ambient PM2.5 exposure on alternation of blood pressure (BP), this study was conducted during the winter-summer period between 2014 and 2015. The study included 106 community residents in Wuhan city, China. We repeatedly monitored the household and outdoor PM2.5 concentrations as well as individual-level PM2.5 in each season, and then assessed personal PM2.5 exposure (including deposited doses of PM2.5 in the human respiratory tract) by using different methodology (such as using a dosimetry model). All participants took part in the physical examination, including the inflammatory indicators, BP and lung function parameters measurements. Subsequently, we assessed the health damage of exposure to PM2.5 using generalized additive models. We observed increased BP at 2-day lag for an interquartile range increase in ambient fixed-site, households, individual-level PM2.5 exposure and the corresponding lung deposited doses of each exposure concentration (p < 0.05), decreased BP at 3-day lag for an interquartile range increase in ambient fixed-site, households PM2.5 and the corresponding lung deposited doses of each exposure concentration (p < 0.05). The estimated deposited doses of PM2.5 by the deposition fractions in this study and the referenced deposition fractions by previous reported method were equivalent associated with alternation in BP. In conclusion, lung deposited dose of PM2.5 as a quantitative indicator may be used to assess adverse cardiovascular effects following the systemic inflammation. However, we require careful assessment of acute adverse cardiovascular effects using ambient fixed-site PM2.5 after short-term PM2.5 exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deposition of colloidal particles in porous media; Depot de particules minerales de taille colloidale en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.P.

    1998-12-09

    The aim of this study was to determine the deposition rates of colloidal particles in porous media in relation with particle stability. It combines experimental results and theoretical analysis and gives an original approach which allows to improve the predictions of particle deposition. The colloidal particles studied are several times smaller than the pore restrictions. Experimental results shows that the porous media surface is heterogeneous, whatever the preparation mean and the history of the porous media. The degree of surface heterogeneity depends both on salinity and porous media cleaning process. Heterogeneity is responsible for initial collection efficiency values higher that the theoretical predictions. When deposition occurs mainly on the less repulsive zones, the velocity dependence of the effective grain collection efficiency is close to the -2/3 value expected for the diffusion limited deposition regime. On the other hand, when these zones have been covered and thus behave as strongly repulsive, we obtain a collection efficiency on the more repulsive zones, with a slope close to -1, which is the value expected for the reaction limited deposition regime. The fraction of surface favorable for deposition can be assessed from attachment efficiency values. The attachment efficiency can be estimated from the measurement of particles stability. (author)

  17. Spatial Variability of Nitrogen Isotope Ratios of Particulate Material from Northwest Atlantic Continental Shelf Waters

    Science.gov (United States)

    Human encroachment on the coastal zone has led to a rise in the delivery of nitrogen (N) to estuarine and near-shore waters. Potential routes of anthropogenic N inputs include export from estuaries, atmospheric deposition, and dissolved N inputs from groundwater outflow. Stable...

  18. Spatial Variability of Nitrogen Isotope Ratios of Particulate Material from Northwest Atlantic Continental Shelf Waters

    Science.gov (United States)

    Human encroachment on the coastal zone has led to a rise in the delivery of nitrogen (N) to estuarine and near-shore waters. Potential routes of anthropogenic N inputs include export from estuaries, atmospheric deposition, and dissolved N inputs from groundwater outflow. Stable...

  19. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  20. Analysis and removal of ITER relevant materials and deposits by laser ablation

    Science.gov (United States)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin

    2014-12-01

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm2, power density 0.3-3.9 GW/cm2). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated.

  1. Bruggeman formalism vs. `Bruggeman formalism': Particulate composite materials comprising oriented ellipsoidal particles

    CERN Document Server

    Mackay, Tom G

    2012-01-01

    Two different formalisms for the homogenization of composite materials containing oriented ellipsoidal particles of isotropic dielectric materials are being named after Bruggeman. Numerical studies reveal clear differences between the two formalisms which may be exacerbated: (i) if the component particles become more aspherical, (ii) at mid-range values of the volume fractions, and (iii) if the homogenized component material is dissipative. The correct Bruggeman formalism uses the correct polarizability density dyadics of the component particles, but the other formalism does not.

  2. Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Gouri Radhakrishnan

    2013-12-01

    Full Text Available Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation, the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

  3. Process for electroless deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  4. Process for electrolytic deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  5. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  6. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.

    Science.gov (United States)

    Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman

    2011-01-15

    Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme.

  7. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  8. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  9. ZnO Thin Films Deposited on Textile Material Substrates for Biomedical Applications

    Science.gov (United States)

    Duta, L.; Popescu, A. C.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Zgura, I.; Enculescu, I.; Dumitrescu, I.

    We report on the coating with ZnO adherent thin films of cotton woven fabrics by Pulsed laser deposition technique in order to obtain innovative textile materials, presenting protective effects against UV radiations and antifungal action.

  10. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Science.gov (United States)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  11. Alumina/Ce-Tzp Functionally Graded Materials by Electrophoretic Deposition

    Institute of Scientific and Technical Information of China (English)

    C.Zhao, J.Vleugels; O.Van Der Biest

    2000-01-01

    Cylindrical Al2O3/Ce-TZP functionally graded composites were fabricated by electrophoretic deposition and pressureless sintering in air. A continuous change in composition was realized by changing the composition of the suspension during deposition. In order to achieve full densification, a temperature above 1550℃ was necessary. The resultant FGM cylinder with a diameter of 5.6 mm shows the following structure: a central hole with a diameter less than 0.5 mm, a tough Ce-ZrO2 core with a diameter of about 3 mm, a gradient layer of about 1 mm, and a hard Al2O3-rich surface layer. The Ce-ZrO2 core has a Vickers hardness between 10and 11 GPa and an excellent toughness (>10 MPa√m). In the gradient layer, hardness and toughness vary continuously along the radius. The surface layer has a hardness of 15.5 GPa and a modest toughness of 2.5MPa√m.

  12. DELINEATION OF BOUNDARY CONTOURS OF MINERAL RAW MATERIALS WITHIN THE DEPOSIT SPACE CONSIDERING THE QUALITY

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1990-12-01

    Full Text Available On the basis of performed explorations, in the phase of deposit preparation and development for exploitation the obtained results regarding the raw material quality were transfered to the surface. The results served both for the development and planning of deposit excavation dynamics and for the delineation of boundary contours by mineral raw materials within the deposit space considering the quality, The case presented in the article refers to the marl and limestone open pit for the cement industry, the »Partizan« near Split (the paper is published in Croatian.

  13. Influence of oils and materials of construction on formation of high-temperature deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gutenev, B.S.; Poroikov, N.P.; Bakunin, V.N.

    1988-01-01

    A correlation was established between the quantity of deposits formed on the hot surfaces of gas turbine engines and the oil composition and material composition and corrosion behavior for those engine parts in contact with the oil. A test stand was designed for determining the effect of engine materials on deposit formation. Test results established that the strongest catalytic effects on the process of high-temperature deposit formation derive from copper, lead, and brass components. The metals were tested in a range of synthetic lubricating oils. Data were compared on interactions of the oils with a steel surface and were ranked in order of decreasing tendency to form deposits. Maximum working temperatures for the oils were determined. The effects of oil additives on deposition were also assessed.

  14. Effect of oils and structural materials on the formation of high-temperature deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gutenev, B.S.; Poroikov, N.P.; Bakunin, V.N.

    1987-01-01

    The objective of the study was to establish a relationship between the amount of deposits formed on the hot surfaces of gas turbine engine components, oil composition, and the nature of the structural materials in contact with the oil. A method and a test apparatus are described which make it possible to evaluate the effect of various structural materials on the formation of deposits. It is shown that copper, lead, and brass have a particularly strong catalytic effect on the formation of high-temperature deposits in the presence of oils. Various synthetic oils are evaluated with respect to their tendency to form deposits, and the mechanisms responsible for the formation of high-temperature deposits are briefly examined. 7 references.

  15. Ice Formation via Deposition Mode Nucleation Onto Dust Particulates: The University of Toronto Continuous Flow Diffusion Chamber

    Science.gov (United States)

    Kanji, Z. A.; Abbatt, J. P.; Cotton, R.; Demott, P.; Jones, H.; Möhler, O.; Stetzer, O.

    2008-12-01

    Laboratory studies are described whereby the heterogeneous ice nucleating ability of various dust samples were studied, for particles suspended in a newly built thermal gradient continuous flow diffusion chamber (TG-CFDC). Ice formation is observed using an optical particle counter (OPC) and the relative humidity (RH) and temperature conditions of the flow system are validated by observing homogenous freezing of H2SO4 aerosols. At the Fourth International Ice Nucleation Workshop (ICIS 07) in Karslruhe, Germany this system was used to investigate ice nucleation primarily in the vapor deposition mode, for Arizona Test Dust (ATD), Israeli Desert Dust (ID), Canary Island Dust (CID), Saharan Dust (SD), Graphite Spark Soot, Snomax® (dead bacteria) and live bacteria. The aerosol size was in the submicron range with an approximate cut off of 700 nm and a mode of 350 nm. Temperatures for nucleation were varied from 265 - 230 K. The dust aerosols were generally found to be more efficient than soot. At warmer temperatures (263 K) the bacteria were found to be active in the deposition mode which was not the case for dusts. Among the various dust types at 248 K, the CID was more efficient than ATD at nucleating ice when efficiency is based on lowest onset RH conditions for ice formation in our chamber. We also present preliminary results for the effect of total surface area versus size of aerosols on ice nucleation using ATD as a surrogate for naturally occurring mineral dust.

  16. Oxide-based materials by atomic layer deposition

    Science.gov (United States)

    Godlewski, Marek; Pietruszka, Rafał; Kaszewski, Jarosław; Witkowski, Bartłomiej S.; Gierałtowska, Sylwia; Wachnicki, Łukasz; Godlewski, Michał M.; Slonska, Anna; Gajewski, Zdzisław

    2017-02-01

    Thin films of wide band-gap oxides grown by Atomic Layer Deposition (ALD) are suitable for a range of applications. Some of these applications will be presented. First of all, ALD-grown high-k HfO2 is used as a gate oxide in the electronic devices. Moreover, ALD-grown oxides can be used in memory devices, in transparent transistors, or as elements of solar cells. Regarding photovoltaics (PV), ALD-grown thin films of Al2O3 are already used as anti-reflection layers. In addition, thin films of ZnO are tested as replacement of ITO in PV devices. New applications in organic photovoltaics, electronics and optoelectronics are also demonstrated Considering new applications, the same layers, as used in electronics, can also find applications in biology, medicine and in a food industry. This is because layers of high-k oxides show antibacterial activity, as discussed in this work.

  17. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  18. Thermal desorption GC-MS as a tool to provide PAH certified standard reference material on particulate matter quartz filters.

    Science.gov (United States)

    Grandesso, Emanuela; Pérez Ballesta, Pascual; Kowalewski, Konrad

    2013-02-15

    Reference materials for particulate matter (PM) on filter media are not available for the quantification of polycyclic aromatic hydrocarbons (PAHs) in ambient air. This is due to the difficulty of obtaining reference material that has a homogeneous distribution on a filter surface that is large enough for characterization and distribution. High volume sample filters from different locations and seasons were considered to validate the feasibility of the use of quartz filters as reference material for PAH concentrations. A rapid thermal desorption (TD) technique coupled with gas chromatography/mass spectroscopy was applied to characterise the material for the content of fifteen different PAHs. TD technique allowed for rapid and accurate analysis of small sections of filter (5mm diameter), leaving enough material for the production of twenty sub-filter cuts (42 mm diameter) that could be used for distribution and control. Stability and homogeneity tests required for material certification were performed as indicated by the ISO guide 34:2009 and ISO 35:2006. The contribution of the heterogeneous distribution of PAHs on the filter surface resulted generally lower than 10% and higher for more volatile PAHs. One year of storage at -18°C indicated no significant variation in PAH concentrations. Nevertheless, a methodology for shipping and storing of the filter material at ambient temperature in especially designed plastic envelopes, was also shown to allow for stabile concentrations within twenty days. The method accuracy was confirmed by the analysis of NIST SRM 1649a (urban dust) and PAH concentrations were validated against the reference values obtained from an inter-laboratory exercise. In the case of benzo[a]pyrene for masses quantified between 100 pg and 10 ng the TD method provided expanded uncertainties of circa 10%, while the inter-laboratory reference value uncertainties ranged between 15 and 20%. The evaluation of these results supports the use of the presented

  19. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...... at 355 nm at a fluence of 2.5-12 J/cm(2). Even at this high fluence, Fourier transform infrared spectroscopy (FTIR) indicates a chemical structure of the deposit close to that of the un-irradiated PEG. Matrix assisted laser desorption and ionization (MALDI) and gel permeation chromatography (GPC) show...... that the mass distribution of the deposited PEG is similar to that of the starting material. Optical pictures of the films show particle structures of PEG of a size up to 5-10 mu m. The deposition rate measured with a quartz crystal microbalance is typically of the order of 1 ng/ (cm(2) shot). (c) 2005 Elsevier...

  20. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    Science.gov (United States)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  1. Shell Material's Performance of the Microcapsule for Electrolytic Co-Deposition

    Science.gov (United States)

    Liu, Hui Cong; Xu, Xiu Qing; Li, Wei Ping; Guo, Yan Hong; Zhu, Li-Qun

    The shell material of microcapsules has an important effect on the electrolytic co-deposition behavior, the release of core material and the surface performance of composite coating. This paper discussed the tensile property and the stability of three shell materials including polyvinyl alcohol (PVA), gelatin and methyl cellulose (MC). It is found that these three shell materials have good mechanical strength and flexibility which are favorable to electrolytic co-deposition and stability of microcapsules in composite coating and that MC has well permeability and porosity which has a positive effect on the release of the core material in composite coating. Moreover, the study of the thermal properties and water vapor permeability of the three shell materials showed that their permeability improved with increase of temperature and humidity. In addition, the composite copper coating containing microcapsules with PVA, gelatin or MC as shell material was prepared respectively.

  2. Characterized the pattern of the material deposition in the HL-2A tokamak

    Science.gov (United States)

    Cai, Laizhong; Wang, Jianbao; Wu, Ting; Zeng, Xiaoxiao; Hai, Ran; Ding, Hongbin

    2017-03-01

    Since the divertor geometry of a tokamak has a strong impact on the material erosion and deposition on the wall and HL-2A has a unique divertor configuration, it is necessary to investigate the material deposition pattern in HL-2A although a few results on other tokamaks have already been published. In this paper, tiles retrieved from the vessel are analyzed ex-situ by SIMS, SEM and laser-induced breakdown spectroscopy (LIBS). And deposition behind the lower divertor is in-situ measured by a quartz crystal microbalance (QMB). The deposition in HL-2A displays a complex pattern and clear localization characteristic. The thickness of the deposition layer varies in the range of 0-4μm. And in-situ diagnostic of QMB indicates that the average thickness of the deposition layer per pulse is over ten nanometers. In addition, the results imply that Si, Fe and D have different behaviors during the material deposition in HL-2A.

  3. Copyright licenses and legal deposit practices of grey multimedia materials

    OpenAIRE

    Debbie L. Rabina; GreyNet, Grey Literature Network Service

    2008-01-01

    The purpose of this study is to determine whether the type of copyright license under which grey multimedia materials are published makes a difference in terms of their inclusion in library catalogs. The two types of copyright licenses examined are Creative Commons and traditional copyright, and the library catalogs examined is that of the United States Library of Congress and national catalogs of countries represented in the population of the study. The population included grey multimedia ma...

  4. Free-space reflection method for measuring moisture content and bulk density of particulate materials at microwave frequency

    Science.gov (United States)

    Li, Chenxiao; Han, Bing; Zhang, Tao

    2015-03-01

    A measurement system based on free-space reflection method is designed for simultaneous and independent determination of moisture content and bulk density of particulate materials. The proposed system consists of microwave cavity oscillator, horn antenna, slide rail, sample holder, mixer, and digital meter. Sand and rice with different moisture contents and bulk densities are chosen as samples. Calibration models for moisture content and bulk density are proposed according to the measurement of the position of the minimum of the traveling-standing wave and the ratio of the maximum-to-minimum field strength of the traveling-standing wave at different temperatures. The moisture constant, ranging from 0% to 24.6%, is obtained with a coefficient of determination (R2) greater than 0.982 and a standard error of prediction (SEP) value of less than 0.695%. The bulk density, ranging from 0.501 g/cm3 to 1.822 g/cm3, is determined with a R2 ≥ 0.961 and a SEP value ranging from 0.0144 g/cm3 to 0.0382 g/cm3 for different samples.

  5. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    Science.gov (United States)

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner

    2005-10-15

    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  6. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NARCIS (Netherlands)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-01-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study we

  7. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent

    Energy Technology Data Exchange (ETDEWEB)

    Keillor, Martin E.; Arrigo, Leah M.; Baciak, James E.; Chipman, Veraun; Detwiler, Rebecca S.; Emer, Dudley F.; Kernan, Warnick J.; Kirkham, Randy R.; MacDougall, Matthew R.; Milbrath, Brian D.; Rishel, Jeremy P.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.

    2016-01-01

    An experiment to release radioactive particles representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven “air cannon” was used to release lanthanum-140 at ambient temperatures. The radioisotope 140La was chosen as a representative fission fragment with a short half-life and prominent gamma-ray emissions; the choice was also influenced by the successful production and use of 140La with low levels of radioactive contaminants in the Defence Research and Development Canada Field Trials. The source was created through activation of high-purity lanthanum oxide at the TRIGA research reactor of Washington State University, Pullman, Washington. Witness plates and air samplers were laid out in an irregular grid covering the area for which the plume was anticipated to deposit based on climatological wind records. A vehicle-mounted spectrometer, and handheld and backpack instruments ranging from polyvinyl toluene to high purity germanium, were used to survey the plume. Additionally, three soil sampling techniques were investigated. The relative sensitivity and utility of sampling and survey methods are discussed in the context of On-Site Inspection.

  8. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific

    Directory of Open Access Journals (Sweden)

    M. Tedetti

    2015-10-01

    Full Text Available In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S–166°26.905 E from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM (ag(λ, particulate matter (ap(λ and CDOM + particulate matter (ag+p(λ were measured using a point-source integrating-cavity absorption meter (PSICAM, while fluorescent DOM (FDOM components were determined from excitation-emission matrices (EEMs combined with parallel factor analysis (PARAFAC. The evolutions of ag(λ, ap(λ and ag+p(λ in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9–10, and an increase from days 9–10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores did not follow the evolution of CDOM and particulate matter, proving that these were driven by different

  9. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific)

    Science.gov (United States)

    Tedetti, M.; Marie, L.; Röttgers, R.; Rodier, M.; Van Wambeke, F.; Helias, S.; Caffin, M.; Cornet-Barthaux, V.; Dupouy, C.

    2015-10-01

    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) (ag(λ)), particulate matter (ap(λ)) and CDOM + particulate matter (ag+p(λ)) were measured using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ), ap(λ) and ag+p(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, proving that these were driven by different production

  10. Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Baron, J.; McKnight, D.; Denning, A.S.

    1991-01-01

    The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May-July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer. ?? 1991 Kluwer Academic Publishers.

  11. AFM-porosimetry: density and pore volume measurements of particulate materials.

    Science.gov (United States)

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  12. Inter- and intra-subject variability of kinetics of airway exhalation and deposition of particulate matter in indoor polluted environments.

    Science.gov (United States)

    Goldoni, Matteo; Acampa, Olga; Longo, Sonia; Poli, Diana; Tagliaferri, Sara; Corradi, Massimo; Renzulli, Francesco Saverio; Mutti, Antonio

    2012-04-01

    PM(2.5) generated by indoor combustion activities can contribute significantly to personal PM exposure. The aims of this study were: (1) to validate a device specifically designed to study the kinetics of particle exhalation and the percentage of airway particle deposition (%DEP) in polluted indoor environments (welding fumes, environmental tobacco smoke - ETS) and (2) to assess the intra- and inter-subject variability of the signal. The device was tested on 14 subjects exposed to welding fumes and 10 subjects exposed to environmental tobacco smoke (ETS), performing repeated measures at different environmental PM concentrations. The intra-subject variability of the signal for particles with diameter 0.3-1.0 μm showed a geometric mean of %CV always below 6%, despite the values of %DEP. In the welding fume study, the increase in airborne 0.5-1.0 μm PM concentrations between the consulting room and production department was explainable in terms of increased density due to the metallic composition of particles. The %DEP of 0.3-1.0 μm ETS particles decreased with airborne PM concentration due to the technical limits of a laser particle counter and the perturbation induced by the physical characteristics of ETS PM. However, also at those extreme conditions, the signal remained repeatable and the individual susceptibility to PM remained substantially unaltered. In conclusion, the versatility and portability of our device, together with the repeatability of the signal, confirmed that the kinetics of exhaled particles and %DEP could be routinely measured in polluted environments and used to define individual susceptibility to airborne particles. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. On model materials designed by atomic layer deposition for catalysis purposes

    OpenAIRE

    Diskus, Madeleine

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  14. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    Science.gov (United States)

    2016-04-27

    The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic , semiconducting, and ceramic thin films with...and rapid deposition of a wide variety of metallic , semiconducting, and ceramic thin films with microstructures and composite geometries enhanced by...inexpensive source materials. In contrast, sputtering can produce thin films of the most refractory metals , like W, however one must use mTorr

  15. PARTICLE DEPOSITION ON SUPERHYDROPHOBIC SURFACES BY SESSILE DROPLET EVAPORATION

    OpenAIRE

    Dicuangco, Mercy G.

    2014-01-01

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hyd...

  16. The mechanical behaviour of packed particulates

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, R

    1998-01-01

    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide

  17. Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Bowie, Andrew R; Townsend, Ashley T; Lannuzel, Delphine; Remenyi, Tomas A; van der Merwe, Pier

    2010-08-31

    Trace elements often limit phytoplankton growth in the ocean, and the quantification of particulate forms is essential to fully understand their biogeochemical cycling. There is presently a lack of reliable measurements on the trace elemental content of marine particles, in part due to the inadequacies of the sampling and analytical methods employed. Here we report on the development of a series of state-of-the-art trace metal clean methods to collect and process oceanic particulate material in open-ocean and sea ice environments, including sampling, size-fractionated filtration, particle digestions and analysis by magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS). Particular attention was paid to the analysis of certified reference materials (CRMs) and field blanks, which are typically the limiting factor for the accurate analysis of low concentrations of trace metals in marine particulate samples. Theoretical detection limits (3 s of the blank) were low for all 17 elements considered, and varied according to filter material and porosity (sub-microg L(-1) for polycarbonate filters and 1-2 microg L(-1) for quartz and polyester filters). Analytical accuracy was verified using fresh water CRMs, with excellent recoveries noted (93-103%). Digestion efficiencies for various acid combinations were assessed using sediment and plankton CRMs. Using nitric acid only, good recoveries (79-90%) were achieved for Mo, Cd, Ba, Pb, Mn, Fe, Co, Ni, Cu, Zn and Ga. The addition of HF was necessary for the quantitative recovery of the more refractory trace elements such as U, Al, V and Cr. Bioactive elements such as P can also be analysed and used as a biomass normaliser. Our developed sampling and analytical methods proved reliable when applied during two major field programs in both the open Southern Ocean and Antarctic sea ice environments during the International Polar Year in 2007. Trace elemental data are presented for particulate samples collected in both

  18. Direct Digital Manufacturing of Integrated Naval Systems Using Ultrasonic Consolidation, Support Material Deposition and Direct Write Technologies

    Science.gov (United States)

    2012-02-17

    using fused deposition modeling technology • VTT Technical Research Center, Finland o focusing on direct write technologies and applications of...South Korea: focusing on multiple material process planning, and metal processing using fused deposition modeling technology • VTT Technical

  19. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

    Indian Academy of Sciences (India)

    Awadesh Kr Mallik; Nanadadulal Dandapat; Prajit Ghosh; Utpal Ganguly; Sukhendu Jana; Sayan Das; Kaustav Guha; Garfield Rebello; Samir Kumar Lahiri; Someswar Datta

    2013-04-01

    Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0.6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14.4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10-7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

  20. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Johansen, Mark E; Roberts, Jessica K; Thomas, Karen C; Romero, Erin G; Lee, Jeewoo; Yost, Garold S; Veranth, John M; Reilly, Christopher A

    2012-03-01

    Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.

  1. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (south-west Pacific)

    Science.gov (United States)

    Tedetti, Marc; Marie, Lauriane; Röttgers, Rüdiger; Rodier, Martine; Van Wambeke, France; Helias, Sandra; Caffin, Mathieu; Cornet-Barthaux, Véronique; Dupouy, Cécile

    2016-06-01

    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphate at depths of 1, 6 and 12 m and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) [ag(λ)] and particulate matter [ap(λ)] were determined using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ) and ap(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphate fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton biomass during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and ultraviolet C (UVC) humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, suggesting they were driven by different production/degradation processes. Finally, the

  2. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  3. Numerical simulation of the transient multiphase field during plasma deposition manufacturing composite materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A solid/liquid/gas unified model has been developed to investigate the gradient composition formation during the plasma deposition manufacturing(PDM) composite materials process. In this model,an enthalpy porosity model was applied to deal with the melting and solidification of the deposited layer,and a level-set approach was introduced to track the evolution of the free surface of the molten pool and the deposited layer. Moreover,complicated physical phenomena occurring at the liquid/gas interface,including forced convection heat loss,heat emission and plasma heat source,have been incorporated into the governing equations by source terms. In this study,the numerical experiment of nickel base alloy powder deposited on the medium steel substrate by PDM technique was implemented based on the staggered grid and SIMPLEC algorithm. Concentration gradient distribution of the solute material at the composite material interface,fluid flow and temperature distribution in the molten pool and the deposited layer have been investigated in detail.

