WorldWideScience

Sample records for deposited proton conducting

  1. Electrochemical performances of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques

    International Nuclear Information System (INIS)

    Asamoto, Makiko; Miyake, Shinji; Yonei, Yuka; Yamaura, Hiroyuki; Yahiro, Hidenori

    2009-01-01

    The electrochemical performances of Proton-conducting SOFC with La 0.7 Sr 0.3 FeO 3 (LSF) cathode fabricated by the electrophoretic deposition (EPD) technique were investigated. The EPD technique provided the uniform layer of LSF cathode with constant thickness and can easily control the thickness by changing an applied voltage. The power density of the SOFC cell was dependent on the thickness of LSF cathode. The activation energy was measured to elucidate the rate-determining step for LSF cathode reaction. (author)

  2. Structural and optical properties of sol-gel deposited proton conducting Ta{sub 2}O{sub 5} films

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, N.; Lampert, C.M.

    1995-08-01

    Proton conducting tantalum oxide films were deposited by spin coating using a sol-gel process. The coating solutions were prepared using Ta(OC{sub 2}H{sub 5}){sub 5} as a precursor. X-ray diffraction studies determined that the sol-gel films, heat treated at temperatures below 400 C, were amorphous. Films heat treated at higher temperatures were crystalline Ta{sub 2}O{sub 5}. The solar transmission values (T{sub s}) of tantala films on glass generally range from 0.8--0.9 depending on thickness. The refractive index and the extinction coefficient were evaluated from transmittance characteristics in the UV-VIS-NIR regions. The refractive index values calculated at 550 nm increased from 1.78 to 1.97 with increasing heat treatment from 150 to 450 C. The films heat treated at different temperatures showed low absorption with extinction coefficients of less than k=1x10{sup -3} in the visible range. Spectrophotometric and impedance spectroscopic investigations performed on Ta{sub 2}O{sub 5} films revealed that these films have protonic conductivity of 3.2x10{sup -6} S/cm. The films are suitable for proton conducting layers in electrochromic (EC) devices.

  3. Enhancement of proton conductivity of sulfonated polystyrene ...

    Indian Academy of Sciences (India)

    of low proton conductivity at operating temperature greater than 100. ◦. C due to .... Schematic diagram of RF plasma polymerization system. Table 1. Operating ... Deposition time. Membrane ... membrane was injected into the GPC column using a soft- ... intercept on the real axis of the Nyquist plot was evaluated to measure ...

  4. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  5. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  6. An introduction to proton conduction in solids

    International Nuclear Information System (INIS)

    Poulsen, F.W.

    1980-09-01

    Proton conducting solids have been studied intensively in recent years due to their potential use as ion conducting separators in efficient fuel cells for electricity generation. This report describes fuel cell - and other possible applications of solid proton conductors. The best performing materials known today are listed. Typical synthetic routes and some models for proton transport in solids are discussed. Hints to future research are given. The litterature collected for this report covers mainly the period 1974-1980. (author)

  7. Ion-/proton-conducting apparatus and method

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  8. Proton conduction based on intracrystalline chemical reaction

    International Nuclear Information System (INIS)

    Schuck, G.; Lechner, R.E.; Langer, K.

    2002-01-01

    Proton conductivity in M 3 H(SeO 4 ) 2 crystals (M=K, Rb, Cs) is shown to be due to a dynamic disorder in the form of an intracrystalline chemical equilibrium reaction: alternation between the association of the monomers [HSeO 4 ] 1- and [SeO 4 ] 2- resulting in the dimer [H(SeO 4 ) 2 ] 3- (H-bond formation) and the dissociation of the latter into the two monomers (H-bond breaking). By a combination of quasielastic neutron scattering and FTIR spectroscopy, reaction rates were obtained, as well as rates of proton exchange between selenate ions, leading to diffusion. The results demonstrate that this reaction plays a central role in the mechanism of proton transport in these solid-state protonic conductors. (orig.)

  9. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  10. Proton Conductivity Studies on Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-01-01

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.

  11. Vibrational spectroscopy on protons and deuterons in proton conducting perovskites

    DEFF Research Database (Denmark)

    Glerup, M.; Poulsen, F.W.; Berg, R.W.

    2002-01-01

    A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR-microscopy exper......A short review of IR-spectroscopy on protons in perovskite structure oxides is given. The nature of possible proton sites, libration and combination tones and degree of hydrogen bonding is emphasised. Three new spectroscopic experiments and/or interpretations are presented. An IR...

  12. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  13. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    to their potential applications in proton exchange membrane fuel cells (PEMFCs) ... is highly sulfonated and has high water uptake property.11,12 The proton conductivity ... SPSU membranes have lower gas permeability and liquid. (water and ...

  14. Preparation, characterization and application of novel proton conducting ceramics

    Science.gov (United States)

    Wang, Siwei

    Due to the immediate energy shortage and the requirement of environment protection nowadays, the efficient, effective and environmental friendly use of current energy sources is urgent. Energy conversion and storage is thus an important focus both for industry and academia. As one of the hydrogen energy related materials, proton conducting ceramics can be applied in solid oxide fuel cells and steam electrolysers, as well as high temperature hydrogen separation membranes and hydrogen sensors. For most of the practical applications, both high proton conductivity and chemical stability are desirable. However, the state-of-the-art proton conducting ceramics are facing great challenges in simultaneously fulfilling conductivity and stability requirements for practical applications. Consequently, understanding the properties for the proton conducting ceramics and developing novel materials that possess both high proton conductivity and enhanced chemical stability have both scientific and practical significances. The objective of this study is to develop novel proton conducting ceramics, either by evaluating the doping effects on the state-of-the-art simple perovskite structured barium cerates, or by investigating novel complex perovskite structured Ba3Ca1.18Nb1.82O 9-delta based proton conductors as potential proton conducting ceramics with improved proton conductivity and enhanced chemical stability. Different preparation methods were compared, and their influence on the structure, including the bulk and grain boundary environment has been investigated. In addition, the effects of microstructure on the electrical properties of the proton conducting ceramics have also been characterized. The solid oxide fuel cell application for the proton conducting ceramics performed as electrolyte membranes has been demonstrated.

  15. Oxadiazole telechelics immobilized on silica for proton conductive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Treekamol, Yaowapa; Schieda, Mauricio [GKSS-Forschungszentrum Geesthacht GmbH (Germany); Nunes, Suzana [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Schulte, Karl [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    2010-07-01

    Functionalized silica and layered silicates have been used in our group to prepare proton conductive membranes with applications to direct methanol fuel cells. We report recent results on the use of silica with amphoteric functionalization in proton conductive membranes working at low humidity levels. Aerosil silica was functionalized by reacting it subsequently with bromophenyltrimethoxysilane and with aromatic bishydroxy terminated oxadiazole oligomers. We have prepared proton conductive membranes including as fillers a series of different sulfonated and non-sulfonated telechelics, synthesized with diphenylsulfone, diphenylether and fluorinated oxadiazole segments. We will present a comparison between fillers with different functionalization and how they affect the conductivity of a proton conductive polymer matrix. The functionalized fillers present the possibility of improving water retention and increasing the maximum doping level with phosphoric acid. Furthermore, the oligomer segments, containing both basic nitrogen and acid sulfonic groups, give an amphoteric character to the membrane, improving the proton conductivity in low humidity conditions. (orig.)

  16. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  17. RF system for the super conducting proton linac

    International Nuclear Information System (INIS)

    Touchi, Y.

    2001-01-01

    In this paper, we introduce the several types of RF sources used for proton liner accelerators. Also we discus the undesirable characteristics of super-conducting cavities, and the influence of the large beam loading for an accelerating field. We propose the RF system for the super-conducting proton linear accelerators using the Diacrode or IOT taking these effects into account. (author)

  18. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  19. Proton-conductive nanochannel membrane for fuel-cell applications.

    Science.gov (United States)

    Oleksandrov, Sergiy; Lee, Jeong-Woo; Jang, Joo-Hee; Haam, Seungjoo; Chung, Chan-Hwa

    2009-02-01

    Novel design of proton conductive membrane for direct methanol fuel cells is based on proton conductivity of nanochannels, which is acquired due to the electric double layer overlap. Proton conductivity and methanol permeability of an array of nanochannels were studied. Anodic aluminum oxide with pore diameter of 20 nm was used as nanochannel matrix. Channel surfaces of an AAO template were functionalized with sulfonic groups to increase proton conductivity of nanochannels. This was done in two steps; at first -SH groups were attached to walls of nanochannels using (3-Mercaptopropyl)-trimethyloxysilane and then they were converted to -SO3H groups using hydrogen peroxide. Treatment steps were analyzed by Fourier Transform Infrared spectroscopy and X-ray Photoelectron Spectroscopy. Proton conductivity and methanol permeability were measured. The data show methanol permeability of membrane to be an order of magnitude lower, than that measured of Nafion. Ion conductivity of functionalized AAO membrane was measured by an impedance analyzer at frequencies ranging from 1 Hz to 100 kHz and voltage 50 mV to be 0.15 Scm(-1). Measured ion conductivity of Nafion membrane was 0.05 Scm(-1). Obtained data show better results in comparison with commonly used commercial available proton conductive membrane Nafion, thus making nanochannel membrane very promising for use in fuel cell applications.

  20. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  1. Tritium conductivity and isotope effect in proton-conducting perovskites

    International Nuclear Information System (INIS)

    Mukundan, R.; Brosha, E.L.; Birdsell, S.A.; Costello, A.L.; Garzon, F.H.; Willms, R.S.

    1999-01-01

    The tritium ion conductivities of SrZr 0.9 Yb 0.1 O 2.95 and BaCe 0.9 Yb 0.1 O 2.95 have been measured by ac impedance analysis. The high tritium conductivity of these perovskites could potentially lead to their application as an electrochemical membrane for the recovery of tritium from tritiated gas streams. The conductivities of these perovskites, along with SrCe 0.95 Yb 0.05 O 2.975 , were also measured in hydrogen- and deuterium-containing atmospheres to illustrate the isotope effect. For the strontium zirconate and barium cerate samples, the impedance plot consists of two clearly resolved arcs, a bulk and a grain boundary arc, in the temperature range 50--350 C. However, for the strontium cerate sample, the clear resolution of the bulk conductivity was not possible and only the total conductivity was measurable. Thus, the isotope effect was clearly established only for the strontium zirconate and barium cerate samples. The decrease in bulk conductivity with increasing isotope mass was found to be a result of an increase in the activation energy for conduction accompanied by a decrease in the pre-exponential factor. Since the concentration of the mobile species (H+, D+, or T+) should remain relatively constant at T < 350 C, this increase in activation energy is directly attributable to the increased activation energy for the isotope mobility

  2. A study of VMS ore deposits by the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Large, R.R.; Bottril, R.S.; Sie, S.H.; Ryan, C.G.

    1991-01-01

    As part of studies into the mineralogical distribution of gold in volcanogenic massive sulfide (VMS) ore deposits PIXE analysis by the proton microprobe has been used to determine the gold content of pyrite and arsenopyrite from the Rosebery, Mt. Chalmers and Mt. Lyell deposits. In addition, the concentrations of Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Sb, Te, Au, Tl, Pb and Bi were also determined. 4 refs., 1 tab

  3. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  4. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  5. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  6. Modified conductivity of polymer materials with proton beam

    International Nuclear Information System (INIS)

    Matsumoto, Shinji; Seki, Miharu; Shima, Kunihiro; Ishihara, Toyoyuki

    2001-01-01

    Ionic conductivity of polymer materials is of increasing interest in many scientific fields. Industrial applications seem to be promising. In the present investigation, we used proton bombardment to modify the characteristic properties of polymers, especially for improvement in conductivity and hardening gel polymers. Particle beam bombardment is known to produce many scissions by particle passages and new bonds by bridge connection. These effects may modify various properties in many ways. We examined the modification of conductivity in solid polymers composed of polyethylene oxide and polyurethane and the surface appearance of gel polymers with bombardment by a proton beam using the accelerator facility of Tsukuba University. The results indicated proton bombardment induced conductivity changes in various ways according to particle range and polymer properties. (author)

  7. Proton dynamics in oxides: insight into the mechanics of proton conduction from quasielastic neutron scattering.

    Science.gov (United States)

    Karlsson, Maths

    2015-01-07

    This article is concerned with the use of quasielastic neutron scattering as a technique for investigation of the dynamical properties of proton conducting oxides. Currently, the main interest in these materials comes from their promise as electrolytes in future electrochemical devices and particularly through their use as electrolytes in next-generation, intermediate-temperature, fuel cells. However, the realization of such devices depends critically on the development of new, more highly proton conducting oxides. Such a development depends on increasing the current understanding of proton conduction in oxides and for this purpose quasielastic neutron scattering is an important mean. The aim of this article is to introduce the non-specialist reader to the basic principles of quasielastic neutron scattering, its advantages and disadvantages, to summarize the work that has been done on proton conducting oxides using this technique, as well as to discuss future opportunities within this field of research.

  8. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  9. Proton Conductivity and Operational Features Of PBI-Based Membranes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; Precht Noyé, Pernille

    2005-01-01

    As an approach to high temperature operation of PEMFCs, acid-doped PBI membranes are under active development. The membrane exhibits high proton conductivity under low water contents at temperatures up to 200°C. Mechanisms of proton conduction for the membranes have been proposed. Based on the me...... on the membranes fuel cell tests have been demonstrated. Operating features of the PBI cell include no humidification, high CO tolerance, better heat utilization and possible integration with fuel processing units. Issues for further development are also discussed....

  10. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P R

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly(4-vinylimidazole

  11. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  12. Proton Conducting Fuel Cells where Electrochemistry Meets Material Science

    DEFF Research Database (Denmark)

    Li, Qingfeng

    Fuel cells are electrochemical devices which directly convert the chemical energy of fuels into electrical energy. They are featured of high energy conversion efficiency and minimized pollutant emission. Proton conducting electrolytes are primarily used as separator materials for low and intermed...... science point of view including novel proton conducting materials and non-precious metal catalysts. The discussion will be made with highlights of DTU´s recent research and of course addressing a diverse technical audience.......Fuel cells are electrochemical devices which directly convert the chemical energy of fuels into electrical energy. They are featured of high energy conversion efficiency and minimized pollutant emission. Proton conducting electrolytes are primarily used as separator materials for low...... followed by a review of the state-of-the-art in terms of performance, lifetime and cost. Technically faced challenges are then outlined on a system level and traced back to fundamental issues of the proton conducting mechanisms and materials. Perspectives and future research are sketched from a materials...

  13. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  14. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  15. Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Tiwari, Omshanker; Gaikwad, Pramod; Paswan, Bhuneshwar; Thotiyl, Musthafa Ottakam

    2016-01-12

    Graphene oxide (GO) is impermeable to H2 and O2 fuels while permitting H(+) shuttling, making it a potential candidate for proton exchange membrane fuel cells (PEMFC), albeit with a large anisotropy in their proton transport having a dominant in plane (σIP) contribution over the through plane (σTP). If GO-based membranes are ever to succeed in PEMFC, it inevitably should have a dominant through-plane proton shuttling capability (σTP), as it is the direction in which proton gets transported in a real fuel-cell configuration. Here we show that anisotropy in proton conduction in GO-based fuel cell membranes can be brought down by selectively tuning the geometric arrangement of functional groups around the dopant molecules. The results show that cis isomer causes a selective amplification of through-plane proton transport, σTP, pointing to a very strong geometry angle in ionic conduction. Intercalation of cis isomer causes significant expansion of GO (001) planes involved in σTP transport due to their mutual H-bonding interaction and efficient bridging of individual GO planes, bringing down the activation energy required for σTP, suggesting the dominance of a Grotthuss-type mechanism. This isomer-governed amplification of through-plane proton shuttling resulted in the overall boosting of fuel-cell performance, and it underlines that geometrical factors should be given prime consideration while selecting dopant molecules for bringing down the anisotropy in proton conduction and enhancing the fuel-cell performance in GO-based PEMFC.

  16. Theory of passive proton conductance in lipid bilayers.

    Science.gov (United States)

    Nagle, J F

    1987-10-01

    The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.

  17. Proton conductivity and relaxation properties of chitosan-acetate films

    International Nuclear Information System (INIS)

    Prokhorov, E.; Luna-Bárcenas, G.; González-Campos, J.B.; Kovalenko, Yu.; García-Carvajal, Z.Y.; Mota-Morales, J.

    2016-01-01

    Graphical abstract: Temperature dependence of conductivity, the number of density and proton mobility in chitosan-acetate film. - Highlights: • DD, conductivity, Vogel temperature dependent on the concentration of acetic acid. • Proton conductivity of CS-acetate films interpreted using two Grotthuss mechanisms. • Transformation between two mechanisms observed at the glass transition temperature. - Abstract: The effect of aqueous acetic acid solution concentration during the preparation of chitosan-acetate (CS-acetate) films on the conductivity and relaxation properties were studied by dielectric and FTIR spectroscopies, TGA measurements and X-Ray diffraction. Analyses of the experimental results on the degree of deacetylation, water absorption, conductivity, Vogel temperature and activation energy demonstrate a strong dependence of these parameters on the concentration of the acid acetic solutions from which the films have been obtained. The proton conductivity and relaxation properties of CS-acetate films have been interpreted using two Grotthuss “structural diffusion” and “pack-acid” mechanisms. The transformation between these two mechanisms observed at temperature higher than CS-acetate glass transition temperature is due to an increase in the thermal motion of CS chains, water evaporation, hydrogen bond between water molecules and side groups of CS breaking and formation of new bonds between NH 3 + and acetate ions. Additionally, application of the Rice and Roth model allowed estimating the temperature dependence of proton number and their mobility in CS-acetate films. A systematic interpretation on the appropriate conductivity mechanism will help trigger the design of smart materials used in flexible electronic, solid polymer electrolytes for fuel cells and solid polymer batteries based on CS-acetate films.

  18. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    Science.gov (United States)

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  19. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Liying Ma

    2017-12-01

    Full Text Available Based on a previously developed polyamide proton conductive macromolecule, the nano-scale structure of the self-assembled proton conductive channels (PCCs is adjusted via enlarging the nano-scale pore size within the macromolecules. Hyperbranched polyamide macromolecules with different size are synthesized from different monomers to tune the nano-scale pore size within the macromolecules, and a series of hybrid membranes are prepared from these two micromoles to optimize the PCC structure in the proton exchange membrane. The optimized membrane exhibits methanol permeability low to 2.2 × 10−7 cm2/s, while the proton conductivity of the hybrid membrane can reach 0.25 S/cm at 80 °C, which was much higher than the value of the Nafion 117 membrane (0.192 S/cm. By considering the mechanical, dimensional, and the thermal properties, the hybrid hyperbranched polyamide proton exchange membrane (PEM exhibits promising application potential in direct methanol fuel cells (DMFC.

  20. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  1. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  2. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  3. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  4. Ordered Functionalized Silica Materials with High Proton Conductivity

    Czech Academy of Sciences Publication Activity Database

    Marschall, R.; Rathouský, Jiří; Wark, M.

    2007-01-01

    Roč. 19, č. 26 (2007), s. 6401-6407 ISSN 0897-4756 R&D Projects: GA MŠk 1M0577 Grant - others:Deutsche Forschungsgemeinschaft(DE) CA 147/13-1, SPP1181 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : silica * high proton conductivity * Si-MCM-41 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.883, year: 2007

  5. Proton-conducting polymer electrolytes based on methacrylates

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Velická, Jana; Míka, M.

    2008-01-01

    Roč. 53, č. 26 (2008), s. 7769-7774 ISSN 0013-4686 R&D Projects: GA ČR GA106/04/1279; GA AV ČR KJB400320701; GA MŠk LC523; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * proton conductivity * phosporic acid Subject RIV: CA - Inorganic Chemistry Impact factor: 3.078, year: 2008

  6. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Di Noto, Vito [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)]. E-mail: vito.dinoto@unipd.it; Vittadello, Michele [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Zago, Vanni [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Pace, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Vidali, Maurizio [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)

    2006-01-20

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C {<=} T {<=} 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10{sup -4} {<=} {sigma} {sub A} {<=} 2.3 x 10{sup -3} S cm{sup -1} and 1.3 x 10{sup -5} {<=} {sigma} {sub B} {<=} 2.9 x 10{sup -4} S cm{sup -1}, respectively, for A and B. In particular, conductivities of 2 x 10{sup -3} S cm{sup -1} (A) and of 2 x 10{sup -4} S cm{sup -1} (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10{sup 2} {<=} f {sub {beta}} {<=} 10{sup 4} Hz) of {beta} relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about {approx_equal}30 kJ mol{sup -1} and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol{sup -1}, respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high

  7. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    International Nuclear Information System (INIS)

    Di Noto, Vito; Vittadello, Michele; Zago, Vanni; Pace, Giuseppe; Vidali, Maurizio

    2006-01-01

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C ≤ T ≤ 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10 -4 ≤ σ A ≤ 2.3 x 10 -3 S cm -1 and 1.3 x 10 -5 ≤ σ B ≤ 2.9 x 10 -4 S cm -1 , respectively, for A and B. In particular, conductivities of 2 x 10 -3 S cm -1 (A) and of 2 x 10 -4 S cm -1 (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10 2 ≤ f β ≤ 10 4 Hz) of β relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about ≅30 kJ mol -1 and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol -1 , respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high concentration of SO 3 H are necessary in order to obtain materials with a high protonic conductivity with the capacity to

  8. Water-Free Proton-Conducting Membranes for Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Yen, Shiao-Pin

    2007-01-01

    Poly-4-vinylpyridinebisulfate (P4VPBS) is a polymeric salt that has shown promise as a water-free proton-conducting material (solid electrolyte) suitable for use in membrane/electrode assemblies in fuel cells. Heretofore, proton-conducting membranes in fuel cells have been made from perfluorinated ionomers that cannot conduct protons in the absence of water and, consequently, cannot function at temperatures >100 C. In addition, the stability of perfluorinated ionomers at temperatures >100 C is questionable. However, the performances of fuel cells of the power systems of which they are parts could be improved if operating temperatures could be raised above 140 C. What is needed to make this possible is a solid-electrolyte material, such as P4VPBS, that can be cast into membranes and that both retains proton conductivity and remains stable in the desired higher operating temperature range. A family of solid-electrolyte materials different from P4VPBS was described in Anhydrous Proton-Conducting Membranes for Fuel Cells (NPO-30493), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), page 48. Those materials notably include polymeric quaternized amine salts. If molecules of such a polymeric salt could be endowed with flexible chain structures, it would be possible to overcome the deficiencies of simple organic amine salts that must melt before being able to conduct protons. However, no polymeric quaternized amine salts have yet shown to be useful in this respect. The present solid electrolyte is made by quaternizing the linear polymer poly- 4-vinylpyridine (P4VP) to obtain P4VPBS. It is important to start with P4VP having a molecular weight of 160,000 daltons because P4VPBS made from lower-molecular-weight P4VP yields brittle membranes. In an experimental synthesis, P4VP was dissolved in methanol and then reacted with an excess of sulfuric acid to precipitate P4VPBS. The precipitate was recovered, washed several times with methanol to remove traces of acid, and dried to a

  9. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2015-01-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton

  10. Understanding proton-conducting perovskite interfaces using atom probe tomography

    Science.gov (United States)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3

  11. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  13. Conductivity studies on commercially available proton-conducting membranes with different equivalent weight

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.

  14. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Gao, Lin; Korzeniewski, Carol; Matzke, Carolyn

    2005-07-01

    The apparent proton conductivity inside a nanochannel can be enhanced by orders of magnitude due to the electric double layer overlap. A nanochannel filled with an acidic solution is thus a micro super proton conductor, and an array of such nanochannels forms an excellent proton conductive membrane. Taking advantage of this effect, a new class of proton exchange membrane is developed for micro fuel cell applications.

  15. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    International Nuclear Information System (INIS)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-01-01

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr 0.85 Y 0.15 O 3−δ (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al 2 O 3 . Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10 −2 S cm −1 (by the polymer gelation method) vs. 0.53 × 10 −2 S cm −1 by the solid-state method at 600 °C in wet 5% H 2 in Ar

  16. Nanoionics phenomenon in proton-conducting oxide: Effect of dispersion of nanosize platinum particles on electrical conduction properties

    Directory of Open Access Journals (Sweden)

    Hiroshige Matsumoto et al

    2007-01-01

    Full Text Available High-temperature proton conductors are oxides in which low-valence cations are doped as electron acceptors; the incorporation of water molecules into the oxides results in the formation of protonic defects that act as charge carriers. Since the protons thus formed are in equilibrium with other electronic defects, electrons and holes, the oxides possibly have different proton-conduction properties at and near boundaries when they are in contact with another phase. In this paper, we present our recent experimental observation of a marked change in the electrical properties of a proton conductor upon the dispersal of fine platinum particles in the oxide. First, the material shows extremely low electrical conductivity in comparison with the original proton-conducting perovskite. Second, there was a threshold amount of platinum at which such a drop in conductivity occurred. A percolation model is employed to explain these experimental results; the fine platinum particles dispersed in the proton-conducting oxide wears highly resistive skin that is formed due to shifts in defect equilibriums, which prevents ionic/electronic conduction. The experiments suggest that the ion-conducting properties of oxides can be varied by introducing interfaces at a certain density; nanoionics is a key to yielding enhanced and/or controlled ionic conduction in solids.

  17. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    Science.gov (United States)

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of Nafion ionometer content on proton conductivity in the catalyst layer of proton exchange fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ozalevlia, Cihan Cemil; Jian Xie; Xu, Fan [METU MS Mechanical Engineering (United States)], email: cihan.ozalevli@metu.edu.tr, email: jianxie@iupui.edu, email: fanxu@iupui.edu

    2011-07-01

    In the energy conversion sector, proton exchange fuel cells (PEFC's) are among the most promising technologies for the future. The Nafion ionometer is the most important part of the membrane electrode assembly (MEA) which is the core technology of the system. The Nafion ionometer is both a proton conductor and a binder for the catalyst layer in the technology. The aim of this study is to assess the effect of the Nafion content in the cathode catalyst layer on the proton conductivity of the MEA. Two MEAs with different Nafion content were prepared following the LANL process and the proton conductivity of the catalyst layer was measured. Results showed a much higher performance of the 28wt. % Nafion MEA than the 10wt. %. This study demonstrated that when the Nafion ionometer content decreases, the performance of the fuel cell decreases; further investigations should be undertaken with Nafion ionometer amounts of 15wt. % to 20wt. %.

  19. Proton and oxide ion conductivity of doped LaScO3

    DEFF Research Database (Denmark)

    Lybye, D.; Bonanos, N.

    1999-01-01

    . At temperatures below 800 degrees C and low partial pressure of oxygen, proton conduction was dominant. Above this temperature, the ionic conductivity is dominated by oxide ion transport. The protonic transport number was estimated from the conductivities measured in dry and in water-moisturised gas. An isotope......The conductivity of La0.9Sr0.1Sc0.9Mg0.1O3 has been studied by impedance spectroscopy in controlled atmospheres. The material was found to be a mixed conductor with p-type conduction at high oxygen partial pressures and a combined proton and oxide ion conductor at low oxygen partial pressures...

  20. Increasing the proton conductivity of sulfonated polyether ether ketone by incorporating graphene oxide: Morphology effect on proton dynamics

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2018-03-01

    We synthesized graphene oxide-sulfonated polyether ether ketone (GO-SPEEK) composite membrane and compare its proton conductivity with that of Nafion® 117 and SPEEK membranes. From experimental measurements, we found that GO-SPEEK has better proton conductivity (σGO-SPEEK = 3.8 × 10-2 S cm-1) when compared to Nafion® 117 (σNafion = 2.4 × 10-2 S cm-1) and SPEEK (σSPEEK = 2.9 × 10-3 S cm-1). From density functional theory (DFT-) based total energy calculations, we found that GO-SPEEK has the shortest proton diffusion distance among the three membranes, yielding the highest tunneling probability. Hence, GO-SPEEK exhibits the highest conductivity. The short proton diffusion distance in GO-SPEEK, as compared to Nafion® 117 and SPEEK, can be attributed to the presence of oxygenated functional groups of GO in the polymer matrix. This also explains why GO-SPEEK requires the lowest hydration level to reach its maximum conductivity. Moreover, we have successfully shown that the proton conductivity σ is related to the tunneling probability T, i.e., σ = σ‧ exp(-1/T). We conclude that the proton diffusion distance and hydration level are the two most significant factors that determine the membrane’s good conductivity. The distance between ionic sites of the membrane should be small to obtain good conductivity. With this short distance, lower hydration level is required. Thus, a membrane with short separation between the ionic sites can have enhanced conductivity, even at low hydration conditions.

  1. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  2. PRISM -- A tool for modelling proton energy deposition in semiconductor materials

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.

    1996-01-01

    This paper presents a description of, and test results from, a new PC based software simulation tool PRISM (Protons in Semiconductor Materials). The model describes proton energy deposition in complex 3D sensitive volumes of semiconductor materials. PRISM is suitable for simulating energy deposition in surface-barrier detectors and semiconductor memory devices, the latter being susceptible to Single-Event Upset (SEU) and Multiple-Bit Upset (MBU). The design methodology on which PRISM is based, together with the techniques used to simulate ion transport and energy deposition, are described. Preliminary test results used to analyze the PRISM model are presented

  3. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  4. Modelling of stomatal conductance and ozone deposition flux of Norway Spruce using deposition model

    Czech Academy of Sciences Publication Activity Database

    Zapletal, M.; Chroust, P.; Večeřa, Zbyněk; Mikuška, Pavel; Cudlín, Pavel; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Janouš, Dalibor; Taufarová, Klára

    2009-01-01

    Roč. 12, 2-3 (2009), s. 75-81 ISSN 1335-339X R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40310501 Keywords : ozone concentration * ozone deposition * stomatal conductance * deposition velocity * resistance model * tropo-spheric ozone Subject RIV: DG - Athmosphere Sciences, Meteorology

  5. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee, E-mail: ktlau@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Anand, T. Joseph Sahaya [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Sorrell, Charles C. [School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-10-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  6. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Anand, T. Joseph Sahaya; Sorrell, Charles C.

    2016-01-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  7. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2013-01-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry. Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer

  8. Proton conducting ceramics for potentiometric hydrogen sensors for molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Borland, H.; Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2013-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaZrY, BaCeZrY and SrFeCo ceramics. -- Abstract: Tritium monitoring in lithium–lead eutectic (Pb–15.7Li) is of great importance for the performance of liquid blankets in fusion reactors. Also, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. Potentiometric hydrogen sensors for molten lithium–lead eutectic have been designed at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS) at Barcelona and are under development and qualification. The probes are based on the use of solid state electrolytes and works as proton exchange membranes (PEM). In this work the following compounds: BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−α}, Sr(Ce{sub 0.6}-Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−α} and Sr{sub 3}Fe{sub 1.8}Co{sub 2}O{sub 7} have been synthesized in order to be tested as PEM H-probes. Potentiometric measurements of the synthesized ceramic elements at 500 °C have been performed at a fixed hydrogen concentration. The sensors constructed using the proton conductor elements BaZr{sub 0.9}Y{sub 0.1}O{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr{sub 3}Fe{sub 1.8}Co{sub 0.2}O{sub 7−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation (deviation around 60 mV). In contrast, the sensor constructed using the proton conductor element Sr(Ce{sub 0.6}–Zr{sub 0.4}){sub 0.9}Y{sub 0.1}O{sub 3−δ} showed a deviation higher than 100 mV between experimental an theoretical data.

