WorldWideScience

Sample records for dependent magnetic susceptibility

  1. Quantitative interpretation of the magnetic susceptibility frequency dependence

    Science.gov (United States)

    Ustra, Andrea; Mendonça, Carlos A.; Leite, Aruã; Jovane, Luigi; Trindade, Ricardo I. F.

    2018-05-01

    Low-field mass-specific magnetic susceptibility (MS) measurements using multifrequency alternating fields are commonly used to evaluate concentration of ferrimagnetic particles in the transition of superparamagnetic (SP) to stable single domain (SSD). In classical palaeomagnetic analyses, this measurement serves as a preliminary assessment of rock samples providing rapid, non-destructive, economical and easy information of magnetic properties. The SP-SSD transition is relevant in environmental studies because it has been associated with several geological and biogeochemical processes affecting magnetic mineralogy. MS is a complex function of mineral-type and grain-size distribution, as well as measuring parameters such as external field magnitude and frequency. In this work, we propose a new technique to obtain quantitative information on grain-size variations of magnetic particles in the SP-SSD transition by inverting frequency-dependent susceptibility. We introduce a descriptive parameter named as `limiting frequency effect' that provides an accurate estimation of MS loss with frequency. Numerical simulations show the methodology capability in providing data fitting and model parameters in many practical situations. Real-data applications with magnetite nanoparticles and core samples from sediments of Poggio le Guaine section of Umbria-Marche Basin (Italy) provide additional information not clearly recognized when interpreting cruder MS data. Caution is needed when interpreting frequency dependence in terms of single relaxation processes, which are not universally applicable and depend upon the nature of magnetic mineral in the material. Nevertheless, the proposed technique is a promising tool for SP-SSD content analyses.

  2. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  3. Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems

    Science.gov (United States)

    Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.

    2017-11-01

    We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.

  4. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Pérez-Landazábal, J.I.; Recarte, V.; Gómez-Polo, C.

    2010-01-01

    Roč. 22, č. 31 (2010), 316004/1-316004/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * magnetic susceptibility * martensitic transition * magnetic domains Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.332, year: 2010

  5. Experimental investigation of temperature dependence of the magnetic susceptibility (T) of manganites La1-xAxMnO3

    International Nuclear Information System (INIS)

    Salakhitdinova, M.; Kuvandikov, O.; Shakarov, Kh.; Shodiev, Z.

    2007-01-01

    Full text: he interest to lanthanoid manganites is based that enormous magnetoresistance is found in them and this materials are capable to test diverse structural and magnetic phase transformations. The work is devoted to experimental investigation of temperature dependence of the magnetic susceptibility (T) of manganites La 1-x A x MnO 3 which doped with Ag, K, Sr metals in wide temperature interval 50-8500 C, as well as to determination of their magnetic characteristics from this dependence. The dependence (T) was measured by the Faraday method with high-temperature magnetic pendulum balance in the atmosphere of refined helium. Maximal relative error of the measurements did not exceed 3 %. The analysis of experimental (T) dependence of investigated manganites has shown that the rise of stoichiometric rate of doped metals the temperature dependence of magnetic susceptibility of manganites monotonously is decreased. (authors)

  6. Magnetic properties of natural pyrrhotite Part I : Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework

    NARCIS (Netherlands)

    Dekkers, M.J.

    1988-01-01

    The grain-size dependence of the initial susceptibility, saturation magnetization, saturation remanence , coercive force, remanent coercive force and remanent acquisition coercive force, is reported for four natural pyrrhotites in a grain-size range from 250 µm down to <5 µm.

  7. Measurements of temperature dependence of 'localized susceptibility'

    CERN Document Server

    Shiozawa, H; Ishii, H; Takayama, Y; Obu, K; Muro, T; Saitoh, Y; Matsuda, T D; Sugawara, H; Sato, H

    2003-01-01

    The magnetic susceptibility of some rare-earth compounds is estimated by measuring magnetic circular dichroism (MCD) of rare-earth 3d-4f absorption spectra. The temperature dependence of the magnetic susceptibility obtained by the MCD measurement is remarkably different from the bulk susceptibility in most samples, which is attributed to the strong site selectivity of the core MCD measurement.

  8. Detection of superparamagnetic particles in soils developed on basalts using frequency- and amplitude-dependent magnetic susceptibility

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Kapicka, A.

    2016-12-01

    In rock, soil and environmental studies dealing with magnetic methods, the frequency-dependent magnetic susceptibility (κFD%) is parameter generally accepted as a tool for identification of ultrafine superparamagnetic (SP) particles. This parameter became an indicator of pedogenic magnetic fraction (increased pedogenesis). Despite the number of studies using this parameter, knowledge about threshold values of κFD% is not clear enough and this parameter may be misinterpreted. Moreover, in strongly magnetic soils, magnetic signal of the SP (mostly pedogenic) minerals may be masked by dominant lithological signal, carried by coarse-grain mineral fraction; therefore, influence of pedogenesis is hard to detect. The aim of this contribution is to compare results in determination of ultrafine SP magnetic particles in soils determined using different instruments: (a) Bartington MS2B dual-frequency meter, and (b) more sensitive AGICO Kappameter MFK1-FA. The values of the κFD % obtained by the Bartington MS2B varied from 0.9 to 5.8% (mass-specific magnetic susceptibility from 119 to 1533 × 10-8 m3/kg) while the AGICO MFK1-FA varied from 3.7 to 8.2% (mass-specific magnetic susceptibility from 295 to 1843 × 10-8 m3/kg). Although both instruments suggest significant portion of SP magnetic particles, the results can't be interpreted using the generally accepted threshold values based on Bartington data. However, our results suggest that relation between the mass-specific magnetic susceptibility and κFD% along whole soil profile may serve as suitable tool in discriminating between lithogenic and pedogenic control of magnetic fraction in the soil profile. Moreover, we propose new concept of identification of SP particles, based on field-dependent magnetic susceptibility. Its behaviour shows distinct features with significant change at amplitudes of about 100 A/m. Below this value, susceptibility decreases with increasing amplitude, reflecting saturation of magnetization due

  9. Anisotropies of field-dependent in-phase and out-of-phase magnetic susceptibilities of some pyrrhotite-bearing rocks

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2017-01-01

    Roč. 19, EGU General Assembly 2017 (2017) ISSN 1029-7006. [European Geosciences Union General Assembly. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility * field-dependent susceptibility * pyrrhotite Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7091.pdf

  10. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Kapicka, Ales; Hanzlikova, Hana

    2017-05-01

    In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10-8 m3 kg-1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10-8 m3 kg-1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (<2 mm) and the coarse fraction (4-10 mm) samples down the soil profile.

  11. Magnetic susceptibility characterisation of superparamagnetic microspheres

    Science.gov (United States)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  12. Magnetic susceptibility of semiconductor melts

    International Nuclear Information System (INIS)

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  13. Magnetic susceptibility of functional groups

    International Nuclear Information System (INIS)

    Herr, T.; Ferraro, M.B.; Contreras, R.H.

    1990-01-01

    Proceeding with a series of works where new criteria are applied to the the calculation of the contribution of molecular fragments to certain properties, results are presented for a group of 1-X-benzenes and 1-X-naphtalenes for the magnetic susceptibility constant. Both the diamagnetic and paramagnetic parts are taken into account. To reduce the problems associated with the Gauge dependence originated in the approximations made, Gauge independent atomic orbitals (GIAO) orbitals are used in the atomic orbital basis. Results are discussed in terms of functional groups. (Author). 17 refs., 1 fig., 3 tabs

  14. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    International Nuclear Information System (INIS)

    Khatiwada, R; Kendrick, R; Khosravi, M; Peters, M; Smith, E; Snow, W M; Dennis, L

    2016-01-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium–indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10 −9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the well-known Wiedemann additivity law for the magnetic susceptibility of inert mixtures of materials and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium–indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature. (paper)

  15. Magnetic susceptibility of curium pnictides

    International Nuclear Information System (INIS)

    Nave, S.E.; Huray, P.G.; Peterson, J.R.; Damien, D.A.; Haire, R.G.

    1981-09-01

    The magnetic susceptibility of microgram quantities of 248 CmP and 248 CmSb has been determined with the use of a SQUID micromagnetic susceptometer over the temperature range 4.2 to 340 K and in the applied magnetic field range of 0.45 to 1600 G. The fcc (NaCl-type) samples yield magnetic transitions at 73K and 162 K for the phosphide and antimonide, respectively. Together with published magnetic data for CmN and CmAs, these results indicate spatially extended exchange interactions between the relatively localized 5f electrons of the metallic actinide atoms

  16. Acoustic investigation of magnetic susceptibility of liquid metals

    International Nuclear Information System (INIS)

    Tekuchev, V.V.; Barashkov, B.I.; Ivanova, I.V.; Rygalov, L.N.

    2008-01-01

    An acoustic method is proposed for studying the specific magnetic susceptibility of metal melts. For the first time, magnetic susceptibilities of francium, beryllium, scandium, yttrium, vanadium, niobium, rhenium, palladium, and platinum in the liquid phase at their melting points, as well as temperature dependences of magnetic susceptibilities of cesium, yttrium, and vanadium over the temperature range from melting points to boiling points have been estimated [ru

  17. Accuracy of magnetic resonance based susceptibility measurements

    Science.gov (United States)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  18. A kinetic model to explain the grain size and organic matter content dependence of magnetic susceptibility in transitional marine environments: A case study in Ria de Muros (NW Iberia)

    Science.gov (United States)

    Mohamed, Kais J.; Andrade, Alba; Rey, Daniel; Rubio, Belén.; Bernabeu, Ana María.

    2017-06-01

    Magnetic minerals in marine sediments are sensitive indicators of processes such as provenance changes, climatic controls, pollution, and postdepositional geochemical changes. Magnetic susceptibility is the bulk property of the sediments most commonly used to understand the magnetic characteristics of sediments. Before conclusions can be drawn from changes in this parameter, it is important to understand what factors and to what extent control changes in magnetic susceptibility. The magnetic susceptibility of surficial sediments in the Galician Rias Baixas, in NW Spain, has been shown to covary with sediment texture and organic matter content. Downcore, the magnetic properties of these sediments experience drastic changes as a result of strong dissolution caused by early diagenesis. In this paper, we further explore the relationship between these factors and formalize the observed covariations as the result of a simple second-order kinetic model dependent on the content of organic matter in surficial sediments in the Ria de Muros. The reanalysis of previously reported data from the Rias de Vigo and Pontevedra confirmed the validity of this model and suggested further controls such as wave climate and water depth in the rates at which magnetic susceptibility changes are controlled by organic matter content.

  19. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Czech Academy of Sciences Publication Activity Database

    Grison, Hana; Petrovský, Eduard; Kapička, Aleš; Hanzlíková, Hana

    2017-01-01

    Roč. 209, č. 2 (2017), s. 654-660 ISSN 0956-540X R&D Projects: GA ČR GA13-10775S; GA MŠk(CZ) LG15036 Institutional support: RVO:67985530 Keywords : magnetic properties * environmental magnetism * rock and mineral magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.414, year: 2016

  20. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  1. Magnetic susceptibility of transition metal alloys with a hcp structure

    International Nuclear Information System (INIS)

    Volkenshtejn, N.V.; Galoshina, Eh.V.; Gorina, N.B.; Korenovskij, N.L.; Polyakova, V.P.; Savitskij, E.M.