  4. Numerical simulation of the transient multiphase field during plasma deposition manufacturing composite materials

    Institute of Scientific and Technical Information of China (English)

    KONG FanRong; ZHANG HaiOu; WANG GuiLan

    2009-01-01

    A solid/liquid/gas unified model has been developed to investigate the gradient composition formation during the plasma deposition manufacturing (PDM) composite materials process. In this model, an enthalpy porosity model was applied to deal with the melting end solidification of the deposited layer, and a level-set approach was introduced to track the evolution of the free surface of the molten pool and the deposited layer. Moreover, complicated physical phenomena occurring at the liquid/gas inter-face, including forced convection heat loss, heat emission and plasma heat source, have been incor-porated into the governing equations by source terms. In this study, the numerical experiment of nickel base alloy powder deposited on the medium steel substrate by PDM technique was implemented based on the staggered grid and SlMPLEC algorithm. Concentration gradient distribution of the solute mate-rial at the composite material interface, fluid flow and temperature distribution in the molten pool and the deposited layer have been investigated in detail.

  5. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John [Los Alamos National Laboratory; Aravamudhan, Shyan [U OF SOUTH FL; Goddard, Paul A [U OF OXFORD; Bhansali, Shekhar [U OF SOUTH FL

    2008-01-01

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  6. Bearing-Foreign Material Deposition on Retrieved Co-Cr Femoral Heads: Composition and Morphology

    Directory of Open Access Journals (Sweden)

    Nishant M. Tikekar

    2015-01-01

    Full Text Available Bearing-foreign material deposition onto a femoral head can occur from contact with an acetabular shell due to dislocation, reduction, or subluxation. The purpose of this study was to comprehensively characterize deposit regions on retrieved cobalt-chrome femoral heads from metal-on-polyethylene total hip arthroplasties that had experienced such adverse events. The morphology, topography, and composition of deposition regions were characterized using macrophotography, optical profilometry, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The deposit areas were relatively large, they were much rougher than the surrounding undamaged clean areas, and they displayed several distinct morphologies. Titanium alloy elements were the predominant constituents. Calcium and phosphorous were also detected within the deposit areas, in a composition that could nucleate abrasive hydroxyapatite. In addition, tungsten-rich particles, likely present as tungsten carbide, were observed on top of the titanium deposits. The increased roughness associated with these deposition features would be expected to accelerate damage and wear of the opposing liner and hence accelerate the development of osteolysis.

  7. High energy high rate pulsed power processing of materials by powder consolidation and by railgun deposition

    Science.gov (United States)

    Persad, C.; Marcus, H. L.; Weldon, W. F.

    1987-03-01

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other High Energy High Rate Processing. The characteristics of the High Energy High Rate (1MJ/s) powder consolidation using megampere current pulses from a Homopolar Generator, have been defined. Molybdenum Alloy TZM, A Nickel based metallic glass, Copper graphite composites, and P/M Aluminum Alloy X7091 have been investigated. The powder consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with sub second high temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time Temperature Transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Deposition experiments were conducted using an exploding foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate.

  8. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    Science.gov (United States)

    2015-04-09

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 Epitaxial reactor, MOCVD, Infrared Materials, CdTe and...researchers from First Solar in depositing single crystal solar cell materials. A research contract worth over $150K was awarded to RPI b First Solar based on...Administrative Support Army Contracting Command - APG Research Triangle Park Division TEL: (919) 549-4269 FAX: (919) 549-4388 Table of

  9. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    OpenAIRE

    Adhiyamaan Arivazhagan; Ammar Saleem; S. H. Masood; Mostafa Nikzad; K. A. JAGADEESH

    2014-01-01

    Fused Deposition Modelling (FDM), a renowned Rapid Prototyping (RP) process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA) is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single canti...

  10. Measurement of residual stresses in deposited films of SOFC component materials

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y. [Electrotechnical Lab., Ibaraki (Japan)

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  11. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    Science.gov (United States)

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component

  12. Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material.

    Science.gov (United States)

    Shapiro, Darien; Deering-Rice, Cassandra E; Romero, Erin G; Hughen, Ronald W; Light, Alan R; Veranth, John M; Reilly, Christopher A

    2013-05-20

    Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.

  13. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  14. Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei F.; Hanna, Sarah J.; Zaveri, Rahul A.; Potter, Katie; You, Yuan; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required. Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic volatile organic compounds (VOCs) such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2 × 10-1 to ˜ 6 × 106 Pa s from 30 to 90 % RH, and greater than ˜ 2 × 108 Pa s (similar to or greater than the viscosity of tar pitch) for RH ≤ 17 %. These viscosities correspond to Stokes-Einstein-equivalent diffusion coefficients for large organic molecules of ˜ 2 × 10-15 cm2 s-1 for 30 % RH, and lower than ˜ 3 × 10-17 cm2 s-1 for RH ≤ 17 %. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1-5 h for 30 % RH, and higher than ˜ 100 h for RH ≤ 17 %. As a starting point for understanding the mixing times of large organic molecules in organic particulate matter over cities, we applied the mixing times determined for toluene-derived SOM particles to the world's top 15 most populous megacities. If the organic particulate matter in these megacities is similar to the toluene-derived SOM in this study, in Istanbul, Tokyo, Shanghai, and São Paulo, mixing times in organic particulate matter during certain periods of the year may be very short, and the particles may be well-mixed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Beijing, Mexico City, Cairo, and Karachi may be long and the particles may not be well-mixed in the afternoon (15:00-17:00 LT) during certain times of the

  15. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  16. Computer program for prediction of the deposition of material released from fixed and rotary wing aircraft

    Science.gov (United States)

    Teske, M. E.

    1984-01-01

    This is a user manual for the computer code ""AGDISP'' (AGricultural DISPersal) which has been developed to predict the deposition of material released from fixed and rotary wing aircraft in a single-pass, computationally efficient manner. The formulation of the code is novel in that the mean particle trajectory and the variance about the mean resulting from turbulent fluid fluctuations are simultaneously predicted. The code presently includes the capability of assessing the influence of neutral atmospheric conditions, inviscid wake vortices, particle evaporation, plant canopy and terrain on the deposition pattern.

  17. Geologic Evolution of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    Science.gov (United States)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate we just don't know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering.

  18. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.

    Science.gov (United States)

    Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi

    2016-04-18

    Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2)  = 0.53) and non-alpine (R (2)  = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study

  19. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  20. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    Science.gov (United States)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  1. Isotopic tracing of ore-forming source materials for Dexing porphyry copper deposit of Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Peng QIAN; Jianjun LU

    2008-01-01

    Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite were close to the δ13CPDB value of original magma; δ30Si values of the samples at the ore-forming stage were close to the δ30Si value range of magma, δ30Si values of partial samples were far away from it; Cu isotopic compositions of massive chalcopyrite formed at the early ore-forming stage are higher than that of veinal chalcopyrite formed at the later ore-forming stage. The results show that ore-forming materials were mainly derived from the porphyry body, and part of them were from wall rock materials.

  2. Monte Carlo calculations of the energy deposited in biological samples and shielding materials

    Science.gov (United States)

    Akar Tarim, U.; Gurler, O.; Ozmutlu, E. N.; Yalcin, S.

    2014-03-01

    The energy deposited by gamma radiation from the Cs-137 isotope into body tissues (bone and muscle), tissue-like medium (water), and radiation shielding materials (concrete, lead, and water), which is of interest for radiation dosimetry, was obtained using a simple Monte Carlo algorithm. The algorithm also provides a realistic picture of the distribution of backscattered photons from the target and the distribution of photons scattered forward after several scatterings in the scatterer, which is useful in studying radiation shielding. The presented method in this work constitutes an attempt to evaluate the amount of energy absorbed by body tissues and shielding materials.

  3. Development of slurry erosion resistant materials by laser-based direct metal deposition process

    Science.gov (United States)

    Yarrapareddy, Eswar

    The current research deals with the development of slurry erosion resistant materials by the laser-based direct metal deposition (LBDMD) process for different industrial applications. The work started with the development of functionally graded materials using nickel-tungsten carbide (Ni-Tung) powders and finally produced a better erosion resistant materials system by reinforcing nano-tungsten carbide particles with nickel-tungsten carbide powders. Functionally graded materials (FGMs) consisting of Ni-Tung) powders with different concentrations of tungsten carbide particles are successfully deposited by the LBDMD process on 4140 Steel substrates. The slurry erosion behavior of the Ni-Tung FGMs is studied at different impingement angles. The slurry erosion tests are performed at Southern Methodist University's Center for Laser Aided Manufacturing using a centrifugal force driven erosion testing machine. For the purpose of comparison, Ni-Tung 40 depositions and 4140 steel samples are also tested. The results indicate that the LBDMD process is able to deposit defect-free Ni-Tung FGMs with a uniform distribution of tungsten carbide particles in a nickel-based matrix. The slurry erosion resistance of Ni-Tung FGMs is observed to be much better than that of the Ni-Tung 40 and 4140 steels. The superior slurry erosion resistance of Ni-Tung FGMs is attributed to the presence of large amounts of very hard tungsten carbide particles. The material removal rate (MRR) from erosion decreases with a decrease in the impingement angle, except at a 45 degree impingement angle on 4140 steel. The relationship among the material removal rates, the craters depth of penetration, the areas of the craters formed, the average surface roughness values, and the impingement angles is established for Ni-Tung FGMs, Ni-Tung 40, and 4140 steels. The surface profiles of the eroded samples are analyzed by measuring the depth of penetration of the craters formed by the slurry jet using a needle

  4. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

    Science.gov (United States)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  5. The effect of process variables on microstructure in laser-deposited materials

    Science.gov (United States)

    Bontha, Srikanth

    Laser deposition of titanium alloys is under consideration for aerospace applications, which require the consistent control of microstructure and resulting mechanical properties. To date, only limited experimental data exists to link deposition process variables (e.g., laser power and velocity) to resulting microstructure (e.g., grain size and morphology) in laser-deposited materials, and suitable microstructures have typically been obtained only by trial and error. In addition, it is unclear whether knowledge based on small-scale laser deposition processes (e.g., LENS(TM)) can be applied to large-scale (higher power) processes currently under development for commercial applications. Therefore, simulation-based methods are needed to predict the effects of process variables and size-scale on microstructure in laser-deposited titanium and other aerospace materials. The ability to predict and control microstructure in laser deposition processes requires an understanding of the thermal conditions at the onset of solidification. The focus of this work is the development of thermal process maps relating solidification cooling rate and thermal gradient (the key parameters controlling microstructure) to laser deposition process variables (laser power and velocity). The approach employs the well-known Rosenthal solution for a moving point heat source traversing an infinite substrate. Cooling rates and thermal gradients at the onset of solidification are numerically extracted from the Rosenthal solution throughout the depth of the melt pool, and dimensionless process maps are presented for both 2-D thin-wall and bulky 3-D geometries. Results for both small-scale (LENS(TM)) and large-scale (higher power) processes are plotted on solidification maps for predicting trends in grain morphology in laser-deposited Ti-6Al-4V. Although the Rosenthal predictions neglect the nonlinear effects of temperature-dependent properties and latent heat of transformation, a comparison with 2-D

  6. Nucleation and growth of chemically vapor deposited tungsten on various substrate materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.

    1987-11-01

    W films produced by chemical-vapor deposition (CVD), typically via reduction of WF/sub 6/, are being used for numerous applications in very large scale integrated circuit technology. Blanket and selectively deposited films require nucleation and growth on a specific underlayer material: Si, metal, or metal silicide. The compatibility of CVD W with various underlayers is reviewed for the device applications of contact/via fill, diffusion barrier, metal interconnect, and source/drain coating. Nucleation of W directly on single crystal Si can sometimes produce tunnel-defect structures at the edges or along the entire interface of the deposit. Sputtered Mo and W, and to some extent TiW and TiN, have been shown to be suitable nucleation layers for CVD W, yielding a fluorine-free interface with low-electrical contact resistance. A sputtered W/Ti adhesion bilayer is demonstrated for a blanket W deposition+etchback process. CoSi/sub 2/ appears an appropriate choice where CVD W and salicide technologies are combined.

  7. Sources, transport and deposition of terrestrial organic material: A case study from southwestern Africa

    Science.gov (United States)

    Herrmann, Nicole; Boom, Arnoud; Carr, Andrew S.; Chase, Brian M.; Granger, Robyn; Hahn, Annette; Zabel, Matthias; Schefuß, Enno

    2016-10-01

    Southwestern Africa's coastal marine mudbelt, a prominent Holocene sediment package, provides a valuable archive for reconstructing terrestrial palaeoclimates on the adjacent continent. While the origin of terrestrial inorganic material has been intensively studied, the sources of terrigenous organic material deposited in the mudbelt are yet unclear. In this study, plant wax derived n-alkanes and their compound-specific δ13C in soils, flood deposits and suspension loads from regional fluvial systems and marine sediments are analysed to characterize the origin of terrestrial organic material in the southwest African mudbelt. Soils from different biomes in the catchments of the Orange River and small west coast rivers show on average distinct n-alkane distributions and compound-specific δ13C values reflecting biome-specific vegetation types, most notably the winter rainfall associated Fynbos Biome of the southwestern Cape. In the fluvial sediment samples from the Orange River, changes in the n-alkane distributions and compound-specific δ13C compositions reveal an overprint by local vegetation along the river's course. The smaller west coast rivers show distinct signals, reflecting their small catchment areas and particular vegetation communities. Marine surface sediments spanning a transect from the northern mudbelt (29°S) to St. Helena Bay (33°S) reveal subtle, but spatially coherent, changes in n-alkane distributions and compound-specific δ13C, indicating the influence of Orange River sediments in the northern mudbelt, the increasing importance of terrigenous input from the adjacent western coastal biomes in the central mudbelt, and contributions from the Fynbos Biome to the southern mudbelt. These findings indicate the different sources of terrestrial organic material deposited in the mudbelt, and highlight the potential the mudbelt has to preserve evidence of environmental change from the adjacent continent.

  8. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  9. Finite element modeling of deposition of ceramic material during SLM additive manufacturing

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available A three dimensional model for material deposition in Selective Laser Melting (SLM with application to Al2O3-ZrO2 eutectic ceramic is presented. As the material is transparent to laser, dopants are added to increase the heat absorption efficiency. Based on Beer-Lambert law, a volumetric heat source model taking into account the material absorption is derived. The Level Set method with multiphase homogenization is used to track the shape of deposed bead and the thermodynamic is coupled to calculate the melting-solidification path. The shrinkage during consolidation from powder to compact medium is modeled by a compressible Newtonian constitutive law. A semi-implicit formulation of surface tension is used, which permits a stable resolution to capture the gas-liquid interface. The formation of droplets is obtained and slight waves of melt pool are observed. The influence of different process parameters on temperature distribution, melt pool profiles and bead shapes is discussed.

  10. Behavior of alumina barrier layer in the supporting electrolytes for deposition of nanowired materials

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, Arunas, E-mail: jagmin@ktl.mii.l [Institute of Chemistry, A. Gostauto 9, 01108 Vilnius (Lithuania); Cesuniene, Asta [Institute of Chemistry, A. Gostauto 9, 01108 Vilnius (Lithuania); Vrublevsky, Igor [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka str, Minsk 220013 (Belarus); Jasulaitiene, Vitalija; Ragalevicius, Rimas [Institute of Chemistry, A. Gostauto 9, 01108 Vilnius (Lithuania)

    2010-03-30

    In this study, we report the results obtained investigating the behavior of sulfuric and chromic acid alumina templates in typical supporting electrolytes frequently used for alternating current (ac) deposition of various nm-scaled materials. Qualitative analysis of voltammetric profiles taken for as-grown, ac-treated and annealed alumina films in a conventional tetraborate re-anodizing solution revealed dramatical changes in the properties of alumina barrier layer during ac treatment in these supporting electrolytes even at low current density. These changes were related here with the transport of protons through the barrier layer during ac treatment, discharge at the metal/oxide interface and hydrogenation of alumina material by hydrogen atoms in an upward way. This conclusion comes from the behavior of Pt/Hg|alumina|Me{sup z+} electrode and the valence band X-ray photoelectron spectra taken from the inner part of alumina barrier layer material before and after the ac treatment.

  11. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  12. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    Science.gov (United States)

    Fernandez, Felix E. (Inventor)

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  13. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  14. Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials

    Science.gov (United States)

    Knorr, Daniel B., Jr.; Williams, Kristen S.; Baril, Neil F.; Weiland, Conan; Andzelm, Jan W.; Lenhart, Joseph L.; Woicik, Joseph C.; Fischer, Daniel A.; Tidrow, Meimei Z.; Bandara, Sumith V.; Henry, Nathan C.

    2014-11-01

    Focal plane arrays of strained layer superlattices (SLSs) composed of InAs/GaSb are excellent candidates for infrared imaging, but one key factor limiting their utility is the lack of a surface passivation technique capable of protecting the mesa sidewall from degradation. Along these lines, we demonstrate the use of aqueous 3-aminopropyl triethoxysilane (APTES) deposited as a surface functionalizing agent for subsequent polymer passivation on InAs and GaSb surfaces following a HCl/citric acid procedure to remove the conductive oxide In2O3. Using atomic force microscopy, variable angle spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and modeling with density functional theory (DFT), we demonstrate that APTES films can successfully be deposited on III-V substrates by spin coating and directly compare these films to those deposited on silicon substrates. The HCl/citric acid surface preparation treatment is particularly effective at removing In2O3 without the surface segregation of In oxides observed from use of HCl alone. However, HCl/citric acid surface treatment method does result in heavy oxidation of both Ga and Sb, accompanied by segregation of Ga oxide to the surface. Deposited APTES layer thickness did not depend on the substrate choice, and thicknesses between 1 and 20 nm were obtained for APTES solution concentrations ranging from 0.1 to 2.5 vol %. XPS results for the N1s band of APTES showed that the content of ionic nitrogen was high (∼50%) for the thinnest films (∼1 nm), and decreased with increasing film thickness. These results indicate that APTES can indeed be used to form a silane surface layer to cover III-V materials substrates. Such APTES silane layers may prove useful in surface passivation of these materials alone, or as surface functionalizing agents for subsequent covalent binding with polymer overlayers like polyimide.

  15. Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film

    DEFF Research Database (Denmark)

    Schou, Jørgen

    2009-01-01

    The physical processes of pulsed laser deposition (PLD) change strongly from the initial light absorption in a target to the final deposition and growth of a film. One of the primary advantages of PLD is the stoichiometric transfer of material from target to a film on a substrate. Even for a stoi...

  16. Development of a direct feed fused deposition modelling technology for multi-material manufacturing

    Science.gov (United States)

    Zhou, Zuoxin; Salaoru, Iulia; Morris, Peter; Gibbons, Gregory J.

    2016-10-01

    Fused Deposition Modelling (FDM) is one of the most widely used Additive Manufacturing (AM) technologies to fabricate a three-dimensional (3D) object via melt processing of a thermoplastic filament. However, it is limited in the variety of materials that can be fed and mixed during the process. In this study, a concept of direct feed FDM technology was presented, which allowed co-feeding of multiple materials in any available form. Different materials were mixed at predetermined ratios and deposited together to form a 3D object with variable properties and functionalities that meet specific requirements. To demonstrate the capability of this AM system, heat-sensitive polyvinyl alcohol (PVOH) and its additives were processed. A geometry with various features was successfully manufactured with dimensions closely matching those of the design specification. The FDM processed PVOH showed insignificant thermal decomposition as it retained its original colour, flexibility, and water solubility. During the process, a fluorescent whitening agent was successfully incorporated into the polymer melt. Therefore, the printed sample exhibited a strong fluorescence effect from the UV-visible and fluorimeter results.

  17. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  18. The detection of iron protoporphyrin (heme b) in phytoplankton and marine particulate material by electrospray ionisation mass spectrometry – comparison with diode array detection

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, Martha, E-mail: m.gledhill@geomar.de

    2014-09-02

    Highlights: • Mass spectrometry was applied to the analysis of heme b in biological material. • Optimal conditions involved selective reactant monitoring of the heme b product ion. • The isotopic signature for this iron tetrapyrrole further improved selectivity. • Mass spectrometry and spectrophotometry were compared for heme b analysis. • Combining techniques made a powerful tool for analysis of heme in marine microbes. - Abstract: A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP{sup +} ion (m/z = 616) or the pseudomolecular [Fe(II)PTP + H]{sup +} ion (m/z = 617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z = 557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616 ± 3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z = 557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2 ± 0.5 fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ = 400 nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z = 300 to 1500 resulted in identification of the

  19. Deoiled asphalt as carbon source for preparation of various carbon materials by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuguang; Yang, Yongzhen; Lin, Xian; Xu, Bingshe; Zhang, Yan [Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China)

    2006-10-15

    Various carbon materials, including vapor grown carbon fibers (VGCFs) and carbon trees, were synthesized by chemical vapor deposition in argon atmosphere, using deoiled asphalt as carbon source and ferrocene as catalyst. Pure carbon microbeads (CMBs) were also obtained by this method in the absence of ferrocene. The influence of different growth parameters, such as ferrocene content, reaction temperature, retention time and argon flow rate, was investigated, with respect to morphology and product yield. The products were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Raman spectroscopy. (author)

  20. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    Science.gov (United States)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  1. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  2. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  3. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Science.gov (United States)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  4. Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials

    Energy Technology Data Exchange (ETDEWEB)

    Knorr Jr, Daniel B., E-mail: daniel.knorr.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Williams, Kristen S. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Baril, Neil F. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Weiland, Conan [National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America (United States); Andzelm, Jan W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Lenhart, Joseph L., E-mail: joseph.l.lenhart.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America (United States); Woicik, Joseph C.; Fischer, Daniel A. [National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America (United States); Tidrow, Meimei Z.; Bandara, Sumith V. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Henry, Nathan C. [U.S. Army, RDECOM, CERDEC, NVSED, Ft. Belvoir, VA 22060, United States of America (United States); Corbin Company, Alexandria, VA 22314, United States of America (United States)

    2014-11-30

    Graphical abstract: - Highlights: • HCl and citric acid showed excellent oxide removal on III/V surfaces. • Aminosilane (APTES) passivation coatings were deposited at 1–20 nm on InAs and GaSb. • These coatings showed high ionic nitrogen levels near the interface via XPS. • DFT was used to find adsorption energies of APTES with and without -OH groups. • DFT modeling showed APTES–NH{sub 3}{sup +} hydrogen abstraction to form surface -OH groups. - Abstract: Focal plane arrays of strained layer superlattices (SLSs) composed of InAs/GaSb are excellent candidates for infrared imaging, but one key factor limiting their utility is the lack of a surface passivation technique capable of protecting the mesa sidewall from degradation. Along these lines, we demonstrate the use of aqueous 3-aminopropyl triethoxysilane (APTES) deposited as a surface functionalizing agent for subsequent polymer passivation on InAs and GaSb surfaces following a HCl/citric acid procedure to remove the conductive oxide In{sub 2}O{sub 3}. Using atomic force microscopy, variable angle spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and modeling with density functional theory (DFT), we demonstrate that APTES films can successfully be deposited on III-V substrates by spin coating and directly compare these films to those deposited on silicon substrates. The HCl/citric acid surface preparation treatment is particularly effective at removing In{sub 2}O{sub 3} without the surface segregation of In oxides observed from use of HCl alone. However, HCl/citric acid surface treatment method does result in heavy oxidation of both Ga and Sb, accompanied by segregation of Ga oxide to the surface. Deposited APTES layer thickness did not depend on the substrate choice, and thicknesses between 1 and 20 nm were obtained for APTES solution concentrations ranging from 0.1 to 2.5 vol %. XPS results for the N1s band of APTES showed that

  5. Deposit buildup on prosthetic eye material (in vitro and its effect on surface wettability

    Directory of Open Access Journals (Sweden)

    Pine KR

    2013-02-01

    Full Text Available Keith Raymond Pine,1 Brian Sloan,2 KyuYeon Ivy Han,1 Simon Swift,3 Robert John Jacobs11Department of Optometry and Vision Science, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand; 2New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand; 3Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New ZealandBackground: The aim of this in-vitro study was to investigate the effect of different polishing standards on prosthetic eye material (poly(methyl methacrylate [PMMA] on surface wettability and the rate of protein and lipid buildup.Methods: Sample disks (12 mm diameter × 1 mm thickness of PMMA were polished to three different standards of surface finish: low, normal, and optical quality contact lens standard. The sample disks were incubated in a protein-rich artificial tear solution (ATS for the following periods of time: 1 second, 30 minutes, 1 hour, 4 hours, 24 hours, and 14 days. Surface wettability was measured with a goniometer before and after protein deposits were removed. One-way analysis of variance and paired-samples t-test were used for the statistical analysis.Results: Between 13.64 and 62.88 µg of protein adhered to the sample disks immediately upon immersion in ATS. Sample disks with the highest polish attracted less protein deposits. The sample disks polished to optical quality contact lens standard were more wettable than those less highly polished, and wettability significantly decreased following removal of protein deposits. The addition of lipids to protein-only ATS made no difference to the amount of protein deposited on the sample disks for any of the standards of surface polish tested.Conclusion: The findings are consistent with the results of the in-vivo investigation reported previously by the authors. Our view that the minimum standard of polish for prosthetic eyes should be optical quality contact

  6. Assessment of ecotoxicological risks related to depositing dredged materials from canals in northern France on soil.

    Science.gov (United States)

    Perrodin, Yves; Babut, Marc; Bedell, Jean-Philippe; Bray, Marc; Clement, Bernard; Delolme, Cécile; Devaux, Alain; Durrieu, Claude; Garric, Jeanne; Montuelle, Bernard

    2006-08-01

    The implementation of an ecological risk assessment framework is presented for dredged material deposits on soil close to a canal and groundwater, and tested with sediment samples from canals in northern France. This framework includes two steps: a simplified risk assessment based on contaminant concentrations and a detailed risk assessment based on toxicity bioassays and column leaching tests. The tested framework includes three related assumptions: (a) effects on plants (Lolium perenne L.), (b) effects on aquatic organisms (Escherichia coli, Pseudokirchneriella subcapitata, Ceriodaphnia dubia, and Xenopus laevis) and (c) effects on groundwater contamination. Several exposure conditions were tested using standardised bioassays. According to the specific dredged material tested, the three assumptions were more or less discriminatory, soil and groundwater pollution being the most sensitive. Several aspects of the assessment procedure must now be improved, in particular assessment endpoint design for risks to ecosystems (e.g., integration of pollutant bioaccumulation), bioassay protocols and column leaching test design.