  9. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  10. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  11. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  12. Correlation between morphology, water uptake, and proton conductivity in radiation-grafted proton-exchange membranes

    DEFF Research Database (Denmark)

    Balog, Sandor; Gasser, Urs; Mortensen, Kell

    2010-01-01

    An SANS investigation of hydrated proton exchange membranes is presented. Our membranes were synthesized by radiation-induced grafting of ETFE with styrene in the presence of a crosslinker, followed by sulfonation of the styrene. The contrast variation method was used to understand the relationship...

  13. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  14. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.

    Science.gov (United States)

    Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas

    2017-12-01

    The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

  15. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin Frank [Univ. of South Carolina, Columbia, SC (United States); Adams, Thad M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States)

    2011-09-30

    Several types of high-temperature proton conductors based on SrCeO3 and BaCeO3 have been systematically investigated in this project for tritium separation in NGNP applications. One obstacle for the field application is the chemical stability issues in the presence of steam and CO2 for these proton conductors. Several strategies to overcome such issues have been evaluated, including A site doping and B site co-doping method for perovskite-structured proton conductors. Novel zirconium-free proton conductors have also been developed with improved electrical conductivity and enhanced chemical stability. Novel catalytic materials for the proton-conducting separation membranes have been investigated. A tubular geometry proton-conducting membrane has been developed for the proton separation membranes. Total dose rate estimated from tritium decay (beta emission) under realistic membrane operating conditions, combined with electron irradiation experiments, indicates that proton ceramic materials possess the appropriate radiation stability for this application.

  16. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  17. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    OpenAIRE

    Sezgin, Sinan; Sinirlioglu, Deniz; Muftuoglu, Ali Ekrem; Bozkurt, Ayhan

    2014-01-01

    Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride) (PVDF) and proton conductivity of poly(1-vinyl-1,2,4-triazole) (PVTri) were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA) at differe...

  18. Metal Phosphates as Proton Conducting Materials for Intermediate Temperature Fuel Cell and Electrolyser Applications

    DEFF Research Database (Denmark)

    Anfimova, Tatiana

    The present thesis presents the results achieved during my ph.d. project on a subject of intermediate temperature proton conducting metal phosphates as electrolyte materials for fuel cells and electrolysers. Fuel cells and electrolysers are electrochemical devices with high energy conversion...... with a proton conductivity of above 10-2S cm-1. Chapter 1 of the thesis is an introduction to basics of fuel cell and electrolyser technologies as well as proton conducting materials. Extended discussion on the proton conducting materials, a particularly phosphates is made in Chapter 2. Three major types...... starts with synthesis and investigation of three rare earth metal phosphate hydrates, which is first presented in Chapter 5. Structural and surface water as well as its stability has been investigated using thermogravimetric and differential thermal analyses combined with structural modeling calculations...

  19. Proton Conducting Polymer Membrane Comprised of 2-Acrylamido-2-Methylpropanesulfonic Acid

    National Research Council Canada - National Science Library

    Walker, Charles

    2002-01-01

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion 117 in direct methanol fuel cells, we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS...

  20. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  1. Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations

    Directory of Open Access Journals (Sweden)

    V. Coumans

    2004-04-01

    Full Text Available The Far Ultraviolet (FUV imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI12 camera sensitive to Doppler shifted Lyman-α emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI12 around 14:00MLT at ~75° MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in auroral arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop

  2. Control of polyaniline conductivity and contact angles by partial protonation

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 66-69 ISSN 0959-8103 R&D Projects: GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * conductivity * contact angle Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.029, year: 2008

  3. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Lei, M.; Wang, Y.G.; Zhang, F.F.; Huang, C.; Xu, X.; Zhang, R.; Fan, D.Y.

    2014-01-01

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm −1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm −2 using hydrogen and oxygen as reaction gases

  4. Energy deposition around swift proton tracks in polymethylmethacrylate: How much and how far

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2017-08-01

    The use of proton beams in several modern technologies to probe or modify the properties of materials, such as proton beam lithography or ion beam cancer therapy, requires us to accurately know the extent to which the energy lost by the swift projectiles in the medium is redistributed radially around their tracks, since this determines several endpoints, such as the resolution of imaging or manufacturing techniques, or even the biological outcomes of radiotherapy. In this paper, the radial distribution of the energy deposited around swift-proton tracks in polymethylmethacrylate (PMMA) by the transport of secondary electrons is obtained by means of a detailed Monte Carlo simulation. The initial energy and angular distributions of the secondary electrons generated by proton impact, as well as the electronic cross sections for the ejection of these electrons, are reliably calculated in the framework of the dielectric formalism, where a realistic electronic excitation spectrum of PMMA is accounted for. The cascade of all secondary electrons generated in PMMA is simulated taking into account the main interactions that occur between these electrons and the condensed phase target. After analyzing the influence that several angular distributions of the electrons generated by the proton beam have on the resulting radial profiles of deposited energy, we conclude that the widely used Rudd and Kim formula should be replaced by the simpler isotropic angular distribution, which leads to radial energy distributions comparable to the ones obtained from more realistic angular distributions. By studying the dependence of the radial dose on the proton energy we recommend lower proton energies than previously published for reducing proximity effects around a proton track. The obtained results are of relevance for assessing the resolution limits of proton beam based imaging and manufacturing techniques.

  5. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proton-Induced Conductivity Enhancement in AlGaN/GaN HEMT Devices

    Science.gov (United States)

    Lee, In Hak; Lee, Chul; Choi, Byoung Ki; Yun, Yeseul; Chang, Young Jun; Jang, Seung Yup

    2018-04-01

    We investigated the influence of proton irradiation on the AlGaN/GaN high-electron-mobility transistor (HEMT) devices. Unlike previous studies on the degradation behavior upon proton irradiation, we observed improvements in their electrical conductivity and carrier concentration of up to 25% for the optimal condition. As we increased the proton dose, the carrier concentration and the mobility showed a gradual increase and decrease, respectively. From the photoluminescence measurements, we observed a reduction in the near-band-edge peak of GaN ( 366 nm), which correlate on the observed electrical properties. However, neither the Raman nor the X-ray diffraction analysis showed any changes, implying a negligible influence of protons on the crystal structures. We demonstrated that high-energy proton irradiation could be utilized to modify the transport properties of HEMT devices without damaging their crystal structures.

  7. Application of proton conducting polymeric electrolytes to electrochemical capacitors

    International Nuclear Information System (INIS)

    Morita, Masayuki; Qiao, Jin-Li; Yoshimoto, Nobuko; Ishikawa, Masashi

    2004-01-01

    Non-aqueous polymeric gel complexes composed of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) dissolving anhydrous H 3 PO 4 have been examined as solid electrolytes of electrochemical capacitors. High ionic conductivity of ∼10 -3 S cm -1 (at 70 deg. C) was obtained for non-aqueous gel systems based on PEO-PMA with proper amounts of organic plasticizers. The ionic conductivity depended on the composition of the gel, especially on the content of the dopant H 3 PO 4 . A test cell of the electric double layer capacitor (EDLC) was assembled using the present gel electrolyte with activated carbon fiber (ACF) cloth electrodes. It gave as high capacity as that obtained for the capacitor using an aqueous liquid electrolyte. High rate capability was obtained for the cell operating at 90 deg. C

  8. Structure and functionality of PVdF/PAN based, composite proton conducting membranes

    International Nuclear Information System (INIS)

    Martinelli, A.; Navarra, M.A.; Matic, A.; Panero, S.; Jacobsson, P.; Boerjesson, L.; Scrosati, B.

    2005-01-01

    We have investigated new poly-vinylidene fluoride/poly-acrylonitrile (PVdF/PAN) based proton conducting membranes by means of vibrational spectroscopy. We find that a complete phase inversion occurs during the preparation procedure, when the gelling solvents are replaced by an acidic solution, providing the proton conducting property. The uptake of acid is promoted both by the presence of PAN and the ceramic filler, Al 2 O 3 . No particular interaction between the polymer matrix and the acidic solution could be detected, supporting the picture of an inert matrix entrapping a liquid component. However, the dissociation degree of the acid is decreased due to the spatial confinement in the membrane. By comparing the dissociation degree and the actual amount of acid in the membrane to the conductivity, we conclude that the limiting factor for the conductivity is the long-range mobility of the protons, which is governed by the morphology of the membrane

  9. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  10. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  11. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-01-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10"−"6 cm"2/s and 2.67 × 10"−"6 cm"2/s.

  12. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan; Yang, Wenqiang; Shafi, Shahid Pottachola; Bi, Lei; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Liu, Wei; Lu, Yalin

    2015-01-01

    . In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability

  13. An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting

    Directory of Open Access Journals (Sweden)

    Sinan Sezgin

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride (PVDF and proton conductivity of poly(1-vinyl-1,2,4-triazole (PVTri were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and 1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TAx membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA3 showed a maximum proton conductivity of 6×10-3 Scm−1 at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA3 extended over 4.0 V.

  14. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  15. Effect of glycidyl methacrylate (GMA) incorporation on water uptake and conductivity of proton exchange membranes

    Science.gov (United States)

    Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz

    2018-03-01

    The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.

  16. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chang Jin; Wan, Qing, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhu, Li Qiang [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wan, Xiang; Shi, Yi, E-mail: wanqing@nju.edu.cn, E-mail: yshi@nju.edu.cn [School of Electronic Science & Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-01-25

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  17. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    International Nuclear Information System (INIS)

    Wan, Chang Jin; Wan, Qing; Zhu, Li Qiang; Wan, Xiang; Shi, Yi

    2016-01-01

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors

  18. Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, Philippe, E-mail: philippe.knauth@univ-amu.fr [Madirel (UMR 7246), CNRS, Aix Marseille Université, Marseille (France); Di Vona, Maria Luisa [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy)

    2014-11-06

    The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used – the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c{sup −3} is observed, in agreement with the “universal” law for 3-dimensional percolation. The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The σ = f(c) plot allows to predict, which hydration conditions are necessary for a desired area specific resistance.

  19. Hydration and proton conductivity of ionomers: the model case of Sulfonated Aromatic Polymers

    Directory of Open Access Journals (Sweden)

    Philippe eKnauth

    2014-11-01

    Full Text Available The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used - the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c-3 is observed, in agreement with the universal law for 3-dimensional percolation. The proton conductivity  shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The  = f(c plot allows to predict which hydration conditions are necessary for a desired area specific resistance.

  20. The analysis of air particulate deposits using 2 MeV protons

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Mitchell, I.V.; Eschbach, H.L.; Mason, P.I.; Gilboy, W.B.

    1979-01-01

    Particle-induced X-ray emission (PIXE) analysis of the lighter elements in time-resolved air particulate deposits has been carried out. Minimum detection limits have been determined for 1.0, 2.0 and 3.5 MeV protons. Quantitative PIXE analysis results, obtained with 2 MeV protons, are given for temporal variations in the elemental concentrations of Na, Al, Si, S, Cl, K, Ca and Fe. Rutherford backscattering (RBS) spectra were taken simultaneously with the PIXE spectra to provide information on lead concentrations and deposit thicknesses. The experimental problems associated with the quantitative analysis of light elements on cellulose acetate filters are described. The relationship between these results and meteorological data is discussed. (author)

  1. Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    International Nuclear Information System (INIS)

    Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June

    2016-01-01

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion ® was tuned by the incorporation of HKUST-1. It has Cu II –paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by Cu II to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H 3 PO 4 -doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis. Graphical abstract: The H 3 PO 4 -doped HKUST-1/Nafion® composite membrane is demonstrated to be a promising material based on its proton conductivity. HKUST-1 has an average particle diameter of around 15–20 µm. The proton conductivity, IEC values, and the thermal stability of the 2.5 wt% HKUST-1/Nafion® composite membrane suggest that HKUST-1 may be a promising candidate as a proton-conductive material in the polymer electrolyte fuel cell membrane due to its reasonable proton passageway, favorable surface area, lower water uptake with the higher IEC, and proton conductivity of the H 3 PO 4 -doped material and

  2. Ab-initio study of hydrogen technology materials for hydrogen storage and proton conduction

    Energy Technology Data Exchange (ETDEWEB)

    Luduena, Guillermo Andres

    2011-07-01

    This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods. In the case of the hydrogen storage system lithium amide/imide (LiNH{sub 2}/Li{sub 2}NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state {sup 1}H-NMR chemical shifts was observed. Specifically, the structure of Li{sub 2}NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus. On the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding

  3. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  4. Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Matsushita, Shotaro; Hyodo, Junji; Okuyama, Yuji; Matsuka, Maki; Ishihara, Tatsumi; Matsumoto, Hiroshige

    2012-01-01

    Highlights: ► Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer conducted a large amount of protons. ► YbDC can work as cathode interlayer for proton conducting electrolyte cells. ► Cathode overpotential of the YbDC interlayer cells showed a plateau at about 400 mV. - Abstract: Introduction of doped ceria interlayer to cathode/electrolyte interface of the electrochemical cell with proton conducting electrolyte was investigated using thin Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer of about 500 nm thickness. YbDC interlayer conducted a large amount of protons as much as 170 mA cm −2 . It was also found that cathode overpotential of the YbDC interlayer cells consistently showed a plateau at about 400 mV, at which that of the non-interlayer cells did not show, suggesting a possibility that cathode reaction is changed by introducing the doped ceria interlayer. This result also indicates that the interlayer showed high activity for cathode reaction when enough cathodic bias was applied. Especially, the interlayer showed high activity for the improvement of poor cathode reaction between SrZr 0.9 Y 0.1 O 3−α (SZY-91) electrolyte and platinum cathode.

  5. Proton-conductive materials formed by coumarin photocrosslinked ionic liquid crystal dendrimers

    NARCIS (Netherlands)

    Concellon, A.; Liang, T.; Schenning, A.P.H.J.; Luis Serrano, J.; Romero, P.; Marcos, M.

    2018-01-01

    In this work, we have successfully examined for the first time the use of ionic dendrimers as building blocks for the preparation of 1D and 2D proton conductive materials. For this purpose, a new family of liquid crystalline dendrimers has been synthesized by ionic self-assembly of poly(amidoamine)

  6. Molecular modeling of the conductivity changes of the emeraldine base polyaniline due to protonic acid doping

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.

    2012-01-01

    We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer

  7. High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water

    NARCIS (Netherlands)

    Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-Hazeleger, M.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We investigate and discuss the proton conductivity properties of the cyanide-bridged metal–organic framework (MOF) [Nd(mpca)2Nd(H2O)6Mo(CN)8]·nH2O (where mpca is 5-methyl-2-pyrazinecarboxylate). This MOF is one of an exciting class of cyanide-bridged materials that can combine porosity with

  8. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Science.gov (United States)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  9. Proton-conducting solid acid electrolytes based upon MH(PO3H)

    NARCIS (Netherlands)

    Zhou, W.

    2011-01-01

    Solid acids, such as CsHSO4 and CsH2PO4, are a novel class of anhydrous proton-conducting compounds that can be used as electrolyte in H2/O2 and direct methanol fuel cells. The disordering of the hydrogen-bonded network above the so-called superprotonic phase transition results in an increase of the

  10. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  11. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiu-Wen, E-mail: wuxw2008@163.com [School of Science, China University of Geosciences, Beijing 100083 (China); National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang [School of Science, China University of Geosciences, Beijing 100083 (China)

    2016-12-01

    Highlights: • Composite membranes are prepared with different montmorillonites and nafion solution. • Proton conductivities of the composite membranes are between 36.0 mS/cm and 38.5 mS/cm. • Ethanol permeability is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s. • Water uptake is approximately 24.30 mass%. - Abstract: The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10{sup −6} cm{sup 2}/s and 2.67 × 10{sup −6} cm{sup 2}/s.

  12. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    Science.gov (United States)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  13. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.

    Science.gov (United States)

    Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji

    2017-10-01

    Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.

  14. Preparation and proton conductivity of composite membranes based on sulfonated poly(phenylene oxide) and benzimidazole

    International Nuclear Information System (INIS)

    Liu Yifeng; Yu Qinchun; Wu Yihua

    2007-01-01

    The Bronsted acid-base composite membrane was prepared by entrapping benzimidazole in sulfonated poly(phenylene oxide) by tuning the doping ratios. Their thermal stability, dynamic mechanical properties and proton conductivity were investigated under the conditions for intermediate temperature proton exchange membrane (PEM) fuel cell operation. In addition, investigation of activation energies of the SPPO-xBnIm at different relative humidity was also performed. TG-DTA curves reveal these SPPO-xBnIm composite materials had the high thermal stability. The proton conductivity of SPPO-xBnIm composite material increased with the temperature, and the highest proton conductivity of SPPO-xBnIm composite materials was found to be 8.93 x 10 -4 S/cm at 200 deg. C under 35% relative humidity (RH) with a 'doping rate' where x = 2. The SPPO-2BnIm composite membrane show higher storage moduli and loss moduli than SPPO. Tests in a hydrogen-air laboratory cell demonstrate the applicability of SPPO-2BnIm in PEMFCs at intermediate temperature under non-humidified conditions

  15. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z

    2013-01-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4  S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3  S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  16. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    Science.gov (United States)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  17. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    Niobium phosphate is an interesting proton conductor operational in the intermediate temperature range. In the present work two forms of phosphates were prepared: an amorphous one with high specific area and a crystalline one with low specific surface area. Both phosphates exhibited very low prot...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....... conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...

  18. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  19. Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus).

    Science.gov (United States)

    Talbot, Darren A; Hanuise, Nicolas; Rey, Benjamin; Rouanet, Jean-Louis; Duchamp, Claude; Brand, Martin D

    2003-12-26

    We present the partial nucleotide sequence of the avian uncoupling protein (avUCP) gene from king penguin (Aptenodytes patagonicus), showing that the protein is 88-92% identical to chicken (Gallus gallus), turkey (Meleagris gallopavo), and hummingbird (Eupetomena macroura). We show that superoxide activates the proton conductance of mitochondria isolated from king penguin skeletal muscle. GDP abolishes the superoxide-activated proton conductance, indicating that it is mediated via avUCP. In the absence of superoxide there is no GDP-sensitive component of the proton conductance from penguin muscle mitochondria demonstrating that avUCP plays no role in the basal proton leak.

  20. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  1. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  2. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  3. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  4. Determination of proton conductivity of ionic liquids for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wallnofer, E.; Baumgartner, W.R.; Hacker, V. [Graz Univ. of Technology, Graz (Austria). Inst. for Chemistry and Technology of Inorganic Material

    2006-07-01

    Hydrogen fuel cells operating at temperatures of between 100 and 200 degrees C allow the catalyst to tolerate higher levels of carbon monoxide (CO) impurities. However, the number of possible materials for high temperature fuel cell electrolytes or membranes is limited. This study examined the relevant electrochemical properties of different ion liquids with specific reference to neutralized imidazole derivates with a dominant Grotthuss mechanism of proton conduction. The electrochemical stability of the ionic liquids was measured by cyclic voltammetry (CV) under nitrogen. Proton conductivity was measured under hydrogen by CV within the electrochemical limits. Hydrogen was dissolved at the anode, transported through the ionic liquid, and recombined at the cathode, so that the detected current could indicate the amount of transported hydrogen. Electrochemical impedance spectroscopy (EIS) was used to measure the frequency dependent behaviour of the ionic liquids. All measurements were conducted at 50, 100, and 150 degrees C. Results of the study showed that proton conductivity increased with higher temperatures. It was concluded that neutralized imidazole derivates with optimized side chains of the cation may prove to be a viable alternative to conventional fuel cell electrolytes. 4 refs., 2 figs.

  5. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  6. Temperature dependent infrared spectroscopy of proton conducting alkali thio-hydroxogermanates

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Maths; Matic, Aleksandar; Boerjesson, Lars [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Nelson, Carly R.; Martindale, Chad A.; Martin, Steve W. [Department of Material Science and Engineering, 2220 Hoover Hall, Iowa State University of Science and Technology, Ames, IA 50011 (United States)

    2006-04-15

    We have investigated the thermal stability and reversibility upon dehydration and re-hydration of a novel class of proton conducting alkali thio-hydroxogermanates. The results indicate that no phase transitions or structural degradation occur in the temperature range 25 to 300C, and that repeated dehydration and subsequent re-hydration is a reversible process. The dehydration occurs gradually with increasing temperature, starting at about 80C. For temperatures above 180C the materials are dry, as all molecular water has been dried off. The dehydration process is shown to be reversible and the material can be rehydrated by exposure to air. The thermal stability and reversibility of the dehydration-rehydration process are attractive properties of functional materials, making the proton conducting alkali thio-hydroxogermanates to potential fuel cell electrolytes. (author)

  7. Electrolytic conductivity-the hopping mechanism of the proton and beyond

    International Nuclear Information System (INIS)

    Gileadi, E.; Kirowa-Eisner, E.

    2006-01-01

    The hopping mechanism of electrolytic conductivity is analyzed, employing mixtures of two solvents: one that sustains the hopping mechanism and the other that does not inhibit it directly, but interferes with it by diluting the solvent that sustains hopping. Measurement of the equivalent conductivity shows that the excess proton conductivities of H 3 O + and OH - increases with increasing temperature, although the number of hydrogen bonds is known to decrease. In mixtures of acetonitrile with water, proton hopping does not start until a threshold concentration of about 20 vol.% water has been reached, while no such threshold concentration is observed upon addition of methanol to acetonitrile. It is concluded that in the former the proton is transferred to a cluster of water molecules, which can be formed only if there is enough water in the solvent mixture. This observation leads to the concept of mono-water, which is the state of water molecules when they constitute a small minority in the solvent mixtures, as opposed to bulk water, which consists of clusters of variable sizes. Systems in which a hopping mechanism of heavy ions has been observed include Br - /Br 2 and I - /I 2 . In these cases the triple ions Br 3 - and I 3 - , respectively are formed, and serve as the mediators for the transfer of the simple halogen ion. A very large increase of conductivity was observed upon solidification of the Br - /Br 3 - system, probably caused by favorable linear alignment of ions in the solid. The conductivity of acidified methanol decreases upon addition of water, because the affinity of the proton to water is higher than to methanol, thus water can act as a scavenger for protons. This behavior exemplifies a general observation, namely that conductivity by hopping can only occur when the Gibbs energy of the system does not change significantly following ion transfer; otherwise the ions would be trapped in the more stable state, hindering further propagation by hopping

  8. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  9. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  10. Protons conductive membranes from sulfonated styrenic copolymers; Membranas conductoras de protons a partir de copolimeros estirenicos sulfonados

    Energy Technology Data Exchange (ETDEWEB)

    Brum, F.J.B.; Silva, M.A.G.; Amico, S.C.; Malfatti, C.F.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul (EE/UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia], e-mail: mmcforte@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (DEM/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2008-07-01

    Fuel cells working with polymeric electrolyte known as Proton Exchange Membrane Fuel Cell (PEMFC) have become a promising source for energy generation since they can produce high density electric current in an effective way. In this work, a polymeric precursor based on sulfonated styrenic copolymer (RHS) was used with the aim of producing ion-exchange membranes thermally stable at 80 deg C and over. Films of RHS and poly(vinylalcohol) (PVA) mixtures with different polyelectrolyte content were prepared, using glutaraldehyde as a crosslinking agent and antimonic acid. The films or membranes were analyzed by infrared and electrochemical impedance spectroscopy, differential scanning calorimetry, thermogravimetry and water absorption content. The impedance studies showed that the ionic conductivity of the RHS/PVA membranes was highly dependent on the electrolyte polymer in a way that the higher the content, the higher the membrane ionic conductivity. The RHS66{sub G}1 showed ionic conductivity similar to the Nafion membrane analyzed at the same conditions. (author)

  11. Comparison between calculation and measurement of energy deposited by 800 MeV protons

    International Nuclear Information System (INIS)

    Loewe, W.E.

    1980-01-01

    The High Energy Transport Code, HETC, was obtained from the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory and altered as necessary to run on a CDC 7600 using the LTSS software in use at LLNL. HETC was then used to obtain calculated estimates of energy deposited, for comparison with a series of benchmark experiments done by LLNL. These experiments used proton beams of various energies incident on well-defined composite targets in good geometry. In this report, two aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam are discussed. Both aspects involve the fact that workers at SAI had previously used their version of HETC to calculate this experiment and reported their comparison with the measured data. The first aspect addressed is that their calculated data and LLNL calculations do not agree, suggesting an error in the conversion process from the RSIC code. The second aspect is not independent of the first, but is of sufficient importance to merit separate emphasis. It is that the SAI calculations agree well with experiments at the detector plate located some distance from the shower plate, whereas the LLNL calculations show a clearcut discrepancy there in comparison with the experiment. A contract was let in January 1980 by LLNL with SAI in order to obtain full details on the two cited aspects of the comparison between calculated and experimental energy depositions from an 800 MeV proton beam. The ensuing discussion is based on the final report of that contracted work

  12. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.

    Science.gov (United States)

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-12-21

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  13. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides

    KAUST Repository

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-01-01

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions.

  14. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  15. Tuning of Nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    Science.gov (United States)

    Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June

    2016-02-01

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion® was tuned by the incorporation of HKUST-1. It has CuII-paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by CuII to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H3PO4-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis.

  16. Proton conducting hydrocarbon membranes: Performance evaluation for room temperature direct methanol fuel cells

    International Nuclear Information System (INIS)

    Krivobokov, Ivan M.; Gribov, Evgeniy N.; Okunev, Alexey G.

    2011-01-01

    The methanol permeability, proton conductivity, water uptake and power densities of direct methanol fuel cells (DMFCs) at room temperature are reported for sulfonated hydrocarbon (sHC) and perfluorinated (PFSA) membranes from Fumatech, and compared to Nafion membranes. The sHC membranes exhibit lower proton conductivity (25-40 mS cm -1 vs. ∼95-40 mS cm -1 for Nafion) as well as lower methanol permeability (1.8-3.9 x 10 -7 cm 2 s -1 vs. 2.4-3.4 x 10 -6 cm 2 s -1 for Nafion). Water uptake was similar for all membranes (18-25 wt%), except for the PFSA membrane (14 wt%). Methanol uptake varied from 67 wt% for Nafion to 17 wt% for PFSA. The power density of Nafion in DMFCs at room temperature decreases with membrane thickness from 26 mW cm -2 for Nafion 117 to 12.5 mW cm -2 for Nafion 112. The maximum power density of the Fumatech membranes ranges from 4 to 13 mW cm -1 . Conventional transport parameters such as membrane selectivity fail to predict membrane performance in DMFCs. Reliable and easily interpretable results are obtained when the power density is plotted as a function of the transport factor (TF), which is the product of proton concentration in the swollen membrane and the methanol flux. At low TF values, cell performance is limited by low proton conductivity, whereas at high TF values it decreases due to methanol crossover. The highest maximum power density corresponds to intermediate values of TF.

  17. Mixed conduction protonic/electronic ceramic for high temperature electrolysis anode

    International Nuclear Information System (INIS)

    Goupil, Gregory

    2011-01-01

    This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600 C. The stability of each material has been assessed during 350 h in air and moist air. After checking the chemical compatibility with the BaZr 0.9 Y 0.1 O 3 electrolyte material, eight compositions have been selected: BaCoO 3 , LaCoO 3 , Sr 0.5 La 0.5 CoO 3 , Ba 0.5 La 0.5 CoO 3 , GdBaCo 2 O 5 , NdBaCo 2 O 5 , SmBaCo 2 O 5 and PrBaCo 2 O 5 . The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodo-metric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo 2 O 5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450 C and 600 C total resistance values on symmetrical cell highly promising. (author) [fr

  18. Cobalt oxide-based catalysts deposited by cold plasma for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierski, P.; Jozwiak, L.; Sielski, J.; Tyczkowski, J., E-mail: jacek.tyczkowski@p.lodz.pl

    2015-11-02

    In proton exchange membrane fuel cells (PEMFC), both the anodic hydrogen oxidation reaction and the cathodic oxygen reduction reaction (ORR) require appropriate catalysts. So far, platinum-based catalysts are still the best option for this purpose. However, because these catalysts are too expensive for making commercially viable fuel cells, extensive research over the past decade has focused on developing noble metal-free alternative catalysts. In this paper, an approach based on cobalt oxide films fabricated by plasma-enhanced metal-organic chemical vapor deposition is presented. Such a material can be used to prepare catalysts for ORR in PEMFC. The films containing CoO{sub X} were deposited on a carbon paper thereby forming the electrode. Morphology and atomic composition of the films were investigated by scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The possibility of their application as the electro-catalyst for ORR in PEMFC was investigated and the electro-catalytic activities were evaluated by the electrochemical measurements and single cell tests. It was found that the fuel cell with Pt as the anode catalyst and CoO{sub X} deposit as the cathode catalyst was characterized by the open circuit voltage of 635 mV, Tafel slope of approx. 130 mV/dec and the maximum power density of 5.3 W/m{sup 2}. - Highlights: • Cobalt oxide catalyst for proton exchange membrane fuel cells was plasma deposited. • The catalyst exhibits activity for the oxygen reduction reaction. • Morphology and atomic composition of the catalyst were determined.

  19. Flash combustion synthesis and characterisation of nanosized proton conducting Yttria-doped barium cerate

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, M.; Jing, Y.; Essoumhi, A.; Taillades, G.; Jones, D.J.; Roziere, J. [Montpellier Univ., Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganiques

    2007-10-15

    The high conversion efficiency of proton ceramic fuel cells renders them a promising technology for electric power conversion. They also function in an intermediate temperature range (400 to 600 degrees C) where the problem of thermal ageing can be avoided. This paper presented a newly developed flash combustion method for the preparation of proton conducting yttrium-doped barium cerate nanopowders. This quick, safe and low cost route takes advantage of the exothermic and self-sustaining redox reaction between high oxygen content metal salts and a suitable fuel that acts as a reducing agent. The parameters that influence the reaction product are the type of fuel, the fuel to oxidizer ratio, and the ignition temperature. Use of suitable fuel in combustion syntheses ensures stability of the chemical composition and high quality of products, and produces non-toxic gases. In this study, the flash combustion synthesis method was used to ignite the mixture at 600 degrees C. The resulting fine powder was characterized by transmission and scanning electron microscopy, and X-ray diffraction. The resulting nano-sized crystallites allow for the preparation of fully densified materials with densities up to 98 per cent. Water uptake was examined in compressed and sintered samples of BaCe{sub 0.9}Y{sub 0.1}O{sub 2.95} (BCY10). Bulk and total conductivities were determined with impedance spectroscopy in the range 300 to 600 degrees C. Densified yttria doped barium cerate materials show a bulk conductivity of 2.3 x 10{sup -2} S/cm and a total conductivity of 1.2 x 10{sup -2} S/cm at 500 degrees C. The temperature dependence was close to that of the bulk. It was concluded that flash combustion is an interesting alternative method for preparing proton conducting oxides for intermediate temperature fuel cells. 28 refs., 1 tab., 10 figs.