    1978-01-01

    The angular dependence of the magnetic susceptibility of single crystals of Ru-Nb, Re-W and Os-Re alloys is investigated in the region of the hexagonal closely packed structure. The spin susceptibility is estimated on the basis of available data on the electron specific heat. The principal values of the orbital component of the susceptibility are determined under the assumption of isotopy of the spin contribution to the susceptibility. In Ru-Nb alloys the magnitudes of the orbital contributions and the susceptibility anisotropy are found to increase; in Re-W the spin contribution is noticeably greater whereas the orbital susceptibility is smaller, as is the anistropy. In the Os-Re alloy the orbital contributions increase and the susceptibility anisotropy is constant. It is suggested that the addition of the second component changes the overlapping of the d-electron wave functions

  2. Absolute method of measuring magnetic susceptibility

    Science.gov (United States)

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  3. Crystal shape-dependent magnetic susceptibility and Curie law crossover in the spin ices Dy2Ti2O7 and Ho2Ti2O7

    International Nuclear Information System (INIS)

    Bovo, L; Bramwell, S T; Jaubert, L D C; Holdsworth, P C W

    2013-01-01

    We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy 2 Ti 2 O 7 and Ho 2 Ti 2 O 7 in the temperature range 1.8–300 K. The use of spherical crystals has allowed accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility χ T (T) to be estimated. This has been compared against a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting—and possibly new—systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles. (paper)

  4. Effect of structural transition on magnetic susceptibility of tantalum carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.; Rempel', A.A.; Shvejkin, G.P.

    1987-01-01

    Ordering of carbon atoms and vacancies in nonmetal sublattice of TaC y is investigated for the first time by methods of magnetic susceptibility and structural neutron diffraction analysis. Measurements of magnetic susceptibility were conducted on high-sensitive magnetic scales in temperature interval of 300 - 1300 K with holding at each temperature up to the establishment of constant, nonchanging in the course of time value of susceptibility x. When investigating x-hardened tantalum carbide within the interval of TaC 0.82 - TaC 0.85 compositions under the conditions of slow heating, it was observed nonrecorded earlier irreversible decrease of susceptibility at temperature of 960 - 1000 K. With further temperature increase T>T tr it was observed at first even and than uneven increase of x value at a temperature of T tr equal to 1090, 1130 and 1150 K for TaC 0.82 , TaC 0.83 and TaC 0.85 respectively. The measuring of magnetic susceptibility of the same samples at temperature decrease reveals the presence of susceptibility temperature hysteresis in the interval of 1070 - 1090, 1100 - 1130 and 1120 - 1150 for TaC 0.82 , TaC 0.83 and TaC 0.85 . Reversible susceptibility jump corresponding to the temperature hysteresis range at dependences of x(T), is connected with equilibrium structural phase transition of order-disorder

  5. Out-of-phase magnetic susceptibility and environmental magnetism

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-6808 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic susceptibility * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6808.pdf

  6. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  7. Magnetic susceptibilities of integrable quantum ladders

    International Nuclear Information System (INIS)

    Park, Soo A; Lee, K.

    2001-01-01

    As an extension of previous studies, we consider the magnetic susceptibilities of a coupled spin chain model at low temperature and of a more realistic model at low temperature and of a more realistic model having a t-J ladder structure at zero temperature. The magnetic susceptibilities for both models are obtained numerically when the coupling constant is greater than its critical value. In this region, the ladders behave as a single chain for H c and as two independent chains for H>H c , showing a divergence at H c . This divergence is expected to smear out at a finite temperature

  8. Susceptibility effects in nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ziener, Christian Herbert

    2008-01-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  9. Magnetic susceptibility measurements on Bi - Sn alloys

    International Nuclear Information System (INIS)

    Mustaffa bin Haji Abdullah

    1985-01-01

    Magnetic susceptibility measurements on eight samples of tin-rich and three samples of bismuth-rich Bi-Sn alloys were made from 85K to 300K by Faraday's method. The susceptibilities of the eight tin-rich samples are positive and greater than the susceptibility of pure tin. The values are approximately constant at low temperatures but decreasing a little bit with increasing temperature. This result is interpreted as due to the predominant contribution of the Pauli spin paramagnetic susceptibility. A small decrease in susceptibility with temperature is interpreted as due to the effect of the second order term in the expression for spin paramagnetic susceptibility. The fluctuation of the susceptibility for alloys of different composition is interpreted as due to the effect of the density of states at the Fermi levels. The three samples of bismuth-rich alloys show a transition to diamagnetic property, where the diamagnetism is increased with temperature. This result is predominant and due to the diamagnetic contribution from the ions. The increase in susceptibility with temperature is interpreted as due to an increase in the effective radii of the ions due to thermal expansion. (author)

  10. Magnetic susceptibility measurement using 3D NMR

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Kořínek, Radim

    2011-01-01

    Roč. 24, Suppl. 1 (2011), s. 381-382 ISSN 0968-5243. [ESMRMB 2011 Congress. 06.10.2011-08.10.2011, Leipzig] R&D Projects: GA ČR GAP102/11/0318 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * artifact correction * magnetic susceptibility * gradient echo Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  12. Magnetic susceptibility measurement using 2D magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Marcon, P.; Bartušek, Karel; Burdkova, M.; Dokoupil, Zdeněk

    2011-01-01

    Roč. 22, č. 10 (2011), 105702:1-8 ISSN 0957-0233 R&D Projects: GA ČR GAP102/11/0318; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : magnetic flux density * magnetic susceptibility * MRI * MR signal * reaction field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.494, year: 2011

  13. Magnetic hysteresis and complex susceptibility as measures of ac losses in a multifilamentary NbTi superconductor

    International Nuclear Information System (INIS)

    Goldfarb, R.B.; Clark, A.F.

    1985-01-01

    Magnetization and ac susceptibility of a standard NbTi superconductor were measured as a function of longitudinal dc magnetic field. The ac-field-amplitude and frequency dependences of the complex susceptibility are examined. The magnetization is related to the susceptibility by means of a theoretical derivation based on the field dependence of the critical current density. Hysteresis losses, obtained directly from dc hysteresis loops and derived theoretically from ac susceptibility and critical current density, were in reasonable agreement

  14. Anisotropy of susceptibility in rocks that are magnetically non-linear even in weak fields

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin; Ježek, J.; Hrouda, F.

    2017-01-01

    Roč. 19, EGU General Assembly 2017 (2017) ISSN 1029-7006. [European Geosciences Union General Assembly. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility * field-dependent susceptibility * second-rank tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7210-1.pdf

  15. Limits of out-of-phase susceptibility in magnetic granulometry of rocks and soils

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Pokorný, J.; Chadima, Martin

    2015-01-01

    Roč. 59, č. 2 (2015), s. 294-308 ISSN 0039-3169 Institutional support: RVO:67985831 Keywords : out-of-phase susceptibility * frequency-dependent susceptibility measurement accuracy * environmetal magnetism * loess * soil * paleoclimatic reconstruction Subject RIV: DE - Earth Magnetism , Geodesy, Geography Impact factor: 0.818, year: 2015

  16. Finite perturbation studies of magnetic susceptibility and shielding with GIAO

    International Nuclear Information System (INIS)

    Zaucer, M.; Pumpernik, D.; Hladnik, M.; Azman, A.

    1977-01-01

    The magnetic susceptibility tensor and proton and fluorine magnetic shielding tensors are calculated for F 2 and (FHF) - using an ab initio finite perturbation method with gauge-invariant atomic orbitals (GIAO). The discussion of the basis set deficiency shows that the calculated values for the susceptibilities are reliable. Simple additivity (Pascal rule) for the susceptibility is confirmed. (orig.) [de

  17. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  18. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  19. Magnetic susceptibility of YbN

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Koelling, D.D.; Monnier, R.

    1991-01-01

    Applying the Zwicknagl, Zevin, and Fulde (ZZF) approximation for the spectral densities of the occupied and empty f states resulting from a degenerate-Anderson-impurity model, which incorporates crystal fields, we compute the low-temperature magnetic susceptibility of YbN. The model, in which each crystal-field level couples to the band states with its own hybridization function, has previously been successfully applied without the ZZF approximation to explain the specific-heat structure at low temperatures. The ZZF approximation removes the spurious zero-temperature behavior of the parent noncrossing approximation for the susceptibility. Surprisingly, even at the low crystal-field degeneracy (N=2) of YbN, the Shiba relation is very nearly satisfied. The appropriate experimental impurity susceptibility for comparison is extracted from the measurement by removing an empirical exchange interaction. The resultant Kondo temperature (T 0 =8.49 K) is consistent with previous specific-heat estimates (10--11 K), and the agreement with experiment is good

  20. A kinetic model that explains the dependence of magnetic susceptibility of sediment on grain size and organic matter content in transitional marine environments. Testing case studies in estuarine-like environments of NW Iberia

    Science.gov (United States)

    Rey, D.; Mohamed, K. J.; Andrade, A.; Rubio, B.; Bernabeu, A. M.

    2017-12-01

    The wide use of magnetic proxies to study pollution, sedimentological processes, and environmental and paleoclimatic changes is currently limited by the lack of transference functions that closely correlate with the unmeasurable variables. Among them, magnetic susceptibility (MS) is the oldest and most popular, but have yet to live up to its expectations. This paper explores and quantifies how MS values of surficial sediments in transitional environments depends on grain size and on what can be said about the spatial distribution of hydrodynamic forces and the potential modulation of MS by sediment and organic matter provenances. The concentration of (oxyhydr)oxides in sands (d50 > 63 microns) is primarily controlled by their degree of dilution in the diamagnetic framework, which is larger for coarser grainsizes. In contrast, the concentration of (oxyhydr)oxides in muddy sediments is controlled by their dissolution rate during very early diagenesis, which is controlled by their content in organic matter (TOC), inversely dependent of grainsize. The balance between both components results in the study area in sands of d50 = 68 microns displaying the maximum MS values. The influence of organic matter on the dissolution of magnetite in surficial sediments can be quantified using a simple kinetic model. The model reveals the existence of a negative exponential relationship between magnetic susceptibility and grain size, that depends on the TOC of the fine-grained fraction. The model accurately predicts that a TOC increase of 0.35% results in a 50% reduction in the concentration of magnetite in the sediments of the Ría the Muros. We have also encountered this relationship not universal in this form, as its quantification is strongly modulated by coarse sediment mineralogy, TOC lability and by other factors such as wave climate, depth, and sediment oxygenation. Better understanding and quantification of the role that TOC, hydrodynamics, and changes in the geochemical

  1. Magnetic susceptibility of free charge carriers in bismuth tellurides (Bi2Te3)

    International Nuclear Information System (INIS)

    Guha Thakurta, S.R.; Dutta, A.K.

    1977-01-01

    Principal magnetic susceptibilities of both p- and n-type Bi 2 Te 3 crystals have been measured over the range of temperature 90 deg K to 650 deg K. The observed susceptibilities are diamagnetic and temperature dependent. This temperature dependence has been attributed to the contribution of the free charge carriers to the susceptibilities. From the observed susceptibilities the carrier-susceptibilities have been separately obtained which are found to be paramagnetic. From the total carrier-susceptibilities, the susceptibilities of the carriers which are thermally liberated in the intrinsic region have been separated. From an analysis of the carrier-susceptibilities the band gap and its temperature coefficient have been found out and these compare favourably with those obtained from electrical measurements. (author)

  2. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  3. Inflationary susceptibilities, duality and large-scale magnetic fields generation

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We investigate what can be said about the interaction of scalar fields with Abelian gauge fields during a quasi-de Sitter phase of expansion and under the assumption that the electric and the magnetic susceptibilities do not coincide. The duality symmetry, transforming the magnetic susceptibility into the inverse of the electric susceptibility, exchanges the magnetic and electric power spectra. The mismatch between the two susceptibilities determines an effective refractive index affecting the evolution of the canonical fields. The constraints imposed by the duration of the inflationary phase and by the magnetogenesis requirements pin down the rate of variation of the susceptibilities that is consistent with the observations of the magnetic field strength over astrophysical and cosmological scales but avoids back-reaction problems. The parameter space of this magnetogenesis scenario is wider than in the case when the susceptibilities are equal, as it happens when the inflaton or some other spectator field is ...