  7. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  8. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials.

    Science.gov (United States)

    Pola, Josef; Ouchi, Akihiko

    2009-03-12

    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  9. The detection of iron protoporphyrin (heme b) in phytoplankton and marine particulate material by electrospray ionisation mass spectrometry - comparison with diode array detection.

    Science.gov (United States)

    Gledhill, Martha

    2014-09-02

    A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP(+) ion (m/z=616) or the pseudomolecular [Fe(II)PTP + H](+) ion (m/z=617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z=557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616±3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z=557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2±0.5fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ=400nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z=300 to 1500 resulted in identification of the pseudomolecular ion for the interfering compound. The CID fragmentation pattern and UV-visible mass spectra indicated that the interfering compound was a previously unidentified chlorin type compound. Comparison of FePTP determined by SRM and DAD on samples where this compound could not be detected showed that results collected using the two methods correlated. The use of both MS and DAD results in a powerful tool for quantifying this important biogenic component of the

  10. Application of results of geological exploration of deposits of solid mineral raw materials in mining

    Directory of Open Access Journals (Sweden)

    Ilić Miloje M.

    2017-01-01

    Full Text Available Important application in mining have the results of geological exploration of the deposits of solid mineral raw materials, before all geological data obtained (including their interpretations regarding basic properties of the deposts and their changeability, and regarding quantity and quality (i.e. resources and reserves of the belonging mineral raw material which have an essential significance for mineral projects. The geological data, together with the other relevant data (in the first place technical and economic ones are applied as basic parameters in documentation of mineral projects. Since the successfulness of the projects is dependent upon the confidence of the data, a special attention is dedicated to the acts that contribute to attaining of an adequate level of confidence of the data, as follows: a a gradual realization of the projects through two phases (geological and mining ones having seven development stages (reconnaissance, prospecting, preliminary exploration and detailed exploration stages of the geological phase and mine design, mine construction and mine production stages of the mining phase; b finding out optimal solutions in drawing up a plan of exploratory workings and its carrying out in accordance with basic properties of a deposit and their changeability; c a realistic estimation of mineral resources/reserves as a predominantly geological task (not 'calculation' of the resources/reserves as a mathematical task; d an objective evaluation of the successfulness of a project at the end of every geological stage ‒ presented in corresponding geological analyses and technical-economic studies.

  11. A Laser-Deposition Approach to Compositional-Spread Discovery of Materials on Conventional Sample Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Hans M [ORNL; Okubo, Isao [ORNL; Rouleau, Christopher M [ORNL; Jellison Jr, Gerald Earle [ORNL; Puretzky, Alexander A [ORNL; Geohegan, David B [ORNL; Lowndes, Douglas H [ORNL

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6}) and magnetic perovskites (Sr{sub 1-x}Ca{sub x}RuO{sub 3}), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  12. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes

    Science.gov (United States)

    Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  13. Formation of a deposit on workpiece surface in polishing nonmetallic materials

    Science.gov (United States)

    Filatov, Yu. D.; Monteil, G.; Sidorko, V. I.; Filatov, O. Y.

    2013-05-01

    During the last decades in the theory of machining nonmetallic materials some serious advances have been achieved in the field of applying fundamental scientific approaches to the grinding and polishing technologies for high-quality precision surfaces of electronic components, optical systems, and decorative articles made of natural and synthetic stone [1-9]. These achievements include a cluster model of material removal in polishing dielectric workpieces [1-3, 6-7] and a physical-statistical model of formation of debris (wear) particles and removal thereof from a workpiece surface [8-10]. The aforesaid models made it possible to calculate, without recourse to Preston's linear law, the removal rate in polishing nonmetallic materials and the wear intensity for bound-abrasive tools. Equally important for the investigation of the workpiece surface generation mechanism and formation of debris particles are the kinetic functions of surface roughness and reflectance of glass and quartz workpiece surfaces, which have been established directly in the course of polishing. During the in situ inspection of a workpiece surface by laser ellipsometry [11] and reflectometry [12] it was found out that the periodic change of the light reflection coefficient of a workpiece surface being polished is attributed to the formation of fragments of a deposit consisting of work material particles (debris particles) and tool wear particles [13, 14]. The subsequent studies of the mechanism of interaction between the debris particles and wear particles in the tool-workpiece contact zone, which were carried out based on classical concepts [15, 16], yielded some unexpected results. It was demonstrated that electrically charged debris and wear particles, which are located in the coolant-filled gap between a tool and a workpiece, move by closed circular trajectories enclosed in spheres measuring less than one fifth of the gap thickness. This implies that the probability of the debris and wear

  14. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications

    Science.gov (United States)

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294

  15. Titanium minerals of placer deposits as a source for new materials

    Science.gov (United States)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The

  16. Estimation of environmental mobility of heavy metals using a sequential leaching of particulate material emitted from an opencast chrome mine complex.

    Science.gov (United States)

    Pöykiö, R; Perämäki, P; Välimäki, I; Kuokkanen, T

    2002-06-01

    A four-stage sequential leaching procedure was applied to assess the bioavailability and environmental mobility of heavy metals (Cr, Fe, Cu, Ni and Cd) in total suspended particulate (TSP) material emitted from an opencast chrome mine complex (Kemi, Northern Finland). TSP material was collected on glass fibre filters by a high-volume sampler, and a sequential leaching procedure was used to determine the distribution of heavy metals between the water-soluble fraction (H2O), environmentally mobile fraction (CH3COONH4), the fraction bound to carbonate and oxides (HONH3Cl + CH3COOH), and the fraction bound to silicates and organic matter, that is the environmentally immobile fraction (HNO3 + HF + HCl). The sequential leaching procedure was also applied to the certified reference materials VKI (QC Loam Soil A) and PACS-2 (Marine Sediment) to evaluate the accuracy and reproducibility of the leaching procedure. The heavy metals were determined by graphite furnace atomic absorption spectrometry (GFAAS) and flame atomic absorption spectrometry (FAAS). The concentrations of metals in the water-soluble fraction (H2O) decreased in the order Fe >Cu >Cr >Ni >Cd, and in the environmentally mobile fraction (CH3COONH4) in the order Cu >Fe >Ni >Cr >Cd.

  17. Isotopic Characteristics of Mesozoic Au-Ag Polymetallic Ore Deposits in Northern Hebei and Their Ore-Forming Materials Source

    Institute of Scientific and Technical Information of China (English)

    王宝德; 牛树银; 孙爱群; 李红阳

    2003-01-01

    It has long been a controversy about the source of ore-forming materials of Au-Agpolymetallic deposits both in metallogenic theory and in ore-searching practice. In terms of alarge wealth of the isotopic statistics data from Indosinian-Yanshanian endogenic ore deposits innorthern Hebei (generally referring to the areas along the northern part of Taihang Mountainsand northern Hebei, the same below) , it is considered that the ore-forming materials came fromthe deep interior of the Earth, which had migrated through plumes to the Earth surface while ex-perienced multi-stage evolution and then emplaced progressively in favorable structural loci toform ores. Their isotope data show that 559 sulfur isotopic data from 40 ore deposits are, for themost part, within the range of - 5‰ - 5‰, with a high degree of homogenization, indicatingthat the sulfur is derived mainly from magma; 200 lead isotope data from 37 ore deposits indi-cate that the ore-forming materials are principally of mantle source though some crust-source ma-terial was involved; 96 oxygen, hydrogen and carbon isotope data from 34 ore deposits illustratethat the ore-forming fluids are dominated by magmatic water while other sources of water wouldbe involved. It may therefore be seen that the formation of endogenic deposits has nothing to dowith the strata.

  18. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    Science.gov (United States)

    Nair, M. T. S.; Nair, Padmanabhan K.; Garcia, Victor M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  19. Carbon materials as new nanovehicles in hot-melt drug deposition

    Science.gov (United States)

    Bielicka, Agnieszka; Wiśniewski, Marek; Terzyk, Artur P.; Gauden, Piotr A.; Furmaniak, Sylwester; Roszek, Katarzyna; Kowalczyk, Piotr; Bieniek, A.

    2013-09-01

    The application of commercially available carbon materials (nanotubes and porous carbons) for the preparation of drug delivery systems is studied. We used two types of carbon nanotubes (CNT) and two activated carbons as potential materials in so-called hot-melt drug deposition (HMDD). The materials were first studied using Raman spectroscopy. Paracetamol was chosen as a model drug. The performed thermal analysis, kinetics, and adsorption-desorption studies revealed that nanoaggregates are formed between carbon nanotubes. In contrast, in pores of activated carbon we do not observe this process and the drug adsorption phenomenon mechanism is simply the filling of small pores. The formation of nanoaggregates was confirmed by the results of GCMC (grand canonical Monte Carlo) simulations and the study of the surface area on nitrogen adsorption-desorption isotherms. The application of carbon nanotubes in HMDD offers the possibility of controlling the rate of drug delivery. Performed MTT tests of nanotubes and drug-loaded nanotubes show that the observed decrease in cell viability number is caused by the influence of the cytostatic properties of nanotubes—they inhibit the proliferation of cells. The carbon nanotubes studied in this paper are essentially nontoxic.

  20. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lauren E. Polander

    2014-08-01

    Full Text Available This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx−3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  1. Quaternary deposits and weathered bedrock material as a source of dangerous radon emissions in Estonia

    Directory of Open Access Journals (Sweden)

    Petersell Valter

    2015-06-01

    Full Text Available The risk of dangerous radon emissions in Estonia is high, being among the highest in Europe. In almost 33 per cent of Estonian land area, the content of radon in soil-contained air exceeds the safe limit for unrestricted construction (50 kBq/m3. In such high radon-risk areas the concentration of radon in soil-contained air ranges from 50 to 400 kBq/m3, in a few cases reaching up to 2,100 kBq/m3 exceeding the permitted level for residential areas. The situation is particularly serious in the northernmost part of the country, where uranium-rich graptolite argillite (Dictyonema shale and the Obolus phosphorite are close to ground surface and their particles are constituent parts of Quaternary deposits. Radon emissions from bedrock have been investigated in detail, but to date Quaternary strata as a source of radon emissions are poorly studied. According to our measurements the highest concentrations of radon are related to tills containing clasts and fines of graptolite argillite and phosphorite. Glacial deposits include also granitoidal material, containing U, Th and K, which have been transported by glaciers from the outcrop areas of crystalline basement rocks in Finland and the Gulf of Finland. Due to weathering, outwash and repeated redeposition other genetic types are poorer in radioactive elements and they are weaker sources of radon.

  2. Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications

    Science.gov (United States)

    Shyju, T. S.; Anandhi, S.; Suriakarthick, R.; Gopalakrishnan, R.; Kuppusami, P.

    2015-07-01

    Mechanosynthesis of nanocrystalline powders of CZTS and CZTSe by ball milling technique and the physical properties of thermally evaporated CZTS and CZTSe thin films as a function of substrate temperature are investigated. Nanocrystalline Cu-Zn-Tin-Sulphide (CZTS) and Cu-Zn-Tin-Selenide (CZTSe) powders synthesized by ball milling at different milling time using the source materials of Cu, Zn, Sn, S (or) Se in the ratio 2:1:1:4 are investigated. The above synthesized powder was thermally evaporated on glass substrate kept at room temperature and 673 K under a vacuum of 10-6 mbar to prepare quaternary compound semiconducting thin films in a single step process. The synthesized powder and deposited CZTS and CZTSe thin films belong to tetragonal crystal system. Raman spectra reveal that the synthesized nanocrystals are pure without any secondary phases. A gradual reduction in optical bandgap of films was observed with increasing substrate temperature due to increased crystallinity of the films. The changes in surface morphology of the films with respect to substrate temperature were studied by scanning electron microscopy and atomic force microscopy. Electrical studies indicate that the deposited films have p-type conductivity.

  3. High-performance energy harvester fabricated with aerosol deposited PMN-PT material

    Science.gov (United States)

    Chen, C. T.; Lin, S. C.; Lin, T. K.; Wu, W. J.

    2016-11-01

    This paper reports a high-performance piezoelectric energy harvester (EH) fabricated with xPb(Mg1/3Nb2/3)-(l-x)PbTiO3 (PMN-PT) by aerosol deposition method. The result indicates that PMN-PT based EH owns 1.8 times output power which is higher than traditional PbZrxTi1- xO3 (PZT) based EH. In order to compare the output performance of EH fabricated with PMN- PT compared with PZT, the similar thickness of PMN-PT and PZT thin film is deposited on stainless steel subtracted. The experimental results show that PZT-based EH had a maximum output power of 4.65 μW with 1.11 Vp-p output voltage excited at 94.4 Hz under 0.5g base excitation, while the PMN-PT based device has a maximum output power of 8.42 μW with 1.49 Vp-p output voltage at a vibration frequency of 94.8 Hz and the same base excitation level. The volumetric power density was 82.95 μW/mm3 and 48.05 μW/mm3 for the device based on PMN- PT and PZT materials, respectively. All the results demonstrate that PMN-PT has better output performance than PZT.

  4. Selective Patterning of Organic Light-Emitting Diodes by Physical Vapor Deposition of Photosensitive Materials

    Science.gov (United States)

    Muroyama, Masakazu; Saito, Ichiro; Yokokura, Seiji; Tanaka, Kuniaki; Usui, Hiroaki

    2009-04-01

    A novel method of patterning polymeric thin films by the vapor deposition of a photosensitive layer followed by photopolymerization and development was proposed. This method was applied to the patterning of the emissive layer (EML) of an organic light-emitting diode (OLED). For the hole transport layer (HTL), N,N,N'-triphenyl-N'-(4-vinylphenyl)-biphenyl-4,4'-diamine (vTPD) and a zinc acrylate (ZnAc) crosslinker were coevaporated. The film was polymerized by postdeposition annealing to yield a polymeric HTL with a high resistance to organic solvents. On this HTL, the photosensitive EML was prepared by coevaporating a 9H-carbazole-9-ethylmethacrylate (CEMA) host material and 4-(dimethylamino)benzophenone (DABP) photoinitiator. UV irradiation on the EML through a photomask initiated radical polymerization, leaving a negative pattern of the irradiated region after immersion in tetrahydrofuran (THF). The photopatterning process was found to cause no damage to the film morphology or the device characteristics.

  5. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  6. Catalogue of the type material of Phlebotominae (Diptera, Psychodidae) deposited in the Instituto Evandro Chagas, Brazil

    Science.gov (United States)

    dos Santos, Thiago Vasconcelos; Pinheiro, Maria Sueli Barros; de Andrade, Andrey José

    2014-01-01

    Abstract The available type material of Phlebotominae (Diptera, Psychodidae) deposited in the “Coleção de Flebotomíneos” of the Instituto Evandro Chagas (ColFleb IEC) is now presented in an annotated catalogue comprising a total of 121 type specimens belonging to 12 species as follow: Nyssomyia richardwardi (2 female paratypes), Nyssomyia shawi (9 male and 25 female paratypes), Nyssomyia umbratilis (female holotype and 1 female paratype), Nyssomyia yuilli yuilli (1 male and 1 female paratypes), Pintomyia gruta (1 male and 2 female paratypes), Psychodopygus lainsoni (2 male syntypes), Psychodopygus leonidasdeanei (male holotype, female “allotype” and 45 female paratypes), Psychodopygus llanosmartinsi (2 female paratypes), Psychodopygus wellcomei (1 male and 4 female “syntypes”), Trichophoromyia readyi (male holotype, female “allotype” and 1 male paratype), Trichophoromyia adelsonsouzai (male holotype, 13 male 5 female paratypes), and Trichophoromyia brachipyga (1 male paratype). PMID:24715786

  7. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    Energy Technology Data Exchange (ETDEWEB)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  8. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    Energy Technology Data Exchange (ETDEWEB)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

  9. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  10. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    Science.gov (United States)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  11. Synthesis and Characteristics of LiNi0.85Co0.15O2 Cathode Materials by Particulate Sol-Gel Method for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Jun; CHEN Hong-Hao; ZHAN Hui; LIU Han-Xing; YANG Dai-Ling; ZHOU Yun-Hong

    2005-01-01

    A particulate sol-gel (PSG) method has been successfully used to prepare LiNi0.85Co0.15O2 cathode materials,utilizing the reaction of LiOH·H2O with Ni(CH3COO)2·4H2O and Co(CH3COO)2·4H2O in water-ethanol system.The thermal history of the as-prepared xerogel was established by differential thermal analysis and thermogravimetric analysis. Powder X-ray diffraction confirmed the formation of layered α-NaFeO2 structure at temperature of 700℃ under flowing oxygen. Scanning electron microscope exhibited that the crystalline powder prepared by PSG method had relatively smaller particle size with narrow distribution than the one prepared by solid state reaction.The first discharge capacity of the material by PSG method was 196.4 mAh/g, and the 10th discharge capacity was 189.1 mAh/g at the current density of 18 mA/g between 3.0 and 4.3 V. Its cycling reversibility was observed to be much better than that by solid state reaction, which had 187.3 mAh/g of the first discharge capacity and 167.1mAh/g of the 10th discharge capacity.

  12. On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: a ground-based LiDAR approach

    NARCIS (Netherlands)

    Hofman, J.; Bartholomeus, H.; Calders, K.; Wittenberghe, van S.; Wuyts, K.; Samson, R.

    2014-01-01

    Urban dwellers often breathe air that does not meet the European and WHO standards. Next to legislative initiatives to lower atmospheric pollutants, much research has been conducted on the potential of urban trees as mitigation tool for atmospheric particles. While leaf-deposited dust has shown to v

  13. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  14. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    Directory of Open Access Journals (Sweden)

    Adhiyamaan Arivazhagan

    2014-01-01

    Full Text Available Fused Deposition Modelling (FDM, a renowned Rapid Prototyping (RP process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single cantilever loading under periodic stress. Three FDM process parameters namely Build Style, Raster Width and Raster Angle were contemplated. ULTEM parts are fabricated using solid normal build style and three values each of raster width and raster angle. DMA is performed with temperature sweep at three different fixed frequencies of 1, 50 and 100 Hz. Results were obtained for dynamic properties such as Maximum Storage Modulus, Maximum Loss Modulus, Maximum Tan Delta and Maximum Complex Viscosity. The present work discusses the effect of increasing the frequencies and temperature on FDM made ULTEM samples using different FDM process parameters.

  15. Compositional insights and valorization pathways for carbonaceous material deposited during bio-oil thermal treatment.

    Science.gov (United States)

    Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro

    2014-09-01

    This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support.

  16. Grab vs. composite sampling of particulate materials with significant spatial heterogeneity--a simulation study of "correct sampling errors".

    Science.gov (United States)

    Minkkinen, Pentti O; Esbensen, Kim H

    2009-10-19

    Sampling errors can be divided into two classes, incorrect sampling and correct sampling errors. Incorrect sampling errors arise from incorrectly designed sampling equipment or procedures. Correct sampling errors are due to the heterogeneity of the material in sampling targets. Excluding the incorrect sampling errors, which can all be eliminated in practice although informed and diligent work is often needed, five factors dominate sampling variance: two factors related to material heterogeneity (analyte concentration; distributional heterogeneity) and three factors related to the sampling process itself (sample type, sample size, sampling modus). Due to highly significant interactions, a comprehensive appreciation of their combined effects is far from trivial and has in fact never been illustrated in detail. Heterogeneous materials can be well characterized by the two first factors, while all essential sampling process characteristics can be summarized by combinations of the latter three. We here present simulations based on an experimental design that varies all five factors. Within the framework of the Theory of Sampling, the empirical Total Sampling Error is a function of the fundamental sampling error and the grouping and segregation error interacting with a specific sampling process. We here illustrate absolute and relative sampling variance levels resulting from a wide array of simulated repeated samplings and express the effects by pertinent lot mean estimates and associated Root Mean Squared Errors/sampling variances, covering specific combinations of materials' heterogeneity and typical sampling procedures as used in current science, technology and industry. Factors, levels and interactions are varied within limits selected to match realistic materials and sampling situations that mimic, e.g., sampling for genetically modified organisms; sampling of geological drill cores; sampling during off-loading 3-dimensional lots (shiploads, railroad cars, truckloads

  17. The Evaluation of Illite/Kaolinite Clay Submicrometer Particulate Materials for the Development of Geopolymer Type Solids

    OpenAIRE

    Mežinskis, G; Grase, L; Buiķe, I; Plūdons, A; Lindiņa, L; Vītiņa, I; Šutka, A

    2011-01-01

    Geopolimers or alkali-activated binders could be defined in accordance with the chemical composition of raw materials used for preparation: alkali-activated binder on the fly ashes basis (blast furnance slag, rice rusk), alkali-activated binder on the metakaolin basis. Alternative procedure of geopolymer synthesis which does not require activation by alkaline silicate solution is based on preparation active geopolymer precursor by direct calcinations of low quality kaolin with Na/K hydroxides...

  18. Diamond-like carbon and ceramic materials as protective coatings grown by pulsed laser deposition

    OpenAIRE

    Perera Mercado, Yibran Argenis

    2004-01-01

    A rather large number of nitride, carbide, and oxide thin films are used as hard and wear-resistant coatings, for optical, corrosive, and refractory applications that are of crucial importance. Additional requirements place even more stringent conditions on the deposition processes. The properties of coatings deposited by pulsed laser deposition are determined by the deposition parameters, the composition of the PLD plasma and its ionization states, the substrate conditions, etc.. In this way...

  19. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  20. The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters.

    Science.gov (United States)

    Malham, Shelagh K; Rajko-Nenow, Paulina; Howlett, Eleanor; Tuson, Karen E; Perkins, Tracy L; Pallett, Denise W; Wang, Hui; Jago, Colin F; Jones, Davey L; McDonald, James E

    2014-09-20

    Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater-marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial

  1. Application of Hard Metal Weld Deposit in the Area of Mixing Organic Materials

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Any machine part is subject to degradation processes. Intensive wear occurs either when two bearing surfaces come into contact or when loose particles rub the function surface of a machine part. Soil processing machines are a good example. A similar process of abrasive wear occurs also in mixing machines or lines for material transport, such as worm-conveyors. The experiment part of this paper analyses hard metal weld deposit dedicated for renovation of abrasive stressed surfaces. In order to prolong the service life of a blade disc in a mixing machine Kreis-Biogas-Dissolver, the technology of hard surfacing by an electric arc was used. Tested hard metal electrodes were applied on a steel tape class 11 373. To eliminate mixing with the base material, weld beads were applied in two layers. Firstly, the weld bead was visually analyzed on a binocular microscope. Further, weld bead as well as the base material was analyzed from the metallographic point of view, whose aim was to identify the structure of weld metal and the origin of microcracks in weld bead. Moreover, there was also measured microhardness of weld metal. Abrasive resistance was tested according to the norm ČSN 01 5084, which is an abrasive cloth test. As in the mixing process also erosion wear occurs, there was also processed a test on a Bond device simulating stress of test samples by loose abrasive particles. The abrading agents were formed by broken stones of 8–16 mm in size. Based on the results of the individual tests, the recommendation of usage hard metal electrodes for prolonging service life of machine parts will be made.