  20. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  1. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  2. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Kannan, R., E-mail: rksrsrk@gmail.com [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Material Sciences & Engineering, Cornell University, Ithaca, NewYork-14853 (United States); Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Sivakumar, M. [School of Physics, Alagappa University, Karaikudi-630004 (India)

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  3. Tuning of Nafion{sup ®} by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Jin, E-mail: zammanbo814@knu.ac.kr [Kyungpook National University, Research Institute of Advanced Energy Technology (Korea, Republic of); Talukdar, Krishan, E-mail: krishantu@yahoo.com; Choi, Sang-June, E-mail: sjchoi@knu.ac.kr [Kyungpook National University, Department of Environmental Engineering (Korea, Republic of)

    2016-02-15

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion{sup ®} was tuned by the incorporation of HKUST-1. It has Cu{sup II}–paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by Cu{sup II} to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H{sub 3}PO{sub 4}-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis. Graphical abstract: The H{sub 3}PO{sub 4}-doped HKUST-1/Nafion® composite membrane is demonstrated to be a promising material based on its proton conductivity. HKUST-1 has an average particle diameter of around 15–20 µm. The proton conductivity, IEC values, and the thermal stability of the 2.5 wt% HKUST-1/Nafion® composite membrane suggest that HKUST-1 may be a promising candidate as a proton-conductive material in the polymer electrolyte fuel cell membrane due to its reasonable proton passageway, favorable surface area, lower water uptake with the higher IEC, and proton conductivity of the H

  4. Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels.

    Science.gov (United States)

    He, Guangwei; Xu, Mingzhao; Zhao, Jing; Jiang, Shengtao; Wang, Shaofei; Li, Zhen; He, Xueyi; Huang, Tong; Cao, Moyuan; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2017-07-01

    Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm -1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  6. Chemically stable Dy–Y double substituted barium zirconate with high proton conductivity and improved sinterability

    Energy Technology Data Exchange (ETDEWEB)

    Paydar, M.H., E-mail: paaydar@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Nishimura, Ch. [Hydrogen Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Kobayashi, K. [Advanced Ceramics Group, Materials Processing Unit, Advanced Key Technologies Division, National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2015-10-05

    Highlights: • BaZr{sub (0.8−x)}Dy{sub x}Y{sub 0.2}O{sub 3−δ} (0 ⩽ x ⩽ 0.2) powders were synthesized by a wet chemical route. • The ability of the synthesized powders in uptaking water was determined. • Chemical stability of the synthesized powders was evaluated under in wet and CO{sub 2} atmosphere. • The conductivity of the sintered pellets was measured by AC impedance spectroscopy. • It was shown that Dy-doped BZY20 ceramic has excellent proton conductivity. • It was proved that Dy-doped BZY20 ceramic has good chemical stability. • It was concluded that Dy-doped BZY20 electrolyte can be considered as a promising electrolyte for solid oxide fuel cell applications. - Abstract: Novel proton conductors BaZr{sub (0.8−x)}Dy{sub x}Y{sub 0.2}O{sub 3−δ} (BZ{sub 0.8−x}D{sub x}Y20, 0 ⩽ x ⩽ 0.2) with high proton conductivity, chemical stability and improved sinterability are developed by partially substituting the Zr site of the 20 mol% Y-doped barium zirconate (BZY20) with Dy. A modified Pechini method was applied to synthesize the BZ{sub 0.8−x}D{sub x}Y20 powders. The X-ray diffraction patterns of the well-calcined powders indicated that the specimens with 0 ⩽ x ⩽ 0.2 possessed a single-phase of cubic perovskite-type oxides. Stability tests under both CO{sub 2} and moist air atmospheres demonstrated that the excellent chemical stability of the base BZY20 material was not influenced by the introduction of Dy. High density pellets with larger grain sizes were obtained at temperatures lower than those commonly employed for the base Y-doped barium zirconate compound. The proton conductivities, measured in different oxidizing and reducing, dry and humidified atmospheres by impedance spectroscopy, were significantly influenced by the Dy amount. In overall, BaZr{sub (0.8−x)}Dy{sub x}Y{sub 0.2}O{sub 3−δ} solid solutions having Dy ∼ 5–10% showed excellent chemical stability and high conductivity (above 10{sup −2} S cm{sup −1} at

  7. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  8. Toward Anhydrous Proton Conductivity Based on Imidazole Functionalized Mesoporous Silica/Nafion Composite Membranes

    International Nuclear Information System (INIS)

    Amiinu, Ibrahim Saana; Li, Wei; Wang, Guangjin; Tu, Zhengkai; Tang, Haolin; Pan, Mu; Zhang, Haining

    2015-01-01

    Highlights: • Imidazole-functionalized mesoporous silica/Nafion composite is formed. • Electrostatic interaction between ionic clusters leads to enhanced molecular rigidity and T g . • Charge transfer resistance decreases with increase in temperature up to 130 °C. • The composite membrane exhibited considerable stability over 70 h at 130 °C. - Abstract: Although Nafion is regarded as the most preferred electrolyte membrane and often used as a benchmark for comparative evaluation of other electrolyte membranes, its wide spread for commercial PEM fuel cells is limited by the poor electrochemical properties at elevated temperatures and low relative humidity conditions. Herein, sol–gel synthesized mesoporous silica functionalized with a protogenic molecule (imidazole) is introduced into the Nafion matrix via a colloid mediated process. The formation of a stable colloid enables homogeneous dispersion of the silica-imidazole nanoparticles without aggregation. Under non-humidified conditions, the amphoteric and self-dissociative character of the tethered imidazole within the matrix functions as a transporting medium to facilitate proton conductivity. The structural and chemical phases are characterized, and qualitatively evaluated by XRD, TEM, FT-IR, TGA, and DMA. The results show that the average proton conductivity of the composite membrane with the optimal amount of functionalized nanoparticles increases progressively to 1.06 × 10 −2 S cm −1 at 130 °C, corresponding to an activation energy of 6.95 kJ mol −1 under non-humidified conditions. The mechanism governing the dynamics of proton conductivity and structural limitations as a function of temperature is discussed

  9. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Aili, David; Li, Qingfeng

    2014-01-01

    , composite support materials for iridium oxide are synthesized via in situ phosphorization reaction on tin doped indium oxide and possess functionalities of high electronic and intrinsic proton conductivity. At 130 °C under a water vapor atmosphere an overall conductivity of 0.72 S cm−1 is achieved...

  10. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept

    Science.gov (United States)

    Hao, Tian; Xu, Yuanze; Hao, Ting

    2018-04-01

    The Eyring's rate process theory and free volume concept are employed to treat protons (or other particles) transporting through a 2D (two dimensional) crystal like graphene and hexagonal boron nitride. The protons are assumed to be activated first in order to participate conduction and the conduction rate is dependent on how much free volume available in the system. The obtained proton conductivity equations show that only the number of conduction protons, proton size and packing structure, and the energy barrier associated with 2D crystals are critical; the quantization conductance is unexpectedly predicted with a simple Arrhenius type temperature dependence. The predictions agree well with experimental observations and clear out many puzzles like much smaller energy barrier determined from experiments than from the density function calculations and isotope separation rate independent of the energy barrier of 2D crystals, etc. Our work may deepen our understandings on how protons transport through a membrane and has direct implications on hydrogen related technology and proton involved bioprocesses.

  11. Thermophysical properties of proton conducting perovskite: BaCeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Aarti, E-mail: aarti.phy@gmail.com; Parey, Vanshree; Thakur, Rasna; Shrivastava, Archana; Gaur, N. K. [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2015-06-24

    We present the thermal properties of the proton conducting orthorhombic BaCeO{sub 3} by the means of a Rigid Ion Model (RIM). We report the cohesive energy (φ), Reststrahlen frequency (υ), Debye temperature (θ{sub D}) and Gruneisen parameter (γ). The value of Gruneisen parameter (γ), which supports the earlier, reported values. Besides, the specific heat values presented in this work by using RIM are in reasonable agreement with the available experimental data for BaCeO{sub 3} at low temperature (2K ≤ T ≤ 300K)

  12. Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite

    Science.gov (United States)

    Onishi, Taku

    2017-11-01

    In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.

  13. Application of proton-conducting ceramics and polymer permeable membranes for gaseous tritium recovery

    International Nuclear Information System (INIS)

    Asakura, Yamato; Sugiyama, Takahiko; Kawano, Takao; Uda, Tatsuhiko; Tanaka, Masahiro; Tsuji, Naruhito; Katahira, Koji; Iwahara, Hiroyasu

    2004-01-01

    In order to carry out deuterium plasma experiments on the Large Helical Device (LHD), the National Institute for Fusion Science (NIFS) is planning to install a system for the recovery of tritium from exhaust gas and effluent liquid. As well as adopting proven conventional tritium recovery systems, NIFS is planning to apply the latest technologies such as proton-conducting ceramics and membrane-type dehumidifiers in an overall strategy to ensure minimal risk in the tritium recovery process. Application of these new technologies to the tritium recovery system for the LHD deuterium plasma experiment is evaluated quantitatively using recent experimental data. (author)

  14. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics.

    Science.gov (United States)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-05-07

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.

  15. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan

    2015-01-01

    Intermediate temperature solid-oxide fuel cells (IT-SOFCs)), as one of the energy conversion devices, have attracted worldwide interest for their great fuel efficiency, low air pollution, much reduced cost and excellent longtime stability. In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability of the traditionally used composite cathode materials in the steam-containing atmosphere and their low contribution to proton conduction. Here we report the identification of a new Ruddlesden-Popper-type oxide Sr3Fe2O7-δ that meets the requirements for much improved long-term stability and shows a superior single-cell performance. With a Sr3Fe2O7-δ-5 wt% BaZr0.3Ce0.5Y0.2O3-δ cathode, the P-SOFC exhibits high power densities (683 and 583 mW cm-2 at 700°C and 650°C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. More importantly, no decay in discharging was observed within a 100 hour test. © The Royal Society of Chemistry 2015.

  16. Thermal effects of electrically conductive deposits in melter

    International Nuclear Information System (INIS)

    Choi, I.G.; Bickford, D.F.; Carter, J.T.

    1992-01-01

    The radioactive waste processed by the Defense Waste Processing Facility melter at the Savannah river Site contains noble metal fission-products. Operation of waste-glass melters treating commercial power reactor wastes indicates that accumulation of noble metals on melter floors can lead to distortion of electric heating patterns, loss of power, and possible electrode damage. Changes in melter geometry have been developed in Japan and Germany to minimize these effects. The two existing melters for the US Department of Energy's Defense Waste Processing Facility were designed in 1982, before this effect was known or had been characterized. Modeling and pilot scale tests are being conducted in the Integrated DWPF melter system to determine if the effect is significant for melters processing defense wastes, and if the effect can be diagnosed and corrected without significant damage or changes to the melter design. This document provides a discussion of these tests

  17. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction

    Science.gov (United States)

    Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin

    2017-11-01

    The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.

  18. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  19. Solid-state electroanalytical characterization of the nonaqueous proton-conducting redox gel containing polyoxometallates

    Energy Technology Data Exchange (ETDEWEB)

    Lewera, Adam [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Zukowska, Grazyna [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw (Poland); Miecznikowski, Krzysztof [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Chojak, Malgorzata [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland); Wieczorek, Wladyslaw [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, PL-00-664 Warsaw (Poland); Kulesza, Pawel J. [Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw (Poland)]. E-mail: pkulesza@chem.uw.edu.pl

    2005-04-22

    A novel polymetacrylate-based redox-conducting polymeric gel, into which Keggin-type polyoxometallate, phosphododecatungstic acid (H{sub 3}PW{sub 12}O{sub 40}), had been incorporated, was electrochemically characterized in the absence of external liquid supporting electrolyte using an ultramicrodisk-working electrode. The phosphotungstate component (15 wt.% of the gel block) was entrapped as the polar organic solvent solution within pores of the polymer matrix. H{sub 3}PW{sub 12}O{sub 40} plays bifunctional role: it provides well-behaved redox centers and serves as strong acid (source of mobile protons). The solid-state voltammetric properties of the system are defined by the reversible one-electron transfers between phosphotungstate redox centers. The following parameters have been determined from the combination of potential step experiments performed in two limiting (radial and linear) diffusional regimes: the concentration of heteropolytungstate redox centers, 6 x 10{sup -2} mol dm{sup -3}, and the apparent diffusion coefficient, 5 x 10{sup -7} cm{sup 2} s{sup -1}. The room temperature ionic (protonic) conductivity of the bulk gel was equal to 1.6 x 10{sup -3} S cm{sup -1}. The charge propagation mechanism was found to be primarily controlled by physical diffusion of heteropolytungstate units within the gel pores rather than by electron hopping (self-exchange) between mixed-valence sites.

  20. Solid-state electroanalytical characterization of the nonaqueous proton-conducting redox gel containing polyoxometallates

    International Nuclear Information System (INIS)

    Lewera, Adam; Zukowska, Grazyna; Miecznikowski, Krzysztof; Chojak, Malgorzata; Wieczorek, Wladyslaw; Kulesza, Pawel J.

    2005-01-01

    A novel polymetacrylate-based redox-conducting polymeric gel, into which Keggin-type polyoxometallate, phosphododecatungstic acid (H 3 PW 12 O 40 ), had been incorporated, was electrochemically characterized in the absence of external liquid supporting electrolyte using an ultramicrodisk-working electrode. The phosphotungstate component (15 wt.% of the gel block) was entrapped as the polar organic solvent solution within pores of the polymer matrix. H 3 PW 12 O 40 plays bifunctional role: it provides well-behaved redox centers and serves as strong acid (source of mobile protons). The solid-state voltammetric properties of the system are defined by the reversible one-electron transfers between phosphotungstate redox centers. The following parameters have been determined from the combination of potential step experiments performed in two limiting (radial and linear) diffusional regimes: the concentration of heteropolytungstate redox centers, 6 x 10 -2 mol dm -3 , and the apparent diffusion coefficient, 5 x 10 -7 cm 2 s -1 . The room temperature ionic (protonic) conductivity of the bulk gel was equal to 1.6 x 10 -3 S cm -1 . The charge propagation mechanism was found to be primarily controlled by physical diffusion of heteropolytungstate units within the gel pores rather than by electron hopping (self-exchange) between mixed-valence sites

  1. Incorporation and conduction of proton in Sr-doped LaMO3 (M=Al, Sc, In, Yb, Y)

    International Nuclear Information System (INIS)

    Okuyama, Yuji; Kozai, Takeshi; Ikeda, Shohei; Matsuka, Maki; Sakai, Takaaki; Matsumoto, Hiroshige

    2014-01-01

    In order to clarify the effect of the B site species in ABO 3 perovskite oxides on the proton transport properties, the proton incorporation into a series of La 0.9 Sr 0.1 MO 3-δ , (M = Al, Sc, In, Yb, Y) was studied by measuring the electrical conductivity and electromotive forces of the gas concentration cells, and by a thermogravimetric analysis. The proton concentration and electrical conductivity increased in the order of the B site species, Al 0.9 Sr 0.1 AlO 3-δ showed an oxide ion conductivity, while La 0.9 Sr 0.1 YbO 3-δ and La 0.9 Sr 0.1 YO 3-δ exhibited a protonic conductivity in the temperature range of 573–1173 K. La 0.9 Sr 0.1 ScO 3-δ and La 0.9 Sr 0.1 InO 3-δ showed a protonic conductivity under 873 K, and a mixed proton and oxide ion conductivity at 1073 K

  2. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  3. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’ as, Eman Husni; Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2017-01-01

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  4. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’as, Eman Husni

    2017-10-28

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  5. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    Science.gov (United States)

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  6. A novel layered perovskite cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2010-02-01

    BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered SmBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (SBSC) perovskite demonstrates advanced electrochemical properties based on doped ceria electrolyte. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC. The results show that the open-circuit potential of 1.015 V and maximum power density of 533 mW cm{sup -2} are achieved at 700 C. With temperature increase, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that SBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke SBSC cell is a promising functional material system for next generation SOFCs. (author)

  7. Reaction factors for photo-electrochemical deposition of metal silver on polypyrrole as conducting polymer

    International Nuclear Information System (INIS)

    Kawakita, Jin; Boter, Jelmer M.; Shova, Neupane; Fujihira, Hiroshi; Chikyow, Toyohiro

    2015-01-01

    Composite of metal and conducting polymer is expected for electrical application by the use of their advantages. For improvement of the composite’s characteristics, it is important to control formation rate and structure of the composites obtained by simultaneous metal deposition and polymerization under photo irradiation. The purpose of this research was to reveal the effects of UV irradiation and dopant type for conducting polymer on photo-electrochemical deposition of metal. Cathodic polarization curves for silver deposition on polypyrrole doped with different types of anion at different intensity of the UV light were compared. Deposited particles were evaluated by the statistical analysis. The experimental results showed that silver deposition on polypyrrole was enhanced by UV introduction and depended on the dopant type.

  8. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices.

    Science.gov (United States)

    Feng, Ping; Du, Peifu; Wan, Changjin; Shi, Yi; Wan, Qing

    2016-09-30

    New-concept devices featuring the characteristics of ultralow operation voltages and low fabrication cost have received increasing attention recently because they can supplement traditional Si-based electronics. Also, organic/inorganic composite systems can offer an attractive strategy to combine the merits of organic and inorganic materials into promising electronic devices. In this report, solution-processed graphene oxide/chitosan composite film was found to be an excellent proton conducting electrolyte with a high specific capacitance of ~3.2 μF/cm 2 at 1.0 Hz, and it was used to fabricate multi-gate electric double layer transistors. Dual-gate AND logic operation and two-terminal diode operation were realized in a single device. A two-terminal synaptic device was proposed, and some important synaptic behaviors were emulated, which is interesting for neuromorphic systems.

  9. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    on the development and characterization of polymer based proton conducting membranes for operation at temperatures above 100 °C. The most frequently recurring experimental methods and techniques are described in Chapter 2. For PEM steam and liquid water electrolysis at temperatures up to 130 °C (Chapter 3 and 4...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of the recast Nafion® membranes at elevated temperature could be slightly improved by annealing the membrane in order to increase its degree of crystallinity. Short side chain (SSC) PFSA membranes such as Aquivion™ (Solvey Solexis), on the other hand, are generally characterized by a considerably higher degree...

  10. Optical and electrical properties of transparent conductive ITO thin films under proton radiation with 100 keV

    International Nuclear Information System (INIS)

    Wei, Q.; He, S.Y.; Yang, D.Z.; Liu, J.C.

    2005-01-01

    Under the simulation environment for the vacuum and heat sink in space, the changes in optical and electrical properties of transparent conductive indium tin oxide (ITO) thin films induced by radiation of protons with 100 keV were studied. The ITO thin films were deposited on JGS1 quartz substrate by a sol-gel method. The sheet resistance and transmittance spectra of the ITO thin films were measured using the four-point probe method and a spectrophotometer, respectively. The surface morphology was analyzed by AFM. The experimental results showed that the electrical and optical performances of the ITO thin films were closely related to the irradiation fluence. When the fluence exceeded a given value 2 x 10 16 cm -2 , the sheet resistance increased obviously and the optical transmittance decreased. The AFM analysis indicated that the grain size of the ITO thin films diminished. The studies about the radiation effect on ITO thin films will help to predict performance evolution of the second surface mirrors on satellites under space radiation environment. (orig.)

  11. Preparation and analysis of new proton conducting membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Soegaard, Susanne R. [University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M (Denmark); University of Perugia, Chemistry Department, Via Elce di Sotto 8, 06123, Perugia (Italy); Huan, Qian [University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M (Denmark); IRD Fuel Cells A/S, Kullinggade 31, 5700 Svendborg (Denmark); Lund, Peter [IRD Fuel Cells A/S, Kullinggade 31, 5700 Svendborg (Denmark); Donnadio, Anna; Casciola, Mario [University of Perugia, Chemistry Department, Via Elce di Sotto 8, 06123, Perugia (Italy); Skou, Eivind M. [University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M (Denmark); University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2007-04-15

    A range of potential new fuel cell membranes were prepared by inserting zirconium phosphate (ZrP) into divinylbenzene (DVB) crosslinked, sulfonated, polystyrene grafted poly(ethylene-alt-tetrafluoroethylene) and poly(vinyl difluoride) membranes using an ion exchange procedure. In short, the preformed membranes are called ETFE-g-PSSA and PVdF-g-PSSA. The ETFE based membranes represented various degrees of grafting (DOG) and degrees of sulfonation (DOS) whereas all of the PVdF based membranes had a DOG of app. 30% and a DOS of app. 90%. The ion exchange capacity (IEC) values of the ETFE based starting materials were in the range 0.5-2, and those of the PVdF based materials were in the range 1.8-2. A proton conductivity of 40 mS/cm was determined at 130 C and 90% RH for one of the ETFE based preformed membranes. The ETFE based composite samples had slightly lower proton conductivities. Additional zirconium phosphate treatment resulted in composite ETFE samples containing up to 15 wt.% ZrP and composite PVdF samples containing up to 27 wt.%. TG analyses of the ETFE-g-PSSA and PVdF-g-PSSA composite membranes indicated no significant changes of the thermal stability in comparison to the starting materials. The presence of {alpha}-ZrP in the product membranes was indicated by 31P MAS NMR analysis, while transmission electron microscopy (TEM) and powder X-ray diffraction analyses proved the samples to be homogeneous. (author)

  12. Electrophoretic deposition of thin film zirconia electrolyte on non-conducting NiO-YSZ substrate

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2014-01-01

    Eight (8) mol% yttria stabilized zirconia (YSZ), an electrolyte material for solid oxide fuel cell (SOFC), has been deposited onto porous non-conducting NiO-YSZ substrate using electrophoretic deposition technique (EPD) from a stable non-aqueous suspension of YSZ. Normally, EPD cannot be performed on a non-conducting substrate, but, in this present study, YSZ particulate film has been successfully deposited on a non-conducting NiO-YSZ substrate following two different EPD approaches:(a) using a conducting metallic plate on the reverse side of the porous NiO-YSZ anode substrate and (b) using a conducting polymer coated NiO-YSZ substrate. The deposited films are then formed dense coatings of 5-15 μm after sintering at 1400℃ for 6 h in air. Surface and cross-sectional morphologies of green and sintered films deposited by different EPD approaches are investigated using SEM. La 0.65 Sr 0.3 MnO 3 (LSM), a cathode for SOFC, is then screen-printed onto the electrolyte layer of such sintered half cells (anode+electrolyte) prepared by both the above approaches to construct SOFC single cells. A maximum output power density of 0.37 W.cm -2 is obtained using single cells prepared by conducting metallic plate assisted EPD compared to that of 0.73 W.cm -2 for polymer coated at 800℃ using H 2 as fuel and O 2 as oxidant. (author)

  13. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.

    Science.gov (United States)

    Malavasi, Lorenzo; Fisher, Craig A J; Islam, M Saiful

    2010-11-01

    This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

  14. Proton-conducting ionic liquid-based proton exchange membrane fuel cell membranes: The key role of ionomer-ionic liquid interaction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mathieu; Cointeaux, Laure; Iojoiu, Cristina; Lepretre, Jean-Claude; Sanchez, Jean-Yves [LEPMI, UMR 5631, CNRS-INP-UJF, PHELMA-Campus, BP.75, 1130 rue de la Piscine, 38402 Saint-Martin-d' Heres Cedex (France); Molmeret, Yannick; El Kissi, Nadia [Laboratoire de Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, 38041 Grenoble (France); Judeinstein, Patrick [Institut de Chimie Moleculaire et des Materiaux d' Orsay (UMR 8182), Batiment 410, Universite Paris-Sud 11, 91405 Orsay Cedex (France)

    2010-09-15

    The paper deals with the synthesis and characterisation of proton-conducting ionic liquids (PCILs) and their polymer electrolytes obtained by blending modified Nafion membranes with different concentrations of PCILs. The PCILs are obtained by the neutralization of triethylamine with different organic acids. The first part of the paper studies the influence of acidity and acid structure on PCIL thermal and electrochemical performance, while the second part examines membrane conductivity and reveals it to depend more on PCIL structure than on its intrinsic conductivity. At 130 C, conductivities exceeding 10 mS cm{sup -1} were obtained in fully anhydrous conditions. (author)

  15. Thermodynamic analysis of direct internal reforming of methane and butane in proton and oxygen conducting fuel cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Geerlings, J.J.C.

    2008-01-01

    We present results of a thermodynamic analysis of direct internal reforming fuel cells, based on either a proton conducting fuel cell (FC-H+) or an oxygen ion conducting fuel cell (FC-O2-). We analyze the option of methane as fuel as well as butane. The model self-consistently combines all chemical

  16. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte

  17. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  18. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping

    2014-07-25

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering activity of BaZr0.8Y0.2-xInxO3- δ increases significantly with In concentration. BaZr0.8Y0.15In0.05O3- δ (BZYI5) exhibits the highest total electrical conductivity among the sintered oxides. BZYI5 also retains high chemical stability against CO2, vapor, and reduction of H2. The good sintering activity, high conductivity, and chemical stability of BZYI5 facilitate the fabrication of durable SOFCs based on a highly conductive BZYI5 electrolyte film by cost-effective ceramic processes. Fully dense BZYI5 electrolyte film is successfully prepared on the anode substrate by a facile drop-coating technique followed by co-firing at 1400 °C for 5 h in air. The BZYI5 film exhibits one of the highest conductivity among the BaZrO3-based electrolyte films with various sintering aids. BZYI5-based single cells output very encouraging and by far the highest peak power density for BaZrO3-based proton-conducting SOFCs, reaching as high as 379 mW cm-2 at 700 °C. The results demonstrate that Y and In co-doping is an effective strategy for exploring sintering active and chemically stable BaZrO3-based proton conductors for high performance proton-conducting SOFCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Trenholm, D [Massachusetts General Hospital, Boston, MA (United States); Verburg, J; Paganetti, H; Schuemann, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiple positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their

  20. Tritium Sequestration in Gen IV NGNP Gas Stream via Proton Conducting Ceramic Pumps

    International Nuclear Information System (INIS)

    Chen, Franglin Frank; Adams, Thad M.; Brinkman, Kyle; Reifsnider, Kenneth

    2011-01-01

    Several perovskite structured proton conductors based on SrCeO 3 and BaCeO 3 have been investigated in the project. The solid solutions for SrCeO 3 and BaCeO 3 were first investigated. The morphological and electrical properties of Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ with x varying from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500ees)C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0≤x≤0.2, while for x larger than 0.5, impurity phases of Sr 2 CeO 4 and Y 2 O 3 appeared. The stability tests indicated that the resistance to boiling water for Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ was between that of BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ Due to the tendency of the reaction with CO 2 for both BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ , it was not surprising that Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ was also not stable in CO 2 containing atmospheres. The conductivity tests indicated that Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ possessed the electrical conductivity between BaCe 0.8 Y 0.2 O 3-δ and SrCe 0.8 Y 0.2 O 3-δ . The conductivity decreased and the activation energy increased with the increase in Sr content in Ba 1-x Sr x Ce 0.8 Y 0.2 O 3-δ .

  1. Hydraulic characteristics of sedimentary deposits at the J-PARC proton-accelerator, Japan

    Directory of Open Access Journals (Sweden)

    Marui Atsunao

    2007-12-01

    Full Text Available Hydraulic characteristics of sediments were investigated at J-PARC for the purpose of site characterization in relation with the construction of Japan's largest proton-accelerator. A total of 340 samples extracted from 9 exploratory wells were examined by standard laboratory tests and complemented with statistical analyses to quantitatively determine the main terrain attributes. Two main hydro-geological units were recognized, although a number of embedded layers defined a
    multilevel aquifer. Grain-size distribution derived from sieve analysis and the coefficient of uniformity showed that soils are poorly sorted. On the other hand, hydraulic conductivity was measured by a
    number of parameters such as a log-normal distribution. Conductivity was also predicted by empirical formulas, yielding values up to three orders of magnitude higher. Discrepancies were explained in
    terms of soil anisotropy and intrinsic differences in the calculation methods. Based on the Shepherd's approach, a power relationship between permeability and grain size was found at 2 wells. Hydraulic
    conductivity was also correlated to porosity. However, this  nterdependence was not systematic and therefore, properties at many parts of the profile were considered to be randomly distributed. Finally,
    logs of electrical conductivity suggested that variations of soil hydraulic properties can be associated to changes in water quality. In spite of the remaining uncertainties, results yielded from the study are useful to better understand the numerical modelling of the subsurface system in the site.

  2. Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics

    International Nuclear Information System (INIS)

    Wang, Siwei; Zhang, Lei; Zhang, Lingling; Brinkman, Kyle; Chen, Fanglin

    2013-01-01

    Ultra-fine grained dense BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3−δ (BZCYYb) ceramics have been successfully prepared via a two-step sintering method. Co-precipitation method has been adopted to prepare nano-sized BZCYYb precursors with an average particle size of 30 nm. By controlling the sintering profile, an average grain size of 184 nm was obtained for dense BZCYYb ceramics via the two-step sintering method, compared to 445 nm for the conventional sintered samples. The two-step sintered BZCYYb samples showed less impurity and an enhanced electrical conductivity compared with the conventional sintered ones. Further, the two-step sintering method was applied to fabricate anode supported solid oxide fuel cells (SOFCs) using BZCYYb as the electrolyte, resulting in dense ultrafine-grained electrolyte membranes and porous anode substrates with fine particles. Due to the reduced ohmic as well as polarization resistances, the maximum power output of the cells fabricated from the two-step sintering method reached 349 mW m −2 at 700 °C, significantly improved from 172 mW cm −2 for the conventional sintered cells, suggesting that two-step sintering method is very promising for optimizing the microstructure and thus enhancing the electrochemical performances for barium cerate based proton-conducting SOFCs.

  3. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  4. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Jagannadham, Kasichainula

    2015-01-01

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr 2 N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W 2 N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W 2 N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films

  5. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    International Nuclear Information System (INIS)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-01-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25 x 25 x 25)μm 3 . The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively. (orig.)

  6. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  7. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1.