  4. The magnetic susceptibility of soils in Krakow, southern Poland

    Science.gov (United States)

    Wojas, Anna

    2017-06-01

    Studies into the magnetic susceptibility have been used to assess the soils contamination in the Krakow area. The results of topsoil (over a 2 × 2 km grid), subsoil (37 shallow holes) and soil samples (112) measurements were presented as maps of soil magnetic susceptibility (both volume and mass) illustrating the distribution of parameters in topsoil horizon (0-10 cm) and differential magnetic susceptibility maps between topsoil horizon and subsoil (40-60 cm). All evidence leads to the finding that the highest values of magnetic susceptibility of soil are found exclusively in industrial areas. Taking into consideration the type of land use, the high median value (89.8 × 10-8 m3kg-1) was obtained for samples of cultivated soils and is likely to be connected with occurrence of fertile soil (chernozem). Moreover, enrichment of soils with Pb and Zn accompanies magnetic susceptibility anomalies in the vicinity of the high roads and in the steelworks area, respectively.

  5. Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite

    International Nuclear Information System (INIS)

    Zatsiupa, A.A.; Bashkirov, L.A.; Troyanchuk, I.O.; Petrov, G.S.; Galyas, A.I.; Lobanovsky, L.S.; Truhanov, S.V.

    2014-01-01

    Magnetic susceptibility for ferrite Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T. It is found that at 5−300 K the effective magnetic moment of Fe 3+ ions in Bi 25 FeO 39 is equal to 5.82μ B . - Graphical abstract: The dependence of the magnetization (n, μ B ) on the magnetic field for one formula unit of Bi 25 FeO 39 at 5 K. - Highlights: • Magnetic susceptibility for Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. • It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. • The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T

  6. Magnetic susceptibility of 244Cm metal and 249Cf metal

    International Nuclear Information System (INIS)

    Fujita, D.K.; Parsons, T.C.; Edelstein, N.; Noe, M.; Peterson, J.R.

    1975-07-01

    The first magnetic susceptibility measurements made on the expanded fcc phase of 249 Cf metal are reported. Further measurements are needed on other Cf metal phases. Another measurement of the magnetic susceptibility of 244 Cm metal in a limited temperature range has been reported. The result does not agree with previously reported values. Further work is continuing on the synthesis of 244 Cm metal and 248 Cm metal and magnetic measurements on these samples. (auth)

  7. High-frequency, transient magnetic susceptibility of ferroelectrics

    Science.gov (United States)

    Grimes, Craig A.

    1996-10-01

    A significant high-frequency magnetic susceptibility was measured both in weakly polarized and nonpolarized samples of barium titanate, lead zirconate titanate, and carnauba wax. Magnetic susceptibility measurements were made from 10 to 500 MHz using a thin film permeameter at room temperature; initial susceptibilities ranged from 0.1 to 2.5. These values are larger than expected for paramagnets and smaller than expected for ferromagnets. It was found that the magnetic susceptibility decreases rapidly with exposure to the exciting field. The origin of the magnetic susceptibility is thought to originate with the applied time varying electric field associated with the susceptibility measurements. An electric field acts to rotate an electric dipole, creating a magnetic quadrupole if the two moments are balanced, and a net magnetic dipole moment if imbalanced. It is thought that local electrostatic fields created at ferroelectric domain discontinuities associated with grain boundaries create an imbalance in the anion rotation that results in a net, measurable, magnetic moment. The origin of the magnetic aftereffect may be due to the local heating of the material through the moving charges associated with the magnetic moment.

  8. Features of magnetic susceptibility and inhomogeneous magnetic state in La-Sr manganites

    International Nuclear Information System (INIS)

    Dovgij, V.T.; Linnik, A.I.; Kamenev, V.I.; Prokopenko, V.K.; Mikhajlov, V.I.; Khokhlov, V.A.; Kadontseva, A.M.; Linnik, T.A.; Davydejko, N.V.; Turchenko, V.A.

    2007-01-01

    Anomalous magnetic susceptibility has been observed in mono- and polycrystalline (ceramic) samples of La-Sr manganites. The oscillations of the magnetic susceptibility observed for monocrystal samples in the vicinity of the Curie temperature (and in the paramagnetic region) are explained by the existence of magnetic clusters. The appearance of susceptibility oscillations in ceramic samples is attributed to the formation of magnetic clusters, which may occur both in grains (at the interface between ferro- and antiferromagnetic phases) and at the grain boundaries [ru

  9. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  10. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  11. Soil magnetic susceptibility as indicator of radioactive contamination

    International Nuclear Information System (INIS)

    Curda, S.

    2006-01-01

    Measurement of magnetic susceptibility is a method, which is used in many areas of research. The locality Ak-Tjuz is typical example of old ecological load. One of the negative effects represents radioactive contamination. This situation is caused by environmental disaster in 1964. For useful reparation it is really necessary to determinate the surface range of contamination. And measurement of the magnetic susceptibility could be the suitable method for that kind of monitoring. (author)

  12. Confined Brownian motion of individual magnetic nanoparticles on a chip: Characterization of magnetic susceptibility.

    NARCIS (Netherlands)

    van Ommering, K.; Nieuwenhuis, J.H.; IJzendoorn, van L.J.; Koopmans, B.; Prins, M.W.J.

    2006-01-01

    An increasing number of biomedical applications requires detailed knowledge of the magnetic susceptibility of individual particles. With conventional techniques it is very difficult to analyze individual particles smaller than 1 µm. The authors demonstrate how the susceptibility of individual

  13. Nature of the magnetic susceptibility of dysprosium. Paramagnetic susceptibility of dysprosium - yttrium alloys

    International Nuclear Information System (INIS)

    Demidov, V.G.; Levitin, R.Z.; Chistyakov, O.D.

    1976-01-01

    The paramagnetic susceptibility of single crystals of dysprosium-yttirum alloys is measured in the basal plane and along the hexagonal axis. It is shown that the susceptibility of the alloys obeys the Curie-Weiss law, the effective magnetic moments allong the different directions being the same and the paramagnetic Curie temperatures being different. The difference between the paramagnetic Curie temperatures in the basal plane and along the hexagonal axis is independent of the dysprosium concentration in the alloy. As a comparison with the theoretical models of magnetic anisotropy shows, this is an indication that the magnetic anisotropy of dysprosium - yttrium alloys is of a single-ion nature

  14. Magnetic Susceptibilities as they appeared to me - An Amperian approach

    Energy Technology Data Exchange (ETDEWEB)

    Van den Bosch, A.

    2008-08-15

    Starting from scratch, the book narrates a systematic story of the basic ideas you need for understanding quasi static magnetic susceptibilities. The story leans on the authors 25 year experience measuring susceptibilities following the Faraday technique (related with solid state physics, radiation effects, materials and magneto chemistry). The base of magnetism, the current-current interaction, is the linkage between the topics treated. The number of mathematical equations are reduced to a minimum and can be skipped without losing the thread of the story. The story is positive towards the sound bases of magnetism. However, room is left for the interpretation of measuring data. As the word susceptibility covers different meanings, the story answers for different situations the question: what is susceptible to what for creating what?

  15. Magnetic Susceptibilities as they appeared to me - An Amperian approach

    International Nuclear Information System (INIS)

    Van den Bosch, A.

    2008-01-01

    Starting from scratch, the book narrates a systematic story of the basic ideas you need for understanding quasi static magnetic susceptibilities. The story leans on the authors 25 year experience measuring susceptibilities following the Faraday technique (related with solid state physics, radiation effects, materials and magneto chemistry). The base of magnetism, the current-current interaction, is the linkage between the topics treated. The number of mathematical equations are reduced to a minimum and can be skipped without losing the thread of the story. The story is positive towards the sound bases of magnetism. However, room is left for the interpretation of measuring data. As the word susceptibility covers different meanings, the story answers for different situations the question: what is susceptible to what for creating what?

  16. Study of the magnetic susceptibilities of some plutonium derivatives

    International Nuclear Information System (INIS)

    Raphael, G.

    1969-06-01

    We present a detailed description of an automatic recording apparatus for magnetic susceptibility measurement of radioactive samples in the temperature range 4 K - 1200 K. We have measured the magnetic susceptibility of various plutonium compounds: - PuO 2 , Pu 2 O 3 , PuO 2-x , - PuS, Pu 2 S 3 , Pu 3 S 4 , (U x Pu 1-x )S - PuN - PuC 1-x (N,O,H,vacancy), Pu 2 C 3 , (U 0.85 Pu 0.15 )C. The curves of susceptibilities versus temperature show many magnetic transitions. The interpretation of these results shows the existence of magnetic moments carried by the 5 f electrons and localized on the metallic sites as well as the great influence of the 'crystal field' in all these compounds. (author) [fr

  17. Initial magnetic susceptibility of the diluted magnetopolymer elastic composites

    International Nuclear Information System (INIS)

    Borin, D.Yu.; Odenbach, S.

    2017-01-01

    In this work diluted magnetopolymer elastic composites based on magnetic microparticles are experimentally studied. Considered samples have varied concentration of the magnetic powder and different structural anisotropy. Experimental data on magnetic properties are accomplished by microstructural observations performed using X-Ray tomography. Influence of the particles amount and structuring effects on the initial magnetic susceptibility of the composites as well as the applicability of the Maxwell-Garnett approximation, which is widely used in considerations of magnetopolymer elastic composites, are evaluated. It is demonstrated that the approximation works well for diluted samples containing randomly distributed magnetic particles and for the diluted samples with chain-like structures oriented perpendicular to an externally applied field, while it fails to predict the susceptibility of the samples with structures oriented parallel to the field. Moreover, it is shown, that variation of the chains morphology does not significantly change the composite initial magnetic susceptibility. - Highlights: • The Maxwell-Garnet prediction works well for the diluted isotropic composites. • The Maxwell-Garnet prediction can be used for composites with structures oriented perpendicular to an applied field. • Chains oriented parallel to an applied field significantly increase the composite initial magnetic susceptibility. • The number and thickness of chains is not of the highest importance for the diluted composites. • The crucial reason of the observed effect is expected to be the demagnetisation factor of the chains.

  18. High temperature magnetic susceptibility of the Nb-H system

    International Nuclear Information System (INIS)

    Welter, J.-M.

    1983-01-01

    The magnetic susceptibility chi(T,x) of various NbHsub(x) specimens with 0 - 5 to 1.25 x 10 - 5 cm 3 g - 1 in this hydrogen concentration range and exhibits a marked break at x approximately 0.6. An estimate of the Pauli paramagnetic spin susceptibility chisub(P) for the two limiting concentrations allowed the evaluation of the orbital paramagnetic susceptibility chisub(O). For x = 0 and x approximately 0.8 the values of chisub(P) are 1.05 x 10 - 5 cm 3 g - 1 and 0.39 x 10 - 5 cm 3 g - 1 respectively and the values of chisub(O) are 1.73 x 10 - 5 cm 3 g - 1 and 1.08 x 10 - 5 cm 3 g - 1 respectively. The magnetic susceptibility decreases by approximately 10% on going from the concentrated solid solution to the monohydride. (Auth.)