  2. Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Shyju, T.S., E-mail: shyjuantony1983@gmail.com [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai 600 119, Tamilnadu (India); Centre of Excellence for Energy Research, Sathyabama University, Chennai 600 119, Tamilnadu (India); Anandhi, S. [Department of Physics, Maamallan Institute of Technology, Sriperumpudur 602 105, Tamilnadu (India); Suriakarthick, R.; Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600 025, Tamilnadu (India); Kuppusami, P. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai 600 119, Tamilnadu (India); Centre of Excellence for Energy Research, Sathyabama University, Chennai 600 119, Tamilnadu (India)

    2015-07-15

    Mechanosynthesis of nanocrystalline powders of CZTS and CZTSe by ball milling technique and the physical properties of thermally evaporated CZTS and CZTSe thin films as a function of substrate temperature are investigated. Nanocrystalline Cu–Zn–Tin–Sulphide (CZTS) and Cu–Zn–Tin–Selenide (CZTSe) powders synthesized by ball milling at different milling time using the source materials of Cu, Zn, Sn, S (or) Se in the ratio 2:1:1:4 are investigated. The above synthesized powder was thermally evaporated on glass substrate kept at room temperature and 673 K under a vacuum of 10{sup −6} mbar to prepare quaternary compound semiconducting thin films in a single step process. The synthesized powder and deposited CZTS and CZTSe thin films belong to tetragonal crystal system. Raman spectra reveal that the synthesized nanocrystals are pure without any secondary phases. A gradual reduction in optical bandgap of films was observed with increasing substrate temperature due to increased crystallinity of the films. The changes in surface morphology of the films with respect to substrate temperature were studied by scanning electron microscopy and atomic force microscopy. Electrical studies indicate that the deposited films have p-type conductivity. - Highlights: • Nanocrystalline powders of CZTS and CZTSe are synthesized by ball milling technique. • The ball milled powder was thermally evaporated on glass at room temperature and 673 K. • Raman spectroscopy reveals that the synthesized nanocrystals are pure without any secondary phases. • SEM and AFM micrographs illustrate the granular type of growth and the roughness and particle sizes obtained at the substrate temperature of 673 K are higher than those obtained in the room temperature. • Hall coefficient obtained for the film confirms the p-type conductivity. • A gradual reduction in optical bandgap was observed with increasing substrate temperature.

  3. In-Situ Agglomeration and De-agglomeration by Milling of Nano-Engineered Lubricant Particulate Composites for Cold Spray Deposition

    Science.gov (United States)

    Neshastehriz, M.; Smid, I.; Segall, A. E.

    2014-10-01

    Nano-engineered self-lubricating particles comprised of hexagonal-boron-nitride powder (hBN) encapsulated in nickel have been developed for cold spray coating of aluminum components. The nickel encapsulant consists of several nano-sized layers, which are deposited on the hBN particles by electroless plating. In the cold spray deposition, the nickel becomes the matrix in which hBN acts as the lubricant. The coating demonstrated a very promising performance by reducing the coefficient of friction by almost 50% and increasing the wear resistance more than tenfold. The coatings also exhibited higher bond strength, which was directly related to the hardenability of the particles. During the encapsulation process, the hBN particles agglomerate and form large clusters. De-agglomeration has been studied through low- and high-energy ball milling to create more uniform and consistent particle sizes and to improve the cold spray deposition efficiency. The unmilled and milled particles were characterized with Scanning Electron Microscopy, Energy-Dispersive X-Ray Spectroscopy, BET, and hardness tests. It was found that in low-energy ball milling, the clusters were compacted to a noticeable extent. However, the high-energy ball milling resulted in breakup of agglomerations and destroyed the nickel encapsulant.

  4. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Science.gov (United States)

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  5. Synthesis of nanoscale materials via a novel chemical vapor deposition based apparatus

    Science.gov (United States)

    Klug, Kevin L.

    Nanoscale materials are of interest due to the unusual properties afforded by their size. Two such morphologies, nanoparticles and the recently discovered "nanobelt" materials, are explored in this thesis. A novel nanoscale material synthesis apparatus was constructed. It consists of four primary components: an evaporation chamber, a chemical vapor deposition furnace, a collection chamber, and a powder reservoir. A two-stage subsonic jet separates the first two components, permitting nanoparticle production to occur independently of subsequent chemical and thermal treatment. An experimental design was conducted to examine the roles of several variables during the formation of graphite-encapsulated nickel nanoparticles. Coating morphology was strongly dependent on furnace temperature, which exhibited a more subtle influence on mean particle size. The percentage of nickel surviving acid treatment depended primarily on hydrocarbon identity, as well as furnace temperature and carbon atom flux. Acetylene at high temperature yielded crystalline carbon coatings and the greatest percentage of protected nickel achieved, but with an excess of carbon in the product. Additional encapsulated nickel experiments were conducted with reduced acetylene flowrates and a staggered furnace temperature. Thermogravimetric analysis of the as-collected powder revealed that the coating was a crystalline and amorphous carbon hybrid. While this coating effectively protected large clumps of embedded nickel, removal of the amorphous carbon by oxidation rendered individual particles susceptible to hydrochloric acid attack. Amorphous silica was introduced as an alternative coating material via tetraethoxysilane decomposition. Transmission electron microscopy confirmed the production of well-dispersed, acid-resistant particles with a nickel core and silica shell. The synthesis of nanoscale alumina heterogeneous catalyst substrates was investigated. Exposure of aluminum nanoparticles to large

  6. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuhe, E-mail: zyh1120@hotmail.co.jp [School of Stomatology, China Medical University, Shen Yang (China); Wang Wei; Jia Xingya [School of Stomatology, China Medical University, Shen Yang (China); Akasaka, Tsukasa [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan); Liao, Susan [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Watari, Fumio [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Deposition of Titanium Carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method. Black-Right-Pointing-Pointer The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance. Black-Right-Pointing-Pointer Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. - Abstract: Deposition of titanium carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method using a TiCl{sub 4} + CH{sub 4} + H{sub 2} gas mixture. Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. X-ray diffraction (XRD) showed that the specimen was consisted of TiC and Ti. Carbide layer of about 6 {mu}m thickness was observed on the cross section of the specimen by scanning electron microscopy (SEM). The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance.

  7. A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary.

    Science.gov (United States)

    Cardoso, Fernanda D; Dauner, Ana Lúcia L; Martins, César C

    2016-07-01

    The Paranaguá Estuarine Complex (PEC) is an important socioeconomic estuary of the Brazilian coast that is influenced by the input of pollutants like polycyclic aromatic hydrocarbons (PAHs). Because of the apparent lack of comparative studies involving PAHs in different estuarine compartments, the aim of this study was to determine and compare PAH concentrations in surface sediment and suspended particulate material (SPM) in the PEC to evaluate their behaviour, compositions, sources and spatial distributions. The total PAH concentrations in the sediment ranged from 0.6 to 63.8 ng g(-1) (dry weight), whereas in the SPM these concentrations ranged from 391 to 4164 ng g(-1). Diagnostic ratios suggest distinct sources of PAHs to sediments (i.e., pyrolytic sources) and SPM (i.e., petrogenic sources such as vessel traffic). Thus, the recent introduction of PAHs is more clearly indicated in the SPM since oil related-compounds (e.g., alkyl-PAHs) remain present in similar concentrations. Further, this matrix may better reflect the current state of the environment at the time of sampling because of the absence of significant degradation.

  8. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Science.gov (United States)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  9. Rare Earth Elements Geochemistry of Laowan Gold Deposit in Henan Province: Trace to Source of Ore-Forming Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18×10-6~30.91×10-6, the average of ∑REE is 13.39×10-6, and the average of ∑REE of quartz in the Laowan granite is 6.68×10-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.

  10. Fe, Ni and Zn speciation, in airborne particulate matter

    Science.gov (United States)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  11. Effects of substrate materials on piezoelectric properties of BaTiO3 thick films deposited by aerosol deposition

    Science.gov (United States)

    Kawakami, Yoshihiro; Watanabe, Masato; Arai, Ken-Ichi; Sugimoto, Satoshi

    2016-10-01

    Piezoelectric properties were evaluated for annealed BaTiO3 (BT) films formed by aerosol deposition on yttria-stabilized zirconia (YSZ) and Fe-Cr-Al-based heat-resistant stainless steel (SS). The piezoelectric constants d 31 of BT films annealed at 1200 °C formed on YSZ and SS were -71 and -41 pm/V, respectively. The effects of different substrates on piezoelectric properties were investigated. The grain sizes of the films formed on YSZ and SS were 1.5 and 1.0 µm, respectively. X-ray diffraction analysis using a two-dimensional stress method revealed that the respective residual stresses of the films formed on YSZ and SS were -55 ± 8 and -32 ± 7 MPa, respectively, as compressive stresses. The c-domain structure was formed preferentially in the films on SS because of its larger compressive stress. These results suggest that differences in piezoelectric properties attributable to substrates result from differences in compressive stress magnitude and the volume fraction between the c- and a-domains.

  12. Dark Material at the Surface of Polar Crater Deposits on Mercury

    Science.gov (United States)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low ( 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  13. Electrically heated particulate filter embedded heater design

    Science.gov (United States)

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  14. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Science.gov (United States)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  15. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.L.; Black, M.R.; Chavez, C.A.; Maskaly, K.R.; Espinoza, M. [Los Alamos National Laboratory, NEMISIS Team, IAT-2, Los Alamos, NM (United States); Boman, M.; Landstrom, L. [Uppsala University, Inorganic Chemistry, Angstrom Laboratory, Uppsala (Sweden)

    2008-06-15

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited. (orig.)

  16. Comparison of speciation sampler and PC-BOSS fine particulate matter organic material results obtained in Lindon, Utah, during winter 2001-2002.

    Science.gov (United States)

    Carter, Cory; Eatough, Norman L; Eatough, Delbert J; Olson, Neal; Long, Russell W

    2008-01-01

    The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.

  17. Geochemical Investigations of Respirable Particulate Matter

    OpenAIRE

    Jurinski, Joseph Bernard Jr.

    1998-01-01

    GEOCHEMICAL INVESTIGATIONS OF RESPIRABLE PARTICULATE MATTER Joseph Bernard Jurinski (Abstract) Over the course of our lives we are exposed to airborne particulate matter in the workplace, home, and environment that results in the deposition of millions of particles in the lung. These exposures may result in disease if they are significant enough. The potential for harmful exposure depends in part on the dust's biodurability and the bioavailability of harmful constituents d...

  18. 攀援植物对大气颗粒物的吸附作用%The Deposition of Particulate Matters on Climbing Plant

    Institute of Scientific and Technical Information of China (English)

    李德宁; 徐彦森; 王百田

    2015-01-01

    Numerous studies have demonstrated that the plants can purify particulate matters (PM) by absorbing atmospheric pollutants, and may significantly impact air quality. Climbing plants are widely used in urban greening, and Parthenocissus quinquefolia is a common climbing greening plant in northern China. It is meaningful to study P.thomson’ ability on PM accumulating in order to reduce PM concentration in the atmosphere, improve environment quality and optimize greening method. In this study, leaves of P.thomsoniare collected from two places, near a traffic road and in a campus, and three heights from the ground. A scanning electron microscope (SEM) and energy dispersive X-ray (EDS) is used to count the quantity of particles which are accumulated on leaf surface and analyze the elements of particles. The results shows, P.thomsonican accumulate particulate matters (PM) effectively, especially for fine particles (0.2~2.5μm) in quantitative terms. The percentage of fine PM accumulation in total PM is more than 90%. The smaller the particle’s size is, the larger quantity accumulates on leaf surface. The upper side of the leaf accumulated more PM than the underside, because the two sides’ microstructures are different. At 2.5 m height, the density of fine PM on leaf surface is 8.4×106/cm2 near a road, and it is 5.2×106/cm2 in campus. The samples from the road collected more PM than the ones from the campus.The elements found on the leaves affected by the environment, the ratio of elements were different between the two sampling sites. There are more Si, Ca and Feobserved on leaves near the road. The method in this paper could intuitively reflect the plant’s influence on reducing atmosphere pollution and accumulating particles.%植物通过叶片对颗粒物的吸附作用能够有效降低大气中颗粒物的浓度。用攀援植物进行绿化是城市绿化的重要手段,五叶地锦(Parthenocissus quinquefolia)作为中国北方地区常见的攀援

  19. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  20. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  1. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    Science.gov (United States)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  2. Helium, lead and sulfur isotope geochemistry of the Gejiu Sn-polymetallic ore deposit and the sources of ore-forming materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the deposit is a product of superimposed mineralization. The deposit is characterized by multi-source and multi-period mineralization, which experienced submarine hydrothermal deposition and Late Yanshanian magmatic hydrothermal mineralization. It is held that the Gejiu super-large Sn-polymetallic ore deposit is a multi-genesis deposit.

  3. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. {sup 131}Iodo-DesMethyl-Imipramine

    Energy Technology Data Exchange (ETDEWEB)

    Tromborg, H.B. [Univ. Hospital of Aarhus, Dept. of Orthopaedics E, Inst. of Esperimental Clinical Research (Denmark)

    1998-12-31

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The {sup 131}Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS) 80 refs.

  4. Transport and deposition of particles and radionuclides at the Puy de Dome, France; Transport et depot de particules et radionucleides au puy de Dome, France

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, L.

    2009-01-15

    Aerosol particles play a key role both on air quality and on the radiative balance of the Earth. Their sources, as well as their deposition are key stages in their life cycle. This work is a contribution in a better knowledge of the chemical composition of particles, cloud droplets and rain droplets. The specificity of our study is to couple, on three sampling sites (Puy de Dome (1465 m a.s.l.), Opme (660 m a.s.l.) and Cezeaux (400 m a.s.l.)), observations on the chemical composition and the radionuclides activity in cloud/rain/aerosol phases. We observed, in aerosol phase, ionic and carbonaceous concentrations and radionuclides activity higher in summer than in winter at the Puy de Dome, inverse of the seasonal variation observed at the Cezeaux for chemical compounds. From these observations, we offer a representative composition de each mass air type. This work is supplemented by a study of cloud and rain liquid, which allow us to study the scavenging of the pollutants by the rain. The chemical composition of the rain reveals a similar behaviour to that of the particles at the Puy de Dome, indicating that the role of activation and scavenging of particles is preponderant in the composition of the rain. This is confirmed by a study of the environmental and structural factors of the rain which do not seem to influence the washout ratio in a significant manner. Our work highlights the role of long range transport of pollutants in the composition of atmospheric liquid phase. (author)

  5. The Characteristics of deposition of airborne particulate matters with different size on certain plants%园林植物滞留不同粒径大气颗粒物的特征及规律

    Institute of Scientific and Technical Information of China (English)

    赵松婷; 李新宇; 李延明

    2014-01-01

    particulate matters (PM) by common plants, some representative plants in Beijing were chosen to systematically analyze the characteristics of deposition of PM with different size on them by using direct sampling, electron microscope analysis and statistical analysis methods. The results showed that:1) PM retained by plants had shapes of irregular block, ball and polymer. Plants which had more waxy leaf surface, or had more glandular hairs and wrinkles on leaves could retain PM more easily. 2) Over 98% of PM deposition on plants’ leaf surface were PM10(Dp≤10 μm), PM2.5(Dp≤2.5 μm) accounted for over 90%, whereas, coarse particles accounted for less than 2%;The volume percentage of PM10 was over 50%, that of PM2.5 was 8.5%-17.6%, and the volume percentage of coarse particulate was over 20%. 3) With the same study area, leaves which retained PM for 10 days had more PM deposition than those retained PM for 5 days, Buxus microphylla had the largest increase, while Rosa chinensis had the smallest. Analysis of variance indicated that PM deposition on Salix matsudana f.pendula leaf surface was significantly less than other plants except for Ginkgo biloba, and the deposition of PM on leaf surface of Euonymus japonicus, Buxus microphylla and Sophora japonica were remarkably more than Rosa chinensis, Ginkgo biloba and Salix matsudana f.pendula. Moreover, The area of PM deposition was less than 25%of research leaf surface area. The time which it takes to get saturation state for PM deposition on leave surface will be studied in further research.

  6. A Study on Medium Temperature Chemical Vapor Deposition (MT-CVD) Technology and Super Coating Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; LI Jian-ping; ZENG Xiang-cai; MA Wen-cun

    2004-01-01

    In this paper, the dense and columnar crystalline TiCN coating layers with very good bonding strength between a layer and another layer was deposited using Medium Temperature Chemical Vapor Deposition (MT-CVD) where CH3CN organic composite with C/N atomic clusters etc. was utilized at 700 ~ 900 ℃. Effect of coating processing parameters, such as coating temperature, pressure and different gas flow quantity on structures and properties of TiCN coating layers were investigated. The super coating mechanis mand structures were analyzed. The new coating processing parameters and properties of carbide inserts with super coating layers were gained by using the improved high temperature chemical vapor deposition (HTCVD) equipment and HT-CVD, in combination with MT-CVD technology.

  7. Design, Modeling, Fabrication, and Evaluation of Thermoelectric Generators with Hot-Wire Chemical Vapor Deposited Polysilicon as Thermoelement Material

    Science.gov (United States)

    de Leon, Maria Theresa; Tarazona, Antulio; Chong, Harold; Kraft, Michael

    2014-11-01

    This paper presents the design, modeling, fabrication, and evaluation of thermoelectric generators (TEGs) with p-type polysilicon deposited by hot-wire chemical vapor deposition (HWCVD) as thermoelement material. A thermal model is developed based on energy balance and heat transfer equations using lumped thermal conductances. Several test structures were fabricated to allow characterization of the boron-doped polysilicon material deposited by HWCVD. The film was found to be electrically active without any post-deposition annealing. Based on the tests performed on the test structures, it is determined that the Seebeck coefficient, thermal conductivity, and electrical resistivity of the HWCVD polysilicon are 113 μV/K, 126 W/mK, and 3.58 × 10-5 Ω m, respectively. Results from laser tests performed on the fabricated TEG are in good agreement with the thermal model. The temperature values derived from the thermal model are within 2.8% of the measured temperature values. For a 1-W laser input, an open-circuit voltage and output power of 247 mV and 347 nW, respectively, were generated. This translates to a temperature difference of 63°C across the thermoelements. This paper demonstrates that HWCVD, which is a cost-effective way of producing solar cells, can also be applied in the production of TEGs. By establishing that HWCVD polysilicon can be an effective thermoelectric material, further work on developing photovoltaic-thermoelectric (PV-TE) hybrid microsystems that are cost-effective and better performing can be explored.

  8. Relative humidity-­dependent viscosity of secondary organic material from toluene  photo-­oxidation and possible implications for organic particulate matter over megacities

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mijung; Liu, Pengfei; Hanna, Sarah; Zaveri, Rahul A.; Potter, K.; You, Yuan; Martin, Scot T.; Bertram, Allan K.

    2016-07-19

    To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required. Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic VOCs such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2 × 10-1 to ~ 6 × 10 Pa·s from 30 to 90% RH, and greater than ~2 × 108 Pa·s (similar to or greater than the viscosity of tar pitch) for RH ≤ 17%. These viscosities correspond to Stokes-Einstein-equivalent diffusion   coefficients for large organic molecules of ~2 × 10-15 cm2·s-1 for 30% RH, and lower than ~3 × 10-17 cm2·s-1 for RH ≤ 17%. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1 - 5 hr for 30% RH, and higher than ~100 hr for RH ≤ 17%. These results were used, as a first-order approximation, to estimate if organic particulate matter will be in equilibrium with large organic molecules over the world’s top 15 most populous megacities. If the organic particulate matter in the megacities is similar to the toluene-derived SOM in this study, in Kolkata, Istanbul, Dhaka, Tokyo, Shanghai, and Mumbai, mixing times in organic particulate matter during extended periods of the year will be very short, and equilibrium can be assumed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Delhi, Beijing, Mexico City, Cairo, and Karachi may be long and the particles may be out of equilibrium in the afternoon (3:00 – 15  5:00 local time) during certain times of the year.

  9. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  10. Deposition and Characterization of Improved Hydrogen Getter Materials - Report on FY 14-15 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Cynthia Wathen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-15

    The goals of this work have been two-fold. First, to perform an initial, quantitative, optimization of getter performance, with the primary variables being DEB/Pd ratio and UV power. Second, to simplify the deposition process to make it more compatible with the DOE production environment.

  11. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  12. Silanization of Ag-deposited magnetite particles: an efficient route to fabricate magnetic nanoparticle-based Raman barcode materials.

    Science.gov (United States)

    Kim, Kwan; Choi, Jeong-Yong; Lee, Hyang Bong; Shin, Kuan Soo

    2010-07-01

    Silica-coated Ag nanostructures usable as magnetic nanoparticle-based Raman barcode materials were developed. Initially, 283 nm sized spherical magnetite particles composed of 13 nm sized superparamagnetic Fe(3)O(4) nanoparticles were synthesized, and silver deposition was conducted using butylamine as the reductant of AgNO(3) in ethanol. The Ag-deposited Fe(3)O(4) (Fe(3)O(4)@Ag) particles are found to be efficient surface-enhanced Raman scattering (SERS) substrates with the enhancement factor at 632.8 nm excitation to be about 3 x 10(6). After SERS markers such as benzenethiol, 4-mercaptotoluene, 4-aminobenzenethiol, and 4-nitrobenzenethiol were adsorbed onto the silver surface, poly(allylamine hydrochloride) (PAH) was coated onto them using the layer-by-layer deposition method such that a subsequent base-catalyzed silanization could readily form a 60 nm thick silica shell around the PAH layer by a biomimetic process. The cross-linked silica shells effectively prevented the SERS-marker molecules from being liberated from the surface of the Fe(3)O(4)@Ag particles. Although the gram magnetization decreased nearly to one-half of the initial value because of coating with silver and silica, the remaining magnetization was nonetheless strong enough for the silica-coated Fe(3)O(4)@Ag particles to be used as barcode materials operating via SERS.

  13. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    Science.gov (United States)

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July

  14. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    Science.gov (United States)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  15. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  16. Atmospheric-Pressure-Spray, Chemical- Vapor-Deposited Thin-Film Materials Being Developed for High Power-to- Weight-Ratio Space Photovoltaic Applications

    Science.gov (United States)

    Hepp, Aloysius F.; Harris, Jerry D.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Smith, Mark A.; Cowen, Jonathan E.

    2001-01-01

    The key to achieving high specific power (watts per kilogram) space photovoltaic arrays is the development of high-efficiency thin-film solar cells that are fabricated on lightweight, space-qualified substrates such as Kapton (DuPont) or another polymer film. Cell efficiencies of 20 percent air mass zero (AM0) are required. One of the major obstacles to developing lightweight, flexible, thin-film solar cells is the unavailability of lightweight substrate or superstrate materials that are compatible with current deposition techniques. There are two solutions for working around this problem: (1) develop new substrate or superstrate materials that are compatible with current deposition techniques, or (2) develop new deposition techniques that are compatible with existing materials. The NASA Glenn Research Center has been focusing on the latter approach and has been developing a deposition technique for depositing thin-film absorbers at temperatures below 400 C.

  17. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    Science.gov (United States)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  18. ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions

    Science.gov (United States)

    Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Głodowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; Kruszewski, P.; Huby, N.; Tallarida, G.; Ferrari, S.

    2009-06-01

    We report on zinc oxide thin films grown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily n-type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnO thin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low n electron concentration is a result of lower number of defects rather than the self-compensation effect.

  19. Deep-Source Ore-Forming Materials and Prospecting of Gold Deposits in Eastern Hebei, China

    Institute of Scientific and Technical Information of China (English)

    王宝德; 牛树银; 孙爱群; 李红阳

    2003-01-01

    Eastern Hebei Province is one of the important gold mineralization areas in North China, and detailed investigations have been made in this area. Different mineralization models and different ore-forming sources have been proposed for the gold deposits in this area. As more detailed work was made and more information has been accumulated, it is necessary to make a new investigation on gold metallogenesis and its source. This paper presents the data about 13 gold deposits (occurrences). It is concluded that the element gold came from the deep mantle.Different models of metallogenesis substantially describe such processes that ore-forming fluids were involved in metallogenesis in different favorable loci. Gold ore prospecting should be focused on fluid channel ways and favorable structures.

  20. Nanoparticle dispersion-strengthened coatings and electrode materials for electrospark deposition

    Energy Technology Data Exchange (ETDEWEB)

    Levashov, E.A. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation)]. E-mail: levashov@shs.misis.ru; Vakaev, P.V. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Zamulaeva, E.I. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Kudryashov, A.E. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Pogozhev, Yu.S. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Shtansky, D.V. [Moscow State Institute of Steel and Alloys, Technological University, Leninsky pr., 4, Moscow 119049 (Russian Federation); Voevodin, A.A. [Air Force Research Laboratory, 2941 Hobson Way, Wright Patterson AFB, OH 45433 (United States); Sanz, A. [SKF Engineering and Research Centre, P.O. Box 2350 Kelvinbaan 16, 3430 DT Nieuwegein, 3439 MT Nieuwegein (Netherlands)

    2006-11-23

    Advanced electrode compositions were developed using self-propagating high-temperature synthesis (SHS). Electrospark deposition (ESD) was applied to produce tribological coatings which were disperse-strengthened by incorporation of nanosized particles. Nanostructured electrodes of cemented carbides were produced using powder metallurgy technologies. They allow increasing the coatings density, thickness, hardness, Young's modulus and wear resistance. Positive effects of the nanostructure of electrodes on the deposition process and structure and properties of the coatings are discussed. In that case the tungsten carbide phases become predominant in the coatings. A mechanism of the dissolution reaction of WC with Ni at the contact surface of electrode was proposed. It was shown that the formation of the coating structure starts on the electrode and is accomplished on the substrate.