    Science.gov (United States)

    Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon; Farha, Omar K; Hupp, Joseph T

    2012-01-11

    HKUST-1, a metal-organic framework (MOF) material containing Cu(II)-paddlewheel-type nodes and 1,3,5-benzenetricarboxylate struts, features accessible Cu(II) sites to which solvent or other desired molecules can be intentionally coordinated. As part of a broader investigation of ionic conductivity in MOFs, we unexpectedly observed substantial proton conductivity with the "as synthesized" version of this material following sorption of methanol. Although HKUST-1 is neutral, coordinated water molecules are rendered sufficiently acidic by Cu(II) to contribute protons to pore-filling methanol molecules and thereby enhance the alternating-current conductivity. At ambient temperature, the chemical identities of the node-coordinated and pore-filling molecules can be independently varied, thus enabling the proton conductivity to be reversibly modulated. The proton conductivity of HKUST-1 was observed to increase by ~75-fold, for example, when node-coordinated acetonitrile molecules were replaced by water molecules. In contrast, the conductivity became almost immeasurably small when methanol was replaced by hexane as the pore-filling solvent. © 2011 American Chemical Society

  8. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins.

    Science.gov (United States)

    Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D

    2004-07-01

    Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).

  9. Studies of protonic self-diffusion and conductivity in 12-tungstophophoric acid hydrates by pulsed field gradient 1H NMR and ac Conductivity

    International Nuclear Information System (INIS)

    Slade, R.C.; Pressman, H.A.; Barker, J.; Strange, J.H.

    1988-01-01

    Temperature dependent protonic conductivities σ and 1/H self-diffusion coefficients, D, are reported for polycrystalline hydrates of 12-tungstophosphoric acid (TPA). Conductivities were measured using ac admittane spectrometry and diffusion coefficients by the pulsed field gradient NMR technique. Conductivities for the hydrates TPA.nH 2 O (n=6, 14, 21) increase with n. Examination of σ and D values and of activation techniques shows self-diffusion and conduction to occur by different mechanisms in the higher hydrates. 25 refs.; 14 figs.; 1 table

  10. Proton conductive membranes based on poly (styrene-co-allyl alcohol semi-IPN

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Moro Loureiro

    2014-01-01

    Full Text Available The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly (styrene-co-allyl alcohol (PSAA, using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA, curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1, C=C (aromatic, ~ 3030 cm-1 and C-H (2818 and 2928 cm-1 were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.

  11. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    Science.gov (United States)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  12. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    International Nuclear Information System (INIS)

    Huang Yanwei; Zhang Qun; Xi Junhua; Ji Zhenguo

    2012-01-01

    Transparent p-type Li 0.25 Ni 0.75 O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li 0.25 Ni 0.75 O/n-SnO 2 :W was fabricated by depositing n-SnO 2 :W on top of the p-Li 0.25 Ni 0.75 O, which exhibits typical rectifying current-voltage characteristics.

  13. Plasma Deposited Thin Iron Oxide Films as Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lukasz JOZWIAK

    2017-02-01

    Full Text Available The possibility of using plasma deposited thin films of iron oxides as electrocatalyst for oxygen reduction reaction (ORR in proton exchange membrane fuel cells (PEMFC was examined. Results of energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS analysis indicated that the plasma deposit consisted mainly of FeOX structures with the X parameter close to 1.5. For as deposited material iron atoms are almost exclusively in the Fe3+ oxidation state without annealing in oxygen containing atmosphere. However, the annealing procedure can be used to remove the remains of carbon deposit from surface. The single cell test (SCT was performed to determine the suitability of the produced material for ORR. Preliminary results showed that power density of 0.23 mW/cm2 could be reached in the tested cell.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14406

  14. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  15. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  16. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    Science.gov (United States)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  17. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  18. Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices

    Science.gov (United States)

    Shukur, M. F.; Ithnin, R.; Illias, H. A.; Kadir, M. F. Z.

    2013-08-01

    Plasticized chitosan-poly(ethylene oxide) (PEO) doped with ammonium nitrate (NH4NO3) electrolyte films are prepared by the solution cast technique. From Fourier transform infrared (FTIR) spectroscopy analysis, hydroxyl band of pure chitosan film is shifted from 3354 to 3425 cm-1 when blended with PEO. On addition of 40 wt.% NH4NO3, new peaks at 3207 cm-1 and 3104 cm-1 appear in the hydroxyl band region, indicating the polymer-salt complexation. The carboxamide and amine bands are observed to shift to 1632 and 1527 cm-1, respectively. The interaction of chitosan-PEO-NH4NO3-EC can be observed by the appearance of the doublet Cdbnd O stretching band of EC. The sample with 70 wt.% ethylene carbonate (EC) exhibits the highest room temperature conductivity of (2.06 ± 0.39) × 10-3 S cm-1. This result is further verified by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) studies. Proton battery is fabricated and shows an open circuit potential (OCP) of (1.66 ± 0.02) V and average discharge capacity at (48.0 ± 5.0) mA h. The maximum power density of the fabricated cell is (9.73 ± 0.75) mW cm-2. The polymer electrolyte is also employed as separator in electrical double layer capacitor (EDLC) and is cycled for 140 times at room temperature.

  19. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang Hui; Wan, Qing, E-mail: wanqing@nju.edu.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Qiang Zhu, Li, E-mail: lqzhu@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Shi, Yi [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ∼5.5 × 10{sup −3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ∼2.0 μF/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup −1} s{sup −1}, 2.8 × 10{sup 6}, and 130 mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  20. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2015-01-01

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton

  1. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  2. Molecular dynamics in conducting polyaniline protonated by camphor sulfonic acid as seen by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Djurado, D.; Combet, J.; Bee, M.; Rannou, P.; Dufour, B.; Pron, A.; Travers, J. P.

    2002-01-01

    Using incoherent quasielastic neutron scattering techniques, the molecular motions were investigated in fully hydrogenated and partially deuterated polyaniline protonated by camphor sulfonic acid (CSA) conducting samples. The obtained results show that on the 10 -9 -10 -12 s time scale the polymer chains do not exhibit any diffusive motions: the whole observed quasielastic scattering has accordingly to be attributed to motions of CSA ions. From our measurements two molecular movements could be differentiated. A rapid one has been attributed to the three-site rotation of methyl groups present on camphor moieties of CSA and a slower one that has been modeled as a rigid body motion of the whole CSA molecule. Due to the disordered character of the system, the methyl rotors appeared to be dynamically nonequivalent. Their dynamics was then described in terms of a log gaussian distribution of correlation times. This description allowed a good fitting of experimental data and gave an activation energy of 12.5 kJ mol-1. However, two different regimes in temperature could be distinguished. At high temperatures (T>280 K) the width of the distribution is nearly zero and thus, the methyl rotors are dynamically equivalent while it turned larger and larger when temperature is decreased below 250 K revealing that the rotors are more and more sensitive to their local environment. In the conducting samples the slowest motion clearly exists in the 280-330 K temperature range and is blocked at temperatures inferior to 250 K. This transition occurs in the temperature range in which the metal-insulator transition also happens

  3. R and D of proton conducting SOFC reactors to co-generate electricity and ethylene at University of Alberta

    International Nuclear Information System (INIS)

    Fu, X.Z.; Zhou, G.H.; Luo, J.L.; Chuang, K.T.; Sanger, A.R.

    2010-01-01

    Ethane exists in many natural gas deposits and is also a by-product of petroleum refining. Ethane's primary use is as a petrochemical feedstock to produce ethylene, a major intermediate in the manufacture of polymers and petrochemicals. Steam cracking is the principal method for conversion of ethane to ethylene. However, in this process, over 10 per cent of ethane is oxidized to carbon dioxide (CO 2 ), generating a nitrogen oxide pollutant. A large amount of ethane is deeply oxidized to CO 2 using common oxidative dehydrogenation of ethane to ethylene, and the chemical energy is not easily recovered as high grade energy. In addition, oxidative methods also produce acetylene, which is very detrimental to the manufacture of polymers because it poisons the catalysts and must therefore be removed to form high purity ethylene feed, which is a costly process. Ethane has the potential to be used as a fuel for hydrocarbon solid oxide fuel cells (SOFCs) to generate electrical energy with high efficiency and low impact on the environment, in which it is completely oxidized to CO 2 and water. However, consumption of ethane generates greenhouse gas (CO 2 ) emissions in conventional SOFCs using oxygen ion electrolyte, and consumption of these non-renewable resources is less desirable than their use for manufacture of petrochemicals. This paper discussed the development of ethane proton conducting solid oxide fuel cell reactors and related materials in order to more efficiently use ethane resources in an environmentally friendly process. The advantages of these fuel cell reactors were presented. 5 refs.

  4. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    OpenAIRE

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward printing of electrically conductive structures. The printability, electrical conductivity and mechanical stability of the polymer nanocomposites before and after 3D printing was evaluated. The res...

  5. Protonic conduction of hydrogen impurities in K2OsCl6

    International Nuclear Information System (INIS)

    Willemsen, H.W.; Armstrong, R.L.; Meincke, P.P.M.

    1979-01-01

    Dielectric measurements as a function of temperature and frequency in single crystal K 2 OsCl 6 with defects containing protons are reported. The results are consistent with a model which assumes the defect state to be a simple interstitial proton which is hydrogen bonded to the nearest neighbor chlorine ions. Temperatures greater than 180 K shows that proton diffusion is thermally activated with a mobility of 10 -2 cm 2 /V-sec whereas below this temperature it is determined by quantum tunneling between localized states

  6. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.

    Science.gov (United States)

    Yin, Chongshan; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2018-04-25

    Proton exchange membrane fuel cell (PEMFC) is one of the most promising green power sources, in which perfluorinated sulfonic acid ionomer-based membranes (e.g., Nafion) are widely used. However, the widespread application of PEMFCs is greatly limited by the sharp degradation in electrochemical properties of the proton exchange membranes under high temperature and low humidity conditions. In this work, the high-performance sulfonated carbon nanotubes/Nafion composite membranes (Su-CNTs/Nafion) for the PEMFCs were prepared and the mechanism of the microstructures on the macroscopic properties of membranes was intensively studied. Microstructure evolution in Nafion membranes during water uptake was investigated by positron annihilation lifetime spectroscopy, and results strongly showed that the Su-CNTs or CNTs in Nafion composite membranes significantly reinforced Nafion matrices, which influenced the development of ionic-water clusters in them. Proton conductivities in Su-CNTs/Nafion composite membranes were remarkably enhanced due to the mass formation of proton-conducting pathways (water channels) along the Su-CNTs. In particular, these pathways along Su-CNTs in Su-CNTs/Nafion membranes interconnected the isolated ionic-water clusters at low humidity and resulted in less tortuosity of the water channel network for proton transportation at high humidity. At a high temperature of 135 °C, Su-CNTs/Nafion membranes maintained high proton conductivity because the reinforcement of Su-CNTs on Nafion matrices reduced the evaporation of water molecules from membranes as well as the hydrophilic Su-CNTs were helpful for binding water molecules.

  7. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  8. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-01-01

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10 -4 and 2.3x10 -4 Ω·cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10 -4 Ω·cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates

  9. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  10. Proton conductance at elevated temperature:Formulation and investigation of poly(4-styrenesulfonic acid / 4-aminobenzylamine / phosphoric acid membranes

    Directory of Open Access Journals (Sweden)

    Jalal eJalili

    2014-07-01

    Full Text Available 4-aminobenzylamine and phosphoric acid were blended in various proportions with poly (4-styrenesulfonic acid to form a new group of membranes exhibiting proton conductance under water-free conditions. The 4-aminobenzylamine molecule, possessing an aniline-like and benzylamine-like functional group, can interact both with the phosphoric acid and the poly(4-styrenesulfonic acid via nucleophilic interaction, thereby allowing proton jumping in the structure. Physico-chemical and thermal characteristics of the prepared solid membranes were investigated by IR spectroscopy and thermo-gravimetric analysis, respectively. Electrochemical impedance spectroscopy was employed to investigate their proton-conductance properties. Transparent composite membranes were prepared. However, the membranes are opaque for relatively high content of phosphoric acid. These membranes are thermally stable up to 300°C. The proton conductivity increases with temperature and also with content of phosphoric acid. Values as high as 1.8×10–3 S cm–1 were measured at 190°C in fully anhydrous condition.

  11. Evolution of in situ conductivity of polythiophene deposits by potential cycling

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Schiavon, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1990-12-01

    In situ conductivity of polythiophene (PT) deposits from anodic coupling of thiophene (T), bithiophene (BT) and terthiophene (TT) increases with redox switching to an extent which depends on the monomer. Changes are considerable with TT, minor with BT and negligible with T, involving extra oxidative charges with the same trend, and are paralleled by evolution of electronic and infrared spectra and cyclic voltammograms. Results are explained by the occurrence of solid-state polymerization of oligomers leading ultimately to the same polymer with a conductivity of 1-3 S cm{sup -1}. PT from thiophene is much less conducting (0.06 S cm{sup -1}), because of oxidative degradation during deposition. (orig.).

  12. Effect of adding Nanoclay (Cloisite-30B on the Proton Conductivity of Sulfonated Polybenzimidazole

    Directory of Open Access Journals (Sweden)

    Hashem Ahmadizadegan

    2017-01-01

    Full Text Available A novel sulfonated polybenzimidazole/organoclay (Cloisite-30B (SPBI/clay nanocomposite membranes was successfully synthesized based on aromatic diacide (1 and diaminobenzidine. Nanocomposite membranes were fabricated using 1, 4-bis (hydroxymethyl benzene (BHMB as cross-linker, and Cloisite-30B organoclay as the pseudo cross-linker. The cross-linked SPBI/clay nanocomposite membranes were prepared via solution intercalation method. Participation of reactive organoclay in the cross-linking process was established from ion exchange capacity (IEC measurements and FTIR studies. Wide angle X-ray diffraction (WAXD, field emission-scanning electron microscopy (FE-SEM, and transmission electron microscopy (TEM techniques confirmed the presence of a combination of the intercalated and partially exfoliated clay confirmed mixed clay dispersion morphology of intercalation and partial exfoliation of the clay platelets in the cross-linked SPBI/clay nanocomposite membrane. The cross-linked SPBI/clay nanocomposite membranes showed higher tensile strength, modulus and lower elongation at break compared to neat cross-linked SPBI. Water and methanol uptake studies revealed superior barrier properties of cross-linked SPBI/clay nanocomposite membranes compared to cross-linked SPBI. Furthermore, thermal stability, residual solvent in the membrane film, and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA. TGA data indicated an increase in thermal stability of the SPBI/clay nanocomposite membranes in compared to the pure polymer. The oxidative stability of SPBI improved remarkably with cross-linking and subsequent clay addition. These improvements in the thermo-mechanical, barrier and oxidative stability of the membranes could be achieved without significantly affecting the protonic conductivity.

  13. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    Science.gov (United States)

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  14. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge

    2013-06-06

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  15. Determination of hydraulic conductivity from grain-size distribution for different depositional environments

    KAUST Repository

    Rosas, Jorge; Lopez Valencia, Oliver Miguel; Missimer, Thomas M.; Coulibaly, Kapo M.; Dehwah, Abdullah; Sesler, Kathryn; Rodri­ guez, Luis R. Lujan; Mantilla, David

    2013-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1m/day for the beach subgroups, 3.4 to 7.1m/day for dune subgroups, and 2.2 to 11m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23m/day. © 2013, National Ground Water Association.

  16. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; YU Jia-Feng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems,for example,ice crystal,with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our Soliton model.The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium,the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium,but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient.In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crystal.This shows that our model is available and appropriate to ice.

  17. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    International Nuclear Information System (INIS)

    Pang Xiaofeng; Yu Jiafeng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T≤273 K under influences of damping and externally applied electric-field in ice crystal. This shows that our model is available and appropriate to ice.

  18. Simple descriptors for proton-conducting perovskites from density functional theory

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Bonanos, Nikolaos; Rossmeisl, Jan

    2010-01-01

    series of (pseudo)cubic perovskites, ABO3, have been investigated using density functional theory calculations. The structures have been optimized and thermodynamic properties and activation energies for the relevant steps of the hydrogen/proton diffusion mechanism have been calculated using...... the nudged elastic band path technique. We find a strong correlation between the O-H binding energy for hydrogen/proton uptake in perovskites and the energy barriers involved in the observed Grotthuss-type diffusion process. We demonstrate the possibility of estimating diffusion rates based on O-H binding...

  19. Low-temperature properties of orientationally degenerated (OH)- centers in proton-conducting oxides

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Fishman, A.Ya.; Tsidil'kovsky, V.I.

    2007-01-01

    It is shown that the proton-associated dipole centers (OH) - can provide glasslike low-temperature properties of ABO 3-y oxides doped with cations of lower valence. These properties result from the splitting of the orientationally degenerated states of the (OH) - centers by proton tunnelling and random crystal fields. It is found that the substitution of hydrogen by deuterium or tritium leads to large and abnormal isotope effects for the contributions of degenerated centers to thermodynamic properties and absorption of elastic and electromagnetic waves

  20. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  1. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  2. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  3. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  4. Electrical Properties of Ba3Ca1.18Nb1.82O9-  Proton-Conducting Electrolyte Prepared by a Combustion Method

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    chemical route for preparing BCN18 powders that were then sintered into pellets. Electrochemical impedance spectroscopy studies indicated that BCN18 pellets show proton conductivity, since their total conductivity in wet air was significantly larger than

  5. Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)

  6. Mathematical Modeling Analysis and Optimization of Key Design Parameters of Proton-Conductive Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2014-01-01

    Full Text Available A proton-conductive solid oxide fuel cell (H-SOFC has the advantage of operating at higher temperatures than a PEM fuel cell, but at lower temperatures than a SOFC. This study proposes a mathematical model for an H-SOFC in order to simulate the performance and optimize the flow channel designs. The model analyzes the average mass transfer and species’ concentrations in flow channels, which allows the determination of an average concentration polarization in anode and cathode gas channels, the proton conductivity of electrolyte membranes, as well as the activation polarization. An electrical circuit for the current and proton conduction is applied to analyze the ohmic losses from an anode current collector to a cathode current collector. The model uses relatively less amount of computational time to find the V-I curve of the fuel cell, and thus it can be applied to compute a large amount of cases with different flow channel dimensions and operating parameters for optimization. The modeling simulation results agreed satisfactorily with the experimental results from literature. Simulation results showed that a relatively small total width of flow channel and rib, together with a small ratio of the rib’s width versus the total width, are preferable for obtaining high power densities and thus high efficiency.

  7. A Ta/W mixed addenda heteropolyacid with excellent acid catalytic activity and proton-conducting property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shujun; Peng, Qingpo [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Chen, Xuenian, E-mail: xnchen@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Wang, Ruoya; Zhai, Jianxin; Hu, Weihua [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Ma, Fengji, E-mail: fengji.ma@yahoo.com [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 453000 (China); Zhang, Jie, E-mail: jie.zhang@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Shuxia [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun City, Jilin 130024 (China)

    2016-11-15

    A new HPAs H{sub 20}[P{sub 8}W{sub 60}Ta{sub 12}(H{sub 2}O){sub 4}(OH){sub 8}O{sub 236}]·125H{sub 2}O (H-1) which comprises a Ta/W mixed addenda heteropolyanion, 20 protons, and 125 crystalline water molecules has been prepared through ion-exchange method. The structure and properties of H-1 have been explored in detail. AC impedance measurements indicate that H-1 is a good solid state proton conducting material at room temperature with a conductivity value of 7.2×10{sup −3} S cm{sup −1} (25 °C, 30% RH). Cyclic voltammograms of H-1 indicate the electrocatalytic activity towards the reduction of nitrite. Hammett acidity constant H{sub 0} of H-1 in CH{sub 3}CN is −2.91, which is the strongest among the present known HPAs. Relatively, H-1 exhibits excellent catalytic activities toward acetal reaction. - Highlights: • A Ta/W mixed addenda Heteropolyacid (H-1) was isolated. • Hammett acidity constant H{sub 0} of H-1 is the strongest among the present known HPAs. • H-1 exhibits excellent catalytic activities toward acetal reaction. • H-1 is a good solid state proton conducting material at room temperature.

  8. Indium oxide-based transparent conductive films deposited by reactive sputtering using alloy targets

    Science.gov (United States)

    Miyazaki, Yusuke; Maruyama, Eri; Jia, Junjun; Machinaga, Hironobu; Shigesato, Yuzo

    2017-04-01

    High-quality transparent conductive oxide (TCO) films, Sn-doped In2O3 (ITO) and In2O3-ZnO (IZO), were successfully deposited on either synthetic silica or polyethylene terephthalate (PET) substrates in the “transition region” by reactive dc magnetron sputtering using In-Zn and In-Sn alloy targets, respectively, with a specially designed plasma emission feedback system. The composition, crystallinity, surface morphology, and electrical and optical properties of the films were analyzed. All of the IZO films were amorphous, whereas the ITO films were polycrystalline over a wide range of deposition conditions. The minimum resistivities of the IZO and ITO films deposited on the heated PET substrates at 150 °C were 3.3 × 10-4 and 5.4 × 10-4 Ω·cm, respectively. By applying rf bias to unheated PET substrates, ITO films with a resistivity of 4.4 × 10-4 Ω·cm were deposited at a dc self-bias voltage of -60 V.

  9. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Science.gov (United States)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion ®117 membrane (5.04 × 10 -2 S cm -1). The highest proton conductivities 3.58 × 10 -2, 3.51 × 10 -2 and 2.61 × 10 -2 S cm -1 for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 × 10 -7 cm 2 s -1 which was 16 times lower than that of Nafion ®117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes.

  10. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-10-15

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion {sup registered} 117 membrane (5.04 x 10{sup -2} S cm{sup -1}). The highest proton conductivities 3.58 x 10{sup -2}, 3.51 x 10{sup -2} and 2.61 x 10{sup -2} S cm{sup -1} for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 x 10{sup -7} cm{sup 2} s{sup -1} which was 16 times lower than that of Nafion {sup registered} 117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes. (author)

  11. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  12. Proton conductivity in quasi-one dimensional hydrogen-bonded systems: A nonlinear approach

    International Nuclear Information System (INIS)

    Tsironis, G.; Phevmatikos, S.

    1988-01-01

    Defect formation and transport in a hydrogen-bonded system is studied via a two-sublattice soliton-bearing one-dimensional model. Ionic and orientational defects are associated with distinct nonlinear topological excitations in the present model. The dynamics of these excitations is studied both analytically and with the use of numerical simulations. It is shown that the two types of defects are soliton solutions of a double Sine--Gordon equation which describes the motion of the protons in the long-wavelength limit. With each defect there is an associated deformation in the ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its motion. Free propagation as well as collision properties of the proton solitons are presented. 33 refs., 10 figs

  13. Proton-Conducting Sulfonated and Phosphonated Polymers and Fuel Cell Membranes by Chemical Modification of Polysulfones

    OpenAIRE

    Lafitte, Benoit

    2007-01-01

    The proton exchange membrane fuel cell (PEMFC) is currently emerging as an efficient and environmentally friendly power source. The technology is very complex and relies ultimately on materials and components which need further development. One of the major hurdles for advancing the PEMFC technology is currently the demand for new durable low-cost polymeric membranes that will allow fuel cell operation at high temperatures without extensive humidification requirements. Thus, the design and pr...

  14. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    Science.gov (United States)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  15. Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.H.; Wang, S.J.; Xiao, M.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Guangzhou 510275 (China); Shu, D. [School of Chemistry and Environmental, South China Normal University, Guangzhou 510006 (China)

    2010-01-01

    High molecular weight sulfonated poly(fluorenyl ether ketone nitrile)s with different equivalent weight (EW) from 681 to 369 g mequiv.{sup -1} are synthesized by the nucleophilic substitution polycondensation of various amounts of sulfonated difluorobenzophenone (SDFBP) and 2,6-difluorobenzonitrile (DFBN) with bisphenol fluorene (BPF). The synthesized copolymers are characterized by {sup 1}H NMR, FT-IR, TGA, and DSC techniques. The membranes cast from the corresponding copolymers exhibit superior thermal stability, good oxidative stability and high proton conductivity, but low water uptake due to the strong nitrile dipole interchain interactions that combine to limit swelling. Among all the membranes, the membrane with EW of 441 g mequiv.{sup -1} shows optimum properties of both high proton conductivity of 41.9 mS cm{sup -1} and low water uptake of 42.6%. Accordingly, That membrane is fabricated into a membrane electrode assembly (MEA) and evaluated in a single proton exchange membrane fuel cell (PEMFC). The experimental results indicate its similar cell performance as that of Nafion {sup registered} 117 at 70 C, but much better cell performance at higher temperatures. At the potential of 0.6 V, the current density of fuel cell using the prepared membrane and Nafion {sup registered} 117 is 0.46 and 0.25 A cm{sup -2}, respectively. The highest current density of the former reaches as high as 1.25 A cm{sup -2}. (author)

  16. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  17. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  18. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  19. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  20. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    The cornerstone in this dissertation is made up by three individual assessments of the diversity in the macromolecular landscape that can be obtained by applying relatively few efficient chemical tools. The intention is to gain deeper knowledge on the chemical tuning of proton exchange membranes...... of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...... of control by ATRP and click chemistry enables a wide selection of polymer structures with the handles: degree of substitution (DS), polymerization and sulfonation, and blending....

  1. Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Javakhishvili, Irakli; Han, Junyoung

    2016-01-01

    A new amino-functional polybenzimidazole copolymer is synthesized by homogeneous solution condensation polymerization from a novel monomer, N,N′-bis (2,4-diaminophenyl)-1,3-diaminopropane. The copolymer readily dissolves in organic solvents and shows good film forming characteristics. To balance...... the phosphoric acid uptake and to obtain mechanically robust membranes, the amino-functional polybenzimidazole derivative is blended with high molecular weight poly [2,2′-(m-phenylene)-5,5′-bisbenzimidazole] at different ratios. Due to the high acid uptake, the homogenous blend membranes show enhanced proton...

  2. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    OpenAIRE

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-01-01

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 ...

  3. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    Science.gov (United States)

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-06-07

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 and two different photocompetent derivatives that carry both alanine substitutions and an intergenic suppressor mutation located far from QB (class 3 strain, Ala-Ala + Arg-M231-->Leu; class 4 strain, Ala-Ala + Asn-M43-->Asp). At pH 8 in the double mutant, we observe a concomitant decrease of nearly 4 orders of magnitude in the rate constants of second electron and proton transfer to QB compared to the wild type. Surprisingly, these rates are increased to about the same extent in both types of suppressor strains but remain > 2 orders of magnitude smaller than those of the wild type. In the double mutant, at pH 8, the loss of Asp-L213 and Glu-L212 leads to a substantial stabilization (> or = 60 meV) of the semiquinone energy level. Both types of compensatory mutations partially restore, to nearly the same level, the original free energy difference for electron transfer from primary quinone QA to QB. The pH dependence of the electron and proton transfer processes in the double-mutant and the suppressor strains suggests that when reaction centers of the double mutant are shifted to lower pH (1.5-2 units), they function like those of the suppressor strains at physiological pH. Our data suggest that the main effect of the compensatory mutations is to partially restore the negative electrostatic environment of QB and to increase an apparent "functional" pK of the system for efficient proton transfer to the active site. This emphasizes the role of the protein in tuning the

  4. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    International Nuclear Information System (INIS)

    Elen, Ken; Capon, Boris; De Dobbelaere, Christopher; Dewulf, Daan; Peys, Nick; Detavernier, Christophe; Hardy, An; Van Bael, Marlies K.

    2014-01-01

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum

  5. Transparent conducting oxide films of group V doped titania prepared by aqueous chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elen, Ken [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Strategisch Initiatief Materialen (SIM), SoPPoM Program (Belgium); Capon, Boris [Strategisch Initiatief Materialen (SIM), SoPPoM Programm (Belgium); Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Dewulf, Daan [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Peys, Nick [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Kapeldreef 75, B-3001 Heverlee (Belgium); Detavernier, Christophe [Coating and Contacting of Nanostructures, Ghent University, Krijgslaan 281 S1, B-9000 Ghent (Belgium); Hardy, An [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2014-03-31

    Transparent conducting oxide (TCO) films of titania doped with vanadium (V), niobium (Nb) and tantalum (Ta) are obtained by aqueous Chemical Solution Deposition (CSD). The effect of the dopant on the crystallization and microstructure of the resulting films is examined by means of X-ray diffraction and electron microscopy. During annealing of the thin films, in-situ characterization of the crystal structure and sheet resistance is carried out. Niobium doped anatase films, obtained after annealing in forming gas, show a resistivity of 0,28 Ohm cm, which is the lowest resistivity reported for a solution deposited anatase-based TCO so far. Here, we demonstrate that aqueous CSD may provide a strategy for scalable TCO production in the future. - Highlights: • Aqueous chemical solution deposition of doped titanium dioxide • Doping delays the phase transition from anatase to rutile • Lowest resistivity after doping with niobium and annealing in Forming Gas • Transparency higher than 80% in the visible range of optical spectrum.

  6. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  7. Metallic Conductive Nanowires Elaborated by PVD Metal Deposition on Suspended DNA Bundles.

    Science.gov (United States)

    Brun, Christophe; Elchinger, Pierre-Henri; Nonglaton, Guillaume; Tidiane-Diagne, Cheikh; Tiron, Raluca; Thuaire, Aurélie; Gasparutto, Didier; Baillin, Xavier

    2017-09-01

    Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment...

  9. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    Science.gov (United States)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  10. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures

    International Nuclear Information System (INIS)

    Seeger, Janka

    2013-01-01

    Lanthanum tungstate La 6-x WO 12-δ (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part of the

  11. Structural and ionic conductivity studies on proton conducting solid biopolymer electrolyte based on 2hydroxyethyl cellulose incorporated DTAB

    Science.gov (United States)

    Ahmad, N. H.; Bakar, N. Y.; Isa, M. I. N.

    2017-09-01

    Solid biopolymer electrolytes (SBEs) based on 2hydroxyethyl cellulose (2HEC) complexes with dodecyltrimethyl ammonium bromide (DTAB) salt in various composition (wt. %) were successfully prepared by using solution casting technique. The ion - polymer interaction and structural studies have been reported by Fourier transform infrared spectroscopy (FTIR) supported with X - ray diffraction (XRD) and Electrical impedance spectroscopy (EIS). FTIR spectral shows interaction of 2HEC with DTAB happen at peak 2914cm-1, 2848cm-1, 2353cm-1, 2328cm-1, 1720cm-1, 1437cm-1, 1344cm-1, 1198cm-1 1095cm-1 1051cm-1, 912cm-1 and 872cm-1. The interaction of complexes leads to an increase in number of ion jump into neighboring vacant sites until it reaches the highest conductivity at room temperature which is 2.80 x 10-5 Scm-1 for sample containing 9wt. % of DTAB. The temperature dependence of the SBEs system exhibits Arrhenius behavior and the XRD spectral analysis shows the higher salt loading the crystallinity of the SBEs which also increased.