  19. AC susceptibility enhancement studies in magnetic systems

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ranganathan, R.; Chakravarti, A.; Sil, S.

    2001-01-01

    Enhancement of AC susceptibility has been observed for typical ferromagnets (Gd), reentrant spin glasses like (Fe 1.5 Mn 1.5 Si) and canted spin systems (Ce(Fe 0.96 Al 0.04 ) 2 ). The data have been interpreted with the help of a simulation model based on dry friction-like pinning of domain walls for systems having ferromagnetic domain structures. A strong pinning mechanism appears in the reentrant spin glass like and canted spin systems at low temperatures in addition to the intrinsic one in the ferromagnetic phase. The temperature variation of the pinning potential has been given qualitatively for the reentrant spin glass like systems

  20. Magnetic susceptibility measuring probe utilizing a compensation coil

    International Nuclear Information System (INIS)

    Bonnet, Jean; Fournet, Julien.

    1978-01-01

    This invention concerns a magnetic susceptibility measuring probe. It is used, inter alia, in logging, to wit continuous logging of the magnetic susceptibility of the ground throughout the length of a bore hole. The purpose of this invention is to increase the sensitivity of this type of probe by creating a side focusing effect . To this end, it provides for the use of a compensation winding, coaxial with the measurement winding and arranged symmetrically to the latter with respect to the centre of the induction windings [fr

  1. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  2. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  3. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  4. Anisotropy of susceptibility in rocks which are magnetically nonlinear even in low fields

    Science.gov (United States)

    Hrouda, František; Chadima, Martin; Ježek, Josef

    2018-06-01

    Theory of the low-field anisotropy of magnetic susceptibility (AMS) assumes a linear relationship between magnetization and magnetizing field, resulting in field-independent susceptibility. This is valid for diamagnetic and paramagnetic minerals by definition and also for pure magnetite, while in titanomagnetite, pyrrhotite and hematite the susceptibility may be clearly field-dependent even in low fields used in common AMS meter. Consequently, the use of the linear AMS theory is fully legitimate in the former minerals, but in principle incorrect in the latter ones. Automated measurement of susceptibility in 320 directions in variable low-fields ranging from 5 to 700 A m-1 was applied to more than 100 specimens of various pyrrhotite-bearing and titanomagnetite-bearing rocks. Data analysis showed that the anisotropic susceptibility remains well represented by an ellipsoid in the entire low-field span even though the ellipsoid increases its volume and eccentricity. The principal directions do not change their orientations with low-field in most specimens. Expressions for susceptibility as a function of field were found in the form of diagonal tensor whose elements are polynomials of low order. In a large proportion of samples, the susceptibility expressions can be further simplified to have one common skeleton polynomial.

  5. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    Science.gov (United States)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  6. Magnetic susceptibility of multiferroics and chemical ordering

    Czech Academy of Sciences Publication Activity Database

    Maryško, Miroslav; Laguta, Valentyn; Raevski, I. P.; Kuzian, R. O.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Yu.V.; Raevskaya, S. I.; Titov, V.V.; Kubrin, S.P.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 1-6, č. článku 056409. ISSN 2158-3226 R&D Projects: GA ČR GA13-11473S Institutional support: RVO:68378271 Keywords : multiferroic * spin glass * antiferromagnetic * ferroelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.568, year: 2016

  7. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    Science.gov (United States)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  8. Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves

    Science.gov (United States)

    Rifai, H.; Putra, R.; Fadila, M. R.; Erni, E.; Wurster, C. M.

    2018-04-01

    Measurement of some magnetic properties have been performed on vertical profile from South Sulawesi caves (Mampu and Bubau) by using low cost, rapid, sensitive and non destructive magnetic method. The aim is to attempt to use magnetic characters as a fingerprint for anthropogenic pollution in the caves. Guano samples were collected every 5 cm at a certain section of Mampu and Bubau cave, South Sulawesi, starting from surface through 300 cm in depth of mampu Cave and 30 cm of Bubau Cave. The magnetic parameters such as magnetic susceptibility and percentage frequency dependence susceptibility were measured using the Bartington MS2-MS2B instruments and supported by X-Ray Fluoroscence (XRF) to know their element composition. The results show that the samples had variations in magnetic susceptibility from 3.5 to 242.6 x 10‑8 m3/kg for Mampu Cave and from 8.6 to 106.5 x 10‑8 m3/kg for Bubau Cave and also magnetic domain. Then, the XRF results show that the caves contain several heavy metals. Magnetic and heavy metal analyses showing that the magnetic minerals in caves are lithogenic (Fe-bearing minerals) in origin and anthropogenic (Zn content) in the caves.

  9. Magnetic irreversibility in granular superconductors: ac susceptibility study

    International Nuclear Information System (INIS)

    Perez, F.; Obradors, X.; Fontcuberta, J.; Vallet, M.; Gonzalez-Calbet, J.

    1991-01-01

    Ac susceptibility measurements of a ceramic weak-coupled superconductor in very low ac fields (2mG, 111Hz) are reported. We present evidence for the observation of the magnetic irreversibility following a ZFC-FC thermal cycling by means of ac susceptibilty measurements. It is shown that this technique also reflect local magnetic field effects in granular superconductors, as previously suggested in microwave surface resistance and I-V characteristics. (orig.)

  10. The use of magnetic susceptibility measurements to determine ...

    African Journals Online (AJOL)

    This research work presents a study on the application of magnetic susceptibility measurements and geochemical analysis for mapping or assessing heavy metal pollution in the agricultural soil in road proximity. The research work was also done to check any runoff of heavy metals pollution to the Owabi dam which serves ...

  11. Role of magnetic susceptibility weighted imaging in evaluation of ...

    African Journals Online (AJOL)

    Introduction: Susceptibility-weighted imaging (SWI) is a new method in MR imaging. SWI detects the signal loss created by disturbance of a homogeneous magnetic field; these disturbances can be caused by paramagnetic, ferromagnetic, or diamagnetic substances. There are many neurologic conditions that can benefit ...

  12. Susceptibility and magnetization of a random Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D; Srivastava, V [Roorkee Univ. (India). Dept. of Physics

    1977-08-01

    The susceptibility of a bond disordered Ising model is calculated by configurationally averaging an Ornstein-Zernike type of equation for the two spin correlation function. The equation for the correlation function is derived using a diagrammatic method due to Englert. The averaging is performed using bond CPA. The magnetization is also calculated by averaging in a similar manner a linearised molecular field equation.

  13. Automatic magnetic susceptibility measurements between 4 K and 1200 K

    International Nuclear Information System (INIS)

    Raphael, G.

    1969-01-01

    We give a detailed description of a Faraday magnetic susceptibility balance which operates from 4 K to 1200 K. Some preliminary results on platinum and tantalum illustrate the precision and the sensitivity of the measurements. The apparatus has been designed for measurements on the plutonium compounds which present severe health hazards. (author) [fr

  14. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  15. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R 2 =0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R 2 =0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R 2 =0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI. - Highlights: • Development of an AC susceptibility imaging model. • Comparison of AC susceptibility imaging (ASI) and susceptibility magnitude imaging (SMI). • Demonstration of ASI and spectroscopic ASI (sASI) using three different magnetic nanoparticle types. • SASI scan separation of three different magnetic nanoparticles samples using 5 spectroscopic frequencies. • Demonstration of biological feasibility of sASI

  16. Viscosity of magnetic fluids must be modified in calculations of dynamic susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.V., E-mail: lav@icmm.ru

    2017-06-01

    The frequency dependences of dynamic susceptibility were measured for a series of magnetic fluid samples with the same dispersed composition at different temperatures. Coincidence of normalized dynamic susceptibility curves plotted for different concentrations was obtained only after introducing correction for the value of dynamic viscosity of the magnetic fluid. The value of the correction coefficient doesn’t depend on temperature and is the universal function of the hydrodynamic concentration of particles. - Highlights: • Dynamic susceptibility was measured at different temperatures and concentrations. • Coincidence of curves requires a correction of value of viscosity in calculations. • This correction is function of the hydrodynamic concentration of particles. • With this function the rotation of particles are described correctly.

  17. Magnetic susceptibility of molecular carbon: nanotubes and fullerite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A P; Haddon, R C; Zhou, O; Fleming, R M; Zhang, J; McClure, S M; Smalley, R E [AT T Bell Laboratories, Murray Hill, NJ (United States)

    1994-07-01

    Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C[sub 60] fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C[sub 60] fullerite. (1) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (2) High-resolution magnetic susceptibility data on C[sub 60] fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C[sub 60]. This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.

  18. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker

    Science.gov (United States)

    Wang, Yi; Liu, Tian

    2015-01-01

    In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM. Magn Reson Med 73:82–101, 2015. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. This is an open access article under the terms of the Creative commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:25044035

  19. Temperature-dependence of the QCD topological susceptibility

    Science.gov (United States)

    Kovacs, Tamas G.

    2018-03-01

    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.

  20. Dynamic magnetic susceptibility of systems with long-range magnetic order

    International Nuclear Information System (INIS)

    Vannette, Matthew Dano

    2009-01-01

    The utility of the TDR as an instrument in the study of magnetically ordered materials has been expanded beyond the simple demonstration purposes. Results of static applied magnetic field dependent measurements of the dynamic magnetic susceptibility, ?, of various ferromagnetic (FM) and antiferromagnetic (AFM) materials showing a range of transition temperatures (1-800 K) are presented. Data was collected primarily with a tunnel diode resonator (TDR) at different radio-frequencies (∼10-30 MHz). In the vicinity of TC local moment ferromagnets show a very sharp, narrow peak in ? which is suppressed in amplitude and shifted to higher temperatures as the static bias field is increased. Unexpectedly, critical scaling analysis fails for these data. It is seen that these data are frequency dependent, however there is no simple method whereby measurement frequency can be changed in a controllable fashion. In contrast, itinerant ferromagnets show a broad maximum in ? well below TC which is suppressed and shifts to lower temperatures as the dc bias field is increased. The data on itinerant ferromagnets is fitted to a semi-phenomenological model that suggests the sample response is dominated by the uncompensated minority spins in the conduction band. Concluding remarks suggest possible scenarios to achieve frequency resolved data using the TDR as well as other fields in which the apparatus may be exploited.

  1. Magnetic relaxation phenomena in the chiral magnet Fe1 -xCoxSi : An ac susceptibility study

    Science.gov (United States)

    Bannenberg, L. J.; Lefering, A. J. E.; Kakurai, K.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-10-01

    We present a systematic study of the ac susceptibility of the chiral magnet Fe1 -xCoxSi with x =0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A phase, the helical-to-conical transition and in a region above TC. The distribution of relaxation frequencies around the A phase is broad, asymmetric, and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe0.7Co0.3Si than in other chiral magnets.

  2. Magnetic susceptibility: a proxy method of estimating increased pollution

    International Nuclear Information System (INIS)

    Kluciarova, D.; Gregorova, D.; Tunyi, I.