  1. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  2. Deposition of High Conductivity Low Silver Content Materials by Screen Printing

    Directory of Open Access Journals (Sweden)

    Eifion Jewell

    2015-05-01

    Full Text Available A comprehensive experimental investigation has been carried out into the role of film thickness variation and silver material formulation on printing capability in the screen printing process. A full factorial experiment was carried out where two formulations of silver materials were printed through a range of screens to a polyester substrate under a set of standard conditions. The materials represented a novel low silver content (45%–49% polymer material and traditional high silver content (65%–69% paste. The resultant prints were characterised topologically and electrically. The study shows that more cost effective use of the silver in the ink was obtained with the low silver polymer materials, but that the electrical performance was more strongly affected by the mesh being used (and hence film thickness. Thus, while optimum silver use could be obtained using materials with a lower silver content, this came with the consequence of reduced process robustness.

  3. Reactivity, interactions and transport of trace elements, organic carbon and particulate material in a mountain range river system (Adour River, France).

    Science.gov (United States)

    Point, David; Bareille, Gilles; Amouroux, David; Etcheber, Henri; Donard, Olivier F X

    2007-02-01

    The background levels, variability, partitioning and transport of eleven trace elements-Ag, Al, As, Cd, Co, Cr, Cu, Mn, Pb, Zn and U-were investigated in a mountain range river system (Adour River, France). This particular river system displayed a turbulent hydrodynamic regime, characterized by flash-transient discharge conditions leading to fast shifts in suspended particulate matter (SPM) concentrations as high as two orders of magnitude (12 to 600 mg l(-1)). The distribution of SPM was accurately predicted with a "hysteresis" transport model, indicating that about 75% of the annual solids load was exported within 20 to 40 days. Dissolved and particulate concentrations of most trace elements were low compared to their concentrations in other reference river systems expect for Pb and Cr, associated with historical anthropogenic activities. Although dissolved and particulate metal concentrations were steady for most elements during low and average discharge conditions, significant changes were observed with increasing river discharge. The changes in trace element concentrations in the two compartments was found to induce a partitioning anomaly referred to as the particulate concentration effect. This anomaly was significant for Cr, Mn, Pb, Zn, Cu and organic carbon (p < 0.03). The processes driving this anomaly were possibly linked to the modification and/or increase of colloidal organic and inorganic vectors, suggested by the significant increase of DOC (p < 0.001) and dissolved Al concentrations (p < 0.05) during flood conditions. A complementary process linked to the influence of coarse particles of low complexation capacity and transported mainly during high discharge may also effect trace element concentrations. Annual metal fluxes transported by this river system were estimated using the hysteresis SPM model with consideration of these fate processes. Metals in the Adour River system are primarily exported into the Bay of Biscay (Atlantic Ocean).

  4. Identification and Quantification of the Temporal and Spatial Scales of Variability in Particulate and Dissolved Material Associated with Specific Land-use Activities in the Penobscot River System

    Science.gov (United States)

    2016-06-07

    response to release of phosphate by the mill. We observed a troublesome relationship between the calibrated in situ chlorophyll fluorometer...Time Series In order to determine high-resolution carbon component time series we apply the conversion equations (proxy relationship) derived from...discharge rate converted to (m3/h) with proper unit conversion . Similarly, the total particulate organic carbon load is computed from the time series

  5. Electrically heated particulate filter enhanced ignition strategy

    Science.gov (United States)

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  6. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirov, S.A., E-mail: sp-box@yandex.ru [State Scientific and Production Association “Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus”, P. Brovka str. 19, 220072 Minsk (Belarus); Gremenok, V.F.; Ivanov, V.A.; Shevtsova, V.V. [State Scientific and Production Association “Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus”, P. Brovka str. 19, 220072 Minsk (Belarus); Gladyshev, P.P. [Dubna International University for Nature, Society and Man, Universitetskaya str. 19, 141980 Dubna, Moscow Oblast (Russian Federation)

    2015-06-30

    Tin monosulfide SnS raises an interest as a promising material for photovoltaics. The influence of the substrate material on the microstructure and optical properties of SnS thin films with [111] texture obtained by hot wall vacuum deposition on glass, molybdenum and indium tin oxide substrates is reported. The lattice parameters for layers grown on different substrates were determined by X-ray diffraction and their deviations from the data reported in the literature for single α-SnS crystals were discussed. The change in the degree of preferred orientation of the films depending on the substrate material is observed. The direct nature of the optical transitions with the optical band gap of 1.15 ± 0.01 eV is reported. - Highlights: • SnS thin films were hot wall deposited on glass, molybdenum and indium tin oxide. • Physical properties of the films were studied with respect to the substrate type. • The SnS lattice parameter deviations were observed and the explanation was given. • The direct optical transitions with the band gap of 1.15 ± 0.01 eV were observed.

  7. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-07-15

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and {sup 131}I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical

  8. Intercellular deposits of basement membrane material in active human pituitary adenomas detected by immunostaining for laminin and electron microscopy

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1986-01-01

    Thirty-eight human pituitary adenomas (24 endocrine active and 14 endocrine inactive tumors) were studied immunohistochemically for the presence of the basement membrane component, laminin, and ultrastructurally for the presence of basement membrane. Immunoreactivity of laminin delineated staining...... and one patient with Cushing's syndrome). Concurrently, at the ultrastructural level, bunches of basement membrane-like material intermingled between the adenoma cells were demonstrated in seven of these ten active adenomas. Furthermore, secretory granules were entrapped occasionally in this intercellular...... matrix, indicating a mutual dependence between excessive hormone extrusion and an increase of "misplaced" deposits of basement membrane components, e.g., laminin....

  9. Sr Isotope Constraints on the Age and Source of Ore—Forming Materials of Gold Deposits,Southwestern Hunan

    Institute of Scientific and Technical Information of China (English)

    彭建堂; 戴塔根; 等

    2000-01-01

    We have measured Rb and Sr concentrations in fluid inclusions of quartz in gold deposits,southwestern Hunan,The Rb-Sr isochron ages of 435±9Ma and 412±33Ma are respectively determined,revealing that gold mineralization in this area took place in the Caledonian period rather than in the Wuling-Xuefeng period as traditionalyy considered.Sr isotope geochemistry of the hydrothermal fluid indicates that the ore-forming materials are of crust origin,derived largely from the ore-hositng strata rather than from the basic dikes.

  10. Development surface modification technologies - A development of new nuclear materials by thin film deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jong; Lee, Min Goo; Kim, Hyun Ho; Kim, Yong Il; Kwang, Hee Soo [Korea Advanced Institute of Scienec and Technology, Taejon (Korea, Republic of)

    1995-08-01

    Pitting corrosion of TiN-coted Inconel 600 in hightemperature chloride solution was studied. To improve the pitting resistance of Inconel 600 by depositing TiN thin film, TiN must have the thickness greater than a critical value at which the characteristics of the film itself appear. E{sub np}s of the TiN-coated sample were higher than those of the bare Inconel 600 at all the solution temperature implying that the TiN film improved the pitting resistance. The heavy defects on the surface of the substrate which were incompletely covered by TiN film served as the active sites for the pit nucleation. Fine polishing reduced those defects and improved the pitting resistance of the TiN-coated Inconel 600. The pit densities of the TiN-coated samples were much lower than those of the bare Inconel 600 at low chloride concentrations. However, at high chloride concentrations the TiN film failed to improve the pitting resistance of the Inconel. The TiN film deposited by ion-plating on Stellite was studied. The X-ray analysis shows that the deposited films were only in .delta.-TiN phase and the texture was changed from (111) to (200) with the increase of N{sub 2}/Ar ratio. The impurities in TiN films were carbon and oxygen. The amounts of these impurities were decreased greatly when the substrate bias, -200 V, was applied compared to no bias. 40 refs., 4 tabs., 20 figs. (author)

  11. In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis.

    Science.gov (United States)

    Magdziarz, Agnieszka; Colmenares, Juan C

    2017-01-31

    This short review provides the current state-of-the-art of in situ coupling of ultrasound to chemical deposition methods. A synergetic action of the ultrasound and light radiation or electrical fields may result in new powerful methodologies, and these include sonophotodeposition and sonoelectrodeposition processes. The effect of ultrasound is explained on the base of different physical mechanisms emerging from cavitation phenomenon. Some possible mechanisms of the interactions between ultrasound and photochemical and electrochemical processes are discussed here. The application of sonophotodeposition and sonoelectrodeposition as green energy sources in the syntheses of different nanomaterials is also reviewed.

  12. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  13. In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis

    Directory of Open Access Journals (Sweden)

    Agnieszka Magdziarz

    2017-01-01

    Full Text Available This short review provides the current state-of-the-art of in situ coupling of ultrasound to chemical deposition methods. A synergetic action of the ultrasound and light radiation or electrical fields may result in new powerful methodologies, and these include sonophotodeposition and sonoelectrodeposition processes. The effect of ultrasound is explained on the base of different physical mechanisms emerging from cavitation phenomenon. Some possible mechanisms of the interactions between ultrasound and photochemical and electrochemical processes are discussed here. The application of sonophotodeposition and sonoelectrodeposition as green energy sources in the syntheses of different nanomaterials is also reviewed.

  14. Atomic layer deposition of environmentally benign SnTiO{sub x} as a potential ferroelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Siliang; Selvaraj, Sathees Kannan [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Choi, Yoon-Young; Hong, Seungbum [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nakhmanson, Serge M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Department of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-15

    Inspired by the need to discover environmentally friendly, lead-free ferroelectric materials, here the authors report the atomic layer deposition of tin titanate (SnTiO{sub x}) aiming to obtain the theoretically predicted perovskite structure that possesses ferroelectricity. In order to establish the growth conditions and probe the film structure and ferroelectric behavior, the authors grew SnTiO{sub x} films on the commonly used Si(100) substrate. Thin films of SnTiO{sub x} have been successfully grown at a deposition temperature of 200 °C, with a Sn/Ti atomic layer deposition (ALD) cycle ratio of 2:3 and postdeposition heat treatments under different conditions. X-ray photoelectron spectroscopy revealed excellent composition tunability of ALD. X-ray diffraction spectra suggested anatase phase for all films annealed at 650 and 350 °C, with peak positions shifted toward lower 2-theta angles indicating enlarged unit cell volume. The film annealed in O{sub 2} at 350 °C exhibited piezoresponse amplitude and phase hysteresis loops, indicative of the existence of switchable polarization.

  15. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  16. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    Directory of Open Access Journals (Sweden)

    Prashanta Dhoj Adhikari

    2014-01-01

    Full Text Available We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G. Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  17. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.

  18. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models.

  19. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang

    2010-07-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  20. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-07-15

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and {sup 131}I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical

  1. Textural Properties of Hybrid Biomedical Materials Made from Extracts of Tournefortia hirsutissima L. Imbibed and Deposited on Mesoporous and Microporous Materials

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández

    2016-01-01

    Full Text Available Our research group has developed a group of hybrid biomedical materials potentially useful in the healing of diabetic foot ulcerations. The organic part of this type of hybrid materials consists of nanometric deposits, proceeding from the Mexican medicinal plant Tournefortia hirsutissima L., while the inorganic part is composed of a zeolite mixture that includes LTA, ZSM-5, clinoptilolite, and montmorillonite (PZX as well as a composite material, made of CaCO3 and montmorillonite (NABE. The organic part has been analyzed by GC-MS to detect the most abundant components present therein. In turn, the inorganic supports were characterized by XRD, SEM, and High Resolution Adsorption (HRADS of N2 at 76 K. Through this latter methodology, the external surface area of the hybrid materials was evaluated; besides, the most representative textural properties of each substrate such as total pore volume, pore size distribution, and, in some cases, the volume of micropores were calculated. The formation and stabilization of nanodeposits on the inorganic segments of the hybrid supports led to a partial blockage of the microporosity of the LTA and ZSM5 zeolites; this same effect occurred with the NABE and PZX substrates.

  2. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis.

  3. AIRWAY RETENTION OF MATERIALS OF DIFFERENT SOLUBILITY FOLLOWING LOCAL INTRABRONCHIAL DEPOSITION IN DOGS

    Science.gov (United States)

    We used a gamma camera to monitor the retention and clearance of radiolabeled human serum albumin (HSA), a water-soluble material with molecular weight of 66,000 Daltons, and radiolabeled sulfur colloid (SC), an insoluble submicron (0.22 microm) particle, following localized depo...

  4. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  5. Fate and effects of fragrance material on the deposit feeder, Capitella teleta

    DEFF Research Database (Denmark)

    Dai, Lina; Selck, Henriette; Salvito, Daniel;

    2010-01-01

    Fragrance materials (FMs) have been used ubiquitously at low concentrations in perfume, cosmetics, detergents etc. The primary pathway into the aquatic environment is down-the-drain on a continual basis. Most published papers about FMs are concerned with the polycyclic and nitro musks. Acetyl...

  6. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resul

  7. AIRWAY RETENTION OF MATERIALS OF DIFFERENT SOLUBILITY FOLLOWING LOCAL INTRABRONCHIAL DEPOSITION IN DOGS

    Science.gov (United States)

    We used a gamma camera to monitor the retention and clearance of radiolabeled human serum albumin (HSA), a water-soluble material with molecular weight of 66,000 Daltons, and radiolabeled sulfur colloid (SC), an insoluble submicron (0.22 microm) particle, following localized depo...

  8. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  9. Polarization signatures of airborne particulates

    Science.gov (United States)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  10. Transport and deposition of pyroclastic material from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, Nayarit, Mexico

    Science.gov (United States)

    Browne, B. L.; Gardner, J. E.

    2005-06-01

    The complex eruption sequence from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, known as the Jala Pumice, offers an exceptional opportunity to examine how pyroclastic material is transported and deposited from pyroclastic density currents over variable topography. Three main pyroclastic surge deposits (S1, S2, and S3) and two pyroclastic flow deposits (Marquesado and North-Flank PFDs) were emplaced during this eruption. Pyroclastic surge deposits are massive, planar, or cross-bedded, poor-to-well sorted, and display fluctuations in thickness, median diameter, sorting, and lithology as a function of distance, topography, and flow dynamics. Marquesado pyroclastic flow deposits reveal lateral variations from massive, poorly sorted deposits located within 5 km of Ceboruco to planar bedded, moderately well sorted deposits located >15 km away over the nearly horizontal topography to the south of Ceboruco. North-Flank pyroclastic flow deposits also reveal lateral variations from massive, poorly sorted deposits located within 4 km of Ceboruco to planar bedded, moderately well sorted deposits located 8 km away atop an escarpment that steeply rises 230 m from the northern valley floor. Field observations, granulometric analyses, component analyses, and crystal sedimentation calculations along flow-parallel sampling transects all suggest that both surges and flows were density stratified currents, where deposition occurred from a basal region of higher particle concentration that was supplied from an overlying dilute layer that transports particles in suspension. This supports the idea of a transition between “flow” and “surge” end members with variations in particle concentration. Topography greatly affects the transport and depositional capacity of the pyroclastic density currents as a result of “blocking”, either by topographic obstacles or by abrupt breaks at the base of volcano slopes, whereas the origin of Jala Pumice surge deposits

  11. Quantification of Tremolite in Friable Material Coming from Calabrian Ophiolitic Deposits by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antonella Campopiano

    2015-01-01

    Full Text Available The aim of this study is to identify the infrared absorption band suitable for quantifying tremolite in three powdered samples (fine, medium, and large size classes coming from a quarry of ophiolitic friable rocks in the western part of the Calabria region of Italy. Three IR bands were considered: OH stretching band between 3700 and 3650 cm−1, the stretching bands of the Si-O-Si linkage between 1200 and 900 cm−1, and the absorbance band at 756 cm−1 attributable to tremolite. The amount of tremolite in the test samples was quantified by using the curve parameters of the three analytical bands. The quantitative analysis of tremolite using the band due to OH stretchings (3700–3650 cm−1 and the bands attributed to the Si-O-Si stretchings (1200–900 cm−1 showed high values for all test samples. Their use overestimated the tremolite amount because both bands were affected at the interfering mineral silicates such as talc, kaolinite, chlorite, and serpentinites. The abundant presence of antigorite in studied samples mainly in medium size class sample had a key role in our findings. The band at 756 cm−1 was not affected at the interfering minerals and can be used for quantitative analysis of tremolite in sample coming from ophiolitic deposits.

  12. Bacterial Suspensions Deposited on Microbiological Filter Material for Rapid Laser-Induced Breakdown Spectroscopy Identification.

    Science.gov (United States)

    Malenfant, Dylan J; Gillies, Derek J; Rehse, Steven J

    2016-03-01

    Four species of bacteria, E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa, were harvested from agar nutrient medium growth plates and suspended in water to create liquid specimens for the testing of a new mounting protocol. Aliquots of 30 µL were deposited on standard nitrocellulose filter paper with a mean 0.45 µm pore size to create highly flat and uniform bacterial pads. The introduction of a laser-based lens-to-sample distance measuring device and a pair of matched off-axis parabolic reflectors for light collection improved both spectral reproducibility and the signal-to-noise ratio of optical emission spectra acquired from the bacterial pads by laser-induced breakdown spectroscopy. A discriminant function analysis and a partial least squares-discriminant analysis both showed improved sensitivity and specificity compared to previous mounting techniques. The behavior of the spectra as a function of suspension concentration and filter coverage was investigated, as was the effect on chemometric cell classification of sterilization via autoclaving. © The Author(s) 2016.

  13. Resuspension of deposited radioactive material from the Fukushima Daiichi NPP site

    Science.gov (United States)

    Steinhauser, Georg; Niisoe, Tamon; Harada, Kouji H.; Shozugawa, Katsumi; Schneider, Stephanie; Synal, Hans-Arno; Walther, Clemens; Christl, Marcus; Nanba, Kenji; Ishikawa, Hirohiko; Koizumi, Akio

    2016-04-01

    Releases of radionuclides from the Fukushima nuclear accident are typically associated with the atmospheric discharges in the early phase of the accident in spring 2011. Analysis of weekly air filters, however, has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations in the Minamisoma area north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported 137Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high 90Sr contamination (78 ± 8 Bq kg-1) as well as a high 90Sr/137Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross 137Cs activity of ca. 2.8 × 1011 Bq has been released.

  14. A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite

    Science.gov (United States)

    Branney, Michael J.; Kokelaar, Peter

    1992-08-01

    We propose a mechanism by which massive ignimbrite and layered ignimbrite sequences — the latter liable to have been previously interpreted as multiple flow units-form by progressive aggradation during sustained passage of a single particulate flow. In the case of high-temperature eruptive products the mechanism simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variations in texture, including between non-welded, eutaxitic, rheomorphic (lineated) and lava-like. Agglutination can occur within the basal part of a hot density-stratified flow. During initial incursion of the flow, agglutinate chills and freezes against the ground. During sustained passage of the flow, agglutination continues so that the non-particulate (agglutinate) layer thickens (aggrades) and becomes mobile, susceptible to both gravity-induced motion and traction-shear imparted by the overriding particulate part of the flow. The particulate to non-particulate (P-NP) transition occurs in and just beneath a depositional boundary layer, where disruptive collisions of hot viscous droplets give way, via sticky grain interactions, to fluidal behavior following adhesion. Because they have different rheologies, the particulate and non-particulate flow components travel at different velocities and respond to topography in different ways. This may cause detachment and formation of two independent flows. The P-NP transition is controlled by factors that influence the rheological properties of individual erupted particles (strain rate, temperature, and composition including volatiles), by cooling and volatile exsolution during transport, and by the particle-size population and concentration characteristics of the depositional boundary layer. At any one location along the flow path one or more of these can change through time (unsteady flow). Thus the P-NP transition can develop momentarily or repeatedly during the passage of an unsteady flow, or it can occur

  15. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    results in hexagonal symmetry (s.g. P63/m). This material is typically prepared by low temperature techniques (and is the phase synthesized ...experiments were conducted to evaluate the response of the films to ammonia , hazardous air pollutant. The example of the differential optical absorption...reagent with nano-particles under exposure to ammonia at a concentration of ~ 10000 ppm transmitted 100 times less light on both sides of the 605

  16. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  17. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  18. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  19. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    Science.gov (United States)

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  20. Metallic nanoparticles deposited on carbon microspheres: novel materials for combinatorial electrochemistry and electroanalysis.

    Science.gov (United States)

    Baron, Ronan; Wildgoose, Gregory G; Compton, Richard G

    2009-04-01

    This review deals with the preparation of metallic nanoparticles on glassy carbon microspheres and the use of these new hybrid materials for combinatorial electrochemistry and electroanalysis. First, the preparation of gold, silver and palladium nanoparticles on glassy carbon microspheres by a simple electroless procedure is described. Then, different types of electrodes modified with glassy carbon microspheres are described. These are: (i) glassy carbon electrodes modified by a composite film of glassy carbon microspheres and multi-walled carbon nanotubes, (ii) basal plane pyrolylic graphite electrodes modified by the abrasive attachment of glassy carbon microspheres and (iii) carbon-epoxy composite electrodes loaded with glassy carbon microspheres. The three types of electrode architectures described consist of metallic nanoparticles embedded in a carbon matrix and each of the electrode macrodisc surfaces actually correspond to a random metallic nanoelectrode array. Carbon-epoxy composite electrodes have good characteristics for their use as practical sensors. Furthermore, the use of several kinds of metallic nanoparticles allows the construction of a multi-analyte electrode and the screening of electroactive materials by following a combinatorial approach.

  1. Improved efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) from the National Institute of Standards and Technology (NIST) Standard Reference Material Diesel Particulate Matter (SRM 2975) using accelerated solvent extraction.

    Science.gov (United States)

    Masala, Silvia; Ahmed, Trifa; Bergvall, Christoffer; Westerholm, Roger

    2011-12-01

    The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the

  2. Isotopic indication to source of ore materials and fluids of the Wangfeng gold deposit in Tianshan: A case study of metallogenesis during collisional orogenesis

    Institute of Scientific and Technical Information of China (English)

    陈华勇; 鲍景新; 张增杰; 刘玉琳; 倪培; 凌洪飞

    2000-01-01

    The Wangfeng gold deposit is one of the five most important gold deposits in the Tian-shan. Studies of its metallogenic time, space, geodynamic background, ore feature and ore fluid have proved that the deposit formed in the late Paleozoic continental collision, and consequently is a suitable delegate to probe mineralizing regularities during collisiona! orogenesis. Isotopic studies including O, D, C, S, Pb and Sr reveal ore materials derived from sedimentary association (including carbonate and sulfate), which further refers to the Hercynian carbonate-silicolite-argillite formation north to Wangfeng camp. At the end of Paleozoic, the southward intracontinental subduction of Hercynian synthem along the Hongwuyueqiao fault down to the Central Tianshan terrane induced large-scale fluidization which extracted and out-transported ore materials from Hercynian synthem upto shallow fair positions, and finally resulted in the formation of the Wangfeng deposit. This study excludes the possibility of other tecton

  3. Mineralogy of Clay Raw Materials from Cote d'ivoire: Case of the Deposit from Katiola

    Science.gov (United States)

    Kpangni, E. B.; Andji, Y. Y. J.; Adouby, K.; Oyetola, S.; Kra, G.; Yvon, J.

    This study deals with two clays referenced K1 and K2, used in the local and traditional manufacture of pottery ware at Katiola. Those samples were analysed by X-rays diffraction, infrared spectroscopy and thermal differential and chemical techniques. The results show that the samples (K1 and K2) are mainly composed of montmorillonite, kaolinite and illite. Only K1 is inter-stratified. The mineralogical balance achieved from the reflection (001) of the oriented film, indicate for K1: 74.5% of montmorillonite; 13.5% of inter-stratified clay; 7% of kaolinite and 5.4% of illite and for K2: 73.4% of montmorillonite; 23.5% of kaolinite and 3.1% of illite. The results also indicate that the raw material may not be use only for pottery. It can be consider in the protection of the environment, cosmetic industry, vegetable oil treatment, medicine etc.

  4. Comparison of particulate verification techniques study

    Science.gov (United States)

    Rivera, Rachel

    2006-08-01

    The efficacy of five particulate verification techniques on four types of materials was studied. Statistical Analysis Software/JMP 6.0 was used to create a statistically valid design of experiments. In doing so, 35 witness coupons consisting of the four types of materials being studied, were intentionally contaminated with particulate fallout. Image Analysis was used to characterize the extent of particulate fallout on the coupons and was used to establish a baseline, or basis of comparison, against the five techniques that were studied. The five particulate verification techniques were the Tapelift, the Particulate Solvent Rinse, the GelPak lift, an in-line vacuum filtration probe, and the Infinity Focusing Microscope (IFM). The four types of materials consisted of magnesium flouride (MgF II) coated mirrors, composite coated silver aluminum (CCAg), Z93 and NS43G coated aluminum, and silicon (si) wafers. The vacuum probe was determined to be most effective for Z93, the tapelift or vacuum probe for MgF2, and the GelPak Lift for CCAg and si substrates. A margin of error for each technique, based on experimental data from two experiments, for si wafer substrates, yielded the following: Tapelift - 67%, Solvent Rinse - 58%, GelPak- 26%, Vacuum Probe - 93%, IFM-to be determined.