  12. Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Van Norman, Staci A.; Falconer, John L.; Weimer, Alan W., E-mail: alan.weimer@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309-0596 (United States); Tringe, Joseph W.; Sain, John D. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, Colorado 80309-0427 (United States)

    2015-04-13

    This study investigated the effective thermal conductivity (k{sub eff}) of packed-beds that contained porous particles with nanoscale tungsten (W) films of different thicknesses formed by atomic layer deposition (ALD). A continuous film on the particles is vital towards increasing k{sub eff} of the packed beds. For example, the k{sub eff} of an alumina packed bed was increased by three times after an ∼8-nm continuous W film with 20 cycles of W ALD, whereas k{sub eff} was decreased on a polymer packed bed with discontinuous, evenly dispersed W-islands due to nanoparticle scattering of phonons. For catalysts, understanding the thermal properties of these packed beds is essential for developing thermally conductive supports as alternatives to structured supports.

  13. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  14. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    Science.gov (United States)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  15. High performance diamond-like carbon layers obtained by pulsed laser deposition for conductive electrode applications

    Science.gov (United States)

    Stock, F.; Antoni, F.; Le Normand, F.; Muller, D.; Abdesselam, M.; Boubiche, N.; Komissarov, I.

    2017-09-01

    For the future, one of the biggest challenge faced to the technologies of flat panel display and various optoelectronic and photovoltaic devices is to find an alternative to the use of transparent conducting oxides like ITO. In this new approach, the objective is to grow high conductive thin-layer graphene (TLG) on the top of diamond-like carbon (DLC) layers presenting high performance. DLC prepared by pulsed laser deposition (PLD) have attracted special interest due to a unique combination of their properties, close to those of monocrystalline diamond, like its transparency, hardness and chemical inertia, very low roughness, hydrogen-free and thus high thermal stability up to 1000 K. In our future work, we plane to explore the synthesis of conductive TLG on top of insulating DLC thin films. The feasibility and obtained performances of the multi-layered structure will be explored in great details in the short future to develop an alternative to ITO with comparable performance (conductivity of transparency). To select the best DLC candidate for this purpose, we focus this work on the physicochemical properties of the DLC thin films deposited by PLD from a pure graphite target at two wavelengths (193 and 248 nm) at various laser fluences. A surface graphenization process, as well as the required efficiency of the complete structure (TLG/DLC) will clearly be related to the DLC properties, especially to the initial sp3/sp2 hybridization ratio. Thus, an exhaustive description of the physicochemical properties of the DLC layers is a fundamental step in the research of comparable performance to ITO.

  16. Nitrate Deposition to Surface Snow at Summit, Greenland, Following the 9 November 2000 Solar Proton Event

    Science.gov (United States)

    Duderstadt, Katharine A.; Dibb, Jack E.; Schwadron, Nathan A.; Spence, Harlan E.; Jackman, Charles Herbert; Randall, Cora E.; Solomon, Stanley C.; Mills, Michael J.

    2014-01-01

    This study considers whether spurious peaks in nitrate ions in snow sampled at Summit, Greenland from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, SPE-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate ion peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies.

  17. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    Polysulfones functionalized with highly phosphonated poly(pentafluorostyrene) side chains of different lengths were synthesized applying controlled polymerization and modification methods. The graft copolymers' thermal properties were evaluated by differential scanning calorimetry and thermal...... gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  18. Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Jung, Ho-Young; Shin, Seung-Shik; Choi, Nam-Soon; Sung, Shi-Joon; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, the proton conducting membrane based on semi-interpenetrating polymer networks (IPNs) of Nafion and crosslinked poly(AMPS) was prepared and characterized. The modification of Nafion with crosslinked poly(AMPS) such as hydrocarbon polymer changed the state of water in membranes. Without a significant increase of the membrane resistance, the semi-IPNs demonstrated a reduction of the methanol permeability, comparing to the native Nafion. And the maximum power density of AMPS60 increased as much as 22.2% compared with Nafion

  19. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  20. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  1. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    Science.gov (United States)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  2. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  3. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    Science.gov (United States)

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  4. High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    NARCIS (Netherlands)

    Macco, B.; Wu, Y.; Vanhemel, D.; Kessels, W.M.M.

    2014-01-01

    The preparation of high-quality In2O3:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In2O3:H films were deposited by atomic layer deposition at 100 °C, after which they underwent solid phase crystallization by a short anneal at 200 °C. TEM analysis has shown

  5. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    NARCIS (Netherlands)

    Didden, A.; Hillebrand, P.; Wollgarten, M.; Dam, B.; Van de Krol, R.

    2016-01-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of

  6. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  7. Studies of layered uranium(VI) compounds. I. High proton conductivity in polycrystalline hydrogen uranyl phosphate tetrahydrate

    International Nuclear Information System (INIS)

    Howe, A.T.; Shilton, M.G.

    1979-01-01

    Hydrogen uranyl phosphate tetrahydrate HUO 2 PO 4 .4H 2 O has a high proton conductivity. The ac conductivity was 0.4 ohm -1 m -1 at 290 0 K measured parallel to the faces of sintered disks of the compound. The activation energy was found to be 31 +- 3 kJ mole -1 . The values of conductivity were between 3 and 10 times lower when measured perpendicular to the disk faces due to preferred orientation of the plate-like crystals. Both the powder and sintered disks are stable in air and insoluble in phosphoric acid solution of pH 2.5. Experiments are described which enable possible grain boundary contributions to the conductivity to be determined in such hydrates. The extrinsic grain boundary contribution to the conductivity was found to be small from experiments in which the pH in a solution cell was varied. The abnormally high bulk H + conductivity thus inferred is attributed primarily to the high concentration of H + , which exists as H 3 O + in the interlamellar hydrogen-bounded network. A Grotthus-type mechanism of conduction is proposed which involves intermolecular transfer steps (hopping) and intramolecular transfer steps, in comparable numbers, the former facilitated by the high concentration of H 3 O + ions in the structure, and the latter most likely facilitated by the high concentration of H-bond vacancies. 8 figures, 1 table

  8. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  9. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  10. Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods

    International Nuclear Information System (INIS)

    Jensen, C.; Chirtoc, M.; Horny, N.; Antoniow, J. S.; Pron, H.; Ban, H.

    2013-01-01

    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m −1 K −1 and 26.7 ±1 W m −1 K −1 , respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10 −6 m 2 K W −1 . The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials

  11. Effects of thermal conduction and convection on temperature profile in a water calorimeter for proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Gargioni, E; Manfredotti, C [Torino Univ. (Italy). Dipt. di Fisica; Laitano, R F; Guerra, A S [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)

    1997-09-01

    In water calorimetry, in addition to the temperature increase due to beam energy deposition in water, unwanted thermal effects occur during and after calorimeter irradiation. This should be accounted for by applying proper corrections to the experimental results. In order to determine such corrections heat flow calculations were performed using the `finite element` method. This method applies even to complex 3D geometries with not necessarily symmetric conditions. Some preliminary results of these calculations are presented together with a description of the analytical method for the evaluation of the correction factors that should be applied to the experimental results to account for the above thermal effects. (orig.)

  12. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique

    Science.gov (United States)

    Mohamed, H. A.; Ali, H. M.; Mohamed, S. H.; Abd El-Raheem, M. M.

    2006-04-01

    Thin films of Zn{1-x} Cd{x}O with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 at.% were deposited by electron-beam evaporation technique. It has been found that, for as-deposited films, both the transmittance and electrical resistivity decreased with increasing the Cd content. To improve the optical and electrical properties of these films, the effect of annealing temperature and time were taken into consideration for Zn{1-x} Cd{x}O film with x = 0.2. It was found that, the optical transmittance and the electrical conductivity were improved significantly with increasing the time of annealing. At fixed temperature of 300 °C, the transmittance increased with increasing the time of annealing and reached its maximum values of 81% in the visible region and 94% in the NIR region at annealing time of 120 min. The low electrical resistivity of 3.6 × 10-3 Ω cm was achieved at the same conditions. Other parameters named free carrier concentrations, refractive index, extinction coefficient, plasma frequency, and relaxation time were studied as a function of annealing temperature and time for 20% Cd content.

  13. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  14. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  15. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chun-En [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); Lin, Chi-Wen [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin (China); Hwang, Bing-Joe [Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China); National Synchrotron Radiation Research Center, Hsinchu 300 (China)

    2010-04-15

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO{sub 3}H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 x 10{sup -2} S cm{sup -1} at room temperature from one of the synthesized membranes, higher than that of the Nafion {sup registered} membrane. Methanol permeability of the synthesized membranes measures about 1 x 10{sup -7} cm{sup 2} S{sup -1}, about one order of magnitude lower than that of the Nafion {sup registered} membrane. (author)

  16. Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane

    Science.gov (United States)

    Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D.

    2018-03-01

    The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.

  17. A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.

    Science.gov (United States)

    Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang

    2018-06-07

    In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.

  18. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  19. Giant magneto-impedance effect on nanocrystalline microwires with conductive layer deposit

    International Nuclear Information System (INIS)

    Wang, R.L.; Zhao, Z.J.; Liu, L.P.; Yuan, W.Z.; Yang, X.L.

    2005-01-01

    In this study, the giant magneto-impedance effect on Fe-based glass-coated nanocrystalline microwires with and without an additional outer copper layer was investigated. Experiment results showed that the magneto-impedance ratio of the wires with a layer of deposited copper is higher at low frequencies and lower at high frequencies (above 50 MHz), as compared to that of the microwires without an outer copper layer. The peak MI magnetic field, corresponding to the maximum of the magneto-impedance ratio shifts towards higher field values with increasing coating thickness of copper layer. The results are explained in terms of electro-magnetic interactions between the conductive layer and the ferromagnetic core

  20. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  1. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  2. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.

    Directory of Open Access Journals (Sweden)

    Joy Wei Yi Liew

    Full Text Available Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC, which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR spectroscopy and 31P nuclear magnetic resonance (31P NMR spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS. The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.

  3. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    Science.gov (United States)

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  4. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Lie-Andersen, T.; Jensen, E. Pristed

    2015-01-01

    Indium doped tin pyrophosphates were prepared by three synthetic routes. A heterogeneous synthesis from metal oxides with excess phosphoric acid produces crystalline phosphate particles with a phosphorus rich amorphous phase along the grain boundaries. The amorphous phase prevents the agglomeration...... decrease in conductivity as well as significant agglomeration of the particles, as evident in TEM and from particle size distribution measurements. Homogeneous synthesis with soluble metal acetates or chlorides as precursors results in a single crystalline phase with a small particle size, but strongly...... agglomerated, and a low conductivity at 10- 7-10- 6 Scm- 1 level. Further impregnation of the agglomerates with phosphoric acid does not lead to formation of the phosphorus rich amorphous layers on the surface of the crystals. An intermediate conductivity of 10- 3 Scm- 1 was observed for the acid treated...

  5. High-speed imaging and evolution dynamics of laser induced deposition of conductive inks (Conference Presentation)

    Science.gov (United States)

    Makrygianni, Marina; Papazoglou, Symeon; Zacharatos, Filimonas; Chatzandroulis, Stavros; Zergioti, Ioanna

    2017-02-01

    During the last decade there is an ever-increasing interest for the study of laser processes dynamics and specifically of the Laser Induced Forward Transfer (LIFT) technique, since the evolution of the phenomena under investigation may provide real time metrology in terms of jet velocity, adjacent jet interaction and impact pressure. The study of such effects leads to a more thorough understanding of the deposition process, hence to an improved printing outcome and in these frames, this work presents a study on the dynamics of LIFT for conductive nanoparticles inks using high-speed imaging approaches. Moreover, in this study, we investigated the printing regimes and the printing quality during the transfer of copper (Cu) nanoink, which is a metallic nanoink usually employed in interconnect formation as well as the printing of silver nanowires, which provide transparency and may be used in applications where transparent electrodes are needed as in photovoltaics, batteries, etc. Furthermore, we demonstrate the fabrication of an all laser printed resistive chemical sensor device that combines Ag nanoparticles ink and graphene oxide, for the detection of humidity fabricated on a flexible polyimide substrate. The sensor device architecture was able to host multiple pairs of electrodes, where Ag nanoink or nanopaste were laser printed, to form the electrodes as well as the electrical interconnections between the operating device and the printed circuit board. Performance evaluation was conducted upon flow of different concentrations of humidity vapors to the sensor, and good response (500 ppm limit of detection) with reproducible operation was observed.

  6. Hot-wire substoichiometric tungsten oxide films deposited in hydrogen environment with n-type conductivity

    International Nuclear Information System (INIS)

    Kostis, I; Vasilopoulou, M; Giannakopoulos, K; Papadimitropoulos, G; Davazoglou, D; Michalas, L; Papaioannou, G; Konofaos, N; Iliadis, A A; Kennou, S

    2012-01-01

    Substoichiometric tungsten oxide nanostructured films were synthesized by a hot-wire deposition technique in hydrogen-rich environment and characterized for their structural and electrical properties. A semiconducting behaviour was identified, allowing n-type conductivity even at room temperature which is an important result since it is well known that fully stoichiometric tungsten trioxide is nearly an insulator. Current-voltage characteristics for various temperatures were measured for tungsten oxide/Si heterostructures and analysed using proper modelling. As a result, the conduction mechanism inside the films was identified and found to be of a dual nature, with variable range hopping being dominant at near room temperatures. The saturation current was found to be thermally activated and the activation energy was calculated at 0.40 eV and the grain boundaries barrier at 150 meV. From Hall measurements it was also revealed that the dominant carriers are electrons and a carrier concentration of about 10 14 cm -3 was estimated.

  7. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

    Science.gov (United States)

    Téllez Lozano, Helena; Druce, John; Cooper, Samuel J; Kilner, John A

    2017-01-01

    18 O and 2 H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo 2 O 5+ δ (PBCO) in flowing air containing 200 mbar of 2 H 2 16 O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity (~1.3 × 10 -11 cm 2 s -1 ) at this temperature and that the presence of water ( 2 H 2 16 O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of ~3. The 2 H distribution, as inferred from the 2 H 2 16 O - SIMS signal, shows an apparent depth profile which could be interpreted as 2 H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.

  8. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

    Science.gov (United States)

    Téllez Lozano, Helena; Druce, John; Cooper, Samuel J.; Kilner, John A.

    2017-12-01

    18O and 2H diffusion has been investigated at a temperature of 300 °C in the double perovskite material PrBaCo2O5+δ (PBCO) in flowing air containing 200 mbar of 2H216O. Secondary ion mass spectrometry (SIMS) depth profiling of exchanged ceramics has shown PBCO still retains significant oxygen diffusivity ( 1.3 × 10-11 cm2s-1) at this temperature and that the presence of water (2H216O), gives rise to an enhancement of the surface exchange rate over that in pure oxygen by a factor of 3. The 2H distribution, as inferred from the 2H216O- SIMS signal, shows an apparent depth profile which could be interpreted as 2H diffusion. However, examination of the 3-D distribution of the signal shows it to be nonhomogeneous and probably related to the presence of hydrated layers in the interior walls of pores and is not due to proton diffusion. This suggests that PBCO acts mainly as an oxygen ion mixed conductor when used in PCFC devices, although the presence of a small amount of protonic conductivity cannot be discounted in these materials.

  9. Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends: Conductivity, water sorption and permeation properties

    International Nuclear Information System (INIS)

    Li, Yongli; Nguyen, Quang Trong; Schaetzel, Pierre; Lixon-Buquet, Camille; Colasse, Laurent; Ratieuville, Vincent

    2013-01-01

    Five blend membranes were prepared by solvent evaporation from solutions of the synthesized sulfonated polyetheretherketone (SPEEK) and sulfonated polyethersulfone-cardo (SPESc). Their ion exchange capacity and degree of sulfonation determined by acid–base titration and by thermogravimetric analysis were consistent. The blends glass transition behavior obtained by differential scanning calorimetry suggests that the two sulfonated polymers are compatible in the whole composition range. The values of the activation energy for proton transport determined by conductivity measurements on the SPEEK-based blend membranes were in the range of 13–34 kJ mol −1 , which suggest a mixed transport mechanism that involves both proton jumps on ionic sites and water of hydration and diffusion of proton–water complex in hydrophilic domains. The water vapor sorption in the membranes exhibits sigmoid-shape isotherms which were well fitted by the “new dual mode sorption” model, and the fitted parameters values were successfully used to model the change in the water permeation flux with the upstream water activity using the first Fick's diffusion equation. The fast increase in the permeation flux beyond a critical value of activity (0.5) was owing to the exponential concentration-dependent diffusion coefficient. These modelings allowed us to show a strong increase in the limit diffusion coefficient of water and a decrease in the water-diffusion plasticization coefficient with the SPEEK content in the polymer blends

  10. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  11. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion

    Science.gov (United States)

    Chen, Hui; Han, Shu-Yan; Liu, Rui-Heng; Chen, Teng-Fei; Bi, Kai-Lun; Liang, Jian-Bo; Deng, Yu-Heng; Wan, Chong-Qing

    2018-02-01

    Incorporating ionic liquids (abbreviated as ILs) into porous metal-organic framework (MOF) to obtain ILs@MOF nanocomposites is documented as a feasible method to achieve new type of anhydrous proton conductor with high performance. We newly synthesized a series of ILs with different acid counter anions (R-SO3-) and their ILs@MOF hybrid materials, i.e. SA-EIMS@MIL-101, MSA-EIMS@MIL-101 and PTSA-EIMS@MIL-101 (SA = sulfate acid, MSA = methanesulfonate acid, PTSA = p-toluenesulfonate acid, EIMS = 1-(1-ethyl-3-imidazolium)propane-3-sulfonate). Such hybrid materials displayed as anhydrous proton conduction with long-term durability even heated at 150 °C open to air. σ value of SA-EIMS@MIL-101 is up to 1.89 × 10-3 S cm-1, being in the range of the most conductive MOF-based materials. MOF support exhibited favorable proton transport and long-term retention for ILs. Anion volumes of R-SO3- displayed significant effects on the proton conductivity of such hybrid ILs@MOF materials. The smaller the van der Waals volume of R-SO3- is, the higher the conductivity of ILs@MOF is. This work suggests that the combination of a variety of the incorporated ILs and a MOF framework would afford high proton transport and gives an idea to explore the safe, anhydrous, solid-state electrolyte for high temperature proton exchange membrane fuel cell.

  12. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  13. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  14. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  15. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Emil Roduner

    2012-06-01

    Full Text Available Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1,000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region.

  16. Electrical Properties of Ba3Ca1.18Nb1.82O9-  Proton-Conducting Electrolyte Prepared by a Combustion Method

    KAUST Repository

    Bi, Lei

    2013-10-07

    Ba3Ca1.18Nb1.82O9-δ (BCN18), regarded as a promising proton-conducting electrolyte material for solid oxide fuel cells, is usually synthesized by a solid-state reaction because of the limited choice of Nb precursors. This study presents a wet chemical route for preparing BCN18 powders that were then sintered into pellets. Electrochemical impedance spectroscopy studies indicated that BCN18 pellets show proton conductivity, since their total conductivity in wet air was significantly larger than that in dry air. However, a detailed analysis showed that only the BCN18 bulk behaves as a proton conductor, while its grain boundary conductivity did not increase in wet air.

  17. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides

    International Nuclear Information System (INIS)

    Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas

    2007-01-01

    Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm

  18. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  19. Proton-conducting beta"-alumina via microwave-assisted synthesis and mechanism of enhanced corrosion prevention of a zinc rich coating with electronic control

    Science.gov (United States)

    Kirby, Brent William

    Proton Conducting beta-alumina via Microwave Assisted Synthesis. The microwave assisted synthesis of proton conducting Mg- and Li-stabilized NH4+/H3O+ beta-alumina from a solution based gel precursor is reported. beta-alumina is a ceramic fast ion conductor containing two-dimensional sheets of mobile cations. Na +-beta-alumina is the most stable at the sintering temperatures (1740°C) reached in a modified microwave oven, and can be ion exchanged to the K+ form and then to the NH4+/H 3O+ form. beta-phase impurity is found to be 20% for Mg-stabilized material and 30-40% for Li-stabilized material. The composition of the proton conducting form produced here is deficient in NH4 + as compared to the target composition (NH4)1.00 (H3O)0.67Mg0.67Al10.33O 17. Average grain conductivity for Li-stabilized material at 150°C is 6.6x10-3 +/- 1.6x10-3 S/cm with 0.29 +/- 0.05 eV activation energy, in agreement with single crystal studies in the literature. Grain boundary conductivity is found to be higher in the Li-stabilized material. A hydrogen bond energy hypothesis is presented to explain these differences. Li-stabilized NH4+/H3O + beta-alumina is demonstrated as a fuel cell electrolyte, producing 28 muA/cm2 of electrical current at 0.5 V. Mechanism of Enhanced Corrosion Prevention of a Zinc Rich Coating with Electronic Control. A corrosion inhibition system consisting of high weight-loading zinc rich coating applied to steel panels is examined. An electronic control unit (ECU) consisting of a battery and a large capacitor in series with the panel is shown to improve corrosion protection upon immersion in 3% NaCl solution. Weekly solution changes to avoid zinc saturation in solution system were necessary to see well differentiated results. The corrosion product, hydrozincite [Zn5(CO3) 2(OH)6] is observed to deposit within the pores of the coating and on the surface as a barrier layer. Simonkolleite [Zn5(OH) 8Cl2·H2O] is found to form in place of the original zinc particles

  20. CsH2PO4/NdPO4 Composites as Proton Conducting Electrolytes for Intermediate Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Jensen, Annemette Hindhede; Christensen, Erik

    2015-01-01

    hydrogen bonding network enabling efficient proton conduction long before the development of the extensive phase disordering of the superprotonic transition. The presence of thermally stable hydrate water present in neodymium phosphate may also play a role in improving both conductivity and stability...

  1. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.

    2014-11-12

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  2. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process

    International Nuclear Information System (INIS)

    Ning Xianjin; Li Chengxin; Li Changjiu; Yang Guanjun

    2006-01-01

    4.5 mol% yttria-stabilized zirconia (YSZ) coating was deposited by atmospheric plasma spraying (APS) as an electrolyte for solid oxide fuel cells (SOFCs) applications. The post treatment was employed using zirconium and yttrium nitrate solution infiltration to densify the coating microstructure for improvement of gas permeability. The deposition of YSZ through nitrate in voids of the coating was examined. Microstructure of the as-sprayed and densified coatings was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of infiltrating treatment on coating microstructure and electrical conductivity was examined. The electrical conductivity of APS-sprayed YSZ coating at the direction perpendicular to coating surface was much lower than that of bulk materials. Post-densification treatment improved the electrical conductivity of YSZ coating by about 25% compared with as-sprayed coating. It was found that the deposition of YSZ resulting from decomposition of nitrate in the lamellar interface gaps was different from that in vertical cracks in lamella owing to the orthogonal feature of those two types of gaps. The nanopores were formed in the deposited YSZ in nonbonded interface gaps while large pores were residued in vertical cracks in splats. The microstructural examination suggests that nanopores in the deposited YSZ in nonbonded interfaces in the coating were isolated from each other, which led to the significant reduction of gas permeability after densification. Moreover, the nanocontacts between lamellae resulted in high contact resistance and limit improvement of electrical conductivity of the coating after densification

  3. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  4. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  5. Temperature dependence of partial conductivities of the BaZr0.7Ce0.2Y0.1O3-δ proton conductor

    Science.gov (United States)

    Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.

    2017-10-01

    Partial conductivities are presented for BaZr0.7Ce0.2Y0.1O3-δ, an important proton conductor for protonic-ceramic fuel cells and membrane reactors. Atmospheric dependencies of impedance performed in humidified and dry O2, air, N2 and H2(10%)/N2(90%) in the temperature range 300-900 °C, supported by the modified emf method, confirm significant electron-hole and protonic contributions to transport. For very reducing and wet atmospheres, the conductivity is predominantly ionic, with a higher participation of protons with decreasing temperature and increasing water-vapour partial pressure (pH2O). From moderately reducing conditions of wet N2 to wet O2, however, the conductivity is considerably influenced by electron holes as revealed by a significant dependence of total conductivity on oxygen partial pressure (pO2). With higher pH2O, proton transport increases, with a concomitant decrease of holes and oxygen vacancies. However, the effect of pH2O is also influenced by temperature, with a greater protonic contribution at both lower temperature and pO2. Values of proton transport number tH ≈ 0.63 and electronic transport number th ≈ 0.37 are obtained at 600 °C for pH2O = 0.022 atm and pO2 = 0.2 atm, whereas tH ≈ 0.95 and th ≈ 0.05 for pO2 = 10-5 atm. A hydration enthalpy of -109 kJ mol-1 is obtained in the range 600-900 °C.

  6. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)

    Science.gov (United States)

    Peled, E.; Livshits, V.; Duvdevani, T.

    We recently reported the development of a new nanoporous proton-conducting membrane (NP-PCM) and have applied it in a direct methanol fuel cell (DMFC) and in other direct oxidation fuel cells. The use of the NP-PCM in the DMFC offers several advantages over the Nafion-based DMFC including lower membrane cost, lower methanol crossover which leads to a much higher fuel utilization and higher conductivity. In this work, we found that the 90 °C swelling of the NP-PCM is only 5-8% and that the diffusion constant of methanol at 80-130 °C is higher by a factor of 1.5-3 than that of ethylene glycol (EG). The maximum power density of methanol/oxygen and EG/oxygen FCs equipped with a 100 μm thick NP-PCMs is 400 and 300 mW/cm 2 respectively, higher than that for a DMFC based on Nafion 115 (260 mW/cm 2 [Eletrochem. Solid-State Lett. 4 (4) (2001) A31]. This puts the DEGFC in direct competition with both DMFC and indirect methanol FC. Ethylene glycol (EG) is well known in the automobile industry and in contrast to methanol, its distribution infrastructure already exists, thus it is a promising candidate for practical electric vehicles.

  7. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Takahiro [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan); Kawaharamura, Toshiyuki [Research Institute, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); School of Systems Engineering, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); Fujita, Shizuo, E-mail: fujitasz@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan); Orita, Hiroyuki [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan)

    2015-12-31

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10{sup −4} Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac){sub 2}], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH{sub 3} to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10{sup −3} Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac){sub 2}] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10{sup −3} Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  8. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    International Nuclear Information System (INIS)

    Shirahata, Takahiro; Kawaharamura, Toshiyuki; Fujita, Shizuo; Orita, Hiroyuki

    2015-01-01

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10"−"4 Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac)_2], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH_3 to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10"−"3 Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac)_2] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10"−"3 Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  9. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  10. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Yingbing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Zayd Chad

    2015-01-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties

  11. An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells

    KAUST Repository

    Sun, Wenping; Shi, Zhen; Liu, Mingfei; Bi, Lei; Liu, Wei

    2014-01-01

    Yttrium and indium co-doped barium zirconate is investigated to develop a chemically stable and sintering active proton conductor for solid oxide fuel cells (SOFCs). BaZr0.8Y0.2-xInxO3- δ possesses a pure cubic perovskite structure. The sintering

  12. Interaction of protons with the C{sub 60} molecule: calculation of deposited energies and electronic stopping cross sections (v{sub {<=}}5 au)

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)]. E-mail: pmc@irsamc.ups-tlse.fr; Bordenave-Montesquieu, D.; Rentenier, A.; Bordenave-Montesquieu, A. [Laboratoire CAR, IRSAMC, UMR 5589 CNRS, Universite Paul Sabatier, Toulouse (France)

    2001-09-28

    The energy deposited by a proton in a C{sub 60} molecule is calculated over a broad collision velocity range from 0.1 to 5 au, using the free-electron gas model of Lindhard and Winther (1964 Mat. Fys. Medd. K Dan. Vidensk. Selsk. 34) and the C{sub 60} electron density distribution calculated by Puska and Nieminen. The energy lost by the proton is maximum near 1.8 au collision velocity in contrast with the saturation found in the low-velocity regime, in the 0.25-0.5 au velocity range, by Kunert and Schmidt. From the impact parameter dependence we deduce the distributions of deposited energies, the averaged energy losses and the C{sub 60} electronic stopping cross sections. It is found that the C{sub 60} molecule behaves as a carbon foil giving very similar absolute stopping cross sections per atom. (author). Letter-to-the-editor.

  13. Development and characterisation of electrically conductive polymeric-based blends for proton exchange membrane fuel cell bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Bouatia, S.; Mighri, F. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Bousmina, M. [Center for Applied Research on Polymers and Composites, CREPEC, Department of Chemical Engineering, Laval University, Quebec (Canada); Canada Research Chair on Polymer Physics and Nanomaterials, Department of Chemical Engineering, Laval University, Quebec (Canada); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2008-04-15

    The main objective of this work was to develop films with controlled dimensions for proton exchange membrane fuel cell (PEMFC) bipolar plates (BPPs) using the twin-screw extrusion process. These films consisted of a low-viscosity polyethylene terephthalate (PET) in which a mixture of high specific surface area carbon black (CB) and synthetic flake graphite (GR) were dispersed. A third conductive additive, consisting of silver-coated glass particles (SCG) or multi-walled carbon nanotubes (MWCNT), was also added at a low concentration (5 wt.-%) in order to study its synergistic effect on the PET-based blend electrical conductivity. As the developed blends had to meet properties suitable for PEMFC bipolar plate applications, they were characterised for their electrical through-plane resistivity, mechanical properties and oxygen permeability. Through-plane electrical resistivity of about 0.3 {omega}.cm and oxygen permeation rate of 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} were obtained for only 30 wt.-% of a 60:40 mixture of CB/GR conductive additives. Although the substitution of 5 wt.-% of CB/GR by the same amount of MWCNT had no significant effect on BPPs' electrical resistivity, it helped to improve their mechanical properties and especially their oxygen permeation, which was decreased from 3.5 x 10{sup -8} cc cm{sup -2} s{sup -1} to around 0.6 x 10{sup -8} cc cm{sup -2}s{sup -1}. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  14. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    Science.gov (United States)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  15. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  16. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei

    2015-07-17

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton-conducting SOECs due to its excellent chemical stability under H2O conditions, but few reports on this aspect has been made due to the processing difficulty for BaZrO3. Our recent pioneering work has demonstrated the feasibility of using BaZrO3-based electrolyte for SOECs and the fabricated cell achieves relatively high cell performance, which is comparable or even higher than that for BaCeO3-based SOECs and offers better chemical stability. Cell performance can be further improved by tailoring the electrolyte and electrode. © The Electrochemical Society.

  17. Electrochemically deposited conducting polymers for reliable biomedical interfacing materials: Formulation, mechanical characterization, and failure analysis

    Science.gov (United States)

    Qu, Jing

    Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel

  18. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    Science.gov (United States)

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  19. Modeling and optimization of proton-conducting solid oxide electrolysis cell: Conversion of CO2 into value-added products

    Science.gov (United States)

    Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2016-11-01

    Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.

  20. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    Science.gov (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  1. Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs)

    KAUST Repository

    Bi, Lei

    2015-01-01

    A proton-conducting solid oxide electrolysis cell using an Y-doped BaZrO3 electrolyte film, which has been demonstrated to be chemically stable, was successfully fabricated for the first time and showed a promising electrolysis performance.