    2004-01-01

    A need for rapid and inexpensive (proxy) methods of outlining areas exposed to increased pollution by atmospheric particulates of industrial origin caused scientists in various fields to use and validate different non-traditional (or non-chemical) techniques. Among them, soil magnetometry seems to be a suitable tool. This method is based on the knowledge that ferrimagnetic particles, namely magnetite, are produced from pyrite during combustion of fossil fuel. Besides the combustion processes, magnetic particles can also originate from road traffic, for example, or can be included in various waste-water outlets. In our study we examine the magnetic susceptibility as a convenient measure of determining the concentration of (ferri) magnetic minerals by rapid and non-destructive means. We used for measure KLY-2 Kappabridge. Concentration of ferrimagnetic minerals in different soils is linked to pollution sources. Higher χ values were observed in soils on the territory in Istebne (47383x10 -6 SI ). The susceptibility anomaly may be caused by particular geological circumstances and can be related to high content of ferromagnetic minerals in the host rocks. Positive correlation of magnetic susceptibility are conditioned by industrial contamination mainly by metal working factories and by traffic. The proposed method can be successfully applied in determining heavy metal pollution of soils on the city territories. (authors)

  3. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  4. Magnetic susceptibility imaging with a nonionic contrast agent

    International Nuclear Information System (INIS)

    Cacheris, W.; Rocklage, S.M.; Quay, S.; Dow, W.; Love, D.; Worah, D.; Lim, K.

    1988-01-01

    The magnetic susceptibility mechanism for MR imaging contrast enhancement has the advantage of providing useful information, such as cerebral blood flow, without crossing the blood-brain barrier. In this paper the authors report the use of a highly effective, relatively nontoxic chelate as a magnetic susceptibility agent. Dy-DTPA-bis(methylamide) (Dy-DTPA-BMA) has an extremely low acute toxicity (LD-50, intravenous, mice ∼ 40 mmol/kg). Doses of 1 mmol/kg and 2 mmol/kg Dy-DTPA-BMA lowered the initial signal intensity 63% to 57%, respectively. The utility of this technique in detecting areas of reduced blood flow within the brain was demonstrated by imaging a rabbit with a cerebral perfusion deficit

  5. The use of magnetic susceptibility as a forensic search tool.

    Science.gov (United States)

    Pringle, Jamie K; Giubertoni, Matteo; Cassidy, Nigel J; Wisniewski, Kristopher D; Hansen, James D; Linford, Neil T; Daniels, Rebecca M

    2015-01-01

    There are various techniques available for forensic search teams to employ to successfully detect a buried object. Near-surface geophysical search methods have been dominated by ground penetrating radar but recently other techniques, such as electrical resistivity, have become more common. This paper discusses magnetic susceptibility as a simple surface search tool illustrated by various research studies. These suggest magnetic susceptibility to be a relatively low cost, quick and effective tool, compared to other geophysical methods, to determine disturbed ground above buried objects and burnt surface remains in a variety of soil types. Further research should collect datasets over objects of known burial ages for comparison purposes and used in forensic search cases to validate the technique. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments

    Czech Academy of Sciences Publication Activity Database

    Faměra, Martin; Matys Grygar, Tomáš; Elznicová, J.; Grison, Hana

    2018-01-01

    Roč. 77, č. 5 (2018), č. článku 189. ISSN 1866-6280 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 ; RVO:67985530 Keywords : Background functions * Geochemical normalization * Mass-specific magnetic susceptibility * Post-depositional processes * Provenance Subject RIV: DD - Geochemistry OBOR OECD: Environmental sciences (social aspects to be 5.7); Geology (GFU-E) Impact factor: 1.569, year: 2016

  7. Magnetic susceptibilities of bynary non-electrolyte mixtures

    International Nuclear Information System (INIS)

    Caceres, P.; Acevedo, I.L.; Postigo, M.A.; Kartz, M.

    1987-01-01

    Molar magnetic susceptibilities are determined by the Goy method for the following two systems: 1-propanol + methyl acetate and 2-propanol + methyl acetate at 298 K where the three molecules are polar and the alcohol molecules are associated in their pure state. Excess diamagnetic susceptibilties are calculated to obtain information about possible interactions. Diamagnetic suscetibilities were related with molecular polarizabilities by Boyer-Donzelot's equation and compared with experimental results. (author) [pt

  8. Magnetic-susceptibility and heat-capacity measurements on PrRhSb

    International Nuclear Information System (INIS)

    Malik, S.K.; Takeya, H.; Gschneidner, K.A. Jr.

    1994-01-01

    Magnetic-susceptibility (ac and dc) and heat-capacity measurements have been carried out on the compound PrRhSb. These measurements reveal two magnetic transitions in this compound---one at about 18 K and the other around 6 K. In the dc susceptibility the 18-K transition is evident as the temperature below which a magnetic correlation sets in and the susceptibility is found to be field dependent. The lower transition manifests as a peak in the susceptibility of zero-field-cooled samples which were measured in low applied fields. The electronic-specific-heat coefficient, γ, is found to be 33 mJ/mol K 2 between 40 and 70 K after correcting for the lattice contribution taken to be the same as in its La analog. The γ value is fairly large for a Pr compound and may be indicative of moderately heavy quasiparticles. A Kondo-type interaction of the Pr 4f electrons with the conduction electrons may be responsible for high-magnetic-ordering temperatures and the moderately large γ value in this compound

  9. Momentum dependence of the topological susceptibility with overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Koma, Yoshiaki; Koma, Miho [Numazu College of Technology, Shizuoka (Japan); Ilgenfritz, Ernst-Michael [Humboldt Univ., Berlin (Germany). Inst. fuer Physik; Koller, Karl [Muenchen Univ. (Germany). Fakultaet fuer Physik; Schierholz, Gerrit [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, Thomas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Weinberg, Volker [Bayerische Akademie der Wissenschaften, Garching (Germany). Leibniz-Rechenzentrum

    2010-12-15

    Knowledge of the derivative of the topological susceptibility at zero momentum is important for assessing the validity of the Witten-Veneziano formula for the {eta}{sup '} mass, and likewise for the resolution of the EMC proton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using overlap fermions in quenched lattice QCD simulations. We expose the role of the low-lying Dirac eigenmodes for the topological charge density, and find a negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule for pure Yang-Mills theory, the absolute value is overestimated if the contribution from higher eigenmodes is ignored. (orig.)

  10. Momentum dependence of the topological susceptibility with overlap fermions

    International Nuclear Information System (INIS)

    Koma, Yoshiaki; Koma, Miho; Ilgenfritz, Ernst-Michael; Streuer, Thomas; Weinberg, Volker

    2010-12-01

    Knowledge of the derivative of the topological susceptibility at zero momentum is important for assessing the validity of the Witten-Veneziano formula for the η ' mass, and likewise for the resolution of the EMC proton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using overlap fermions in quenched lattice QCD simulations. We expose the role of the low-lying Dirac eigenmodes for the topological charge density, and find a negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule for pure Yang-Mills theory, the absolute value is overestimated if the contribution from higher eigenmodes is ignored. (orig.)

  11. Ising model on tangled chain - 2: Magnetization and susceptibility

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-05-01

    In the preceding paper we have considered an Ising model defined on tangled chain to study the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit. In this paper, following the main line and basing on some results of the previous work, we shall study in the ''language'' of state configurations the behaviour of the magnetization and the susceptibility for different conditions of the model, to understand better the competition between the ferromagnetic bonds along the chain and the antiferromagnetic additional bonds across the chain. Particularly interesting is the behaviour of the susceptibility in the zero-field and zero-temperature limit. Exact solutions for the magnetization and susceptibility, generated by analytical calculations and iterative algorithms, are described. The additional bonds, introduced as a form of perfectly disorder, indicate a particular effect on the spin correlation. We found that the condition J=-J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. (author). 16 refs, 14 figs

  12. Perfusion imaging with magnetic-susceptibility contrast media

    International Nuclear Information System (INIS)

    Rosen, B.R.; Belliveau, J.W.; Betteridge, D.; Cohen, M.S.; Weisskoff, R.M.; Vevea, J.M.; Rzedzian, R.P.; Brady, T.J.

    1989-01-01

    In animal models, transient signal los on T2-weighted images has been well documented following intravenous injection of high-magnetic-susceptibility contrast agents that are compartmentalized within the brain intravascular space. These signal changes have been correlated with physiologic parameters, such as blood flow and volume. The advent of whole-body single-shot imaging capability, coupled with the approval of paramagnetic contrasts agents for human use, has enabled the authors to demonstrate susceptibility contrast in the human brain, allowing for generation of functional images. With use of a 1.5-T imaging system gradient-echo images (TE = 60 msec) were acquired in 75 msec. Sequential single-sections images were sampled every 1 second following bolus administration of 0.1 mmol/kg of Gd-DTPA

  13. Evaluating the Effects of Magnetic Susceptibility in UXO Discrimination Problems (SERDP SEED Project UX-1285)

    National Research Council Canada - National Science Library

    Pasion, Leonard R; Billings, Stephen D; Oldenburg, Douglas W; Sinex, David; Li, Yaoguo

    2003-01-01

    Using numerical simulations based on magnetic susceptibility properties observed at Kaho'olawe, Hawaii, we have examined the effect of magnetic soil on static magnetic method and time-domain electromagnetic (TEM...

  14. Electric susceptibility of a magnetized plasma under electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kawamori, E

    2011-01-01

    This study derives the electric susceptibility tensor of a cold magnetized plasma under electromagnetically induced transparency (EIT) regime (Litvak and Tokman 2002 Phys. Rev. Lett. 88 095003, Shvets and Wurtele 2002 Phys. Rev. Lett. 89 115003) in which an intense right-hand circularly polarized pump wave is injected parallel to the background magnetic field. A dispersion relation of the wave in the electron cyclotron frequency range for an arbitrary propagation angle is obtained from this susceptibility tensor. In the case of purely parallel propagation of the probe wave, the dispersion relation obtained by Litvak, Shvets and others is recaptured. A new finding is that a stop band emerges between left-hand cutoff and upper hybrid frequencies, in which originally an extraordinary-mode (X) branch exists, in the case of perpendicular propagation to the background magnetic field under the EIT. The bandwidth of the stop band expands as the pump wave is intensified. For the situation of launching the probe wave from the high-field side in a tokamak, the accessibility of the probe wave to the region where the EIT effect appears is investigated. The EIT region which is a resonance layer created by the EIT is accessible to the probe wave, indicating the possibility of the application of EIT to control the spatial position of wave power deposition.

  15. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  16. Magnetic susceptibility and relation to initial 87Sr/86Sr for granitoids of the central Sierra Nevada, California

    Science.gov (United States)

    Bateman, P.C.; Dodge, F.C.W.; Kistler, R.W.

    1991-01-01

    Measurement of the magnetic susceptibility of more than 6000 samples of granitic rock from the Mariposa 1?? by 2?? quadrangle, which crosses the central part of the Sierra Nevada batholith between 37?? and 38??N latitude, shows that magnetic susceptibility values are above 10-2 SI units in the east and central parts of the batholith and drop abruptly to less than 10-3 SI units in the western foothills. In a narrow transitional zone, intermediate values (10-3 to 10-2) prevail. Magnetic susceptibility appears to decrease slightly westward within the zones of both high and low values. Magnetic susceptibility in plutonic rocks is chiefly a function of the abundance of magnetite, which depends, in turn, on the total iron content of the rocks and their oxidation ratio. Correlations of magnetic susceptibility with initial 87Sr/86Sr suggest that oxidation ratios have been inherited from the source regions for the magmas from which the rocks crystallized. Reduction of Fe3+ to Fe2+ by organic carbon or other reducing substances may also have affected magnetic susceptibility. -from Authors

  17. Magnetic susceptibility and magnetization studies of some commercial austenitic stainless steels

    International Nuclear Information System (INIS)

    Collings, E.W.