  5. Structural and kinetic studies of metal hydride hydrogen storage materials using thin film deposition and characterization techniques

    Science.gov (United States)

    Kelly, Stephen Thomas

    Hydrogen makes an attractive energy carrier for many reasons. It is an abundant chemical fuel that can be produced from a wide variety of sources and stored for very long periods of time. When used in a fuel cell, hydrogen emits only water at the point of use, making it very attractive for mobile applications such as in an automobile. Metal hydrides are promising candidates for on-board reversible hydrogen storage in mobile applications due to their very high volumetric storage capacities---in most cases exceeding even that of liquid hydrogen. The United States Department of Energy (DOE) has set fuel system targets for an automotive hydrogen storage system, but as of yet no single material meets all the requirements. In particular, slow reaction kinetics and/or inappropriate thermodynamics plague many metal hydride hydrogen storage materials. In order to engineer a practical material that meets the DOE targets, we need a detailed understanding of the kinetic and thermodynamic properties of these materials during the phase change. In this work I employed sputter deposited thin films as a platform to study materials with highly controlled chemistry, microstructure and catalyst placement using thin film characterization techniques such as in situ x-ray diffraction (XRD) and neutron reflectivity. I observed kinetic limitations in the destabilized Mg2Si system due to the slow diffusion of the host Mg and Si atoms while forming separate MgH2 and Si phases. Conversely, I observed that the presence of Al in the Mg/Al system inhibits hydrogen diffusion while the host Mg and Al atoms interdiffuse readily, allowing the material to fall into a kinetic and/or thermodynamic trap by forming intermetallic compounds such as Mg17Al 12. By using in situ XRD to analyze epitaxial Mg films grown on (001) oriented Al2O3 substrates I observed hydride growth consistent with a model of a planar hydride layer growing into an existing metal layer. Subsequent film cycling changes the hydrogen

  6. Parametric study of the energy deposition inside the calorimeter measuring the nuclear heating in Material Testing Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Amharrak, H., E-mail: hicham.amharrak@im2np.fr [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Reynard-Carette, C. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint Paul lez Durance (France); Carette, M.; Brun, J.; De Vita, C. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Fourmentel, D.; Villard, J-F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint Paul lez Durance (France)

    2015-11-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material and two calorimetric cells. Then these measurements are used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present simulations with MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) to evaluate the nuclear heating inside the calorimeter during irradiation campaigns of the CARMEN-1P mock-up inside OSIRIS reactor periphery (MTR based on Saclay, France). The whole complete geometry of the sensor has been considered. The calculation method corresponds to a calculation in two steps. Consequently, we used as an input source in the model, the neutron and photon spectra calculated in various experimental locations tested during the irradiation campaign (H9, H10, H11, D9). After a description of the differential calorimeter sensor, the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements is introduced by two quantities: KERMA and energy deposition rate per mass unit. The Charged Particle Equilibrium (CPE) inside the calorimeter elements is studied. The contribution of prompt gamma and neutron is determined. A comparison between this total nuclear heating calculation and the experimental results in a graphite sample will be made. Then parametric studies performed on the influence of the various calorimeter components on the nuclear heating are presented and discussed. The studies of the influence of the nature of materials, the sensor jacket, the source type and the comparison of the results obtained for the two calorimetric cells leads to some proposals for the sensor improvement.

  7. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  8. Advances in geochemical research on nanometer materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Important advances have been made in the field of geochemistry since nanometer science and technology were introduced into the field of geoscience. The nanometer particulates have been discovered in naturally-occurring ore deposits, volcano-eruptive materials and geo-gases, and a more detailed exploration of the metallogenic mechanism of endogenic metallic ore deposits has been conducted. It is considered that some ore-forming metals may transport in the form of native particulates. Because they have very strong capabilities of adsorption, adsorption is always regarded as an important mechanism of metallogenesis under supergenic and low temperature conditions.Therefore, a new technology of ore exploration has also been developed. This paper attempts to review the new advances in geochemical research on nanometer materials, as well as its perspectivess.

  9. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    Science.gov (United States)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2016-12-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  10. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    Science.gov (United States)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  11. Fluidizing device for solid particulates

    Science.gov (United States)

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  12. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  13. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  14. In situ study of key material and process reliability issues in the chemical vapor deposition of copper

    Science.gov (United States)

    Lou, Ishing

    With the limitations of current aluminum based metallization schemes used in microelectronics, the development of a manufacturable chemical vapor deposition (CVD) process for copper metallization schemes is crucial to meet the stringent requirements of sub-quarter micron device technology and beyond. The work presented herein focused on investigating key material and process reliability issues pertaining to Cu CVD processing. In particular, a unique combination of in-situ gas phase Fourier transform infrared (FTIR) and quadrupole mass spectrometry (QMS) was employed to study the role of hydrogen in thermal CVD of copper using (tmvs)Cusp{I}(hfac). These studies showed that hydrogen provides significant enhancement in the deposition rate of copper interconnects. Based on the QMS and FTIR data, this enhancement could be attributed to the role of hydrogen in assisting in the removal of tmvs from (tmvs)Cusp{I}(hfac), thus enhancing the conversion of Cusp{I}(hfac) intermediates to Cusp{o} and Cusp{II}(hfac)sb2 and providing a wider process window with higher conversion efficiency. In addition, in-situ real time QMS studies were performed of the gas phase evolution and decomposition pathways of (tmvs)Cusp{I}(hfac) during thermal CVD of copper. The QMS investigations focused on determining the ionization efficiency curves and appearance potentials of (tmvs)Cusp{I}(hfac) under real CVD processing conditions. The resulting curves and associated potentials were then employed to identify the most likely precursor decomposition pathways and examine relevant implications for thermal CVD of copper from (tmvs)Cusp{I}(hfac). Finally, a hydrogen-plasma assisted CVD (PACVD) process was developed for the growth of device quality gold for incorporation as dopant in emerging Cu CVD based metallization interconnects. In particular, it was demonstrated that the PACVD gold process window identified can maintain very low gold deposition rates (gold is a promising in-situ Cu doping technique

  15. Impact of deposition parameters on the material quality of SPC poly-Si thin films using high-rate PECVD of a-Si:H

    Directory of Open Access Journals (Sweden)

    Kumar Avishek

    2015-01-01

    Full Text Available The impact of the deposition parameters such as gas flow (sccm and RF plasma power density (W/cm2 on the deposition rate of a-Si:H films is systematically investigated. A high deposition rate of up to 146 nm/min at 13.56 MHz is achieved for the a-Si:H films deposited with high lateral uniformity on 30 × 40 cm2 large-area glass substrates. A relationship between the SiH4 gas flow and the RF power density is established. The SiH4 gas flow to RF power density ratio of about 2.4 sccm/mW cm-2 is found to give a linear increase in the deposition rate. The influence of the deposition rate on the material quality is studied using UV-VIS-NIR spectrophotometer and Raman characterisation techniques. Poly-Si thin film with crystal quality as high as 90% of single-crystalline Si wafer is obtained from the SPC of high rate deposited a-Si:H films.

  16. Heat and Mass Transfer in the Chemical Vapor Deposition of Silicon Carbide in a Porous Carbon-Carbon Composite Material for a Heat Shield

    Science.gov (United States)

    Reznik, S. V.; Mikhailovskii, K. V.; Prosuntsov, P. V.

    2017-03-01

    Physical and mathematical simulations of the chemical vapor deposition of silicon carbide in a porous carbon-carbon composite material in a chemical vapor deposition reactor for formation of a matrix of a carbon-ceramic composite material for a heat shield of an aerospace aircraft have been performed. Results of parametric calculations of the heat and mass transfer at the macro- and microlevels in representative elements of the microstructure of carbon-carbon composite materials different in residual porosity at different temperatures in the reaction zone of the reactor are presented. Features of compaction of the pore space of a carbon-carbon composite material by a silicon-carbide matrix depending on the technological parameters of the reaction medium were analyzed.

  17. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Directory of Open Access Journals (Sweden)

    Rusi

    Full Text Available The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD and energy dispersive X-ray (EDX. The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV and galvanostatic charge-discharge (CD. As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1 at current density of 1.85 Ag(-1 in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN 6 electrolytes. The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3 Fg(-1 and an energy density of 309 Whkg(-1 in a 0.5 M KOH/0.04 M K3Fe(CN 6 electrolyte at a current density of 10 Ag(-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  18. Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications

    Directory of Open Access Journals (Sweden)

    Maria Laura Coluccio

    2014-03-01

    Full Text Available The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  19. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications.

    Science.gov (United States)

    Coluccio, Maria Laura; Gentile, Francesco; Francardi, Marco; Perozziello, Gerardo; Malara, Natalia; Candeloro, Patrizio; Di Fabrizio, Enzo

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical mechanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection.

  20. Sources of ore-forming fluids and metallic materials in the Jinwozi lode gold deposit, eastern Tianshan Mountains of China

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei(刘伟); LI; Xinjun(李新俊); DENG; Jun(邓军)

    2003-01-01

    This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H- and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. Than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.

  1. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications

    KAUST Repository

    Coluccio, Maria Laura

    2014-03-27

    The new revolution in materials science is being driven by our ability to manipulate matter at the molecular level to create structures with novel functions and properties. The aim of this paper is to explore new strategies to obtain plasmonic metal nanostructures through the combination of a top down method, that is electron beam lithography, and a bottom up technique, that is the chemical electroless deposition. This technique allows a tight control over the shape and size of bi- and three-dimensional metal patterns at the nano scale. The resulting nanostructures can be used as constituents of Surface Enhanced Raman Spectroscopy (SERS) substrates, where the electromagnetic field is strongly amplified. Our results indicate that, in electroless growth, high quality metal nanostructures with sizes below 50 nm may be easily obtained. These findings were explained within the framework of a diffusion limited aggregation (DLA) model, that is a simulation model that makes it possible to decipher, at an atomic level, the rules governing the evolution of the growth front; moreover, we give a description of the physical echanisms of growth at a basic level. In the discussion, we show how these findings can be utilized to fabricate dimers of silver nanospheres where the size and shape of those spheres is controlled with extreme precision and can be used for very large area SERS substrates and nano-optics, for single molecule detection. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  2. Pulsed laser deposited Cr{sub 2}O{sub 3} nanostructured thin film on graphene as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Khamlich, S., E-mail: skhamlich@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Bello, A.; Fabiane, M.; Dangbegnon, J.K.; Manyala, N. [Department of Physics, SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-07-15

    Graphical abstract: A different approach for the fabrication of an anode material system that comprises pulsed laser-deposited (PLD) Cr{sub 2}O{sub 3} grown on few layer graphene (FLG) by chemical vapor deposition (CVD) was used. The electrochemical performance of Cr{sub 2}O{sub 3} nanostructured thin film was improved by FLG, which make it a promising candidate for future lithium-ion batteries application. - Highlights: • Pulsed laser deposition technique was used to deposit Cr{sub 2}O{sub 3} on few-layer graphene (FLG). • FLG improved the electrochemical performance of Cr{sub 2}O{sub 3} nanostructured thin film. • Good stable cycle of Cr{sub 2}O{sub 3}/FLG/Ni electrode make it one of the promise anode materials for future lithium-ion batteries. - Abstract: Pulsed laser deposition technique was used to deposit Cr{sub 2}O{sub 3} nanostructured thin film on a chemical vapor deposited few-layer graphene (FLG) on nickel (Ni) substrate for application as anode material for lithium-ion batteries. The experimental results show that graphene can effectively enhance the electrochemical property of Cr{sub 2}O{sub 3}. For Cr{sub 2}O{sub 3} thin film deposited on Ni (Cr{sub 2}O{sub 3}/Ni), a discharge capacity of 747.8 mA h g{sup −1} can be delivered during the first lithiation process. After growing Cr{sub 2}O{sub 3} thin film on FLG/Ni, the initial discharge capacity of Cr{sub 2}O{sub 3}/FLG/Ni was improved to 1234.5 mA h g{sup −1}. The reversible lithium storage capacity of the as-grown material is 692.2 mA h g{sup −1} after 100 cycles, which is much higher than that of Cr{sub 2}O{sub 3}/Ni (111.3 mA h g{sup −1}). This study reveals the differences between the two material systems and emphasizes the role of the graphene layers in improving the electrochemical stability of the Cr{sub 2}O{sub 3} nanostructured thin film.

  3. Univers de Particules

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Dans l’Univers, tout est fait de particules. Mais d’où viennent-elles? Quelle est l’origine des lois de la nature? Au rez-de-chaussée du Globe de la science et de l’innovation, l’exposition permanente « Univers de particules » vous invite à un voyage vers le Big Bang en explorant le CERN. Avec à la clé des réponses aux questions: pourquoi cette recherche ? Comment accélérer des particules ? Comment les détecter ? Quelles sont les théories sur la matière et sur l’Univers aujourd’hui ? Quelles retombées pour notre vie quotidienne ?

  4. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    Science.gov (United States)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  5. Microwave regenerated particulate trap

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  6. The influence of production conditions, starting material and deposition environment on charcoal alteration in a tropical biome.

    Science.gov (United States)

    Ascough, Philippa; Bird, Michael; Meredith, Will; Large, David; Snape, Colin; Manion, Corinne

    2014-05-01

    Natural and anthropogenic burning events are a key link in the global carbon cycle, substantially influencing atmospheric CO2 levels, and consuming c.8700 teragrams yr-1 of dry biomass [1,2,3]. An important result of this process is charcoal, when lignocellulosic structures in biomass (e.g. wood) are converted to aromatic domains with high chemical stability. Charcoal is therefore not readily re-oxidized to CO2, with estimates of 5-7 ky for the half-life of charcoal carbon in soils [3,4]. Charcoal's high carbon content coupled with high environmental resistance has led to the concept of biochar as a valuable means of global carbon sequestration, capable of carbon offsets comparable to annual anthropogenic fuel emissions [5,6,7]. Charcoal is not, however, an environmentally inert substance, and at least some components of charcoal are susceptible to alteration in depositional environments. Despite the importance of charcoal in global carbon cycling, the mechanisms by which charcoal is altered in the environment remain, as yet, poorly understood. This fact limits our ability to properly incorporate both natural environmental charcoal and biochar into global carbon budgets. This study aimed to improve understanding of charcoal alteration in the environment by examining the influence of production conditions, starting material and deposition environment on the physical and chemical characteristics of charcoal at a field site in the Daintree rainforest. These factors have been identified as critical in determining the dynamics of charcoal in depositional environments [8,9] and climatic conditions at the field site (in Tropical Queensland, Australia) are likely to result in extensive alteration of charcoal. Charcoal from wood (Nothofagus spp.), algae (Enteromorpha spp.), and sugarcane (Saccharum spp.) biomass was produced at temperatures over 300-500°C and exposed to conditions of varying pH and vegetation cover. The effect of these variables on charcoal chemistry

  7. Sintering Temperature and Deposition Orientation Effects on Mechanical, PhysicalProperties and Geometric Distortion of Cu–Ni Single and Multi Material Indirect Sintering Products

    Directory of Open Access Journals (Sweden)

    EkoSutarto

    2012-08-01

    Full Text Available Development of multi material mechanical parts is constantly undertaken to increase functional aspectsas well as life cycle.One example is the use of bimaterial which is widely used as a temperature contactor. This paper presents mechanical, physical properties and geometric distortion of Cu-Ni indirect sintering products used to develop Cu-Ni bimaterial products. The experiment was executed with the following method: firstly, Cu and/or Ni powders were deposited into cast iron powder as the supporting powder. Secondly, it was heated in a furnace with varying temperatures of 870C, 900C and 930C with a holding time of four hours. Lastly, deposition orientation was varied to observe the effect on the occurence of shrinkage.To initiate the multi materials sintering process, single material sintering was performed to observe the physical and mechanical properties. Based onprevious work, multi material sintering of Cu and Ni powders was conducted. The experiment results showed that the geometric distortion of the sintering products was influenced by deposition orientation. The Cu and Ni products shrinkage were 49% and 35.33%, respectively. Although the melting temperature of Cu and Ni is close, the binding mechanism of the sintered product did not occur. The significant difference of shrinkage levelswas the main factor for the binding mechanism failure between Cu and Ni materials.

  8. Using an Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2017-02-01

    Full Text Available Vanadium pentoxide coatings were grown by atmospheric pressure chemical vapor deposition varying the gas precursor ratio (vanadium (IV chloride:water and the substrate temperature. All samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and transmittance measurements. The water flow rate was found to affect the crystallinity and the morphological characteristics of vanadium pentoxide. Dense stacks of long grains of crystalline oxide are formed at the highest amount of water utilized for a substrate temperature of 450 °C. Accordingly, it was indicated that for higher temperatures and a constant gas precursor ratio of 1:7, the surface morphology becomes flattened, and columnar grains of uniform size and shape are indicated, keeping the high crystalline quality of the material. Hence, it was possible to define a frame of operating parameters wherein single-phase vanadium pentoxide may be reliably expected, including a gas precursor ratio of 1:7 with a substrate temperature of >450 °C. The as-grown vanadium pentoxide at 550 °C for a gas precursor ratio of 1:7 presented the best electrochemical performance, including a diffusion coefficient of 9.19 × 10−11 cm2·s−1, a charge density of 3.1 mC·cm−2, and a coloration efficiency of 336 cm2·C−1. One may then say that this route can be important for the growth of large-scale electrodes with good performance for electrochromic devices.

  9. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  10. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... affect the heart and lungs and cause serious health effects. December 1, 2016 - EPA proposes air quality determinations for eleven areas designated "nonattainment" for the 24-hour fine particle standards. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  11. Modeling of Particulate Emissions

    Science.gov (United States)

    2011-12-01

    Particulates • SOx Cloud Formation Global Warming * - Greenhouse Gases Ozone Layer Depletion - Not an Immediate Concern Global Warming - An Emerging...Concern Local Air Quality - A Continuing Concern Ground Level Troposphere Ozone Layer Depletion • H2O Ozone Depletion (ice formation) 5 Modeling

  12. Instructions for Sampling Particulates.

    Science.gov (United States)

    Ekman, Frank

    This technical report presents detailed instructions for sampling particulates. The table of contents includes sections on Introduction, Volume Determinations, Apparatus - Assembly and Operation, Sampling Techniques, and Acknowledgment. Six charts, 24 graphs, and one diagram are appended to facilitate sampling, as well as sections on Isokinetic…

  13. Study on the multi-sources of ore-forming materials and ore-forming fluids in the Huize lead-zinc ore deposit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenliang; HUANG Zhilong; GUAN Tao; YAN Zaifei; GAO Derong

    2005-01-01

    The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.

  14. Temporal and spatial distribution of Au-Ag polymetallic ore deposits and source of ore-forming materials in the Zhangjiakou-Xuanhua mantle-branch metallogenetic zone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. Based on the comprehensive studies of geochronology and sulfur, lead, oxygen, carbon and noble gas isotopes, it is considered that the temporal and spatial distribution of mineral resources in this area is obviously controlled by the Zhangjiakou-Xuanhua mantle branch structure, as is reflected by the occurrence of gold deposits in the inner parts and of Ag-Pb-Zn polymetallic ore deposits in the outer parts. The mineralization took place mainly during the Yanshanian period. Ore-forming materials came largely from the deep interior of the Earth, and hydrothermal fluids were derived predominantly from Yanshanian magmatism.

  15. Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D

    Science.gov (United States)

    Ding, R.; Rudakov, D. L.; Stangeby, P. C.; Wampler, W. R.; Abrams, T.; Brezinsek, S.; Briesemeister, A.; Bykov, I.; Chan, V. S.; Chrobak, C. P.; Elder, J. D.; Guo, H. Y.; Guterl, J.; Kirschner, A.; Lasnier, C. J.; Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Snyder, P. B.; Thomas, D. M.; Tskhakaya, D.; Unterberg, E. A.; Wang, H. Q.; Watkins, J. G.

    2017-05-01

    Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.

  16. Antimicrobial particulate silver coatings on stainless steel implants for fracture management

    Energy Technology Data Exchange (ETDEWEB)

    DeVasConCellos, Paul; Bose, Susmita [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Beyenal, Haluk [School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA (United States); Zirkle, Lewis G. [Surgical Implant Generation Network (SIGN), Richland, WA (United States)

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 and 500 Degree-Sign C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with Pseudomonas aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 h and proved to be statistically significant. - Highlights: Black-Right-Pointing-Pointer Processing of particulate silver coating that are strongly adherent on SS surface. Black-Right-Pointing-Pointer Optimized the amount of silver that is sufficient to reduce bacterial colonization but non-toxic to human bone tissue. Black-Right-Pointing-Pointer The adhesion strength of silver was sufficient to survive industrial sterilization steps used for fracture management devices.

  17. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the M

  18. On the dry deposition of submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, M. L.

    1999-10-08

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  19. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  20. Economic evaluation of the raw material reserves of the oil deposits of the ''Azneft'' Union

    Energy Technology Data Exchange (ETDEWEB)

    Kerimov, I.M.; Martirosova, E.A.; Mukhtarova, I.A.; Pal' yan, S.A.; Toropova, S.I.

    1979-01-01

    The technical and economic indicators of deposits in the long term are the basis of an economic evaluation of the residual extractible oil reserves according to development plans. Used as the basic evaluating indicator is the differential annual rent, as the difference between the level of the closing relative expenditures and their size by deposits in the long term period. With a comparison of the corresponding technical and economic indicators, such as the size of the extractible reserves, the cost, the specific capital investments, the relative expenditures and the annual rent in the section of the deposits for the entire period of final development, the degree of economy of each deposit is exposed relative to the others.

  1. Estimation of black carbon deposition from particulate data in the atmosphere at NCO-P site in Himalayas during pre-monsoon season and its implication to snow surface albedo reduction

    Science.gov (United States)

    Yasunari, T. J.; Bonasoni, P.; Laj, P.; Fujita, K.; Vuillermoz, E.; Marinoni, A.; Cristofanelli, P.; Calzolari, F.; Duchi, R.; Tartari, G.; Lau, W. K.

    2009-12-01

    The black carbon (BC) impact on snow surface may contribute to snow melting and acceleration of glacier retreat. The BC deposition amount onto snow surface in 2006 during pre-monsoon season (March-May) was estimated from the observed equivalent BC (eqBC) concentration (MAAP) and aerosol size distribution observation (SMPS and OPC) in the atmosphere at Nepal Climate Observatory at Pyramid (NCO-P) site in Himalayan region. We, first, carried out correlation analyses in time series data between the eqBC and aerosol size distribution and then determined main eqBC size range here as higher correlations coefficient of more than 0.8. The corresponding eqBC size at NCO-P site was determined predominantly in the 103.1-669.8 nm size range. Simply terminal velocity for each particle size bin was used for calculating deposition flux of BC onto surface. Our estimation of the deposition is considered to be minimal estimation because deposition velocity is in general faster if we include aerodynamic and other terms; moreover we didn’t take into account deposition processes other than gravitational deposition. We estimated the BC deposition of 209 µg m-2 for March-May. If we use snow density variations in surface snow of 192-512 kg m-3, as measured at Yala glacier in Himalayas, the BC concentrations in 2-cm surface snow of 20.4-53.6 µg kg-1 is estimated. This leads to a snow albedo reduction of 1.6-4.1% by using regression relationship between BC concentration in snow and snow albedo reductions by previous studies. If we used the values of the albedo reductions as continuous forcing for a sensitivity test of glacier melting by using a mass-balance model with the same initial settings in a previous study (pointed out for Dongkemadi Glaciers in Tibetan region), increase of total melt water runoff of 54-149 mm w.e. is expected. We are aware of the limitation of this preliminary estimate but it is important to consider that it clearly indicates that BC deposition during March

  2. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above.

  3. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  4. "a" interfacial parameter in Nicolais-Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties.

    Science.gov (United States)

    Zare, Yasser

    2016-05-15

    In this paper, "a" interfacial parameter in Nicolais-Narkis model is expressed by thickness "ri" and strength "σi" of interphase between polymer and nanoparticles as well as material properties. "a" parameter is connected to "B1" interfacial parameter in modified Pukanszky model and the effects of "ri" and "σi" on "a" are explained. The negligible difference between "a" values calculated by fitting the experimental results to Nicolais-Narkis model and also, by "B1" results confirms the accurateness of the suggested relation between "a" and "B1" parameters. Additionally, an inverse relation is found between "a" and "B1" parameters for nanocomposites containing spherical nanoparticles. The results demonstrate that the slight levels of "ri" and "σi" data give a large value of "a" which indicates the poor interfacial adhesion.