  2. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    NARCIS (Netherlands)

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward

  3. Influence of electroformation regime on the specific properties of cobalt oxide‒platinum composite films deposited on conductive diamond

    Energy Technology Data Exchange (ETDEWEB)

    Spătaru, Tanţa; Osiceanu, Petre; Preda, Loredana; Munteanu, Cornel [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Spătaru, Nicolae, E-mail: nspataru@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independenţei 060021, Bucharest (Romania); Fujishima, Akira [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 (Japan)

    2014-04-01

    Two straightforward electrochemical methods were used in the present work for depositing cobalt oxide-platinum composite films on boron-doped diamond substrates in order to put into evidence the effect of the electroformation regime on the morphological and electrochemical features of these hybrid systems. The shift from potentiostatic to potentiodynamic deposition enabled not only a significant improvement of the Pt particles dispersion but also a much higher surface concentration of oxygenated species of platinum. For similar Co{sub 3}O{sub 4} and Pt loadings, the specific capacitance of the composite films deposited by cyclic voltammetry was with ca. 8% higher than that of the potentiostatically obtained ones. Additional advantage of potentiodynamic deposition is the improved resistance to fouling during methanol anodic oxidation of Pt particles, tentatively ascribed to the higher surface concentration of oxygenated species of platinum. - Highlights: • Cobalt oxide-platinum composite films were electrodeposited on conductive diamond. • Composite films formed by cyclic voltammetry exhibit enhanced specific capacitance. • Potentiodynamic deposition enables higher concentration of oxygenated Pt species. • Co{sub 3}O{sub 4}–Pt films prepared by cyclic voltammetry are less susceptible to CO poisoning.

  4. Highly conducting and transparent Ti-doped CdO films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gupta, R.K.; Ghosh, K.; Patel, R.; Kahol, P.K.

    2009-01-01

    Titanium-doped cadmium oxide thin films were deposited on quartz substrate by pulsed laser deposition technique. The effect of substrate temperature on structural, optical and electrical properties was studied. The films grown at high temperature show (2 0 0) preferred orientation, while films grown at low temperature have both (1 1 1) and (2 0 0) orientation. These films are highly transparent (63-79%) in visible region, and transmittance of the films depends on growth temperature. The band gap of the films varies from 2.70 eV to 2.84 eV for various temperatures. It is observed that resistivity increases with growth temperature after attaining minimum at 150 deg. C, while carrier concentration continuously decreases with temperature. The low resistivity, high transmittance and wide band gap titanium-doped CdO films could be an excellent candidate for future optoelectronic and photovoltaic applications.

  5. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    Science.gov (United States)

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  6. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production.

    Directory of Open Access Journals (Sweden)

    Ann L Wozniak

    2010-09-01

    Full Text Available The hepatitis C virus (HCV p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H(+ conductance in vesicles and was able to rapidly equilibrate H(+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5 vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H(+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H(+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection

  7. Layered SmBaCuCoO5+δ and SmBaCuFeO5+δ perovskite oxides as cathode materials for proton-conducting SOFCs

    International Nuclear Information System (INIS)

    Nian Qiong; Zhao Ling; He Beibei; Lin Bin; Peng Ranran; Meng Guangyao; Liu Xingqin

    2010-01-01

    A dense BaCe 0.8 Sm 0.2 O 5+δ (BCS) electrolyte was fabricated on a porous anode by in situ drop-coating to develop a simple and cost-effective route to fabricate proton-conducting solid oxide fuel cells (SOFCs). Layered perovskite-structure oxides SmBaCuCoO 5+δ (SBCC) and SmBaCuFeO 5+δ (SBCF) were prepared and the electrical conductivity, the thermal expansion coefficient and electrochemical performance were investigated as potential cathode materials for proton-conducting SOFCs. Thermal expansion coefficients of SBCC and SBCF were suitable for BCS electrolyte and the electrical conductivity of the SBCC is higher than that of the SBCF. The maximum power density of 449 mW cm 2 and 333 mW cm 2 at 700 o C were obtained for the SBCC/BCS/NiO-BCS and SBCF/BCS/NiO-BCS cells, respectively. The interfacial polarization resistances for SBCC and SBCF cathode are as low as 0.137 Ω cm -2 and 0.196 Ω cm -2 at 700 o C, respectively. The results indicate that the SBCC and SBCF are promising cathode materials for proton-conducting SOFCs.

  8. Printing and Curing of Conductive Ink Track on Fabric using Syringe Deposition System with DLP Projector and Hot Plate

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2017-01-01

    Full Text Available Printing is a technique to transfer ink onto substrates to create pattern and syringe deposition system has shown some great potential in printing due to its ability to produce filamentary bead tracks which is important concerning conductivity and easily adopted on conformal surfaces which could not be realized by conventional technique. Fabrics with integrated electrical features able to create intelligent articles and may potentially open up new perspective areas of application in textile printing. However, the applicability of this technique on fabrics remains unknown which the ink used has to meet certain requirements including high electrical conductivity, resistance to oxidation, dry out without clogging, good adhesion with suitable viscosity and surface tension. Thus, there is a need to do this study which is to determine the feasibility of syringe deposition system to print a conductive ink tracks using silver epoxy-based conductive ink on fabric substrate via lycra material. This study is also aim to investigate the feasibility of using DLP projector with hot plate as another source of heat to be used in curing the ink tracks on fabric. The effect of printing and curing parameters to the characteristics and conductivity of the ink track is investigated. Several mechanical and electrical tests were also administered to determine the cure, hardness, adhesion and resistance level of the ink tracks. The results obtained were as expected which higher printing speed and lower deposition height used, a narrower and thinner ink tracks were produced. Sample with 4 mm/s of printing speed and deposition height of 1 mm resulted in dimension closer to the targeted dimension. The longer curing time and higher temperature used, a lower resistance is produced. The lowest resistance achieved is 0.9 Ω cured at 150°C for 60 minutes. The conductivity of the ink track was affected by curing process and cross-sectional area of the ink track. It is proven

  9. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  10. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    Science.gov (United States)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  11. Electrical conduction studies of hot wall deposited CdSe{sub x}Te{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore 641014 (India); Balasundaraprabhu, R.; Jayakumar, S.; Kannan, M.D. [Department of Physics, PSG College of Technology, Coimbatore (India)

    2008-08-15

    CdSe{sub x}Te{sub 1-x} thin films of different compositions have been deposited on cleaned glass substrates using the hot wall deposition technique under conditions very close to thermodynamical equilibrium with minimum loss of material. The electrical conductivity of the deposited films has been studied as a function of temperature. All the films showed a transition from phonon-assisted hopping conduction through the impurity band to grain-boundary-limited conduction in the conduction/valence band at temperature around 325 K. The conductivity has been found to vary with composition; it varied from 0.0027 to 0.0198 {omega}{sup -1} cm{sup -1} when x changed from 0 to 1. The activation energies of the films of different compositions determined at 225 and 400 K have been observed to lie in the range 0.0031-0.0098 and 0.0285-0.0750 eV, respectively. The Hall-effect studies carried out on the deposited films revealed that the nature of conductivity (p or n-type) was dependent on film composition; films with composition x=0 and 0.15 have been found to be p-type and the ones with composition x=0.4, 0.6, 0.7, 0.85 and 1 have been observed to exhibit n-type conductivity. The carrier concentration has been determined and is of the order of 10{sup 17} cm{sup -3}. The majority of carrier mobilities of the films have been observed to vary from 0.032 to 0.183 cm{sup 2} V{sup -1} s{sup -1} depending on film composition. The study of the mobility of the charge carriers with temperature in the range of 300-450 K showed that the mobility increased with 3/2 power of temperature indicating that the type of scattering mechanism in the studied temperature range is the ionized impurity scattering mechanism. (author)

  12. Life test of DMFC using poly(ethylene glycol)bis(carboxymethyl)ether plasticized PVA/PAMPS proton-conducting semi-IPNs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jinli [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan); New Energy Technology Research Center, Tongji University, Shanghai 201804 (China); Ikesaka, Shinya; Saito, Morihiro; Kuwano, Jun [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826 (Japan); Okada, Tatsuhiro [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-08-15

    A novel, low-cost proton-conducting semi-IPN (semi-interpenetrating polymer network) has been successfully prepared from PVA/PAMPS (poly(vinyl alcohol) and poly(2-acrylamindo-2-methyl-1-propanesulfonic acid))blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm{sup -1}) at 25 C, which afforded a higher power density of 51 mW cm{sup -2} at 80 C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA-PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons. (author)

  13. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  14. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    International Nuclear Information System (INIS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-01-01

    Thin Al 2 O 3 layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current

  15. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  16. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-01-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2|Ti|Ag| TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 Ω/□ (where □ stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR

  17. Improving the conductance of ZnO thin film doping with Ti by using a cathodic vacuum arc deposition process

    International Nuclear Information System (INIS)

    Wu, Chun-Sen; Lin, Bor-Tsuen; Jean, Ming-Der

    2011-01-01

    The Ti-doped ZnO films compared to un-doped ZnO films were deposited onto Corning XG glass substrates by using a cathodic vacuum arc deposition process in a mixture of oxygen and argon gases. The structural, electrical and optical properties of un-doped and Ti-doped ZnO films have been investigated. When the Ti target power is about 750 W, the incorporation of titanium atoms into zinc oxide films is obviously effective. Additionally, the resistivity of un-doped ZnO films is high and reduces to a value of 3.48 x 10 -3 Ω-cm when Ti is incorporated. The Ti doped in the ZnO films gave rise to the improvement of the conductivity of the films obviously. The Ti-doped ZnO films have > 85% transmittance in a range of 400-700 nm.

  18. Deposition of PEDOT: PSS Nanoparticles as a Conductive Microlayer Anode in OLEDs Device by Desktop Inkjet Printer

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2011-01-01

    Full Text Available A simple microfabrication technique for delivering macromolecules and patterning microelectrode arrays using desktop inkjet printer was described. Aqueous solution of nanoparticle of poly (3,4-ethylenedioxythiophene (PEDOT doped with polystyrene sulfonic acid (PSS was prepared while its particle size, the surface tension, and the viscosity of the solution were adjusted to be suitable for deposition on a flexible cellulose nanocomposite substrate via inkjet printer. The statistical average of PEDOT: PSS particle size of 100 nm was observed. The microthickness, surface morphology, and electrical conductivity of the printed substrate were then characterized by profilometer, atomic force microscope (AFM, and four-point probe electrical measurement, respectively. The inkjet deposition of PEDOT: PSS was successfully carried out, whilst retained its transparency feature. Highly smooth surface (roughness ~23–44 nm was achieved.

  19. Preparation, characterization and evaluation of proton-conducting hybrid membranes based on sulfonated hydrogenated styrene-butadiene and polysiloxanes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Barreto, M.; Aguilar, J.C.; Rodriguez de San Miguel, E.; de Gyves, J. [Departamento de Quimica Analitica, Facultad de Quimica, UNAM, Ciudad Universitaria, 04360 Mexico, D.F. (Mexico); Acosta, J.L.; del Rio, C.; Ojeda, M.C. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), c/Juan de la Cierva 3, 28006 Madrid (Spain); Munoz, M. [Departament de Quimica Analitica, Facultat de Ciencies, U.A.B., Bellaterra 08193 Barcelona (Spain)

    2010-12-15

    This paper describes the preparation of proton-conducting hybrid membranes (HMs) obtained by a solvent casting procedure using a solution containing sulfonated hydrogenated styrene-butadiene (HSBS-S) and an inorganic-organic mixture (polysiloxanes) previously prepared by a sol-gel route. HSBS-S copolymers with different sulfonation degrees were obtained and characterized by means of elemental analysis (EA), chemical titration and electrochemical impedance spectroscopy (EIS). HSBS-S with the best properties in terms of proton conductivity and solubility for the casting procedure was selected to prepare the HMs. The solvent casting procedure permitted the two phases to be homogeneously distributed while maintaining a relatively high proton conductivity in the membrane. HMs with different blend ratios were characterized using structural (Fourier transform infrared-attenuated total reflectance (FTIR-ATR), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC)), electrical (EIS), physicochemical (water uptake, ion-exchange capacity) and thermal (TGA-MS) methods. Finally, the optimized HSBS-S membrane and HMs were tested in hydrogen single fuel cells to obtain the polarization and power curves at different cell temperatures and gas pressures. Results indicate that HMs show a considerable improvement in performance compared to the optimized HSBS-S membrane denoting the benefit of incorporating the inorganic-organic network in the hydrogenated styrene-butadiene matrix. A Nafion membrane was used as reference material throughout this work. (author)

  20. Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament

    Science.gov (United States)

    Xie, Yangbo; Ye, Shengrong; Reyes, Christopher; Sithikong, Pariya; Popa, Bogdan-Ioan; Wiley, Benjamin J.; Cummer, Steven A.

    2017-05-01

    This work reports a method for fabricating three-dimensional microwave metamaterials by fused deposition modeling 3D printing of a highly conductive polymer composite filament. The conductivity of such a filament is shown to be nearly equivalent to that of a perfect conductor for microwave metamaterial applications. The expanded degrees-of-freedom made available by 3D metamaterial designs are demonstrated by designing, fabricating, and testing a 3D-printed unit cell with a broadband permittivity as high as 14.4. The measured and simulated S-parameters agree well with a mean squared error smaller than 0.1. The presented method not only allows reliable and convenient fabrication of microwave metamaterials with high conductivity but also opens the door to exploiting the third dimension of the unit cell design space to achieve enhanced electromagnetic properties.

  1. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    Science.gov (United States)

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  2. Antireflective conducting nanostructures with an atomic layer deposited an AlZnO layer on a transparent substrate

    International Nuclear Information System (INIS)

    Park, Hyun-Woo; Ji, Seungmuk; Herdini, Diptya Suci; Lim, Hyuneui; Park, Jin-Seong; Chung, Kwun-Bum

    2015-01-01

    Graphical abstract: - Highlights: • We investigated the antireflective conducting nanostructures on a transparent substrate using atomic layer deposited AlZnO films. • The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance. • The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. • The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states. - Abstract: The antireflective conducting nanostructures on a transparent substrate were shown to have enhanced optical and electrical properties via colloidal lithography and atomic layer deposition. The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance, both of which were superior to those of a flat transparent conducting substrate. The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states.

  3. GdBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} layered perovskite as promising cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Xue, Xingjian, E-mail: Xue@cec.sc.ed [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-04-30

    BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) exhibits adequate proton conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered GdBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (GBSC) perovskite deposited on a doped ceria electrolyte demonstrates advanced electrochemical properties. This research fully takes advantage of these advanced properties and develops novel protonic ceramic membrane fuel cells (PCMFCs) of Ni-BZCY7|BZCY7|GBSC. The results show that the open-circuit potential of 1.003 V, maximum power density of 430 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.08 {Omega} cm{sup 2} are achieved at 700 {sup o}C. With temperature increases, the total cell resistance decreases, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that GBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7|BZCY7|GBSC cell is a promising functional material system for next generation SOFCs.

  4. Rectal Toxicity After Proton Therapy For Prostate Cancer: An Analysis of Outcomes of Prospective Studies Conducted at the University of Florida Proton Therapy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Colaco, Rovel J.; Hoppe, Bradford S.; Flampouri, Stella [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); McKibben, Brian T. [Baptist Health Medical Center, Department of Surgery, Jacksonville, Florida (United States); Henderson, Randal H.; Bryant, Curtis; Nichols, Romaine C.; Mendenhall, William M.; Li, Zuofeng; Su, Zhong [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States); Morris, Christopher G. [Baptist Health Medical Center, Department of Surgery, Jacksonville, Florida (United States); Mendenhall, Nancy P., E-mail: menden@floridaproton.org [The University of Florida Proton Therapy Institute, Jacksonville, Florida (United States)

    2015-01-01

    Purpose: Study goals were to characterize gastrointestinal effects of proton therapy (PT) in a large cohort of patients treated for prostate cancer, identify factors associated with rectal bleeding (RB), and compare RB between patients receiving investigational protocols versus those in outcome-tracking protocols. Methods and Materials: A total of 1285 consecutive patients were treated with PT between August 2006 and May 2010. Potential pre-existing clinical and treatment-related risk factors for rectal toxicity were recorded. Common Terminology Criteria for Adverse Events version 3.0 was used to score toxicity. Results: Transient RB was the predominant grade 2 or higher (GR2+) toxicity after PT, accounting for 95% of gastrointestinal events. GR1 RB occurred in 217 patients (16.9%), GR2 RB in 187 patients (14.5%), and GR3 in 11 (0.9%) patients. There were no GR4 or GR5 events. Univariate analyses showed correlations between GR2+ RB and anticoagulation therapy (P=.008) and rectal and rectal wall dose-volume histogram (DVH) parameters (P<.001). On multivariate analysis, anticoagulation therapy (P=.0034), relative volume of rectum receiving 75 Gy (V75; P=.0102), and relative rectal wall V75 (P=.0017) were significant predictors for G2+ RB. Patients treated with investigational protocols had toxicity rates similar to those receiving outcome-tracking protocols. Conclusions: PT was associated with a low rate of GR2+ gastrointestinal toxicity, predominantly transient RB, which was highly correlated with anticoagulation and rectal DVH parameters. Techniques that limit rectal exposure should be used when possible.

  5. Rectal Toxicity After Proton Therapy For Prostate Cancer: An Analysis of Outcomes of Prospective Studies Conducted at the University of Florida Proton Therapy Institute

    International Nuclear Information System (INIS)

    Colaco, Rovel J.; Hoppe, Bradford S.; Flampouri, Stella; McKibben, Brian T.; Henderson, Randal H.; Bryant, Curtis; Nichols, Romaine C.; Mendenhall, William M.; Li, Zuofeng; Su, Zhong; Morris, Christopher G.; Mendenhall, Nancy P.

    2015-01-01

    Purpose: Study goals were to characterize gastrointestinal effects of proton therapy (PT) in a large cohort of patients treated for prostate cancer, identify factors associated with rectal bleeding (RB), and compare RB between patients receiving investigational protocols versus those in outcome-tracking protocols. Methods and Materials: A total of 1285 consecutive patients were treated with PT between August 2006 and May 2010. Potential pre-existing clinical and treatment-related risk factors for rectal toxicity were recorded. Common Terminology Criteria for Adverse Events version 3.0 was used to score toxicity. Results: Transient RB was the predominant grade 2 or higher (GR2+) toxicity after PT, accounting for 95% of gastrointestinal events. GR1 RB occurred in 217 patients (16.9%), GR2 RB in 187 patients (14.5%), and GR3 in 11 (0.9%) patients. There were no GR4 or GR5 events. Univariate analyses showed correlations between GR2+ RB and anticoagulation therapy (P=.008) and rectal and rectal wall dose-volume histogram (DVH) parameters (P<.001). On multivariate analysis, anticoagulation therapy (P=.0034), relative volume of rectum receiving 75 Gy (V75; P=.0102), and relative rectal wall V75 (P=.0017) were significant predictors for G2+ RB. Patients treated with investigational protocols had toxicity rates similar to those receiving outcome-tracking protocols. Conclusions: PT was associated with a low rate of GR2+ gastrointestinal toxicity, predominantly transient RB, which was highly correlated with anticoagulation and rectal DVH parameters. Techniques that limit rectal exposure should be used when possible

  6. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  7. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  8. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  9. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  10. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  11. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.

    2015-07-17

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  12. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.; Bi, Lei; Boulfrad, S.; Traversa, Enrico

    2015-01-01

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  13. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  14. Evaluation of the electrical conductivity and corrosion resistance for layers deposited via sputtering on stainless steel

    Science.gov (United States)

    Blanco, J.; Salas, Y.; Jiménez, C.; Pineda, Y.; Bustamante, A.

    2017-12-01

    In some Engineering fields, we need that conductive materials have a mechanic performance and specific electrical for that they maintain conditions or corrosive attack if they are in the environment or if they are closed structure. The stainless steels have an inert film on their surface and it has the function to act in contrast to external agents who generates the corrosion, especially for stings, spoiling the film until to fail. We found a solution taking into account the electrical performance and the anticorrosive; into the process we put recovering of specific oxides on, stainless steel using the method of sputtering with Unbalanced Magnetron, (UBM) varying the oxygen in the reactive environment. The coating obtained had a thickness one micron approximately and we saw on serious structural uniformity [1]. The corrosion resistance was evaluated through the potentiodynamics polarization and electrochemical spectroscopy impedance in NACL according to the standard. The cathode protection is the most important method employed for the corrosion prevention of metallic structures in the soil or immersed on the water. The electrical resistivity was evaluated with the four points methods and it showed a behaviour of diode type in some substrates with a threshold potential in several volts. We noticed a simple resistance solution when it was analysed in the Nyquist graphics whit the Electrochemical Impedance Spectroscopy technique. With on equivalent circuit, for this reason we determinate a variation in the corrosion speed in almost two orders of magnitude when we analysed the potentiodynamics curve by Tafel approximation. The data obtained and analysed show that this type of surface modification maintains the conductivity condition at the interface, improving the resistance in relation whit the corrosion of these elements where the recovering allowed the ionic flow wished for overcoming threshold voltage, acting as an insulator in different cases.

  15. In vitro surfactant and perfluorocarbon aerosol deposition in a neonatal physical model of the upper conducting airways.

    Directory of Open Access Journals (Sweden)

    Estibalitz Goikoetxea

    Full Text Available OBJECTIVE: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. METHODS: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD, were measured at different driving pressures (4-7 bar. Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. RESULTS: The nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65% was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar. CONCLUSION: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

  16. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  17. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Molina, Rafael [Departamento de Fisica, Centro de Investigacion en Optica y Nanofisica (CIOyN), Universidad de Murcia, E-30100 Murcia (Spain); Abril, Isabel [Departament de Fisica Aplicada, Universitat d' Alacant, E-03080 Alacant (Spain); Heredia-Avalos, Santiago [Departament de Fisica, Enginyeria de Sistemes i Teoria del Senyal, Universitat d' Alacant, E-03080 Alacant (Spain); Kyriakou, Ioanna; Emfietzoglou, Dimitris, E-mail: rgm@um.es [Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina (Greece)

    2011-10-07

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  18. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2011-01-01

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  19. Water-assisted and thermally-enhanced protonic conduction in HZSM-5, effect of gamma-irradiation on the electric properties. [Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Higazy, A.A.; Kassem, M.E. (Qatar Univ. (Qatar). Physics Dept.); Sayed, M.B. (Qatar Univ. (Qatar). Chemistry Dept.)

    1992-01-01

    Analysis of the a.c. conductivity of the zeolite HZSM-5, in the 0.1-100 kHz frequency region and the 300-700 K temperature range, reveals semiconducting features based predominantly on an ionic mechanism. This is reflected in a low-frequency Cole-Cole dependence of the Z''(Z') impedance and in a linear dependence of the {epsilon}''(''epsilon''') dielectric constant throughout the temperature range. The zeolite Broensted sites are the active centers responsible for the ionic conduction. As the conductivity drops to 373 K, sorbed water seems to participate in the conduction as a vehicle assisting the proton mobility. Above 373 K, the conductivity continues to rise as an indication of critical transition into a thermally enhanced ionic conduction. Both low-temperature sorbed water and high-temperature thermal motion are necessary to ensure a firm contact at the aggregate surfaces, where conduction takes place. Gamma-irradiation also participates in the conduction by creating new sites sensitive to the same parameters governing the conduction mechanism. (author).

  20. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  1. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  2. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Peng Chuang; Jin Jun; Chen, George Z.

    2007-01-01

    Composite films of carbon nanotubes (CNTs) with polyaniline (PANI), polypyrrole (PPY) or poly[3,4-ethylenedioxythiophene] (PEDOT) were prepared via electrochemical co-deposition from solutions containing acid treated CNTs and the corresponding monomer. In the cases of PPY and PEDOT, CNTs served as the charge carriers during electro-deposition, and also acted as both the backbone of a three-dimensional micro- and nano-porous structure and the effective charge-balancing dopant within the polymer. All the composites showed improved mechanical integrity, higher electronic and ionic conductivity (even when the polymer was reduced), and exhibited larger electrode specific capacitance than the polymer alone. Under similar conditions, the capacitance was enhanced significantly in as-prepared PPY-CNT and PEDOT-CNT films. However, the fresh PANI-CNT film was electrochemically similar to PANI, but PPY-CNT and PEDOT-CNT differed noticeably from the respective polymers alone. In continuous potential cycling tests, unlike the pure polymer and other composite films, PANI-CNT performed much better in retaining the capacitance of the as-prepared film, and the possible cause is analysed

  3. Determination of the electrical characteristics of protective coatings and deposits on metals in media with low electrical conductivity

    International Nuclear Information System (INIS)

    Ovcharenko, V.I.; Koroleva, E.V.; Fedorova, A.N.; Sereda, G.A.

    1987-01-01

    This paper presents the results of a theoretical analysis and experimental determination of the electrical and associated protective characteristics of poorly conducting layers on metals, modeling both oxide and hydroxide deposits on the inner surfaces of the equipment as well as films of protective coatings. The analysis is performed using the linear low-frequency ac current (10 -3 -10 -6 Hz) method, which is based on the determination of the impedance Z, the admittance Y = 1/Z, the complex capacitance C = Y/j omega, where omega is the circular frequency of the alternating current, the complex dielectric constant epsilon, the tangent of the dielectric-loss angle tan δ and other quantities associated with them

  4. Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity

    Science.gov (United States)

    Devasia, Sebin; Athma, P. V.; Shaji, Manu; Kumar, M. C. Santhosh; Anila, E. I.

    2018-03-01

    Here, we report the enhanced conductivity of Aluminium doped (2at.%) zinc oxide thin films prepared by simple spray pyrolysis technique. The structural, optical, electrical, morphological and compositional investigations confirm the better quality of films that can be a potential candidate for application in transparent electronics. Most importantly, the film demonstrates an average transmittance of 90 percent with a low resistivity value which was dropped from 1.39 × 10-2 to 5.10 × 10-3 Ω .cm, after annealing, and a very high carrier concentration in the order of 10 × 20cm-3. Further, we have used the Swanepoel envelop method to calculate thickness, refractive index and extinction coefficient from the interference patterns observed in the transmission spectra. The calculated figure of merit of the as-deposited sample was 1.4 × 10-3Ω-1 which was improved to 2.5 × 10-3Ω-1 after annealing.

  5. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  6. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Directory of Open Access Journals (Sweden)

    Y. Nie

    2017-08-01

    Full Text Available The conceptual design of the Future Circular Collider (FCC is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  7. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-03-07

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  8. A Mutation Affecting the Sodium/Proton Exchanger, "SLC9A6," Causes Mental Retardation with Tau Deposition

    Science.gov (United States)

    Garbern, James Y.; Neumann, Manuela; Trojanowski, John Q.; Lee, Virginia M.-Y.; Feldman, Gerald; Norris, Joy W.; Friez, Michael J.; Schwartz, Charles E.; Stevenson, Roger; Sima, Anders A. F.

    2010-01-01

    We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent…

  9. A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Shen, Yi; Xi, Jingyu; Qiu, Xinping; Zhu, Wentao

    2007-01-01

    In this paper, a new kind of copolymer methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS-co-MMA) was synthesized by free radical polymerization. IR-spectrum and 1 H NMR were used to confirm the structure of the copolymers, and the thermal character of the copolymers was investigated with TGA and DSC. Flexible and transparent membranes based on this kind of copolymer were prepared by solution casting method. The physical properties including ionic exchange capability (IEC), water uptake, proton conductivity, methanol permeability and morphology of the membranes were investigated. These membranes showed higher water uptake though they had lower IEC compared with Nafion-117. The proton conductivity of the membrane with IEC of 0.9 mmol/g was 1.14 x 10 -2 S/cm and its methanol permeability coefficient was 5.46 x 10 -7 cm 2 /s, much lower than that of Nafion-117. Tests on cells were also carried out to measure the performance of the membrane

  10. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    Science.gov (United States)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  11. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  12. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  13. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    Science.gov (United States)

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  14. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    Science.gov (United States)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  15. Conductive materials for proton exchange membrane fuel cell bipolar plates made from PVDF, PET and co-continuous PVDF/PET filled with carbon additives

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, L.; Mighri, F.; Deyrail, Y. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Chemical Engineering, Laval University, QC (Canada); Elkoun, S. [CREPEC, Center for Applied Research on Polymers and Composites, QC (Canada); Department of Mechanical Engineering, Sherbrooke University, QC (Canada)

    2010-12-15

    The aim of this work was to develop and characterise electrically conductive materials for proton exchange membrane fuel cells and bipolar plates (BPPs). These BPPs were made from highly conductive blends of polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF), as matrix phase. The conductive materials were developed from carefully formulated blends composed of conductive carbon black (CB) powder and, in some cases, graphite synthetic flakes mixed with pure PET, PVDF or with PVDF/PET systems. They were first developed by twin-screw extrusion process then compression-molded to give BPP final shape. As the developed blends have to meet properties suitable for BPP applications, they were characterised for their rheological properties, electrical through-plane resistivity (the inverse of conductivity), oxygen permeability, flexural and impact properties. Results showed that lower resistivity was obtained with PVDF/CB blends due to the higher interfacial energy between the PVDF matrix and CB and also the higher density and crystallinity of PVDF, compared to those of PET. It was also observed that the lowest resistivity values were obtained with mixing PVDF and PET at controlled compositions to ensure PVDF/PET co-continuous morphology. Also, slow cooling rates helped to attain the lowest values of through-plane resistivity for all studied blends. This behaviour was related to the higher crystallinity obtained with low cooling rates leading to smaller amorphous regions in which carbon particles are much more concentrated. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A novel cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} cathode for proton conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-07-01

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2} and high thermal expansion coefficients. In this research, a cobalt-free layered GdBaFe{sub 2}O{sub 5+{delta}} (GBF) perovskite was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF were fabricated and characterized using complex impedance technique from 600 to 700 C. An open-circuit potential of 1.007 V, maximum power density of 417 mW cm{sup -2}, and a low electrode polarization resistance of 0.18 {omega} cm{sup 2} were achieved at 700 C. The results indicate that layered GBF perovskite is a good candidate for cobalt-free cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBF cell is a promising functional material system for solid oxide fuel cells. (author)

  17. Novel layered perovskite GdBaCoFeO{sub 5+{delta}} as a potential cathode for proton-conducting solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-05-15

    While cobalt-containing perovskite-type cathode materials facilitate the activation of oxygen reduction, they also suffer from problems like poor chemical stability in CO{sub 2}, high thermal expansion coefficients, etc. Partial B site substitution with Fe element is expected to be able to mitigate these problems while keeping high catalyst performance. In this paper, a layered perovskite GdBaCoFeO{sub 5+{delta}} (GBCF) was developed as a cathode material for protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolyte of stable BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7). The button cells of Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF were fabricated and tested from 600 to 700 C with humidified H{sub 2} ({proportional_to}3% H{sub 2}O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.002 V, maximum power density of 482 mW cm{sup -2}, and a low electrode polarization resistance of 0.11 {omega}cm{sup 2} were achieved at 700 C. The experimental results indicated that the layered perovskite GBCF is a good candidate for cathode material, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke GBCF cell is a promising functional material system for intermediate temperature solid oxide fuel cells. (author)

  18. A proton-conducting composite membrane: Sn0.95Al0.05P2O7 and polystyrene-b-poly(ethylene/propylene)-b-polystyrene

    International Nuclear Information System (INIS)

    Jin, Yongcheng; Hibino, Takashi

    2010-01-01

    An anhydrous proton conductor, Sn 0.95 Al 0.05 P 2 O 7 (SAPO), composed of polystyrene-b-poly(ethylene/propylene)-b-polystyrene (SEPS), was developed and characterized using morphological, structural, and electrochemical analyses. In the composite membrane with 20 wt% SEPS, a homogeneous distribution of SAPO particles in the matrix was obtained in the thickness range of 65-90 μm, yielding a proton conductivity of 3.4 x 10 -3 S cm -1 at 200 o C, tensile strength of 4.6 MPa and an elongation at break of 711.0% at room temperature. Fuel cell tests verified that the open-circuit voltage was maintained at a constant value of approximately 1 V between 100 and 250 o C. The peak power densities achieved with unhumidified H 2 and air were 77.0 mW cm -2 at 100 o C, 121.0 mW cm -2 at 150 o C, and 163.1 mW cm -2 at 225 o C.