    1979-01-01

    Results of magnetic susceptibility measurements using the Curie magnetic force technique are reported for six AISI 300-series alloys 310S, 304, 304L, 304N, 316, 316L as well as AWS 330 weld metal and Inconel 625. The temperature ranged from 5 to 416 0 K. Magnetization measurements over the temperature range 3 to 297 0 K, performed using a vibrating-sample magnetometer, are also reported. Alloy compositions and sample preparation procedures are discussed and numerical results of the study are presented. Magnetic characteristics of the four principal types of austenitic stainless steels studied are summarized

  18. Magnetic susceptibility of sodium disilicate glasses containing PuO2

    International Nuclear Information System (INIS)

    Aldred, A.T.

    1979-01-01

    A solubility limit of approx. 6 mol % PuO 2 in sodium disilicate (Na 2 O.2SiO 2 ) glass has been determined. Magnetic susceptibility measurements on these glasses yield approximate Curie-Weiss behavior, in contrast to the temperature-independent susceptibility of crystalline PuO 2 . This result is interpreted to indicate that the local site symmetry around the Pu ion in the sodium disilicate glass is much different than in crystalline PuO 2 . The effective paramagnetic moments determined from the temperature dependence of the susceptibility are found to be consistent with calculated free-ion values based on the most likely 5f electron configurations

  19. Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

    International Nuclear Information System (INIS)

    McCall, Scott K.; Fluss, Michael J.; Chung, Brandon W.; Haire, Richard G.

    2008-01-01

    Results of radiation damage in Pu and Pu 1-x Am x alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3 at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu 1-x Am x alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35 K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu 1-x Am x alloys. (authors)

  20. The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot

    Science.gov (United States)

    Boda, Aalu; Chatterjee, Ashok

    2018-04-01

    The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.

  1. Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments

    Science.gov (United States)

    Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.

    2018-03-01

    While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.

  2. Upgrading of magnetic susceptibility of conodont sample residues before magnetic separation

    Czech Academy of Sciences Publication Activity Database

    Carls, P.; Slavík, Ladislav

    2005-01-01

    Roč. 38, č. 2 (2005), s. 171-172 ISSN 0024-1164. [Lethaia Seminar. Oslo , 15.06.2005] R&D Projects: GA AV ČR(CZ) KSK6005114 Keywords : magnetic susceptibility * heavy liquids * conodont concentration Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.562, year: 2005

  3. Volume dependence of vanadium magnetism

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1993-07-01

    The first principle discrete variational method in the spin polarized local density approximation is used to calculate the local properties of 15 atom clusters representing variable crystal size bcc vanadium. Four distinct magnetic configurations are recognized as the lattice constant varies from 5.4 to 8.4 (a.u.). At the lowest end the clusters are paramagnetic (PM) whereas at the upper end clusters are ferromagnetic (FM). In between antiferromagnetic couplings prevail. The local magnetic moment increases, in a fashion not unlike second order transitions, from zero in the PM range to non-zero values in the AFM region. Transitions between other phases are first order. The systematics of these transitions are ascribed to the general shape of the density of states. The contact magnetic hyperfine field, charge density and 3d partial occupations at the central sites are also calculated. (author). 14 refs, 3 figs, 1 tab

  4. Magnetic susceptibility of scandium-hydrogen and lutetium-hydrogen solid-solution alloys from 2 to 3000K

    International Nuclear Information System (INIS)

    Stierman, R.J.

    1982-12-01

    Results for pure Sc show that the maximum and minimum in the susceptibility discovered earlier are enhanced as the impurity level of iron in scandium decreases. The Stoner enhancement factor, calculated from low-temperature heat capacity data, susceptibility data, and band-structure calculations show Sc to be a strongly enhanced paramagnet. Below 2 0 K, the magnetic anisotropy between the hard and easy directions of scandium decreases linearly with decreasing temperature, tending toward zero at 0 K. The large increase in the susceptibility of Sc at lower temperatures indicates magnetic ordering. Pure Lu and Lu-H alloys showed an anisotropy in susceptibility vs orientation; thus the samples were not random polycrystalline samples. Pure Lu shows the shallow maximum and minimum, but the increase in susceptibility at low temperatures is larger than previously observed. The susceptibility-composition dependence of the Lu-H alloys also did not match other data. The susceptibility-composition dependence does not match the composition dependence of the electronic specific heat constant below 150 K, showing the electronic specific heat is being affected by terms other than phonon-electron and pure electron-electron interactions

  5. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  6. Scaling of the susceptibility vs. magnetic-field sweep rate in Fe8 molecular magnet

    Science.gov (United States)

    Jordi, M.; Hernandez-Mínguez, A.; Hernandez, J. M.; Tejada, J.; Stroobants, S.; Vanacken, J.; Moshchalkov, V. V.

    2004-12-01

    The dependence of the magnetization reversal on the sweep rate of the applied magnetic field has been studied for single crystals of Fe8 magnetic molecules. Our experiments have been conducted at temperatures below 1 K and sweep rates of the magnetic field between 103 T/s to 104 T/s. The systematic shift of the values of the magnetic field at which the magnetization reversal occurs, indicates that this reversal process is not governed by the Landau-Zener transition model. Our data can be explained in terms of the superradiance emission model proposed by Chudnovsky and Garanin (Phys. Rev. Lett. 89 (2002) 157201).

  7. Magnetic susceptibilities and thermal expansion of artificial graphites

    International Nuclear Information System (INIS)

    Cornuault, P.; Herpin, A.; Hering, H.; Seguin, M.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [fr

  8. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  9. Magnetic susceptibility and magnetic resonance measurements of the moisture content and hydration condition of a magnetic mixture material

    International Nuclear Information System (INIS)

    Tsukada, K.; Kusaka, T.; Saari, M. M.; Takagi, R.; Sakai, K.; Kiwa, T.; Bito, Y.

    2014-01-01

    We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water are mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility

  10. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  11. Modified thermogravimetric apparatus to measure magnetic susceptibility on-line during annealing of metastable ferromagnetic materials

    International Nuclear Information System (INIS)

    Luciani, G.; Constantini, A.; Branda, F.; Ausanio, G.; Hison, C.; Iannotti, V.; Luponio, C.; Lanotte, L.

    2004-01-01

    The insertion of proper coils to generate a magnetic field, with controlled gradient, in a standard thermogravimetric apparatus is shown to be a valid solution to measure on-line, upon heat treatment, the magnetic susceptibility in ribbon shaped samples of a metastable ferromagnetic material. The method is very useful to individuate the annealing conditions that optimise soft or hard magnetic properties without using separate apparatuses for heat treatment, control of the structural phase transition and characterization of magnetic susceptibility

  12. Assessing age-dependent susceptibility to measles in Japan.

    Science.gov (United States)

    Kinoshita, Ryo; Nishiura, Hiroshi

    2017-06-05

    Routine vaccination against measles in Japan started in 1978. Whereas measles elimination was verified in 2015, multiple chains of measles transmission were observed in 2016. We aimed to reconstruct the age-dependent susceptibility to measles in Japan so that future vaccination strategies can be elucidated. An epidemiological model was used to quantify the age-dependent immune fraction using datasets of vaccination coverage and seroepidemiological survey. The second dose was interpreted in two different scenarios, i.e., booster and random shots. The effective reproduction number, the average number of secondary cases generated by a single infected individual, and the age at infection were explored using the age-dependent transmission model and the next generation matrix. While the herd immunity threshold of measles likely ranges from 90% to 95%, assuming that the basic reproductive number ranges from 10 to 20, the estimated immune fraction in Japan was below those thresholds in 2016, despite the fact that the estimates were above 80% for all ages. If the second dose completely acted as the booster shot, a proportion immune above 90% was achieved only among those aged 5years or below in 2016. Alternatively, if the second dose was randomly distributed regardless of primary vaccination status, a proportion immune over 90% was achieved among those aged below 25years. The effective reproduction number was estimated to range from 1.50 to 3.01 and from 1.50 to 3.00, respectively, for scenarios 1 and 2 in 2016; if the current vaccination schedule were continued, the reproduction number is projected to range from 1.50 to 3.01 and 1.39 to 2.78, respectively, in 2025. Japan continues to be prone to imported cases of measles. Supplementary vaccination among adults aged 20-49years would be effective if the chains of transmission continue to be observed in that age group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  14. Influence of oxygen disordering on static magnetic susceptibility of YBa2Cu3O7-x ceramics

    International Nuclear Information System (INIS)

    Sokolov, B.Yu.; Vil'danov, R.R.

    2008-01-01

    Influence of disordering of the populated oxygen positions in YBa 2 Cu 3 O 7-x ceramic's structure on its static magnetic susceptibility in the range of temperatures T>Tc is investigated. For occurrence of disordering the initial ceramics YBa 2 Cu 3 O 6,9 was annealed at T=520 C with the subsequent quenching in liquid nitrogen. Evolutions of a magnetic susceptibility and resistance of annealed ceramics during its air storage at a room temperature were studied. It is revealed that, unlike the initial optimum doped ceramics, annealed samples have appreciable temperature dependence of a magnetic susceptibility. Interpretation of results is executed on the basis of model of electronic phase separation and occurrence of a pseudo gap in a energy spectrum of free carriers of a superconductor. (authors)

  15. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    International Nuclear Information System (INIS)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Elfimova, Ekaterina A.; Lebedev, Aleksandr V.

    2016-01-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  16. Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities

    International Nuclear Information System (INIS)

    Nomura, Naoyuki; Tanaka, Yuko; Suyalatu; Kondo, Ryota; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2009-01-01

    The magnetic susceptibilities and microstructures of Zr-Nb binary alloys were investigated to develop a new metallic biomaterial with a low magnetic susceptibility for magnetic resonance imaging (MRI). The magnetic susceptibility was measured with a magnetic susceptibility balance, and the microstructure was evaluated with an X-ray diffractometer (XRD), an optical microscope (OM), and a transmission electron microscope (TEM). Zr-Nb alloys as-cast showed a minimum value of magnetic susceptibility between 3 and 9 mass% Nb, and the value abruptly increased up to 20 mass% Nb, followed by a gradual increase with the increase of the Nb content. XRD, OM, and TEM revealed that the minimum value of the susceptibility was closely related to the appearance of the athermal ω phase in the β phase. Since the magnetic susceptibility of Zr-3Nb alloy consisting of an α' phase was as low as that of Zr-9Nb alloy consisting of the β and ω phases, that of the ω phase was lower than that of the α' and β phases. When Zr-16Nb alloy was heat-treated, the isothermal ω phase appeared, and, simultaneously, the magnetic susceptibility decreased. Therefore, the ω phase contributes to the decrease of the magnetic susceptibility, independently of the formation process of the ω phase. The magnetic susceptibility of the Zr-3Nb alloy as-cast was almost one-third that of Ti-6Al-4V alloy, which is commonly used for medical implant devices. Zr-Nb alloys are useful for medical devices used under MRI. (author)

  17. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler

    Science.gov (United States)

    Bodnaruk, Andrii V.; Brunhuber, Alexander; Kalita, Viktor M.; Kulyk, Mykola M.; Snarskii, Andrei A.; Lozenko, Albert F.; Ryabchenko, Sergey M.; Shamonin, Mikhail

    2018-03-01

    The magnetic properties of a magnetoactive elastomer (MAE) filled with μm-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces.

  18. Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR-STI) for estimating orientations of white matter fibers in human brain.

    Science.gov (United States)

    Li, Xu; van Zijl, Peter C M

    2014-09-01

    An increasing number of studies show that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest the combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI methods was compared to that from diffusion tensor imaging (DTI). Computer simulations show that the MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of the MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. © 2014 Wiley Periodicals, Inc.