  5. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System

    Science.gov (United States)

    Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development. PMID:28060947

  6. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Ginige, Maneesha P; Garbin, Scott; Wylie, Jason; Krishna, K C Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  7. On the nature, formation and diversity of particulate coherent structures in microgravity conditions and their relevance to materials science and problems of astrophysical interest

    Science.gov (United States)

    Lappa, Marcello

    2016-07-01

    Different phenomena related to the spontaneous accumulation of solid particles dispersed in a fluid medium in microgravity conditions are discussed, with an emphasis on recent discoveries and potential links with the general field of astrophysical fluid-dynamics on the one hand, and with terrestrial applications in the field of materials science on the other hand. With special attention to the typical physical forces at play in such an environment, namely, surface-tension gradients, oscillatory residual gravity components, inertial disturbances and forces of an electrostatic nature, specific experimental and numerical examples are presented to provide inputs for an increased understanding of the underlying cause-and-effect relationships. Studying these systems can be seen as a matter of understanding how macroscopic scenarios arise from the cooperative behaviour of sub-parts or competing mechanisms (nonlinearities and interdependencies on various spatial and temporal scales). Through a critical assessment of the properties displayed by the resulting structures (which appear in the form of one-dimensional circuits formed by aligned particles, planar accumulation surfaces, three-dimensional compact structures resembling "quadrics", micro-crystallites or fractal aggregates), we discuss a possible classification of the related particle attractors in the space of parameters according to the prevailing effect.

  8. Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin-Murdoch model of material surfaces

    Science.gov (United States)

    Nazarenko, Lidiia; Bargmann, Swantje; Stolarski, Henryk

    2017-01-01

    The objective of this work is to present an approach allowing for inclusion of the complete Gurtin-Murdoch material surface equations in methods leading to closed-form formulas defining effective properties of particle-reinforced nanocomposites. Considering that all previous developments of the closed-form formulas for effective properties employ only some parts of the Gurtin-Murdoch model, its complete inclusion constitutes the main focus of this work. To this end, the recently introduced new notion of the energy-equivalent inhomogeneity is generalized to precisely include all terms of the model. The crucial aspect of that generalization is the identification of the energy associated with the last term of the Gurtin-Murdoch equation, i.e., with the surface gradient of displacements. With the help of that definition, the real nanoparticle and its surface possessing its own distinct elastic properties and residual stresses are replaced by an energy-equivalent inhomogeneity with properties incorporating all surface effects. Such equivalent inhomogeneity can then be used in combination with any existing homogenization method. In this work, the method of conditional moments is used to analyze composites with randomly dispersed spherical nanoparticles. Closed-form expressions for effective moduli are derived for both bulk and shear moduli. As numerical examples, nanoporous aluminum is investigated. The normalized bulk and shear moduli of nanoporous aluminum as a function of residual stresses are analyzed and evaluated in the context of other theoretical predictions.

  9. Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin-Murdoch model of material surfaces

    Science.gov (United States)

    Nazarenko, Lidiia; Bargmann, Swantje; Stolarski, Henryk

    2016-07-01

    The objective of this work is to present an approach allowing for inclusion of the complete Gurtin-Murdoch material surface equations in methods leading to closed-form formulas defining effective properties of particle-reinforced nanocomposites. Considering that all previous developments of the closed-form formulas for effective properties employ only some parts of the Gurtin-Murdoch model, its complete inclusion constitutes the main focus of this work. To this end, the recently introduced new notion of the energy-equivalent inhomogeneity is generalized to precisely include all terms of the model. The crucial aspect of that generalization is the identification of the energy associated with the last term of the Gurtin-Murdoch equation, i.e., with the surface gradient of displacements. With the help of that definition, the real nanoparticle and its surface possessing its own distinct elastic properties and residual stresses are replaced by an energy-equivalent inhomogeneity with properties incorporating all surface effects. Such equivalent inhomogeneity can then be used in combination with any existing homogenization method. In this work, the method of conditional moments is used to analyze composites with randomly dispersed spherical nanoparticles. Closed-form expressions for effective moduli are derived for both bulk and shear moduli. As numerical examples, nanoporous aluminum is investigated. The normalized bulk and shear moduli of nanoporous aluminum as a function of residual stresses are analyzed and evaluated in the context of other theoretical predictions.

  10. Health effects of atmospheric particulates: a medical geology perspective.

    Science.gov (United States)

    Duzgoren-Aydin, Nurdan S

    2008-01-01

    In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.

  11. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

    2000-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

  12. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    Science.gov (United States)

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  13. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bordihn, Stefan, E-mail: s.bordihn2@q-cells.com [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Mertens, Verena; Müller, Jörg W. [Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-01-15

    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H] < 0.5 at. % at 400 °C and 500 °C. The surface passivation performance was investigated after annealing at 300 °C–450 °C and also after firing steps in the typical temperature range of 800 °C–925 °C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10 cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10{sup 12} cm{sup −2} to 3·10{sup 11} cm{sup −2} when T{sub Dep} was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  14. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    of the particulate material recovered from these two surfaces. Highly significant correlations were observed between the bacterial numbers and the measured parameters. This probably suggests that bacteria were the major source of the particulate matter settled... immerges dans un estuaire a ete analysce: bacteries, chlorophylle a, poids sec, matiere organique, carbone organique, azote, proteines, glueides et lipides. Aucune difference n'a etc dccelee dans lacomposition de la matiere organique et dans les...

  15. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  16. Synthesis of Si/SiO2/ZnO nanoporous materials using chemical and electrochemical deposition techniques

    Science.gov (United States)

    Dauletbekova, A. K.; Alzhanova, A. Ye.; Akilbekov, A. T.; Mashentseva, A. A.; Zdorovets, M. V.; Balabekov, K. N.

    2016-09-01

    The work represents the results of forming Zn-based nanoprecipitates in nanoporous amorphous silicon dioxide on silicon substrate by the template synthesis method. SEM and AFM images of the surface after chemical and electrochemical deposition of zinc were obtained. The analysis of photoluminescence of the precipitated samples resulted in the assumption of formation of nanoclusters of zinc oxide.

  17. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.; Hartman, Katy; Brandt, Riley E.; Polizzotti, Alex; Yang, Chuanxi; Moriarty, Tom; Gradečak, Silvija; Gordon, Roy G.; Buonassisi, Tonio

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.

  18. Space station particulate contamination environment

    Science.gov (United States)

    Miller, E. R.; Clifton, K. S.

    1988-01-01

    The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented.

  19. 78 FR 19128 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Science.gov (United States)

    2013-03-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... particulate matter (PM) rules on February 23, 2012. The PM rule revisions being approved establish work... disclosure is restricted by statute. Certain other material, such as copyrighted material, will be...

  20. 77 FR 50378 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Science.gov (United States)

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is taking direct final action to approve the 1997 annual fine particulate... disclosure is restricted by statute. Certain other material, such as copyrighted material, is not placed...

  1. 脉冲激光沉积制备碳纳米材料进展%PROGRESS IN PREPARATION OF CARBON NANO- MATERIALS BY PULSED LASER DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    姜守振

    2011-01-01

    碳纳米结构的材料由于其优异的性能,已经成为当今材料科学的热点之一,而脉冲激光沉积法由于其独特的优点而越来越受到重视.作者阐述了用脉冲激光沉积法制备各种碳纳米结构的研究进展,包括类金刚石薄膜、碳纳米管和石墨烯.%Carbon nano - size materials are one of the focuses in R&D of new materials due to their excellent performance, and the PLD (pulsed laser deposition) attracts people'a attention more and more because of its unique advantages. The progress in various carbon nano -size materials prepared by PLD is reviewed including diamondlike carbon, carbon nanotube and graphene.

  2. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Directory of Open Access Journals (Sweden)

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  3. [Fine particulate matter and nonalcoholic fatty liver disease].

    Science.gov (United States)

    Li, M; Li, Y M

    2016-09-20

    Fine particulate matter is defined as the particulate matter with an aerodynamic diameter of liver disease(NAFLD)has similar risk factors as these diseases, as well as obesity, hyperlipidemia, and type 2 diabetes, and it is considered a part of metabolic syndrome. In this view, many studies focus on the possible association between PM2.5 and NAFLD in recent years, including epidemiological study and experimental study, so as to investigate possible pathogenic mechanisms. With reference to the research advances in PM2.5 and NAFLD, this article reviews the association between PM2.5 and NAFLD from the aspects of lipid deposition, oxidative stress, and insulin resistance.

  4. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  5. Erbium-doped crystalline YAG planar and ridge waveguides on quartz and sapphire substrates: deposition and material characterisation

    Science.gov (United States)

    Facchini, G.; Zappettini, A.; Canali, A.; Martinelli, M.; Gabetta, G.; Tallarida, G.

    2001-06-01

    Er-doped Yttrium-Aluminium-Garnet (YAG) planar and ridge waveguides have been grown on quartz and sapphire substrates. The waveguides have been structurally, morphologically and stoichiometrically characterised by X-ray diffraction, atomic force microscopy and X-ray photoelectron spectroscopy. Doping concentrations up to 5% have been successfully demonstrated. Deposition of channel waveguide on sapphire substrate results in a correct ridge shape.

  6. Electron beam analysis of particulate cometary material

    Science.gov (United States)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  7. DETERMINATION OF THERMAL CONDUCTIVITY FOR PARTICULATE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Forthemeasurementsofparticulatematerialsamodifiedhotwiretechniquewasused.Thechoiceofthistechniquewasmadebyconsideringthatthet...

  8. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  9. A Multi-Chamber System for Analyzing the Outgassing, Deposition, and Associated Optical Degradation Properties of Materials in a Vacuum

    CERN Document Server

    Singal, J; Chang, C; Czodrowski, P; Kim, P

    2009-01-01

    We report on the Camera Materials Test Chamber, a multi-vessel apparatus which analyzes the outgassing consequences of candidate materials for use in the vacuum cryostat of a new telescope camera. The system measures the outgassing products and rates of samples of materials at different temperatures, and collects films of outgassing products to measure the effects on light transmission in six optical bands. The design of the apparatus minimizes potential measurement errors introduced by background contamination.

  10. Pressure Drop Research of Diesel Particulate Filter for Ash Deposition in Deep Bed%柴油机微粒捕集器灰烬深床沉积压降特性

    Institute of Scientific and Technical Information of China (English)

    龚金科; 陈韬; 鄂加强; 王曙辉; 左青松; 江俊豪

    2013-01-01

    Based on the pattern and morphology of deposited ash at the filter wall,a mathematical model of ash deposition in the deep bed was proposed using a physical model of the spherical unit packed bed.The model describes the variation of trap unit size and permeability and investigates the pressure drop on the filter body.Then an accelerated aging bench test was taken to verify the calculation.Results show that pressure drop is increased significantly in the deep bed filtration phase and becomes flat in the cake filtration phase.The deviation between the calculated and experimental values is less than 8% and this confirms that the model can reasonably describe the ash deposition process at the filter wall.The study has the reference to predict DPF failure and provides theoretical guidance for the optimization of anti-clogging.%基于过滤壁面内灰烬深床沉积规律和形态,运用球状单元填充床多孔介质物理模型,建立了过滤壁面内灰烬深床沉积数学模型.根据该数学模型研究壁面捕集单元尺寸和渗透率随灰烬沉积量和壁面深度的变化规律,以及过滤体压降随深床沉积灰烬质量的变化规律,并通过灰烬沉积加速老化台架试验验证了计算模型.结果表明,灰烬深床沉积阶段过滤体压降明显增加,滤饼沉积阶段压降增加变得平缓,过滤体灰烬深床沉积阶段压降损失计算值与试验值误差不超过8%,该模型能合理描述灰烬在过滤壁面内的沉积过程,为微粒捕集器的抗堵塞优化研究和失效预测提供理论依据.

  11. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  12. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  13. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-01-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption. PMID:27312225

  14. Characterization of iron in airborne particulate matter

    Science.gov (United States)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.

  15. Shock Wave Structure in Particulate Composites

    Science.gov (United States)

    Rauls, Michael; Ravichandran, Guruswami

    2015-06-01

    Shock wave experiments are conducted on a particulate composite consisting of a polymethyl methacrylate (PMMA) matrix reinforced by glass beads. Such a composite with an impedance mismatch of 4.3 closely mimics heterogeneous solids of interest such as concrete and energetic materials. The composite samples are prepared using a compression molding process. The structure and particle velocity rise times of the shocks are examined using forward ballistic experiments. Reverse ballistic experiments are used to track how the interface density influences velocity overshoot above the steady state particle velocity. The effects of particle size (0.1 to 1 mm) and volume fraction of glass beads (30-40%) on the structure of the leading shock wave are investigated. It is observed that the rise time increases with increasing particle size and scales linearly for the range of particle sizes considered here. Results from numerical simulations using CTH are compared with experimental results to gain insights into wave propagation in heterogeneous particulate composites.

  16. Particle Deposition onto People in a Transit Venue.

    Science.gov (United States)

    Liljegren, James C; Brown, David F; Lunden, Melissa M; Silcott, David

    2016-01-01

    Following the release of an aerosolized biological agent in a transit venue, material deposited on waiting passengers and subsequently shed from their clothing may significantly magnify the scope and consequences of such an attack. Published estimates of the relevant particle deposition and resuspension parameters for complex indoor environments such as a transit facility are nonexistent. In this study, measurements of particle deposition velocity onto cotton fabric samples affixed to stationary and walking people in a large multimodal transit facility were obtained for tracer particle releases carried out as part of a larger study of subway airflows and particulate transport. Deposition velocities onto cotton and wool were also obtained using a novel automated sampling mechanism deployed at locations in the transit facility and throughout the subway. The data revealed higher deposition velocities than have been previously reported for people exposed in test chambers or office environments. The relatively high rates of deposition onto people in a transit venue obtained in this study suggest it is possible that fomite transport by subway and commuter/regional rail passengers could present a significant mechanism for rapidly dispersing a biological agent throughout a metropolitan area and beyond.

  17. Detection of materials and deposits as a basis for innovative operations management systems employed as part of opencast mine process optimizations; Material- und Lagerstaettenerkennung als Basis innovativer Betriebsfuehrungsysteme im Rahmen der Tagebauprozessoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, H. [RWE Power AG, Frechen (DE). Sparte Tagebau, Technikzentrum Tagebaue/HW, Elektrotechnik Betriebsfuehrungssyteme (PBZ-EB)

    2007-05-15

    Innovative, process-oriented operations management systems will play an increasingly important part in the future development of opencast mine technology, with crucial factors being the integration into existing extensive corporate-planning systems on the one hand and automation systems on the other. But horizontal, interdisciplinary dovetailing of planning, operations management, and control/automation processes is also gaining in importance. Improved and rapid provision of information on the material to be extracted is one key to successfully optimizing opencast mine processes and automating equipment. The reason for this is that material properties have multiple effects on deployment scheduling, extraction, transportation, dumping, quality control, and the operation and condition of conveyor systems. Even now, ongoing projects are dealing with digital modelling and the simulation of production processes serving as a basis for further optimizations. In the future, the main focus with respect to material and deposit detection will lie on the advancement of sensor technologies used for automated near real-time material and deposit detection in rock and on conveyor systems. These include multisensors used in georadar and geoelectric systems, spectrometers, acoustic systems, scanners and optical cameras installed on bucket wheels, above conveyor belts or even on unmanned flying systems. (orig.)

  18. Deposition and disinfection of Escherichia coli O157:H7 on naturally occurring photoactive materials in a parallel plate chamber†

    Science.gov (United States)

    Taylor, Alicia A.; Chowdhury, Indranil; Gong, Amy S.; Cwiertny, David M.; Walker, Sharon L.

    2014-01-01

    Dissolved organic matter in combination with iron oxides has been shown to facilitate photochemical disinfection through the production of reactive oxygen species (ROS) under UV and visible light. However, due to the extremely short lifetime of these radicals, the disinfection effciency is limited by the successful transport of ROS to bacterial surfaces. This study was designed to quantitatively investigate three collector surfaces with various potentials to produce ROS [bare quartz, hematite (α-Fe2O3) coated quartz, and Suwannee River humic acid (SRHA)] and the effects of extracellular polymeric substance (EPS) (full or partial coating) and solution chemistry (ionic strength, IS) on the interactions between bacteria and the ROS-producing substrates. With few exceptions, bacterial deposition studies in a parallel plate (PP) flow chamber have revealed increasing cell adhesion with IS. Furthermore, interactions between collector surfaces and cells can be explained by electrostatic forces, with negatively charged SRHA reducing and positively charged α-Fe2O3 enhancing bacterial deposition significantly. Increased deposition was also observed with full EPS content, indicating the ability of EPS to facilitate interaction between cells and surfaces in the aquatic environment. In complementary disinfection studies conducted with simulated light, viability loss was observed for cells fully coated with EPS when attached to α-Fe2O3 under all IS conditions. Based upon our prior study in which EPS was found to not inhibit hydroxyl radical activity toward bacteria, we proposed that EPS might therefore promote disinfection by facilitating cell attachment to ROS-producing surfaces where higher concentrations of ROS are expected at closer proximities to reactive substrates (e.g., SRHA and α-Fe2O3). Our findings on the mechanism and controlling factors of cell interactions with photoactive substrates provide insight as to the role of ionic strength in photochemical disinfection

  19. MOCVD and ALD of rare earth containing multifunctional materials. From precursor chemistry to thin film deposition and applications

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, Andrian Petrov

    2010-03-26

    The present thesis deals with the development of metal-organic complexes of rare elements. They should be used as novel precursors for the production of rare earth thin films by metal-organic chemical vapor deposition (MOCVD) and Atomic Layer Deposition (ALD). Within the work two precursor classes were examined, the tris-Malonato-complexes as well as the tris-Guanidinato-complexes of a series of rare earth metals. The latter showed excellent properties regarding to their volatility, their thermal stability, the defined decomposition and high reactivity towards water. They have been successfully used as precursors for the MOCVD of rare earth oxide layers. By using of a gadolinium guanidinate it could also be shown that the rare earth guanidinates are promising precursors for ALD of rare earth oxide and MOCVD of rare earth nitride layers. [German] Die vorliegende Dissertation beschaeftigt sich mit der Entwicklung von metallorganischen Komplexen der Seltenerd-Elemente. Diese sollten als neuartigen Precursoren fuer die Erzeugung von seltenerdhaltigen Duennschichten mittels Metallorganischer Chemischer Dampfabscheidung (MOCVD) und Atomic Layer Deposition (ALD) eingesetzt werden. Innerhalb der Arbeit wurden zwei Precursorklassen untersucht, die Tris-Malonato-Komplexe sowie die Tris-Gunanidinato-Komplexe einer Reihe von Seltenerdmetallen. Letztere zeigten hervorragende Eigenschaften bezueglich ihrer Fluechtigkeit, ihrer thermischen Stabilitaet, der definierten Zersetzung und der hohen Reaktivitaet gegenueber Wasser. Sie wurden erfolgreich als Precursoren fuer die MOCVD von Seltenerd-Oxid-Schichten eingesetzt. Unter Verwendung eines Gadolinium Guanidinats konnte ausserdem gezeigt werden, dass die Seltenerd-Guanidinate vielversprechende Precursoren fuer die ALD von Seltenerd-Oxid-Schichten sowie die MOCVD von Seltenerd-Nitrid-Schichten darstellen.

  20. Source of ore-forming material for the Huangtuliang gold deposit, Hebei Province and ore prospecting in the deep periphery

    Institute of Scientific and Technical Information of China (English)

    NIU Shuyin; SUN Aiqun; WANG Baode; HAN Yuchou; WEI Minghui; ZHANG Hai; ZHANG Ge; SHI Ping; WANG Wenxing

    2008-01-01

    The Huangtuliang gold deposit is characterized by its wide and large ore belt, stable extension and closely spaced orebodies. Unfortunately, no orebody was found by deep drilling. As a result, ore prospecting in this region was once put into dilemma. Detailed analysis of ore-forming and ore-controlling structures in the mining district by the authors has revealed that the ore-forming and ore-controlling structure in this mining district is a steeply dipping (85°-110°/∠70°-85° N-NNE), spade-shaped ductile shear zone, and the ore-controlling structures are a series of nearly erected second-ordered faults which are developed in the upper part of the ductile shear zone, intersecting with the ductile shear zone. Deep cutting of the ductile shear zone made it possible the ascending of ore fluids from the mantle plume at depth and these ore fluids would migrate upwards along the ductile shear zone under certain temperature and pressure conditions. Along their ascending path, the ore fluids would extract ore-forming elements from the country rocks and the extracted ore-forming elements would be deposited as ores in the hanging-wall second-ordered faults. The reason why no orebody was found in early prospecting at depth is that northward-dipping drilling in the southern part of the shear zone extended so deeply as to be beneath the shear zone. Only shallow-level orebodies could be found by southward-dipping drilling practice in the northern part of the shear zone.The location where deep-seated orebodies occurred shifted northwards and the orebodies occurred at greater depth.Therefore, it is natural that no orebody could be found when drill core passed through the shear zone. After the ore-forming and ore-controlling structures were well understood, the focus of ore prospecting was placed on the deep-level, northward-penetrating veins. In this way a number of new blind orebodies of great thickness have been found. On the basis of research development in the mining

  1. Nitrogen-Doped Chemical Vapour Deposited Diamond: a New Material for Room-Temperature Solid State Maser

    Institute of Scientific and Technical Information of China (English)

    N. A. Poklonski; N. M. Lapchuk; A. V. Khomich; LU Fan-Xiu; TANG Wei-Zhong; V. G. Ralchenko; I. I. Vlasov; M. V. Chukichev; Sambuu Munkhtsetseg

    2007-01-01

    Electron spin resonance (ESR) in polycrystalline diamond films grown by dc arc-jet and microwave plasma chemical vapour deposition is studied. The films with nitrogen impurity concentration up to 8 × 1018 cm-3 are also characterized by Raman, cathodoluminescence and optical absorption spectra. The ESR signal from P1 centre with g-factor of 2.0024 (nitrogen impurity atom occupying C site in diamond lattice) is found to exhibit an inversion with increasing the microwave power in an H102 resonator. The spin inversion effect could be of interest for further consideration of N-doped diamonds as a medium for masers operated at room temperature.

  2. The influence of oxygen partial pressure on material properties of Eu{sup 3+}-doped Y{sub 2}O{sub 2}S thin film deposited by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.G., E-mail: aliag@qwa.ufs.ac.za [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, B.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    Eu{sup 3+}-doping has been of interest to improve the luminescent characteristics of thin-film phosphors. Y{sub 2}O{sub 2}S:Eu{sup 3+} films have been grown on Si (100) substrates by using a Pulsed Laser Deposition technique. The thin films grown under different oxygen deposition pressure conditions have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. As the oxygen partial pressure increased, the crystallinity of the films improved. Further increase of the O{sub 2} pressure to 140 mtorr reduced the crystallinity of the film. Similarly, both scanning electron microscopy and Atomic Force Microscopy confirmed that an increase in O{sub 2} pressure affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka–Munk function was about 4.75 eV. The photoluminescence measurements indicated red emission of Y{sub 2}O{sub 2}S:Eu{sup 3+} thin films with the most intense peak appearing at 619 nm, which is assigned to the {sup 5}D{sub 0}–{sup 7}F{sub 2} transition of Eu{sup 3+}. This most intense peak was totally quenched at higher O{sub 2} pressures. This phosphor may be a promising material for applications in the flat panel displays.

  3. Geographical Information Systems (GIS) as a Simple Tool to Aid Modelling of Particulate Waste Distribution at Marine Fish Cage Sites

    Science.gov (United States)

    Pérez, O. M.; Telfer, T. C.; Beveridge, M. C. M.; Ross, L. G.

    2002-04-01

    Deposition of particulate organic waste from marine fish farm cages on to sea-bed sediments can cause major changes to the benthic ecosystem. Validated spatial models are considered as the most cost-effective tools for predicting environmental impacts. An improved version of an existing predictive particulate waste distribution model for farmed Atlantic salmon ( Salmo salar L.) is presented, which uses Geographic Information Systems (GIS) combined with a spreadsheet. The model presented uses existing distribution algorithms but also incorporates functions to calculate feed loading for all the cages within a pontoon independently, spreads the input load over the whole cage area and simulates post-depositional distribution of the carbon. The model uses approximate estimates of feed and faecal waste derived from dietary considerations (mass balance model) and separate, unique settling velocities for waste feed and faecal particles. The model incorporates values of current speed and direction recorded over spring and neap tides. Output from the model is in the form of a contour plot of organic carbon (g C m -2), showing distribution of the particulate organic carbon material as deposited on the sea-bed. During this study using hydrographic data collected from near a fish farm, the model predicted a smooth gradient of sediment carbon concentrations which decreased with distance from the cages. Model performance was validated using measured levels of sediment carbon, and showed a significant correlation between predicted and actual sediment loading (R=0·7; P <0·01). The differences between predicted and measured quantities of carbon found at some sampling stations are likely to be due to processes not included in the model, such as small differences in bathymetry, differences in bottom type which may have increased or decreased the carbon distribution through saltation, or natural variation in the sediment composition.

  4. Nanostructured Hydrogenated Silicon Films by Hot-Wire Chemical Vapor Deposition: the Influence of Substrate Temperature on Material Properties

    Directory of Open Access Journals (Sweden)

    V.S. Waman

    2011-01-01

    Full Text Available Thin films of hydrogenated nanocrystalline silicon are prepared at reasonably higher deposition rates (9-13 Å/s by indigenously fabricated hot-wire chemical vapor deposition system at various substrate temperatures (Ts. In this paper we report extensively studied structural, optical and electrical properties of these films by Fourier transform infrared (FTIR spectroscopy, low angle X-ray diffraction (low angle XRD, micro-Raman spectroscopy and UV-Visible spectroscopy. The low angle XRD and micro-Raman spectroscopy analysis indicate amorphous-to-nanocrystalline transition occurred at Ts = 300 °C. It is observed that volume fraction of crystallites and its size increases with increase in Ts. The low angle XRD study also shows nc-Si:H films with well-identified lattice planes of (111 orientation. In addition, it is observed from the FTIR spectroscopy that the hydrogen is incorporated in the film mainly in Si-H2 and (Si-H2n complexes. The nc-Si:H films with low hydrogen content (< 4 at. % and wide band gap (1.83-1.89 eV and low refractive index (< 3 is useful for various device applications.