  19. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    Science.gov (United States)

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  20. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating film

    Science.gov (United States)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil

    2018-01-01

    Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.

  1. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    Science.gov (United States)

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  2. A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Sadeghi, E.; Djilali, N.; Bahrami, M.

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity. This transport property differs significantly in the through-plane and in-plane directions due to the anisotropic micro-structure of the GDL. A novel test bed that allows separation of in-plane effective thermal conductivity and thermal contact resistance in GDLs is described in this paper. Measurements are performed using Toray carbon paper TGP-H-120 samples with varying polytetrafluoroethylene (PTFE) content at a mean temperature of 65-70 °C. The measurements are complemented by a compact analytical model that achieves good agreement with experimental data. The in-plane effective thermal conductivity is found to remain approximately constant, k ≈ 17.5 W m -1 K -1, over a wide range of PTFE content, and its value is about 12 times higher than that for through-plane conductivity.

  3. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  4. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  5. Role of P{sub 2}O{sub 5} on protonic conduction in sol-gel-derived binary phosphosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Abe, Y.; Kasuga, T.; Nogami, M. [Nagoya Institute of Technology, Aichi (Japan). Dept. of Materials Sceince and Engineering

    1999-11-01

    Sol-gel derived P{sub 2}O{sub 5}-SiO{sub 2} glasses were studied and a remarkable improvement in protonic conduction was observed by increasing the P{sub 2}O{sub 5} content. This was attributed to (1) the variation in glass structure including the reduction of the degree of cross-linking skeleton and the increase of specific surface area of glass due to the non-bridging oxygen (P=O) in P-O tetrahedron, (2) the formation of stronger hydrogen bond between hydroxyl group and P=O group as well as hydroxyl group and, (3) the p-{pi} resonance effect in O{sub (3-t)}PO(OH){sub t} unit. (author)

  6. Proton-proton bremsstrahlung

    International Nuclear Information System (INIS)

    Fearing, H.W.

    1990-01-01

    We summarize some of the information about the nucleon-nucleon force which has been obtained by comparing recent calculations of proton-proton bremsstrahlung with cross section and analyzing power data from the new TRIUMF bremsstrahlung experiment. Some comments are made as to how these results can be extended to neutron-proton bremsstrahlung. (Author) 17 refs., 6 figs

  7. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition

    Science.gov (United States)

    Leedy, Kevin D.; Chabak, Kelson D.; Vasilyev, Vladimir; Look, David C.; Boeckl, John J.; Brown, Jeff L.; Tetlak, Stephen E.; Green, Andrew J.; Moser, Neil A.; Crespo, Antonio; Thomson, Darren B.; Fitch, Robert C.; McCandless, Jonathan P.; Jessen, Gregg H.

    2017-07-01

    Si-doped Ga2O3 thin films were fabricated by pulsed laser deposition on semi-insulating (010) β-Ga2O3 and (0001) Al2O3 substrates. Films deposited on β-Ga2O3 showed single crystal, homoepitaxial growth as determined by high resolution transmission electron microscopy and x-ray diffraction. Corresponding films deposited on Al2O3 were mostly single phase, polycrystalline β-Ga2O3 with a preferred (20 1 ¯ ) orientation. An average conductivity of 732 S cm-1 with a mobility of 26.5 cm2 V-1 s-1 and a carrier concentration of 1.74 × 1020 cm-3 was achieved for films deposited at 550 °C on β-Ga2O3 substrates as determined by Hall-Effect measurements. Two orders of magnitude improvement in conductivity were measured using native substrates versus Al2O3. A high activation efficiency was obtained in the as-deposited condition. The high carrier concentration Ga2O3 thin films achieved by pulsed laser deposition enable application as a low resistance ohmic contact layer in β-Ga2O3 devices.

  8. Further optimization of barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte

    Science.gov (United States)

    Wang, Shuai; Shen, Jianxing; Zhu, Zhiwen; Wang, Zhihao; Cao, Yanxin; Guan, Xiaoli; Wang, Yueyue; Wei, Zhaoling; Chen, Meina

    2018-05-01

    Yttrium-doped BaCeO3 is one of the most promising electrolyte candidates for solid oxide fuel cells because of its high ionic conductivity. Nd and Y co-doped BaCeO3 strategy is adopted for the further optimization of Y-doped BaCeO3 electrolyte properties. X-ray diffraction results indicate that the structure of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) with orthorhombic perovskite phase becomes more symmetric with increasing Nd concentration. The scanning electron microscope observation demonstrates that the densification and grain size of the sintered pellets significantly enhance with the increase of Nd doping level. Whether in dry and humid hydrogen or air, the increase of Nd dopant firstly increases the conductivities of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) and then decrease them after reaching the peak value at x = 0.05. Electrochemical impedance spectra at 350 °C can distinguish clearly the contribution of grain and grain boundary to total conductivity and the highest conductivity of BaCe0.8Y0.15Nd0.05O3-δ ascribes to the decrease in bulk and grain boundary resistances due to the synergistic effect of Nd and Y doping. The anode-supported single cell with BaCe0.8Y0.15Nd0.05O3-δ electrolyte shows an encouraging peak power density of 660 mW cm-2 at 700 °C, suggesting that BaCe0.8Y0.15Nd0.05O3-δ is a potential electrolyte material for the highly-efficient proton-conducting solid oxide fuel cell.

  9. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.Y.; Yoshida, T.; Kawamura, G.; Sakai, M.; Matsuda, A. [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, H. [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan)

    2010-09-15

    Inorganic-organic composite electrolytes were fabricated from partially Cs{sup +}-substituted heteropoly acids (Cs-HPAs) and sulfonated poly(ether-ether ketone) (SPEEK) for application in fuel cells. Heteropoly acids, such as phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40}:WPA), and silicotungstic acid (H{sub 4}SiW{sub 12}O{sub 40}:WSiA), were mechanochemically treated with cesium hydrogen sulfate (CsHSO{sub 4}) to obtain the form of Cs-HPAs. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Water durability and surface structure of HPAs were modified by introducing Cs{sup +} into HPAs. Flexible and hot water stable composite electrolytes were obtained, and their electrochemical properties were markedly improved with the addition of Cs-HPAs into the SPEEK matrix. Maximum power densities of 245 and 247 mW cm{sup -2} were obtained for 50WPA.50CsHSO{sub 4} and 50WSiA.50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolytes, respectively, from single cell tests at 80 C and 80 RH%. These results suggest that a three-dimensional proton-conductive path was formed among homogeneously distributed Cs-HPAs particles in the SPEEK matrix. The Cs-HPAs incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. These observations imply that the mechanochemically synthesized Cs-HPAs, which consist of hydrogen bondings between Cs-HPAs and -HSO{sub 4}{sup -}, dissociated from CsHSO{sub 4}, are promising materials as inorganic fillers in inorganic-organic composite. (author)

  10. Proton therapy

    International Nuclear Information System (INIS)

    Jongen, Y.

    1995-01-01

    Ideal radiotherapy deposits a large amount of energy in the tumour volume, and none in the surrounding healthy tissues. Proton therapy comes closer to this goal because of a greater concentration of dose, well defined proton ranges and points of energy release which are precisely known - the Bragg peak1. In the past, the development of clinical proton therapy has been hampered by complexity, size, and cost. To be clinically effective, energies of several hundred MeV are required; these were previously unavailable for hospital installations, and pioneering institutions had to work with complex, inadequate equipment originally intended for nuclear physics research. Recently a number of specialist organizations and commercial companies have been working on dedicated systems for proton therapy. One, IBA of Belgium, has equipment for inhouse hospital operation which encompasses a complete therapy centre, delivered as a turnkey package and incorporating a compact, automated, higher energy cyclotron with isocentric gantries. Their system will be installed at Massachusetts General Hospital, Boston. The proton therapy system comprises: - a 235 MeV isochronous cyclotron to deliver beams of up to 1.5 microamps, but with a hardware limitation to restrict the maximum possible dose; - variable energy beam (235 to 70 MeV ) with energy spread and emittance verification; - a beam transport and switching system to connect the exit of the energy selection system to the entrances of a number of gantries and fixed beamlines. Along the beam transport system, the beam characteristics are monitored with non-interceptive multiwire ionization chambers for automatic tuning; - gantries fitted with nozzles and beamline elements for beam control; both beam scattering and beam wobbling techniques are available for shaping the beam;

  11. Enhanced conductivity in pulsed laser deposited Ce0.9Gd0.1O2−δ/SrTiO3 heterostructures

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2010-01-01

    Significant enhancement in the electrical conductivity of Ce0.9Gd0.1O2−δ (CGO) thin films (250 and 500 nm) deposited on MgO(001) substrate is observed by introducing ∼ 50 nm thin SrTiO3 buffer layer film. Introduction of the buffer layer is found to form epitaxial films, leading to minimal grain...... boundary network that results in a free conduction path with near-zero blocking effects perpendicular to current flow. The in-plane conductivity measurements confirm increase in conductivity with increase in compressive strain on CGO films. © 2010 American Institute of Physics...

  12. SPEEK-MO{sub 2} (M = Zr, Sn) composite membranes for direct ethanol fuel cell: an inorganic modification of proton conductive

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguti, Carla A.; Gomes, Ailton S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: kawagutica@gmail.com

    2007-07-01

    Organic-inorganic composite membranes based on sulfonated poly(ether ether ketone) (SPEEK) for application in the direct ethanol fuel cell (DEFC) were synthesized. Particle of sulfated zirconia/tin oxide (SO{sub 4}{sup 2-}/ZrO{sub 2}, SnO{sub 2}, SO{sub 3}-/SnO{sub 2}) was synthesized by sol-gel method, and composite membranes with different oxide and different oxide contents were prepared from a mixture of SO{sub 4}{sup 2-}/ZrO{sub 2} or SnO{sub 2} or SO{sub 3}-/SnO{sub 2} powder and SPEEK solution. The physico-chemical properties of the membranes were studied by water or ethanol solution uptake measurements, scanning electron microscopy (SEM), the membrane's water and ethanol permeabilities were evaluated in pervaporation experiments and the conductivity determined by impedance spectroscopy. The ethanol permeabilities were decreased by inorganic modification. At several temperatures analysed, all SPEEK-MO{sub 2} composite exhibited better ethanol solution uptake than water uptake and this sorption is decreased when inorganic particles are add. A reduction of the proton conductivity by the inorganic modification was observed. (author)

  13. Design of Incremental Conductance Sliding Mode MPPT Control Applied by Integrated Photovoltaic and Proton Exchange Membrane Fuel Cell System under Various Operating Conditions for BLDC Motor

    Directory of Open Access Journals (Sweden)

    Jehun Hahm

    2015-01-01

    Full Text Available This paper proposes an integrated photovoltaic (PV and proton exchange membrane fuel cell (PEMFC system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.

  14. Large-Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics

    KAUST Repository

    Dai, Zhenyu

    2017-09-08

    2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large-area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band-offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible-range transmittance of 85%. The transistors show high mobility (4.2 cm2 V−1 s−1), fast switching speed (0.114 V dec−1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.

  15. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.; Ha, Don-Hyung; Ly, Tiffany; Zhang, Haitao; Robinson, Richard D.

    2014-01-01

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles

  16. Sol–gel hybrid membranes loaded with meso/macroporous SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} materials with high proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Mosa, Jadra, E-mail: jmosa@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Aparicio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi [Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-01-15

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m{sup 2}/g (TiO{sub 2}–P{sub 2}O{sub 5}) and 300 m{sup 2}/g (SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5}). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion{sup ®} at higher temperatures (120 °C) (2·10{sup −2} S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure.

  17. Sol–gel hybrid membranes loaded with meso/macroporous SiO2, TiO2–P2O5 and SiO2–TiO2–P2O5 materials with high proton conductivity

    International Nuclear Information System (INIS)

    Castro, Yolanda; Mosa, Jadra; Aparicio, Mario; Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi; Durán, Alicia

    2015-01-01

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO 2 , TiO 2 –P 2 O 5 and SiO 2 –TiO 2 –P 2 O 5 meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m 2 /g (TiO 2 –P 2 O 5 ) and 300 m 2 /g (SiO 2 –TiO 2 –P 2 O 5 ). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion ® at higher temperatures (120 °C) (2·10 −2  S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure

  18. Low temperature-pyrosol-deposition of aluminum-doped zinc oxide thin films for transparent conducting contacts

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M.J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Ramírez, E.B. [Universidad Autónoma de la Ciudad de México, Calle Prolongación San Isidro Núm. 151, Col. San Lorenzo Tezonco, Iztapalapa, 09790 México, D.F. (Mexico); Juárez, B.; González, J.; García-León, J.M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico); Escobar-Alarcón, L. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México, D.F. 11801 (Mexico); Alonso, J.C., E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Coyoacán, 04510 México, D.F. (Mexico)

    2016-04-30

    Aluminum doped-zinc oxide (ZnO:Al) thin films with thickness ~ 1000 nm have been deposited by the ultrasonic spray pyrolysis technique using low substrate temperatures in the range from 285 to 360 °C. The electrical and optical properties of the ZnO:Al (AZO) films were investigated by Uv–vis spectroscopy and Hall effect measurements. The crystallinity and morphology of the films were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), and high resolution scanning electron microcopy (SEM). XRD results reveal that all the films are nanocrystalline with a hexagonal wurtzite structure with a preferential orientation in the (002) plane. The size of the grains calculated from Scherrer's formula was in the range from 28 to 35 nm. AFM and SEM analysis reveals that the grains form round and hexagonal shaped aggregates at high deposition temperatures and larger rice shaped aggregates at low temperatures. All the films have a high optical transparency (~ 82%). According to the Hall measurements the AZO films deposited at 360 and 340 °C had resistivities of 2.2 × 10{sup −3}–4.3 × 10{sup −3} Ω cm, respectively. These films were n-type and had carrier concentrations and mobilities of 3.71–2.54 × 10{sup 20} cm{sup −3} and 7.4–5.7 cm{sup 2}/V s, respectively. The figure of merit of these films as transparent conductors was in the range of 2.6 × 10{sup −2} Ω{sup −1}–4.1 × 10{sup −2} Ω{sup −1}. Films deposited at 300 °C and 285 °C, had much higher resistivities. Based on the thermogravimetric analysis of the individual precursors used for film deposition, we speculate on possible film growing mechanisms that can explain the composition and electrical properties of films deposited under the two different ranges of temperatures. - Highlights: • Aluminum doped zinc oxide thin films were deposited at low temperatures by pyrosol. • Low resistivity was achieved from 340 °C substrate temperature. • All films deposited

  19. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    International Nuclear Information System (INIS)

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-01

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder. As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm 2 ), yielding a ∼10 6 × current change under 200 g/cm 2 . This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics

  20. Electrochemical depositing rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity and heat transfer performance compared to pure Ti.

    Science.gov (United States)

    Wang, Jing; Wang, Huatao; Zhang, Wenying; Yang, Xinyi; Wen, Guangwu; Wang, Yijie; Zhou, Weiwei

    2017-02-17

    Titanium (Ti) and its alloys are widely applied in many high strength, light weight applications, but their thermal conductivity is lower compared to that of other metals, which limits their further applications. In this paper, we demonstrated experimentally that rGO-Ti-rGO heterogeneous substrates with higher thermal conductivity, up to ∼38.8% higher than Ti, could be fabricated by electrochemical depositing rGO on their surface. The rGO layers are grown on the surface of Ti substrates, with appearance of bedclothes on the beds. The thickness of rGO layers is around 300-500 nm and around 600-1000 nm when deposited for 5 cycles and 10 cycles, respectively. According to the cooling experiment results, as-prepared Ti + rGO substrates can present excellent thermal conduction performance, and reduce the chip temperature close to 3.2 °C-13.1 °C lower than Ti alloy substrates with the heat flow density of 0.4-3.6 W cm -2 . Finally, the approach to electro-chemically deposit hundreds of nanometer rGO layers on the surface of Ti substrates can improve their thermal conductivity and heat transfer performance, which may have further application in the increasing thermal conduction of other metal-alloys, ceramics and polymers.

  1. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  2. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  3. Effects of introduction of argon on structural and transparent conducting properties of ZnO-In2O3 thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Moriga, Toshihiro; Mikawa, Michio; Sakakibara, Yuji; Misaki, Yukinori; Murai, Kei-ichiro; Nakabayashi, Ichiro; Tominaga, Kikuo; Metson, James B.

    2005-01-01

    Indium-zinc oxide thin films were deposited on a glass substrate from a ZnO and In 2 O 3 mixed target by a pulsed laser deposition technique. The effects on surface texture, structure and transparent conducting properties of the introduction of argon into the chamber during the depositions of amorphous and homologous ZnO-In 2 O 3 thin films were examined. The compositional range where amorphous films formed was widened by the introduction of argon. Resistivity in the region where the amorphous phase appeared increased slightly, with an increase of zinc content, due to the counteractions of decreased Hall mobility and increased carrier concentration. Introduction of argon improved surface roughness of the films and reduced and regulated particle and/or crystallite sizes of the films

  4. Unit-bar migration and bar-trough deposition: impacts on hydraulic conductivity and grain size heterogeneity in a sandy streambed

    Science.gov (United States)

    Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.

    2018-03-01

    The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.

  5. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento]. E-mail: awzuardi@fmrp.usp.br; Araujo, D.; Santos, A.C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Div. de Radiologia

    2008-07-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 {+-} 0.03; control = 1.12 {+-} 0.04) and in the right (schizophrenia 0.88 {+-} 0.02; control = 0.94 {+-} 0.03) and left (schizophrenia 0.84 {+-} 0.03; control = 0.94 {+-} 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 {+-} 0.05) than the controls (0.95 {+-} 0.02, P < 0.05) and the subgroup with normal SCL (0.88 {+-} 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  6. Proton magnetic resonance spectroscopy of the frontal, cingulate and perirolandic cortices and its relationship to skin conductance in patients with schizophrenia

    International Nuclear Information System (INIS)

    Sanches, R.F.; Crippa, J.A.S.; Hallak, J.E.C.; Sousa, J.P.M. de; Zuardi, A.W.; Araujo, D.; Santos, A.C.

    2008-01-01

    The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients. (author)

  7. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  8. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    Science.gov (United States)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  9. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  10. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    Science.gov (United States)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  11. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X......-ray diffraction was used to confirm the high crystalline quality of the obtained material. Electrical characterizations were performed on thin (50 nm) and thick (335 nm) layers. The total specific conductivity, which is predominantly electronic, was found to be larger for the thinner films measured (50 nm......), probably due to the effect of the strain present in the layers. Those thin films (50 nm) showed values even larger than those observed for single crystals and, to our knowledge, are the largest conductivity values reported to date for the La2NiO4+delta material. The oxygen exchange kinetics was studied...

  12. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2011-07-15

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10{sup -4}{Omega} cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm{sup 2}/Vs and carrier concentrations on the order of 10{sup 20} cm{sup -3}. All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10{sup -3}-10{sup -4}{Omega} cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  13. Optical and electrical properties of transparent conducting B-doped ZnO thin films prepared by various deposition methods

    International Nuclear Information System (INIS)

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2011-01-01

    B-doped ZnO (BZO) thin films were prepared with various thicknesses up to about 500 nm on glass substrates at 200 deg. C by dc or rf magnetron sputtering deposition, pulsed laser deposition (PLD), and vacuum arc plasma evaporation (VAPE) methods. Resistivities of 4-6 x 10 -4 Ω cm were obtained in BZO thin films prepared with a B content [B/(B + Zn) atomic ratio] around 1 at. % by PLD and VAPE methods: Hall mobilities above 40 cm 2 /Vs and carrier concentrations on the order of 10 20 cm -3 . All 500-nm-thick-BZO thin films prepared with a resistivity on the order of 10 -3 -10 -4 Ω cm exhibited an averaged transmittance above 80% in the wavelength range of 400-1100 nm. The resistivity in BZO thin films prepared with a thickness below about 500 nm was found to increase over time with exposure to various high humidity environments. In heat-resistance tests, the resistivity stability of BZO thin films was found to be nearly equal to that of Ga-doped ZnO thin films, so these films were judged suitable for use as a transparent electrode for thin-film solar cells.

  14. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukano, Tatsuo; Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories Inc., Nagakute, Aichi 480-1192 (Japan)

    2004-05-30

    Following the procedure by Sawada et al. (Thin Solid Films 409 (2002) 46), high-quality SnO{sub 2}:F films were grown on glass substrates at relatively low temperatures of 325-340C by intermittent spray pyrolysis deposition using a perfume atomizer for cosmetics use. Even though the substrate temperature is low, as-deposited films show a high optical transmittance of 92% in the visible range, a low electric resistivity of 5.8x10{sup -4}{omega}cm and a high Hall mobility of 28cm{sup 2}/Vs. The F/Sn atomic ratio (0.0074) in the films is low in comparison with the value (0.5) in the sprayed solution. The carrier density in the film is approximately equal to the F-ion density, suggesting that most of the F-ions effectively function as active dopants. Films' transmittance and resistivity show little change after a 450C 60min heat treatment in the atmosphere, evidencing a high heat resistance. The SnO{sub 2}:F films obtained in this work remove the difficulty to improve the figure of merit at low synthesis temperatures.

  15. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, D. L.; Feng, J. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Kurt, H. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Department of Engineering Physics, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Chen, J. Y.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  16. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  17. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    Science.gov (United States)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  18. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes

    Science.gov (United States)

    Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei

    2018-02-01

    Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.

  19. Catalytic, Conductive Bipolar Membrane Interfaces through Layer-by-Layer Deposition for the Design of Membrane-Integrated Artificial Photosynthesis Systems.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S; Hammond, Paula T

    2017-11-23

    In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study of proton radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Back, B.B.; Henderson, D.J. [and others

    1995-08-01

    About a dozen nuclei are currently known to accomplish their radioactive decay by emitting a proton. These nuclei are situated far from the valley of stability, and mark the very limits of existence for proton-rich nuclei: the proton drip line. A new 39-ms proton radioactivity was observed following the bombardment of a {sup 96}Ru target by a beam of 420-MeV {sup 78}Kr. Using the double-sided Si strip detector implantation system at the FMA, a proton group having an energy of 1.05 MeV was observed, correlated with the implantation of ions having mass 167. The subsequent daughter decay was identified as {sup 166}Os by its characteristic alpha decay, and therefore the proton emitter is assigned to the {sup 167}Ir nucleus. Further analysis showed that a second weak proton group from the same nucleus is present, indicating an isomeric state. Two other proton emitters were discovered recently at the FMA: {sup 171}Au and {sup 185}Bi, which is the heaviest known proton radioactivity. The measured decay energies and half-lives will enable the angular momentum of the emitted protons to be determined, thus providing spectroscopic information on nuclei that are beyond the proton drip line. In addition, the decay energy yields the mass of the nucleus, providing a sensitive test of mass models in this extremely proton-rich region of the chart of the nuclides. Additional searches for proton emitters will be conducted in the future, in order to extend our knowledge of the location of the proton drip line.

  1. Morphological differences in transparent conductive indium-doped zinc oxide thin films deposited by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jongthammanurak, Samerkhae; Cheawkul, Tinnaphob; Witana, Maetapa

    2014-01-01

    In-doped ZnO thin films were deposited on glass substrates by an ultrasonic spray pyrolysis technique, using indium chloride (InCl 3 ) as a dopant and zinc acetate solution as a precursor. Increasing the [at.% In]/[at.% Zn] ratio changed the crystal orientations of thin films, from the (100) preferred orientation in the undoped, to the (101) and (001) preferred orientations in the In-doped ZnO thin films with 4 at.% and 6–8 at.%, respectively. Undoped ZnO thin film shows relatively smooth surface whereas In-doped ZnO thin films with 4 at.% and 6–8 at.% show surface features of pyramidal forms and hexagonal columns, respectively. X-ray diffraction patterns of the In-doped ZnO thin films with [at.% In]/[at.% Zn] ratios of 6–8% presented an additional peak located at 2-theta of 32.95°, which possibly suggested that a metastable Zn 7 In 2 O 10 phase was present with the ZnO phase. ZnO thin films doped with 2 at.% In resulted in a sheet resistance of ∼ 645 Ω/sq, the lowest value among thin films with [at.% In]/[at.% Zn] ratio in a range of 0–8%. The precursor molarity was changed between 0.05 M and 0.20 M at an [at.% In]/[at.% Zn] ratio of 2%. Increasing the precursor molarity in a range of 0.10 M–0.20 M resulted in In-doped ZnO thin films with the (100) preferred orientation. An In-doped ZnO thin film deposited by 0.20 M precursor showed a sheet resistance of 25 Ω/sq, and an optical transmission of 75% at 550 nm wavelength. The optical band gap estimated from the transmission result was 3.292 eV. - Highlights: • Indium-doped ZnO thin films were grown on glass using ultrasonic spray pyrolysis. • Thin films' orientations depend on In doping and Zn molarity of precursor solution. • Highly c-axis or a-axis orientations were found in the In-doped ZnO thin films. • In doping of 6–8 at.% may have resulted in ZnO and a metastable Zn 7 In 2 O 10 phases. • Increasing precursor molarity reduced sheet resistance of In-doped ZnO thin films

  2. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Maráková, N.; Humpolíček, P.; Kašpárková, V.; Capáková, Z.; Martinková, L.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-01-01

    Roč. 396, 28 February (2017), s. 169-176 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020022; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : antimicrobial activity * conductivity * cotton Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.387, year: 2016

  3. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  4. Comparative study about Al-doped zinc oxide thin films deposited by Pulsed Electron Deposition and Radio Frequency Magnetron Sputtering as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pattini, F., E-mail: pattini@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Annoni, F.; Bissoli, F.; Bronzoni, M. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Garcia, J.P. [Delft University of Technology, Faculty of Applied Sciences, Delft Product and Process Design Institute, Julianalaan 67, 2628 BC Delft (Netherlands); Gilioli, E.; Rampino, S. [IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy)

    2015-05-01

    In this study, a comparison between Al-doped ZnO (AZO) as Transparent Conductive Oxide for Cu(In,Ga)Se{sub 2}-based solar cells grown by Pulsed Electron Deposition (PED) and Radio Frequency Magnetron Sputtering (RFMS) was performed. PED yielded polycrystalline [002] mono-oriented thin films with low electrical resistivity and high optical transparency with heater temperatures ranging from room temperature (RT) to 250 °C. The electrical resistivity of these films can be tuned by varying the heater temperature, reaching a minimum value of 3.5 × 10{sup −4} Ωcm at 150 °C and an average transmittance over 90% in the visible range. An AZO film grown at RT was deposited by PED on an actual Cu(In,Ga)Se{sub 2}-based solar cell, resulting to an efficiency value of 15.2% on the best device. This result clearly shows that PED is a suitable technique for growing ZnO-based thin films for devices/applications where low deposition temperature is required. On the other hand, an optimized AZO thin film front contact for thin film solar cells was studied and fabricated via RFMS. The parameters of this technique were tweaked to obtain highly conductive and transparent AZO thin films. The lowest resistivity value of 3.7 × 10{sup −4} Ωcm and an average transmittance of 86% in the 400-1100 nm wavelength range was obtained with a heater temperature of 250 °C. A thick sputtered AZO film was deposited at RT onto an identical cell used for PED-grown AZO, reaching the highest conversion efficiency value of 14.7%. In both cases, neither antireflection coatings nor pure ZnO layer was used. - Highlights: • Pulsed Electron Deposition (PED) lets high quality films grow at low temperature. • Al:ZnO (AZO) thin films grown by PED present high optical and electrical quality. • AZO electrical resistivity can be tuned from 10{sup −4} to 10{sup −2} Ωcm in proper condition. • Cu(In,Ga)Se{sub 2}-based simplified solar cells achieved efficiency of 15.2% for PED-grown AZO.

  5. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  6. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    Science.gov (United States)

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  7. Nuclear-plus-interference-scattering effect on the energy deposition of multi-MeV protons in a dense Be plasma.

    Science.gov (United States)

    Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping

    2016-09-01

    The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.

  8. Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photoelectrode

    International Nuclear Information System (INIS)

    Manca, Michele; Malara, Francesco; Martiradonna, Luigi; De Marco, Luisa; Giannuzzi, Roberto; Cingolani, Roberto; Gigli, Giuseppe

    2010-01-01

    A thin anatase titanium dioxide compact film was deposited by electron beam evaporation as buffer layer between the conductive transparent electrode and the porous TiO 2 -based photoelectrode in dye-sensitized solar cells. The effect of such a buffer layer on the back transfer reaction of electrons to tri-iodide ions in liquid electrolyte-based cells has been studied by means of both electrochemical impedance spectroscopy and open circuit photovoltage decay analysis. The influence of the thickness has been also investigated and an increment in overall quantum conversion efficiency η as high as + 31% with respect to the standard cell - fabricated onto an uncoated conductive glass - has been revealed in the case of a 120 nm thick buffer layer.

  9. Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Yamada, Naoomi; Hitosugi, Taro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2010-01-01

    We discuss the fabrication of highly conductive Ta-doped SnO 2 (Sn 1-x Ta x O 2 ; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity (ρ) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO 2 and NbO 2 as seed-layers; these are isostructural materials of SnO 2, which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO 2 exhibited ρ = 3.5 x 10 -4 Ω cm, which is similar to those of the epitaxial films grown on Al 2 O 3 (0001).

  10. Fabrication of highly conductive Ta-doped SnO{sub 2} polycrystalline films on glass using seed-layer technique by pulse laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro, E-mail: tg-s-nakao@newkast.or.j [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Yamada, Naoomi [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, Taro [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan)

    2010-03-31

    We discuss the fabrication of highly conductive Ta-doped SnO{sub 2} (Sn{sub 1-x}Ta{sub x}O{sub 2}; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity ({rho}) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO{sub 2} and NbO{sub 2} as seed-layers; these are isostructural materials of SnO{sub 2,} which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO{sub 2} exhibited {rho} = 3.5 x 10{sup -4} {Omega} cm, which is similar to those of the epitaxial films grown on Al{sub 2}O{sub 3} (0001).