  19. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT

    International Nuclear Information System (INIS)

    Stanescu, T.; Wachowicz, K.; Jaffray, D. A.

    2012-01-01

    Purpose: MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. Methods: The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air/lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B 0 ) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. Results: Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT/m by

  20. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT.

    Science.gov (United States)

    Stanescu, T; Wachowicz, K; Jaffray, D A

    2012-12-01

    MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air∕lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B(0)) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT∕m by using an annular

  1. Quantum renormalizations in anisotropic multisublattice magnets and the modification of magnetic susceptibility under irradiation

    Science.gov (United States)

    Val'kov, V. V.; Shustin, M. S.

    2015-11-01

    The dispersion equation of a strongly anisotropic one-dimensional magnet catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 containing alternating high-spin (HS) ( S = 2) and low-spin (LS) ( S = 1/2) iron ions is obtained by the diagram technique for Hubbard operators. The analysis of this equation yields six branches in the excitation spectrum of this magnet. It is important that the crystal field for ions with spin S = 2 is described by the Hamiltonian of single-ion easy-plane anisotropy, whose orientation is changed by 90° when passing from one HS iron ion to another. The U( N) transformation technique in the atomic representation is applied to diagonalize a single-ion Hamiltonian with a large number of levels. It is shown that the modulation of the orientation of easy magnetization planes leads to a model of a ferrimagnet with easy-axis anisotropy and to the formation of energy spectrum with a large gap. For HS iron ions, a decrease in the mean value of the spin projection due to quantum fluctuations is calculated. The analysis of the specific features of the spectrum of elementary excitations allows one to establish a correspondence to a generalized Ising model for which the magnetic susceptibility is calculated in a wide range of temperatures by the transfer-matrix method. The introduction of a statistical ensemble that takes into account the presence of chains of different lengths and the presence of iron ions with different spins allows one to describe the experimentally observed modification of the magnetic susceptibility of the magnet under optical irradiation.

  2. Magnetic susceptibility, specific heat and magnetic structure of CuNi2(PO4)2

    International Nuclear Information System (INIS)

    Escobal, Jaione; Pizarro, Jose L.; Mesa, Jose L.; Larranaga, Aitor; Fernandez, Jesus Rodriguez; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    The CuNi 2 (PO 4 ) 2 phosphate has been synthesized by the ceramic method at 800 deg. C in air. The crystal structure consists of a three-dimensional skeleton constructed from MO 4 (M II =Cu and Ni) planar squares and M 2 O 8 dimers with square pyramidal geometry, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior has been studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The bimetallic copper(II)-nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at, approximately, 29.8 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements exhibit a three-dimensional magnetic ordering (λ-type) peak at 29.5 K. The magnetic structure of this phosphate shows ferromagnetic interactions inside the Ni 2 O 8 dimers, whereas the sublattice of Cu(II) ions presents antiferromagnetic couplings along the y-axis. The change of the sign in the magnetic unit-cell, due to the [1/2, 0, 1/2] propagation vector determines a purely antiferromagnetic structure. - Graphical abstract: Magnetic structure of CuNi2(PO4)2

  3. Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range

    NARCIS (Netherlands)

    Kuipers, B.W.M.; Bakelaar, I.A.; Klokkenburg, M.; Erne, B.H.

    2008-01-01

    A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01–1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low

  4. Structural properties and magnetic susceptibility of iron-intercalated titanium ditelluride

    International Nuclear Information System (INIS)

    Pleshchev, V.G.; Titov, A.N.; Titova, S.G.; Kuranov, A.V.

    1997-01-01

    Structural peculiarities and magnetic susceptibility of titanium ditelluride, intercalated by iron, are studied. It is established that the basic motive of crystal structure by intercalation is preserved and the iron atoms are locates in the van der Waals gaps in positions with octahedral coordination. It is shown that the magnetic susceptibility of the Fe 0.25 TiT 2 sample increases approximately by 20 times. The magnetic susceptibility for the Fe 0.33 TiTe 2 samples becomes even much higher

  5. Temperature-dependent magnetic properties of individual glass spherules, Apollo 11, 12, and 14 lunar samples.

    Science.gov (United States)

    Thorpe, A. N.; Sullivan, S.; Alexander, C. C.; Senftle, F. E.; Dwornik, E. J.

    1972-01-01

    Magnetic susceptibility of 11 glass spherules from the Apollo 14 lunar fines have been measured from room temperature to 4 K. Data taken at room temperature, 77 K, and 4.2 K, show that the soft saturation magnetization was temperature independent. In the temperature range 300 to 77 K the temperature-dependent component of the magnetic susceptibility obeys the Curie law. Susceptibility measurements on these same specimens and in addition 14 similar spherules from the Apollo 11 and 12 mission show a Curie-Weiss relation at temperatures less than 77 K with a Weiss temperature of 3-7 degrees in contrast to 2-3 degrees found for tektites and synthetic glasses of tektite composition. A proposed model and a theoretical expression closely predict the variation of the susceptibility of the glass spherules with temperature.

  6. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Madeleine [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Schwieters, Charles D. [National Institutes of Health, Office of Intramural Research, Center for Information Technology (United States); Göbl, Christoph [Technische Universität München, Department of Chemistry (Germany); Opina, Ana C. L. [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Strub, Marie-Paule [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Swenson, Rolf E.; Vasalatiy, Olga [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Tjandra, Nico, E-mail: tjandran@nhlbi.nih.gov [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States)

    2016-10-15

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using {sup 17}O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  7. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    International Nuclear Information System (INIS)

    Strickland, Madeleine; Schwieters, Charles D.; Göbl, Christoph; Opina, Ana C. L.; Strub, Marie-Paule; Swenson, Rolf E.; Vasalatiy, Olga; Tjandra, Nico

    2016-01-01

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using "1"7O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  8. Spatial distribution of topsoil magnetic susceptibility in Sawahlunto City, West Sumatera

    Science.gov (United States)

    Afdal; Wahyuni, E. S.

    2018-03-01

    A research to determine the spatial distribution of top soil magnetic suceptibility at Sawahlunto City, West Sumatra has been conducted. The top soil samples were taken at four locations ie the downtown area, the steam power plant area, the agricultural area, and coal mine area. At each location, the soil samples were taken at 10 points at a depth of 20 cm. Magnetic susceptibility were measured using Bartington MS2B Magnetic Susceptibility Meter. The topsoil samples from Sawahlunto city have relatively low average value of the magnetic susceptibility that is 67.0×10-8 m3/kg. The magnetic susceptibility of topsoil samples from downtown area have the average and the highest value of magnetic susceptibility (100.6×10-8 and 259.9×10-8 m3/kg), and followed by sample from the steam power plant area (98.4×10-8 and 258.0×10-8 m3/kg), the agricultural area (56.2×10-8 and 83.7×10-8 m3/kg), and coal mine area (12.9×10-8 and 26.8×10-8 m3/kg). Soil samples from the steam power plant area have the widest range of magnetic susceptibility value range from 0.3 × 10-8 to 258.0 × 10-8 m3/kg.

  9. Susceptibility investigation of the nanoparticle coating-layer effect on the particle interaction in biocompatible magnetic fluids

    International Nuclear Information System (INIS)

    Morais, P.C.; Santos, J.G.; Silveira, L.B.; Gansau, C.; Buske, N.; Nunes, W.C.; Sinnecker, J.P.

    2004-01-01

    AC susceptibility was used to investigate the effect of the surface-coating layer in two biocompatible, magnetite-based, magnetic fluid samples. Dextran and dimercaptosuccinic acid (DMSA) were the surface coating species. The temperature and frequency dependence of the peak susceptibility was discussed using the Vogel-Fulcher relation, from which the typical energy barrier (temperature correction) values of 1340±20 K (70±3 K) and 1230±30 K (86±5 K) were obtained for the dextran- and DMSA-coated nanoparticles, respectively

  10. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator

    Czech Academy of Sciences Publication Activity Database

    Studýnka, J.; Chadima, Martin; Suza, P.

    2014-01-01

    Roč. 629, 26 August (2014), s. 6-13 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : AMS * Kappabridge * susceptibility tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.872, year: 2014

  11. Critical behavior of the magnetic susceptibility of the uniaxial ferromagnet LiHoF4

    DEFF Research Database (Denmark)

    Beauvillain, P.; Renard, J. P.; Laursen, Ib

    1978-01-01

    The magnetic susceptibility of two LiHoF4 single crystals has been measured in the range 1.2-4.2 K. Ferromagnetic order occurs at Tc=1.527 K. Above 2.5 K, the susceptibilities parallel and perpendicular to the fourfold c axis are well interpreted by the molecular-field approximation, taking...

  12. Effect of tensile stress on the 3D reversible and irreversible differential magnetic susceptibilities

    International Nuclear Information System (INIS)

    Mao, Weihua; Atherton, David L.

    2001-01-01

    Magnetic hysteresis loops in three orthogonal directions are measured for a line pipe steel sample while the external magnetic field is applied in a direction perpendicular to the tensile stress direction. The total magnetization vector is calculated. This tends to the stress direction when tensile stress is applied. The reversible and irreversible differential magnetic susceptibilities are derived. It is found that the susceptibilities in all three directions are enhanced with increasing tensile stress, although the increase in the stress direction is much larger than in the other directions. [copyright] 2001 American Institute of Physics

  13. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    Delrive, C.

    1993-01-01

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10 -5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm 2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  14. Translation balance for measuring magnetic susceptibilities at high or low temperatures (1962)

    International Nuclear Information System (INIS)

    Blaise, A.; Peuch, M.A.

    1962-01-01

    A translation balance is described for the measurement of the magnetic susceptibilities of liquids or solids in the temperature range from 1.7 to 1400 deg. K. Measurements are made within a magnetic field adjustable from 3400 to 16000 oersteds, in any desired atmosphere. Susceptibilities between 10 -8 and 10 -4 u.e.m. C.G.S., can be measured. (authors) [fr

  15. Magnetic susceptibility measurements of boring cores obtained from regional hydrological study project

    International Nuclear Information System (INIS)

    Hasegawa, Ken

    2010-02-01

    We measured the magnetic susceptibility of boring cores obtained from the Regional Hydrological Study Project to interpret the aeromagnetic survey data which was carried out in Tono area with about 40km square surrounding Tono Geoscience Center. The result of measurements indicates that the magnetic susceptibility of the Toki Granite is not distributed uniformly and the maximum value becomes two orders in magnitude larger than its minimum value. (author)

  16. Calculation of the magnetic susceptibilities of transition metal monocarbides, mononitrides and monoxides

    International Nuclear Information System (INIS)

    Eibler, R.; Neckel, A.

    1975-01-01

    Results of Augmented Plane Wave (APW) band structure calculations are used to determine the magnetic susceptibilities of some transition metal monocarbides, mononitrides and monoxides (TiC, TiN, TiO, VC, VN, VO, NbC, NbN) assuming stoichiometric composition. Contributions to the susceptibility arising from the orbital para- and diamagnetism and the spin paramagnetism are determined separately. The orbital susceptibility terms are calculated by means of the model of Kubo and Obata. The calculated susceptibilities are compared with measured values. The approximations in the calculation of the orbital susceptibility terms are discussed especially with regard to the agreement between calculated and measured susceptibilities for the individual compounds. Similar calculations are performed for the susceptibilities of non-stoichiometric VCsub(x)-phase, for which APR-Virtual Crystal Approximation (VCA) band structure calculations are available. (author)

  17. Temperature dependence in magnetic particle imaging

    Science.gov (United States)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  18. A.c. susceptibility measurements in the presence of d.c. magnetic fields for Nd-Ba-Cu-O superconductors

    International Nuclear Information System (INIS)

    Watahiki, M.; Murakami, M.; Yoo, S.I.