  5. Atomic layer deposition of amorphous oxygen-deficient TiO2-x on carbon nanotubes as cathode materials for lithium-air batteries

    Science.gov (United States)

    Yang, Jingbo; Ma, Dingtao; Li, Yongliang; Zhang, Peixin; Mi, Hongwei; Deng, Libo; Sun, Lingna; Ren, Xiangzhong

    2017-08-01

    The amorphous oxygen-deficient TiO2-x thin layer coated carbon nanotubes (CNTs) are synthesized by atomic layer deposition and employed as cathode materials for lithium-air battery. The cathode demonstrates high electrocatalytic activity toward electrode reactions, resulting from the introduction of oxygen-deficient TiO2-x into the nanocomposites. It is found that the intrinsically isotropic nature of amorphous TiO2 which a certain amount of Ti3.5+ and Ti3+ can improve the catalytic activity. Consequently, the battery with the corresponded CNT@TiO2-x cathode shows high discharge/charge capacities and good cycling performance, which the cyclic retention of more than 90 cycles are achieved, while with the pristine CNTs only 50 cycles are obtained. This study provides an approach to fabricate cathode materials for lithium-air battery and moreover clarifies the influence of oxygen vacancies of TiO2 on the electrochemical performance.

  6. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    Science.gov (United States)

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  7. Spatiotemporal Variation of Particulate Fallout Instances in Sfax City, Southern Tunisia: Influence of Sources and Meteorology

    Directory of Open Access Journals (Sweden)

    Moez Bahloul

    2015-01-01

    Full Text Available Particles deposition in the main industrial zone of Sfax City (southern Tunisia was studied by weekly monitoring particulate fallout instances at twenty sites from November 11, 2012, to April 15, 2013. Very high fluctuation in those particle fluxes, ranging from 0.376 to 9.915 g/m2, was clearly observed. Spatiotemporal distribution of the deposited particulate fluxes and the exposure of each site to the main industrial plumes (i.e., phosphate treatment plant “SIAPE,” soap industry “SIOS-ZITEX,” and lead secondary melting industry “FP Sfax Sud” indicated the concomitant effects of surrounding industrial sources. In addition, the highest particulate deposition seemed to be associated with predominant strong cyclonic situations. Those deposition rates exceeded the levels recorded in the case of strong stabilities, considered as responsible for pollutant accumulation.

  8. Establishing aeolian particulate 'fingerprints' in an airport environment using magnetic measurements and SEM/EDAX

    Science.gov (United States)

    Jones, Sue; Hoon, Stephen R.; Richardson, Nigel; Bennett, Michael

    2016-04-01

    The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of particulate matter (PM) from aviation activity on health and the environment. PM within the airport environment, in particular, may be derived from a wide range of potential sources including aircraft; vehicles; ground support equipment and buildings. In order to investigate and remediate potential problem sources, it is important to be able to identify characteristic particulate 'fingerprints' which would allow source attribution, particularly respirable particulates. To date the identification of such 'fingerprints' has remained elusive but remains a key research priority for the aviation industry (Webb et al, 2008). In previous PM studies, environmental magnetism has been used as a successful technique for discriminating between different emission types and particulate sources in both urban and industrial environments (e.g. Hunt et al 1984; Lecoanet et al 2003, Jones et al 2015). Environmental magnetism is a non-destructive and relatively rapid technique involving the use of non-directional, rock magnetic measurements to characterise the mineral magnetic properties of natural and anthropogenic materials. In other studies scanning electron microscopy (SEM) has also been used as an effective characterisation technique for the investigation of grain size and morphology of PM derived from vehicle emissions (e.g. Bucko et al 2010) and fossil fuel combustion sources (Kim et al 2009). In this study, environmental magnetic measurements and SEM/EDAX have been used to characterise dusts from specific aircraft sources including engines, brakes and tyres. Furthermore, these methods have also been applied to runway (both hard and grass covered surfaces), taxiway and apron dusts collected during extensive environmental sampling at Manchester International Airport, UK in order to

  9. Monitoreo de emisiones de material particulado de chimeneas de generadores de vapor de la industria azucarera en Tucumán, R. Argentina Monitoring of effluent particulate matter emitted by sugarcane factory stacks in Tucumán

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2012-06-01

    Full Text Available Durante las moliendas en los años 2008, 2009, 2010 y 2011, se realizaron mediciones de las concentraciones de material particulado total (MPT en las emisiones de chimeneas de calderas de la industria azucarera, en Tucumán, R. Argentina. El objetivo de este trabajo fue monitorear la evolución de la concentración y emisión de MPT y observar la influencia de los sistemas de filtrado instalados en las chimeneas de las mencionadas unidades. Se ilustran los datos de las emisiones de MPT obtenidas en los años indicados, con valores promedio por caldera de 58,5 kg/h, 33,6 kg/h, 47,6 kg/h y 33,9 kg/h, respectivamente. Asimismo, este estudio muestra un seguimiento minucioso de un grupo de calderas bagaceras, para determinar la evolución de las emisiones en función de las variables de operación características de esas calderas. Los resultados demostraron la influencia del mantenimiento y de la correcta operación de los equipos de filtrado en la calidad de los gases que fluyen por las chimeneas. Se estudió la influencia de los índices característicos de diseño de los lavadores de gases en la concentración de partículas. Se observó que se ha logrado un menor impacto ambiental a lo largo del tiempo analizado.Total particulate matter (TPM concentrations were measured in stack fumes from sugar factory steam generating boilers in Tucumán in 2008, 2009, 2010 and 2011. The objective of this work was to monitor the evolution of TPM concentrations and emissions and observe the efficiency of filtration systems used in sugarcane factory stacks. Average values of 58.5 kg/h, 33.6 kg/h, 47.6 kg/h and 33.9 kg/h were obtained in 2008, 2009, 2010 and 2011, respectively. Bagasse boilers were also meticulously surveyed to obtain data of the evolution of emissions in relation to specific operation variables of the boilers. Data concerning the quality of effluent gasses from the stacks demonstrated the influence of maintaining and correctly using filtration

  10. Polycrystalline coating of hydroxyapatite on TiAl6V4 implant material grown at lower substrate temperatures by hydrothermal annealing after pulsed laser deposition.

    Science.gov (United States)

    Saju, K K; Reshmi, R; Jayadas, N H; James, J; Jayaraj, M K

    2009-11-01

    Hydroxyapatite (HA) is a bioactive ceramic material that mimics the mineral composition of natural bone. This material does not possess acceptable mechanical properties for use as a bulk biomaterial; however, it does demonstrate significant potential for use as a coating on metallic orthopaedic and dental prostheses. Pulsed laser deposition (PLD) of thin films of HA on TiAl6V4 have shown crystalline coatings to be obtained at temperatures of the order of 350-500 degrees C. This condition of high substrate temperature promoted the oxidation of the substrate surface prior to the growth of the HA layer and the oxidation layer degraded the adhesion of the coating to the substrate. In this study, thin films of HA were deposited on TiAl6V4 alloy at a lower temperature of 200 degrees C by PLD and crystallized by a hydrothermal treatment at 100 degrees C. The film was subjected to mechanical as well as cell viability tests in vitro. The thickness, roughness, crystallanity, composition ratio, adhesive strength, and cell adhesion of the film suggest the application of this technique for producing bioactive implants.

  11. An updated list of type material of Ephemeroptera Hyatt & Arms, 1890, deposited at the Zoological Museum of Hamburg (ZMH)

    Science.gov (United States)

    Sartori, Michel; Kubiak, Martin; Rajaei, Hossein

    2016-01-01

    Abstract The type specimens of Ephemeroptera (Insecta) housed at the Zoological Museum of Hamburg (ZMH) are compiled in this document. The current nomenclature of all species is given. In total, Ephemeroptera type material of ZMH encompasses 161 species. Fifty-one holotypes and five lectotypes are present. Forty-one species are represented by syntypes, 85 by paratypes and five by paralectotypes. Material of two species (Cinygma asiaticum Ulmer, 1924 and Pseudocloeon klapaleki Müller-Liebenau, 1982) is missing. The present catalogue is an updated version of Weidner (1964a). PMID:27551230

  12. Historical performance of particulate settleable in a municipality located in the ceramic cluster of Castellón (Spain)

    Science.gov (United States)

    Pardo, P.; Sanfeliu, Teófilo; Soriano, A.; Pallarés, S.; Vicente, A. B.

    2010-05-01

    Air pollution can be defined as: "the introduction into the atmosphere by man, directly or indirectly, of substances or energy with have effects deleterious of such a nature that endangers human health, causing damage to biological resources and to ecosystems, which impair material goods and to harm or interfere with amenities and other legitimate uses of the environment". One of the main pollutants in air is the particulate matter. This material particulate includes settleable, particles larger than 10 μm that remain airborne for relatively short periods of time. For what its effects are most pronounced in the vicinity of the emitting sources. The study area is located in the city of Alcora. This population is located in the region eastern of the province of Castellon (Spain). The municipality of Alcora has a high industrial density, highlighting framed companies in chemical industry and non-metallic mineral products. The area has a high traffic density due to the proximity of population to various roads. These two factors point peaks rise high concentration of atmospheric particulate pollutants. The purpose of this paper is conducting a retrospective view of the evolution of settleable particulate concentrations. Settleable particulate samples were collected with a sensor BRITISH STANDARD PS particles during the period between January 2000 and December 2005. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330. Sanfeliu T.; Gómez E.T.; Hernánde D.;Martín J.D.; Ovejero M.; Jordán M.M. (2002). "Avaluation of the particulate atmospheric aerosol in the urban area on Castellón, Spain". Protecction and conservation of the cultural heritage of the Mediterranean cities. Eds. Galán and Zezza Ed. Swets&Zeitlinger, Lisse pp:61-64. Sanfeliu T.; Jordán M.M.; Gómez E

  13. Analysis of graphene structure in particulate matter emitted from diesel engine%柴油机排放颗粒物中石墨烯结构分析

    Institute of Scientific and Technical Information of China (English)

    张健; 王忠; 何丽娜; 王燕鹏

    2015-01-01

    Particulate matter emitted from diesel engine is a factor that makes PM2.5 (particulate matter with a diameter of lower than 2.5μm) increase, which is related to several adverse health effects including respiratory tract inflammation and cancer. Particulate matter is classified to 3 size modes, i.e. the nucleation mode (1 000 nm). As is known to all, particulate matter with smaller size does more harm to human than particulate matter with larger size. It is very necessary to carry out research on reducing particulate matter emitted from diesel engine, especially particulate matter with smaller size. It has been demonstrated that there is graphene structure in particulate matter emitted from diesel engine and graphene structure is related to particulate matter removal. Micro-orifice uniform deposition impactor which was produced in MSP company in America was used to collect diesel particulate matter with 3 size ranges, which were 0.18-0.32μm, >0.32-0.56μm and >0.56-1μm respectively. Raman spectroscopy, a fast and nondestructive method, was used to test crystal structure of carbon material. Near edge X-ray absorption spectra, a nondestructive method, was adopted to characterize molecular structure and valence state of carbon atom by using synchrotron radiation technique. DXR Raman spectrometer and soft X-ray microscopy beamline station were used to analyze the defect type of graphene structure, degree of graphitization, crystallite size of graphene, neighboring graphene spacing, molecular structure and valence state of carbon atom. The results showed that the ratio of D1 peak to D2 peak ranged from 3.34 to 4.01, which indicated that the defect type of graphene structure in diesel particulate matter mainly was graphene edge defect. With the size of particulate matter decreasing, the proportion of graphene edge defect increased. When the size of particulate matter increased, width at half maximum of D1 peak increased by 2.8 and 6.7 cm-1, indicating that the

  14. Investigation on the Flexural Creep Stiffness Behavior of PC-ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-03-01

    The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.

  15. Investigation on the Flexural Creep Stiffness Behavior of PC-ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-12-01

    The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination (R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.

  16. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  17. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  18. Biomimetic thin film deposition

    Science.gov (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  19. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  20. Importance of the surface size distribution of erodible material: an improvement of the Dust Entrainment And Deposition DEAD

    Science.gov (United States)

    Mokhtari, M.; Gomes, L.; Tulet, P.; Rezoug, T.

    2011-11-01

    This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create a global mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP and the Food and Agriculture Organization (FAO) soil type database in SURFEX, based on both Shao (1993) and Marticorena and Bergametti (1995) parameterizations. An arrangement on the Dust Entrainment And Deposition scheme (DEAD) is proposed in this paper by introducing the geographic variation of surface size distribution, the Marticorena and Bergametti (1995) formulation of horizontal saltation flux and the Shao (2001) formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the code DEAD, both sensitivity and comparative studies are realized in 0 dimensions (0-D) and then in 3 dimensions (3-D) between the old DEAD and that developed in this paper. The results in the 0-D simulations indicate that the developed DEAD scheme represents the dust source emission better, particularly in the Bodélé depression and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and developed DEAD schemes for the simulated Aerosol Optical Depth (AOD) compared with the photometer AErosol RObotic NETwork (AERONET) measurements available in the African Monsoon Multidisciplinary Analyses (AMMA) databases. But, for the surface concentration a remarkable improvement is noted for the developed DEAD scheme.

  1. Importance of the surface size distribution of erodible material: an improvement on the Dust Entrainment And Deposition (DEAD) Model

    Science.gov (United States)

    Mokhtari, M.; Gomes, L.; Tulet, P.; Rezoug, T.

    2012-05-01

    This paper is based on dust aerosol cycle modelling in the atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled with the EXternalised SURFace scheme SURFEX. Its main goal is to create an appropriate mineral dust emission parameterization compatible with the global database of land surface parameters ECOCLIMAP, and the Food and Agriculture Organization (FAO) soil type database in SURFEX. An improvement on the Dust Entrainment And Deposition scheme (DEAD) is proposed in this paper by introducing the geographical variation of surface soil size distribution, the Marticorena and Bergametti (1995) formulation of horizontal saltation flux and the Shao et al. (1996) formulation of sandblasting efficiency α. To show the importance of the modifications introduced in the DEAD, both sensitivity and comparative studies are conducted in 0 dimensions (0-D) and then in 3 dimensions (3-D) between the old DEAD and the new DEAD. The results of the 0-D simulations indicate that the revised DEAD scheme represents the dust source emission better, particularly in the Bodélé depression, and provides a reasonable friction threshold velocity. In 3-D simulations, small differences are found between the DEAD and the revised DEAD for the simulated Aerosol Optical Depth (AOD) compared with the AErosol RObotic NETwork (AERONET) photometer measurements available in the African Monsoon Multidisciplinary Analyses (AMMA) databases. For the surface concentration, a remarkable improvement is noted for the revised DEAD scheme.

  2. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  3. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  4. 77 FR 45956 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-08-02

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is taking final action to approve the 1997 annual fine particulate matter (PM 2... other information whose disclosure is restricted by statute. Certain other material, such as...

  5. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Science.gov (United States)

    2013-12-26

    ... AGENCY 40 CFR Part 52 Revision to the Idaho State Implementation Plan; Approval of Fine Particulate... particulate matter (PM 2.5 ) nonattainment area (Logan UT-ID). The EPA is proposing a limited approval of PM 2..., the disclosure of which is restricted by statute. Certain other material, such as copyrighted...

  6. Development of Problem Sets for K-12 and Engineering on Pharmaceutical Particulate Systems

    Science.gov (United States)

    Savelski, Mariano J.; Slater, C. Stewart; Del Vecchio, Christopher A.; Kosteleski, Adrian J.; Wilson, Sarah A.

    2010-01-01

    Educational problem sets have been developed on structured organic particulate systems (SOPS) used in pharmaceutical technology. The sets present topics such as particle properties and powder flow and can be integrated into K-12 and college-level curricula. The materials educate students in specific areas of pharmaceutical particulate processing,…

  7. Development of Problem Sets for K-12 and Engineering on Pharmaceutical Particulate Systems

    Science.gov (United States)

    Savelski, Mariano J.; Slater, C. Stewart; Del Vecchio, Christopher A.; Kosteleski, Adrian J.; Wilson, Sarah A.

    2010-01-01

    Educational problem sets have been developed on structured organic particulate systems (SOPS) used in pharmaceutical technology. The sets present topics such as particle properties and powder flow and can be integrated into K-12 and college-level curricula. The materials educate students in specific areas of pharmaceutical particulate processing,…

  8. How well can we quantify dust deposition to the ocean?

    Science.gov (United States)

    Anderson, R. F.; Cheng, H.; Edwards, R. L.; Fleisher, M. Q.; Hayes, C. T.; Huang, K.-F.; Kadko, D.; Lam, P. J.; Landing, W. M.; Lao, Y.; Lu, Y.; Measures, C. I.; Moran, S. B.; Morton, P. L.; Ohnemus, D. C.; Robinson, L. F.; Shelley, R. U.

    2016-11-01

    Deposition of continental mineral aerosols (dust) in the Eastern Tropical North Atlantic Ocean, between the coast of Africa and the Mid-Atlantic Ridge, was estimated using several strategies based on the measurement of aerosols, trace metals dissolved in seawater, particulate material filtered from the water column, particles collected by sediment traps and sediments. Most of the data used in this synthesis involve samples collected during US GEOTRACES expeditions in 2010 and 2011, although some results from the literature are also used. Dust deposition generated by a global model serves as a reference against which the results from each observational strategy are compared. Observation-based dust fluxes disagree with one another by as much as two orders of magnitude, although most of the methods produce results that are consistent with the reference model to within a factor of 5. The large range of estimates indicates that further work is needed to reduce uncertainties associated with each method before it can be applied routinely to map dust deposition to the ocean. Calculated dust deposition using observational strategies thought to have the smallest uncertainties is lower than the reference model by a factor of 2-5, suggesting that the model may overestimate dust deposition in our study area. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  9. Particulate and organic matter fouling of SWRO systems: Characterization, modelling and applications

    OpenAIRE

    Salinas Rodríguez, S.G.

    2011-01-01

    Particulate/colloidal and organic fouling in seawater reverse osmosis (SWRO) systems results in flux decline, higher energy costs, increased salt passage, increased cleaning frequency, and use of chemicals. In practice, indices like SDI and MFI are used to assess particulate fouling, but they are performed at very high initial flux (> 1500 L/m2-h) and do not take into account the deposition of particles/colloids in RO systems. In this study, the Modified Fouling Index with ultrafiltration mem...

  10. Particulate and organic matter fouling of seawater reverse osmosis systems: Characterization, modelling and applications

    OpenAIRE

    Salinas Rodriguez, S.G.

    2011-01-01

    Particulate/colloidal and organic fouling in seawater reverse osmosis (SWRO) systems results in flux decline, higher energy costs, increased salt passage, increased cleaning frequency, and use of chemicals. In practice, indices like SDI and MFI are used to assess particulate fouling, but they are performed at very high initial flux (> 1500 L/m2-h) and do not take into account the deposition of particles/colloids in RO systems. In this study, the Modified Fouling Index with ultrafiltration mem...

  11. Particulate and organic matter fouling of seawater reverse osmosis systems: Characterization, modelling and applications

    OpenAIRE

    Salinas Rodriguez, S.G.

    2011-01-01

    Particulate/colloidal and organic fouling in seawater reverse osmosis (SWRO) systems results in flux decline, higher energy costs, increased salt passage, increased cleaning frequency, and use of chemicals. In practice, indices like SDI and MFI are used to assess particulate fouling, but they are performed at very high initial flux (> 1500 L/m2-h) and do not take into account the deposition of particles/colloids in RO systems. In this study, the Modified Fouling Index with ultrafiltration mem...

  12. Particulate and organic matter fouling of SWRO systems: Characterization, modelling and applications

    OpenAIRE

    Salinas Rodríguez, S.G.

    2011-01-01

    Particulate/colloidal and organic fouling in seawater reverse osmosis (SWRO) systems results in flux decline, higher energy costs, increased salt passage, increased cleaning frequency, and use of chemicals. In practice, indices like SDI and MFI are used to assess particulate fouling, but they are performed at very high initial flux (> 1500 L/m2-h) and do not take into account the deposition of particles/colloids in RO systems. In this study, the Modified Fouling Index with ultrafiltration mem...

  13. Emission of particulate matter from ternary blends consisting of biodiesel, ethanol and vegetable oil: a comparison with conventional dieselEmissão de material particulado por misturas ternárias compostas de biodiesel, etanol e óleo vegetal: uma comparação com o óleo diesel convencional

    Directory of Open Access Journals (Sweden)

    Murilo Daniel de Melo Innocentini

    2011-12-01

    Full Text Available The purpose of this study was to quantify the particulate matter emission from ternary blends comprehending biodiesel, ethanol and vegetable oil in a Diesel cycle engine, and an identical engine working with petrol diesel as control. To compare the fuels’ emissions, the particulate matter from the engine’s exhaust was collected, using a fiberglass circular filter paper, which was coupled by means of a steel flange at the end of the exhaust pipe. The results with ternary blends showed expressive reduction of particulate matter level exhausted by the engine, in its maximum load. We can conclude that the utilization of ternary blends, with the methods and conditions of this experiment, was efficient to reduce the emission of particulate matter contained in the exhaust gases of Diesel cycle engine.O objetivo deste trabalho foi quantificar a emissão de material particulado de misturas ternárias compostas de biodiesel, etanol e óleo vegetal em um motor de ciclo Diesel, tendo como testemunha um motor idêntico funcionando com óleo diesel de petróleo. Para a comparação da emissão dos dois combustíveis, foi realizada a coleta de material particulado proveniente dos escapamentos dos motores com um filtro circular confeccionado de fibra de vidro, que foi acoplado com um flange de aço, no final da tubulação de escape. Os resultados obtidos com a utilização das misturas ternárias de biocombustíveis indicaram uma redução expressiva no nível de material particulado emitido pelo motor em sua carga máxima. Pode-se concluir que a utilização das misturas ternárias, nas condições e métodos de realização do experimento, foi eficiente na redução de emissão de material particulado presente nos gases de exaustão do motor de ciclo Diesel.

  14. Confined-plume chemical deposition: rapid synthesis of crystalline coatings of known hard or superhard materials on inorganic or organic supports by resonant IR decomposition of molecular precursors.

    Science.gov (United States)

    Ivanov, Borislav L; Wellons, Matthew S; Lukehart, Charles M

    2009-08-26

    A one-step process for preparing microcrystalline coatings of known superhard, very hard, or ultraincompressible ceramic compositions on either inorganic or organic supports is reported. Midinfrared pulsed-laser irradiation of preceramic chemical precursors layered between IR-transmissive hard/soft supports under temporal and spatial confinement at a laser wavelength resonant with a precursor vibrational band gives one-step deposition of crystalline ceramic coatings without incurring noticeable collateral thermal damage to the support material. Reaction plume formation at the precursor/laser beam interface initiates confined-plume, chemical deposition (CPCD) of crystalline ceramic product. Continuous ceramic coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of the Re-B single-source precursor, (B(3)H(8))Re(CO)(4), the dual-source mixtures, Ru(3)(CO)(12)/B(10)H(14) or W(CO)(6)/B(10)H(14), and the boron/carbon single-source precursor, o-B(10)C(2)H(12), confined between Si wafer or NaCl plates gives microcrystalline deposits of ReB(2), RuB(2), WB(4), or B(4)C, respectively. CPCD processing of Kevlar fabric wetted by (B(3)H(8))Re(CO)(4) produces an oriented, microcrystalline coating of ReB(2) on the Kevlar fabric without incurring noticeable thermal damage of the polymer support. Similarly, microcrystalline coatings of ReB(2) can be formed on IR-transmissive IR2, Teflon, or Ultralene polymer films.

  15. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg(-1), respectively, at a current density of 100mAg(-1) in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg(-1) and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  17. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  18. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    Science.gov (United States)

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    Science.gov (United States)

    Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M

    2012-08-01

    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.

  20. Ore-forming material sources of the Baiyangping Cu-Co-Ag polymetallic deposit in the Lanping Basin, western Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    LI Zhiming; LIU Jiajun; ZHANG Changjiang

    2008-01-01

    The ore-forming material sources of the Baiyangping copper-cobalt-silver polymetallic deposit have been studied in view of the S, Pb, C, O and H isotopic characteristics and the ratio of Co/Ni of cohaltite. The results showed that sulfur in metallic sulfides may have come from a mixed sulfur-source consisting of the sulfur-source from metamorphic rocks in the basin basement with basic volcanic rocks and the sulfur-source from basin sulfates;lead in the ores was provided by the sedimentary rocks and basement rocks; CO2 in ore-forming fluids was derived from thermolysis of altered and normal marine facies carbonates and decarboxylation of sedimentary organic matter respectively; the ore-forming fluids belong to the SO4-Cl-Na-Ca-type basin thermal brines derived from paleo-meteoric waters; cobalt in the deposit may also be derived from the metamorphic rocks in the basin basement with basic volcanic rocks.