  11. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9 − x)ZrxY0.1O(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Caboche, G:

    2009-01-01

    The perovskite BaCe(0.9 − x)ZrxY0.1O(3 − δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in t...

  12. Proton-oxygen conductivity in substituted perovskites ATi0.95Mo0.05O3-α (A = Ca, Sr, Ba; M = Sc, Mg) in the reducing hydrogen-containing atmospheres

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Balakireva, V.B.; Sharova, N.V.

    1999-01-01

    Electric conductivity depending on temperature, oxygen partial pressure, as well as the number of t i ion transfer and transfer hydrogen numbers in the perovskites ATi 0.95 Mo 0.05 O 3-α (A = Ca, Sr, Ba; M = Sc, Mg) in reducing hydrogen-containing atmospheres in the temperature range of 450-850 deg C have been measured. With the temperature decrease t i increases reaching 1.0 at a temperature of 550 deg C for all compositions. Proton conductivity under conditions of assumed concomitant transfer of either O 2- or OH - has been ascertained [ru

  13. Magnesium doped gallium phosphonates Ga{sub 1-x}Mg{sub x}[H{sub 3+x}(O{sub 3}PCH{sub 2}){sub 3}N] (x = 0, 0.20) and the influence on proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Homburg, Thomas; Reinsch, Helge; Stock, Norbert [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Kiel (Germany); Tschense, Carsten B.L.; Senker, Juergen [Dept. of Inorganic Chemistry III, University of Bayreuth (Germany); Wolkersdoerfer, Konrad; Wark, Michael [Institut fuer Chemie, Carl von Ossietzky Universitaet Oldenburg (Germany); Toebbens, Daniel; Zander, Stefan [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2018-02-01

    In our contribution to the development of new proton conductive coordination polymers (CPs) we focus on the impact of a partial replacement of Ga{sup 3+} by Mg{sup 2+}. This approach should come along with the introduction of additional protons due to charge balances. In a first step we have synthesized an isostructural compound to the literature known compound AlH{sub 3}P3N [H{sub 6}P3N = nitrilotris(methylene)triphosphonic acid], where Al{sup 3+} is replaced by Ga{sup 3+}, since all attempts to incorporate Mg{sup 2+} ions directly into AlH{sub 3}P3N were not successful. The relative amount of Mg{sup 2+} and Ga{sup 3+} was established by EDX analysis. Rietveld refinement of the synchrotron data located the Ga{sup 3+} and Mg{sup 2+} ions on a split position, proving the disordered incorporation of the Mg{sup 2+} ions. Solid-state NMR spectroscopy confirms a disordered protonation of the phosphonate groups as well and shows that all amine groups are protonated. In order to investigate the effect on the proton conductivity the compounds Ga[H{sub 3}(O{sub 3}PCH{sub 2}){sub 3}N], denoted GaH{sub 3}P3N as well as Ga{sub 0.80}Mg{sub 0.20}[H{sub 3.20}(O{sub 3}PCH{sub 2}){sub 3}N], denoted GaMgH{sub 3.20}P3N, were characterized by electrochemical impedance spectroscopy (EIS). Arrhenius behavior in the investigated temperature range (70-130 C) was found for both compounds (activation energies of E{sub a} = 0.15 eV for GaH{sub 3}P3N and 0.17 eV for GaMgH{sub 3.20}P3N). The GaMgH{sub 3.20}P3N sample shows a reduced proton mobility (σ = 1.2 x 10{sup -4} S.cm{sup -1}) of about one order of magnitude in comparison to GaH{sub 3}P3N (σ = 1.0 x 10{sup -3} S.cm{sup -1}). (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Highly transparent conductive AZO/Zr50Cu50/AZO films in wide range of visible and near infrared wavelength grown by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Jingyun Cheng

    Full Text Available Novel AZO/Zr50Cu50/AZO tri-layer transparent conductive films with excellent transmittance in both visible and near infrared region were successfully prepared by pulsed laser deposition on glass substrates. The electrical and optical properties were investigated at various Zr50Cu50 thicknesses. As the AZO thickness was fixed at 50 nm and Zr50Cu50 thickness was varied between 1 and 18 nm, it was found that AZO (50 nm/Zr50Cu50/AZO (50 nm tri-layer films exhibited good conductivity and high transmittance in both visible and near infrared wavelength. Additionally, both the electrical and optical properties of AZO (50 nm/Zr50Cu50 (2 nm/AZO (50 nm tri-layer films were found to be sensitive to the growth temperature. In this work, the lowest sheet resistance (43 Ω/□ and relatively high transmittance (∼80% in the range of 400–2000 nm were achieved while the growth temperature was 350 °C. Furthermore, the AZO (50 nm/Zr50Cu50 (2 nm/AZO (50 nm thin film deposited at 350 °C exhibits the highest figure of merit of 1.42 × 10−3 Ω−1, indicating that the multilayer is promising for coated glasses and thin film solar cells. Keywords: Transparent conductive oxide, AZO, Zr50Cu50, Electrical and optical properties, Visible and near infrared transmittance

  15. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  16. On the solid phase crystallization of In{sub 2}O{sub 3}:H transparent conductive oxide films prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Melskens, J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Barcones, Beatriz [NanoLab@TU/e, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Solliance Solar Research, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2016-08-28

    Hydrogen-doped indium oxide (In{sub 2}O{sub 3}:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In{sub 2}O{sub 3}:H. This process consists of ALD of In{sub 2}O{sub 3}:H films at 100 °C, followed by a solid phase crystallization step at 150–200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  17. High mobility In{sub 2}O{sub 3}:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Wu, Y.; Vanhemel, D. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2014-12-01

    The preparation of high-quality In{sub 2}O{sub 3}:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In{sub 2}O{sub 3}:H films were deposited by atomic layer deposition at 100 C, after which they underwent solid phase crystallization by a short anneal at 200 C. TEM analysis has shown that this approach can yield films with a lateral grain size of a few hundred nm, resulting in electron mobility values as high as 138 cm{sup 2}/V s at a device-relevant carrier density of 1.8 x 10{sup 20} cm{sup -3}. Due to the extremely high electron mobility, the crystallized films simultaneously exhibit a very low resistivity (0.27 mΩ cm) and a negligible free carrier absorption. In conjunction with the low temperature processing, this renders these films ideal candidates for front TCO layers in for example silicon heterojunction solar cells and other sensitive optoelectronic applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted β-SiC nanowires with chemical vapor deposition method

    Science.gov (United States)

    Yin, Zhaoyu; Zhang, Xiaoguang; Huang, Zhaohui; Liu, Silin; Zhang, Weiyi; Liu, Yan'gai; Wu, Xiaowen; Fang, Minghao; Min, Xin

    2018-02-01

    Expanded graphite/β-SiC nanowires composites (ESNC) were prepared through chemical vapor deposition, and paraffin/expanded graphite/β-SiC nanowires composites (PESNC) were made through vacuum impregnation to overcome liquid leakage during phase transition and enhance the thermal conductivity of paraffin. Fourier transform infrared spectroscopy showed no chemical interactions between the paraffin and ESNC. Differential scanning calorimetry estimated the temperature and latent heat of PESNC during melting to 45.73 °C and 124.31 J g-1, respectively. The respective values of these quantities during freezing were recorded as 48.93 °C and 124.14 J g-1. The thermal conductivity of PESNC was estimated to 0.75 W mK-1, which was 3.26-folds that of pure paraffin (0.23 W mK-1). PESNC perfectly maintained its phase transition after 200 melting-freezing cycles. The resulting ideal thermal conductivity, good chemical stability, thermal properties and thermal reliability of PESNC are promising for use in energy efficient buildings and solar energy systems.

  19. TiO{sub 2} films obtained by microwave-activated chemical-bath deposition used to improve TiO{sub 2}-conducting glass contact

    Energy Technology Data Exchange (ETDEWEB)

    Zumeta, I.; Gonzalez, B. [Institute for Material Science and Technology, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba); Ayllon, J.A.; Domenech, X. [Chemistry Department, Autonomous University of Barcelona, 08290 Cerdanyola del Valles (Spain); Vigil, E. [Institute for Material Science and Technology, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba); Physics Faculty, University of Havana, Colina Universitaria, Ciudad Habana 10 400 (Cuba)

    2009-10-15

    In traditional solar cells, metal-semiconductor contacts used to extract photogenerated carriers are very important. In dye-sensitized solar cells (DSSC) not much attention has been given to contact between the TiO{sub 2} and the transparent conducting glass (TCO), which is used instead of a metal contact to extract electrons. TiO{sub 2} layers obtained by microwave-activated chemical-bath deposition (MW-CBD) are proposed to improve TiO{sub 2} contact to conducting glass. Spectra of incident photon to current conversion efficiency (IPCE) are obtained for two-photoelectrode TiO{sub 2} photoelectrochemical cells. IPCE spectra show higher values when TiO{sub 2} double layer photoelectrodes are used. In these, the first layer or contacting layer is made by MW-CBD. Best results are obtained for double layer photoelectrodes on FTO (SnO{sub 2}:F) as conducting oxide substrate. Modeling of IPCE spectra reveals the importance of electrical contact and electron extraction rate at the TiO{sub 2}/TCO interface. (author)

  20. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    Science.gov (United States)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  1. Development of proton conducting materials and membranes based on lanthanum tungstate for hydrogen separation from gas mixtures; Entwicklung protonenleitender Werkstoffe und Membranen auf Basis von Lanthan-Wolframat fuer die Wasserstoffabtrennung aus Gasgemischen

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Janka

    2013-07-01

    Lanthanum tungstate La{sub 6-x}WO{sub 12-δ} (named LWO) is a ceramic material with mixed protonic electronic conductivity. Thereby it is a good candidate membrane material for hydrogen separation from synthesis gas in a fossil pre-combustion power plant. This work shows a material optimization by substitution targeted to clearly enhance the mixed conductivity and thereby the hydrogen flow through the LWO membrane. The first part of the work shows the synthesis and characterization of unsubstituted LWO. It points out that monophase LWO powder can be reproducibly synthesized. The La/W-ratio has to be considerably smaller than the nominal ratio of La/W = 6.0. It also depends on the used sintering conditions. Different relevant properties of LWO like stability in conditions close to application, thermal expansion, sintering behavior or microstructure were determined. Furthermore, the electrical conductivity of the material was investigated. LWO exhibits a prevailing protonic conductivity up to 750 C in wet atmospheres. Under dry atmospheres n-type conductivity was dominating. Oxygen ion and n-type conductivity dominated in wet and dry atmospheres above 750 C. The main part of the work is concerned with the development of new LWO based materials by substitutions. The aim is to achieve an improved mixed protonic electronic conductivity. Substitution elements for lanthanum side were Mg, Ca, Sr, Ba, Ce, Nd, Tb, Y and Al, while for the tungsten side Mo, Re and Ir were used. The total conductivity of the developed materials was investigated and compared to that of the unsubstituted LWO. The substitution of lanthanum led to no appreciable enhancement of the conductivity whereas the substitution of tungsten with 20 mol% molybdenum or 20 mol% rhenium clearly improved it. This caused a hydrogen flow about seven times higher for 20 mol% molybdenum- and about ten times higher for 20 mol% rhenium-substituted LWO in comparison with the unsubstituted LWO at 700 C. In the last part

  2. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  3. Proton therapy

    International Nuclear Information System (INIS)

    Smith, Alfred R

    2006-01-01

    Proton therapy has become a subject of considerable interest in the radiation oncology community and it is expected that there will be a substantial growth in proton treatment facilities during the next decade. I was asked to write a historical review of proton therapy based on my personal experiences, which have all occurred in the United States, so therefore I have a somewhat parochial point of view. Space requirements did not permit me to mention all of the existing proton therapy facilities or the names of all of those who have contributed to proton therapy. (review)

  4. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  5. [Why proton therapy? And how?

    Science.gov (United States)

    Thariat, Juliette; Habrand, Jean Louis; Lesueur, Paul; Chaikh, Abdulhamid; Kammerer, Emmanuel; Lecomte, Delphine; Batalla, Alain; Balosso, Jacques; Tessonnier, Thomas

    2018-03-01

    Proton therapy is a radiotherapy, based on the use of protons, charged subatomic particles that stop at a given depth depending on their initial energy (pristine Bragg peak), avoiding any output beam, unlike the photons used in most of the other modalities of radiotherapy. Proton therapy has been used for 60 years, but has only become ubiquitous in the last decade because of recent major advances in particle accelerator technology. This article reviews the history of clinical implementation of protons, the nature of the technological advances that now allows its expansion at a lower cost. It also addresses the technical and physical specificities of proton therapy and the clinical situations for which proton therapy may be relevant but requires evidence. Different proton therapy techniques are possible. These are explained in terms of their clinical potential by explaining the current terminology (such as cyclotrons, synchrotrons or synchrocyclotrons, using superconducting magnets, fixed line or arm rotary with passive diffusion delivery or active by scanning) in basic words. The requirements associated with proton therapy are increased due to the precision of the depth dose deposit. The learning curve of proton therapy requires that clinical indications be prioritized according to their associated uncertainties (such as range uncertainties and movement in lung tumors). Many clinical indications potentially fall under proton therapy ultimately. Clinical strategies are explained in a paralleled manuscript. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. π-Conjugated organic-based devices with different layered structures produced by the neutral cluster beam deposition method and operating conduction mechanism

    International Nuclear Information System (INIS)

    Seo, Hoon-Seok; Oh, Jeong-Do; Kim, Dae-Kyu; Shin, Eun-Sol; Choi, Jong-Ho

    2012-01-01

    The authors report on the systematic characterization of structural effects of organic complementary inverters based on two π-conjugated organic molecules, pentacene and copper hexadecafluorophthalocyanine (F 16 CuPc). Three classes of inverters with different layered structures in top-contact configuration were produced using the neutral cluster beam deposition method. Their voltage transfer characteristics, gain curves and hysteresis behaviour were characterized with respect to their thickness. Class I inverters, with generic structures of single-layered, p-and n-type (200/180 Å) transistors, exhibited high gains of 12.8 ± 1.0 with sharp inversions. Their two constituent transistors, with hole and electron mobilities of 0.38 cm 2 V -1 s -1 and 7.0 × 10 -3 cm 2 V -1 s -1 , respectively, showed well-coupled carrier conduction during operation. The behaviour of class II and III inverters, with layered heterojunction structures, was independent of upper-layer thickness and did not show hysteresis. The better performances of class II inverters, which showed high gains of 14.4 ± 1.1, were rationalized partly in terms of decreased mobility differences between their constituent transistors. Heterojunction geometries can be applied to obtain high-performance, fast-switching inverters by avoiding direct exposure of the air-sensitive transistors to ambient conditions. The inverters' general operating conduction mechanism is also discussed.

  7. Stability, characterization and functionality of proton conducting NiO–BaCe0.85−xNbxY0.15O3−δ cermet anodes for IT-SOFC application

    International Nuclear Information System (INIS)

    Žunić, Milan; Branković, Goran; Basoli, Francesco; Cilense, Mario; Longo, Elson; Varela, José Arana

    2014-01-01

    Highlights: • The influence niobium concentration on properties of anode substrates was investigated. • The cermet anode powders were obtained without any undesirable phases. • Porous anode substrates showed chemical stability in the CO 2 atmosphere. • Conductivity values of reduced anode samples were σ * > 50 S cm −1 . • Fuel cell tests demonstrated functionality of anode substrates. - Abstract: There are many of properties of anodes based on proton conductors, like microstructure, conductivity and chemical stability, which should be optimized. In this work we were dealing with the influence of niobium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO–BaCe 0.85−x Nb x Y 0.15 O 3−δ (NiO–BCNYx) anodes. Four anode substrates NiO–BCNYx of different Nb concentration were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of niobium. Chemical stability tests showed strong influence of Nb amount on the chemical stability of anodes in the CO 2 . Microstructural properties of the anode pellets before and after testing in CO 2 were investigated using X-ray diffraction analysis. Electrical properties of anode samples were examined by impedance spectroscopy measurements and the conductivity values of reduced anodes were more than 50 S cm −1 at 600 °C confirming percolation through Ni particles. Fuel cells were fabricated with aim to examine the functionality of anodes. During the fuel cell test the cell with Ni–BCNY10 anode achieved the highest performance, demonstrating a peak power density of 164 mW cm −2 at 650 °C, which confirmed the functionality of Ni–BCNY anodes

  8. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  9. Structural and interfacial defects in c-axis oriented LiNbO{sub 3} thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Miranda House, University of Delhi, Delhi 110007 (India)

    2009-05-07

    Highly c-axis oriented LiNbO{sub 3} films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO{sub 3} films under the optimized deposition condition. An extra peak at 905 cm{sup -1} was observed in the Raman spectra of LiNbO{sub 3} film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO{sub 3} films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO{sub 3} single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO{sub 3} film and the Al : ZnO layer.

  10. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay; Tomar, Monika

    2009-01-01

    Highly c-axis oriented LiNbO 3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO 3 films under the optimized deposition condition. An extra peak at 905 cm -1 was observed in the Raman spectra of LiNbO 3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO 3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO 3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO 3 film and the Al : ZnO layer.

  11. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    Science.gov (United States)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.

  12. On-line, in-core measurement of the thermal conductivity of a BWR fuel rod with a tenacious crud deposit

    International Nuclear Information System (INIS)

    Bennett, Peter

    2012-09-01

    Several corrosion-related fuel failures in US BWRs have been reported where the failed rods had thick, tenacious crud deposits, including events at River Bend and Browns Ferry. Although investigations did not identify the root cause of these failures, it was noted that there was an industry perception that the level of crud on the fuel in a number of plants - including Browns Ferry - particularly those using NMCA, zinc and moderate to high Fe, was too high from a fuel performance perspective. The exact role of the crud was unknown, but there was a suspicion that some unknown water chemistry condition was responsible for the failures at Browns Ferry. Fuel failures have also occurred in Limerick-1, Cycle 2 and in Vermont Yankee, although the direct role of crud in these cases was not clear. While laboratory measurements have shown that the thermal conductivities of the species comprising the crud are not lower than that of ZrO 2 , the effect of the crud in impeding heat transfer has been implicated in the failure mechanisms. It is believed that steam blanketing (formation of a layer of steam between the rod surface and the crud) may be the cause of failure. Hence, to determine whether crud deposits impede heat transfer and thus cause or contribute to rod failure, it is necessary to measure their thermal conductivity during power operation under representative thermal-hydraulic and water chemistry conditions. The purpose of this test, conducted in the Halden Reactor, was to measure the heat transfer through BWR crud at power. Two test rods were manufactured from segments of a fuel rod irradiated in a commercial BWR to a burn-up of 41 GWd/MTU; one test rod had a thin crud layer (< 5 μm) while the other had a thick layer (> 25 μm). The rods were irradiated under representative thermal-hydraulic and water chemistry conditions (25 kW/m, 275 deg. C, outlet void fraction 4 per cent, 300 - 400 ppb H 2 ). Each rod was instrumented with a cladding elongation detector, and

  13. Proton conducting solid oxide fuel cells with layered PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Xue, Xingjian [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-03-15

    BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) exhibits adequate protonic conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered perovskite PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (PBSC) has advanced electrochemical properties. This research fully takes advantage of these advanced properties and develops a novel protonic ceramic membrane fuel cell (PCMFC) of Ni-BZCY7 vertical stroke BZCY7 vertical stroke PBSC. Experimental results show that the cell may achieve the open-circuit potential of 1.005 V, the maximal power density of 520 mW cm{sup -2}, and a low electrode polarization resistance of 0.12 {omega}cm{sup 2} at 700 C. Increasing operating temperature leads to the decrease of total cell resistance, among which electrolyte resistance becomes increasingly dominant over polarization resistance. The results also indicate that PBSC perovskite cathode is a good candidate for intermediate temperature PCMFC development, while the developed Ni-BZCY7 vertical stroke BZCY7 vertical stroke PBSC cell is a promising functional material system for SOFCs. (author)

  14. Proton movies

    CERN Multimedia

    2009-01-01

    A humorous short film made by three secondary school students received an award at a Geneva film festival. Even without millions of dollars or Hollywood stars at your disposal, it is still possible to make a good science fiction film about CERN. That is what three students from the Collège Madame de Staël in Carouge, near Geneva, demonstrated. For their amateur short film on the LHC, they were commended by the jury of the video and multimedia festival for schools organised by the "Media in education" service of the Canton of Geneva’s Public Education Department. The film is a spoof of a television news report on the LHC start-up. In sequences full of humour and imagination, the reporter conducts interviews with a very serious "Professor Sairne", some protons preparing for their voyage and even the neutrons that were rejected by the LHC. "We got the idea of making a film about CERN at the end of the summer," explains Lucinda Päsche, one of the three students. "We did o...

  15. The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells

    International Nuclear Information System (INIS)

    Irvine, S.J.C.; Lamb, D.A.; Barrioz, V.; Clayton, A.J.; Brooks, W.S.M.; Rugen-Hankey, S.; Kartopu, G.

    2011-01-01

    A systematic study is made between the relationship of Cd 0.9 Zn 0.1 S/CdTe photovoltaic (PV) device properties for three different commercial transparent conducting oxide (TCO) materials and some experimental CdO to determine the role of the TCO in device performance. The resistance contribution from the TCO was measured after depositing the gold contact architectures directly onto the TCOs. These were compared with the Cd 0.9 Zn 0.1 S/CdTe device properties using the same contact arrangements. Series resistance for the commercial TCOs correlated with their sheet resistance and gave good agreement with the PV device series resistance for the indium tin oxide (ITO) and fluorine doped tin oxide (FTO) 15 Ω/Sq. superstrates. The devices on the thicker FTO 7 Ω/sq superstrates were dominated by a low shunt resistance, which was attributed to the rough surface morphology causing micro-shorts. The device layers on the CdO substrate delaminated but devices were successfully made for ultra-thin CdTe (0.8 μm thick) and compared favourably with the comparable device on ITO. From the measurements on these TCOs it was possible to deduce the back contact resistance and gave an average value of 2 Ω.cm 2 . The correlation of fill factor with series resistance has been compared with the predictions of a 1-D device model and shows excellent agreement. For high efficiency devices the combined series resistance from the TCO and back contact need to be less than 1 Ω.cm 2 .

  16. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  17. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  18. (La, Pr)0.8Sr0.2FeO3-δ-Sm 0.2Ce0.8O2-δ composite cathode for proton-conducting solid oxide fuel cells

    KAUST Repository

    Chen, Yonghong

    2014-08-01

    Mixed rare-earth (La, Pr)0.8Sr0.2FeO 3-δ-Sm0.2Ce0.8O2-δ (LPSF-SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y 0.2O3-δ (BZCY) electrolyte. The powders of La 0.8-xPrxSr0.2FeO3-δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2-δ (SDC) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8-xPrxSr 0.2FeO3-δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2-SDC, BZCY and NiO-BZCY is 12.50 × 10-6 K-1, 13.51 × 10-6 K-1 and 13.47 × 10-6 K -1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2-SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm -2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2-SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. Y and Ni Co-Doped BaZrO3 as a Proton-Conducting Solid Oxide Fuel Cell Electrolyte Exhibiting Superior Power Performance

    KAUST Repository

    Shafi, Shahid P.

    2015-10-16

    The fabrication of anode supported single cells based on BaZr0.8Y0.2O3-δ (BZY20) electrolyte is challenging due to its poor sinteractive nature. The acceleration of shrinkage behavior, improved sinterability and larger grain size were achieved by the partial substitution of Zr with Ni in the BZY perovskite. Phase pure Ni-doped BZY powders of nominal compositions BaZr0.8-xY0.2NixO3-δ were synthesized up to x = 0.04 using a wet chemical combustion synthesis route. BaZr0.76Y0.2Ni0.04O3-δ (BZYNi04) exhibited adequate total conductivity and the open circuit voltage (OCV) values measured on the BZYNi04 pellet suggested lack of significant electronic contribution. The improved sinterability of BZYNi04 assisted the ease in film fabrication and this coupled with the application of an anode functional layer and a suitable cathode, PrBaCo2O5+δ (PBCO), resulted in a superior fuel cell power performance. With humidified hydrogen and static air as the fuel and oxidant, respectively, a peak power density value of 428 and 240 mW cm−2 was obtained at 700 and 600°C, respectively.

  20. Effect of atomic layer deposition temperature on current conduction in Al{sub 2}O{sub 3} films formed using H{sub 2}O oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Matsumura, Daisuke [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-08-28

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450

  1. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  2. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    International Nuclear Information System (INIS)

    Fernandez, S.; Martinez-Steele, A.; Gandia, J.J.; Naranjo, F.B.

    2009-01-01

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 o C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 o C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10 -3 Ω cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 Ω -1 cm -1 vs 14,900 Ω -1 cm -1 , respectively

  3. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovski, V.V. [St. Petersburg State Polytechnic University, St. Petersburg 195251 (Russian Federation); Lebedev, A.A., E-mail: shura.lebe@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg 197101 (Russian Federation); Emtsev, V.V.; Oganesyan, G.A. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6–9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the “source” of silicon ions generating these ions uniformly across the sample thickness.

  4. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  5. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  6. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    if higher operating temperature is enabled. One approach to obtain improved membranes in the aspects of applicable operating temperature and methanol permeability, which has attracted considerable attention, is the formation of composites by distributing inorganic fillers into Nafion or alternative polymers...... temperature and high relative humidity can cause excessive swelling of the membranes, yielding insufficient mechanical properties and breakdown of membrane function. Moreover, in the case of the Direct Methanol Fuel Cell (DMFC), their significant methanol permeability causes loss of efficiency. Higher...

  7. Enhancement of proton conductivity of sulfonated polystyrene

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/037/07/1613-1624 ... The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 ... Manuscript received: 5 July 2013; Manuscript revised: 6 December 2013 ...

  8. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2:Sb for flexible electronics

    International Nuclear Information System (INIS)

    Cranton, Wayne M.; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C.; Chi Kuangnan; Hedgley, Richard; Scott, John; Lipiec, Stephen; Spiller, Andrew; Speakman, Stuart

    2007-01-01

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO 2 :Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm -2 reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions

  9. Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response.

    Science.gov (United States)

    Shishkanova, T V; Matejka, P; Král, V; Sedenková, I; Trchová, M; Stejskal, J

    2008-08-29

    Repeated depositions of polyaniline (PANI) have been used to control the thickness of the polymeric film deposited on poly(vinyl chloride) (PVC) membrane surface. The oxidation of aniline was carried out in a dispersion mode, i.e. in the presence of poly(N-vinylpyrrolidone) (PVP). Two kinds of PVC were used for this purpose: a non-plasticized PVC for the study of PANI deposition and PVC, plasticized with nitrophenyl octyl ether (NPOE), as a prototype of a liquid membrane electrode. The results of UV-visible and FTIR spectroscopies and electron microscopy showed that (1) the film thickness increased by about equal increments of approximately 40 nm after each polymerization, and (2) the interface with PVC was constituted by PANI film and adhering PANI-PVP colloidal particles. The various thicknesses of the deposited PANI films affected the potentiometric response of the NPOE/PVC membrane with and without an anion-exchanger. The potentiometric anionic response was observed with a minimal thickness of PANI film on the blank NPOE/PVC membrane. Sensitivity of the PANI film to pH occurred only with a blank NPOE/PVC membrane coated with a thick polymeric film, while it was strongly suppressed by the presence of a lipophilic anion-exchanger, tridodecylmethylammonium chloride (TDDMACl), in the membrane, regardless of the thickness of the polymer film. The thickness of the PANI film did not affect the anionic selectivity pattern of TDDMACl-based membranes to any great extent, but its presence improved and stabilized their potentiometric characteristics (sensitivity, linear-response range).

  10. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    Science.gov (United States)

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  11. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge

    DEFF Research Database (Denmark)

    Koullapis, P. G.; Kassinos, S. C.; Bivolarova, Mariya Petrova

    2016-01-01

    of inlet flow conditions, particle size, electrostatic charge, and flowrate. While most computer simulations assume a uniform velocity at the mouth inlet, we found that using a more realistic inlet profile based on Laser Doppler Anemometry measurements resulted in enhanced deposition, mostly on the tongue...... between particle size, electrostatic charge, and flowrate. Our results suggest that in silico models should be customized for specific applications, ensuring all relevant physical effects are accounted for in a self-consistent fashion....

  12. Proton decay theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay

  13. DSC and conductivity studies on PVA based proton conducting gel ...

    Indian Academy of Sciences (India)

    Unknown

    not change (curve c). In addition to these two transitions, a broad melting isotherm (around 417 K) corresponding to ammonium thiocyanate (curve a) was noticed. The absence of any other isotherm suggests the existence of two-phase material (PVA and NH4SCN electrolyte) with no interaction within components.

  14. ATLAS proton-proton event containing four muons

    CERN Multimedia

    ATLAS Collaboration

    2011-01-01

    An event with four identified muons from a proton-proton collision in ATLAS. This event is consistent with coming from two Z particles decaying: both Z particles decay to two muons each. Such events are produced by Standard Model processes without Higgs particles. They are also a possible signature for Higgs particle production, but many events must be analysed together in order to tell if there is a Higgs signal. This view is a zoom into the central part of the detector. The four muons are picked out as red tracks. Other tracks and deposits of energy in the calorimeters are shown in yellow.

  15. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  16. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells

    Science.gov (United States)

    Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin

    2018-06-01

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.

  17. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  18. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  19. Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes

    NARCIS (Netherlands)

    Park, J.H.; Goldstein, A.H.; Timkovsky, J|info:eu-repo/dai/nl/330541676; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R.|info:eu-repo/dai/nl/337989338

    2013-01-01

    During summer 2010, a proton transfer reaction – time of flight – mass spectrometer (PTR-TOF-MS) and a quadrupole proton transfer reaction mass spectrometer (PTR-MS) were deployed simultaneously for one month in an orange orchard in the Central Valley of California to collect continuous data

  20. Proton radiography to improve proton therapy treatment

    NARCIS (Netherlands)

    Takatsu, J.; van der Graaf, E. R.; van Goethem, Marc-Jan; van Beuzekom, M.; Klaver, T.; Visser, Jan; Brandenburg, S.; Biegun, A. K.

    The quality of cancer treatment with protons critically depends on an accurate prediction of the proton stopping powers for the tissues traversed by the protons. Today, treatment planning in proton radiotherapy is based on stopping power calculations from densities of X-ray Computed Tomography (CT)

  1. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Sindhu, S.; Narasimha Rao, K.; Ahuja, Sharath; Kumar, Anil; Gopal, E.S.R.

    2006-01-01

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  2. Evaluation of BaZr0.1Ce0.7Y0.2O3-δ-based