    1997-01-01

    We report the temperature and magnetic field dependence of the complex a.c. susceptibility with bias d.c. magnetic fields for melt-processed Nd-Ba-Cu-O superconductor. The onset temperature (T onset ) of the real part of a.c. susceptibility shifted to a lower temperature with increasing d.c. magnetic field. The superconducting transition temperature (T c ) determined by d.c. magnetization measurements did not shift appreciably to a lower-temperature region with increasing d.c. magnetic field. The distinction between T onset and T c indicates that the a.c. susceptibility measurements detect the energy dissipation generated by the motion of flux lines. We have also measured flux profiles and found that there was no appreciable change in flux penetration below and above the peak field, which suggests that the peak effect in Nd-Ba-Cu-O is not due to the phase transition in the flux line lattice. (author)

  19. Wave Vector Dependent Susceptibility at T>Tc in a Dipolar Ising Ferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Holmes, L. M:; Guggenheim, H. J.

    1974-01-01

    The wave-vector-dependent susceptibility of LiTbF4 has been investigated by means of neutron scattering. The observations show a singularity of the susceptibility near wave vector Q=0 which is characteristic of the dipolar Coulomb interaction and good agreement with theory is obtained...

  20. Static magnetic susceptibility of radiopaque NiTiPt and NiTiEr

    Science.gov (United States)

    Chovan, Drahomír; Gandhi, Abbasi; Butler, James; Tofail, Syed A. M.

    2018-04-01

    Magnetic properties of metallic alloys used in biomedical industry are important for the magnetic resonance imaging (MRI). If the alloys were to be used for long term implants or as guiding devices, safety of the patient as well as the medical staff has to be ensured. Strong response to the external magnetic field can cause mechanical damage to the patients body. In this paper we present magnetic susceptibility of nickel rich, ternary NiTiPt and NiTiEr to static magnetic field. We show that the magnetic susceptibility of these radiopaque alloys has values in low paramagnetic region comparable to the binary nickel-titanium. Furthermore, we studied the effect of the thermal and mechanical treatments on magnetic properties. Despite deviation from linear M (H) treated samples spanning small region around H = 0 , the linearity of the M (H) and χ =d M /d H values suggest that these ternary alloys are safe to use under MRI conditions.

  1. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  2. Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility

    Czech Academy of Sciences Publication Activity Database

    Knab, M.; Hoffmann, V.; Petrovský, Eduard; Kapička, Aleš; Jordanova, N.; Appel, E.

    2006-01-01

    Roč. 49, č. 4 (2006), s. 527-535 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z3012916 Keywords : Moldau river sediments * magnetic susceptibility * anthropogenic impact Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.610, year: 2006

  3. Moessbauer and magnetic susceptibility measurements on M-type hexagonal Ba - ferrite

    International Nuclear Information System (INIS)

    Lipka, J.; Gruskova, A.; Sitek, J.; Miglierini, M.; Groene, R.; Hucl, M.; Toth, I.; Orlicky, O.

    1990-01-01

    Samples of stoichiometric BaFe 12 O 19 and Co, Ti substituted barium ferrite were prepared by chemical wet method. Moessbauer spectroscopy, magnetic susceptibility measurements, X-ray diffraction, infrared spectroscopy were conducted to examine the mechanism of formation. The observed magnetic characteristics and electron scanning microscopy show that single domain coprecipitated powders were formed. (orig.)

  4. Disk-cylinder method for using NMR to measure magnetic susceptibility

    International Nuclear Information System (INIS)

    Burnham, A.K.

    1978-01-01

    The sphere-cylinder method of using nuclear magnetic resonance (NMR) to measure the magnetic susceptibility of diamagnetic and paramagnetic materials has been generalized to the disk-cylinder method. A two-fold increase in sensitivity was obtained. Accuracies of 0.1% of the diamagnetism of water should be readily obtainable

  5. 3D and 4D magnetic susceptibility tomography based on complex MR images

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  6. Effects of magnetic and nonmagnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor: Application to CePt3Si

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Tamaddonpour, M.

    2013-10-01

    The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.

  7. Magnetic susceptibility measurement of solid oxygen at pressures up to 3.3 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Mito, M., E-mail: mitoh@tobata.isc.kyutech.ac.jp; Yamaguchi, S.; Tsuruda, H.; Deguchi, H. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Ishizuka, M. [Renovation Center of Instruments for Science Education and Technology, Osaka University, Toyonaka 560-8531 (Japan)

    2014-01-07

    The magnetic susceptibility of solid oxygen had long been observed only in the restricted pressure region below 0.8 GPa. We succeeded in extending the pressure region up to 3.3 GPa by clamping condensed oxygen in the sample chamber of a miniature diamond anvil cell and measuring the dc magnetic susceptibility using a superconducting quantum interference device magnetometer. In this experiment, the well-known α–β and β–γ transitions are observed in the phase diagram, suggesting consistency with the previous results of X-ray and Raman studies. In addition, a new magnetic anomaly is observed in the β phase.

  8. Estimating susceptibility and magnetization within the Earth's continental crust: Petrophysical and Satellite approaches

    Science.gov (United States)

    Purucker, M. E.; McEnroe, S. A.

    2014-12-01

    Magnetic models (Xchaos) made from Champ and Orsted data are used to place constraints on the average magnetic susceptibility and its variability in the continental crust. Estimates of magnetic crustal thickness are made in a two-step process. The first step uses a recent seismic model (Crust1.0) to estimate the thickness of crystalline crust above the Moho, modified in the Andes and the Himalayas to account for the non-magnetic lower crust there. The second step calculates the magnetic field expected from such a layer of crystalline rock assuming the magnetization is solely induced in the earth's main field by rock of constant magnetic susceptibility, and modifies the starting crustal thickness to bring it into agreement with the Xchaos model. This global model removes spherical harmonic degrees less than 15 to account for the core field mask. We restrict our attention to the continental crust, in particular to Australia, western North America, and Scandinavia. Petrophysical and petrological data from Scandinavian rocks that have been deep in the crust help place limits on susceptibility values. Our simulations use two susceptibilities, 0.02 and 0.04 SI. The mean crystalline crustal thickness from the seismic model is 42 and 37 km in western North America and Australia, respectively, and the modification with the magnetic data makes little change to the mean crustal thickness, irrespective of whether the susceptibility is 0.02 or 0.04 SI. However, the modification with the magnetic data does make a significant difference to the standard deviation of the crustal thickness, increasing it by a factor of two in the case of a susceptibility of 0.04, and by a factor of four in the case of a susceptibility of 0.02. The changes to the standard deviation of the crustal thickness are also evident in the Scandinavian data, but the mean crystalline crustal thickness of 45 km is significantly larger than that found from either magnetic model (33 and 30 km). The differences

  9. Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gamil.com

    2016-11-01

    Using linear response theory, Heisenberg model Hamiltonian and Green's function technique, the influences of Dzyaloshinskii–Moriya interaction (DMI), external magnetic field and next-nearest-neighbor (NNN) coupling on the density of magnon modes (DMM), the magnetic susceptibility (MS) and the magnon heat capacity (MHC) of a spin Lieb lattice, a face-centered square lattice, are investigated. The results reveal a band gap in the DMM and we witness an extension in the bandwidth and an increase in the number of van-Hove singularities as well. As a notable point, besides the magnetic nature which includes ferromagnetism in spin Lieb-based nanosystems, MS is investigated. Further, we report a Schottky anomaly in the MHC. The results show that the effects of the magnetic field on the MHC and MS have different behaviors in two temperature regions. In the low temperature region, MHC and MS increase when the magnetic field strength increases. On the other hand, the MHC and MS reduce with increasing the magnetic field strength in the high temperature region. Also comprehensive numerical modelling of the DMM, the MS and the MHC of a spin Lieb lattice yields excellent qualitative agreement with the experimental data. - Highlights: • Theoretical calculation of density of states of the spin Lieb lattice. • The investigation of the effect of external magnetic field on the magnon heat capacity and magnetic susceptibility. • The investigation of the effect of NNN coupling and the DMI strength on the magnon heat capacity and magnetic susceptibility.

  10. An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Goričan, Viktor; Hamler, Anton

    2013-01-01

    This paper firstly presents a measurement system for determining the magnetic properties of magnetic fluids, based on three pickup coils. The accuracy of the system was tested on known samples and then used for the characterization of magnetic losses (heating power P) on the magnetic fluid sample using two different methods. The first method is based on determining the hysteresis loop area and the second on determining the complex susceptibility; and showed that both methods are equivalent. The aim of this paper was to identify the heating power of the liquid at a known value for the magnetic field, and the arbitrary temperature. Thus, we explored the actual reduction in the heating power due to the heating of the sample, which cannot be achieved without the temperature regulated heat bath using established calorimetric methods. -- Highlights: ► A new measurement system was tested with numerous samples, and results were promising. ► Magnetic fluid heating power was determined using a system of J-compensated coil. ► Complex susceptibility method results equal losses as hysteresis loops approach. ► Temperature dependent heating power was explored without the heath-bath . ► For larger magnetic fields a linear H dependence of heating power is revealed

  11. Anisotropy of magnetic susceptibility (AMS) studies of Campanian ...

    Indian Academy of Sciences (India)

    trial, paralic and shallow marine strata. It com- prises of lower ... Sillakkudi sandstone was deposited under shallow ..... Jelinek V 1978 Statistical processing of anisotropy of mag- ... reorientation of magnetic fabrics in deep-sea sediments at.

  12. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  13. Magnetic susceptibility of Gd/sub 3/Ga/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, H Jr; Gupta, R M [Duke Univ., Durham, N.C. (USA). Dept. of Electrical Engineering

    1976-03-01

    The magnetic susceptibility of the intermetallic compound Gd/sub 3/Ga/sub 2/ has been measured by the Faraday method over the range 8 - 300 K. The data indicate antiferromagnetic behavior below 53 K. Above 100 K, the mass susceptibility obeys the Curie-Weiss law, chisub(g)=4.45X10/sup -2//(T+23)emu/gOe. The corresponding effective moment is 8.51 Bohr magnetons.

  14. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.O., E-mail: alexey.ivanov@urfu.ru [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Kantorovich, S.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Faculty of Physics, University of Vienna, Sensengasse 8, 1090 Vienna (Austria); Elfimova, E.A.; Zverev, V.S. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); Sindt, J.O. [School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Camp, P.J. [Institute of Mathematics and Computer Sciences, Ural Federal University, Lenin Avenue 51, 620000 Ekaterinburg (Russian Federation); School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom)

    2017-06-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  15. The influence of interparticle correlations and self-assembly on the dynamic initial magnetic susceptibility spectra of ferrofluids

    International Nuclear Information System (INIS)

    Ivanov, A.O.; Kantorovich, S.S.; Elfimova, E.A.; Zverev, V.S.; Sindt, J.O.; Camp, P.J.

    2017-01-01

    Using computer simulations and a mean-field theoretical approach, we study how the growth in dipolar interparticle correlations manifests itself in the frequency-dependent initial magnetic susceptibility of a ferrofluid. Our recently developed theory gives the correct single-particle Debye-theory results in the low-concentration, non-interacting regime; and it yields the exact leading-order contributions from interparticle correlations. The susceptibility spectra are analysed in terms of the low-frequency behaviours of the real and imaginary parts, and the position of the peak in the imaginary part. By comparing the theoretical predictions to the results from Brownian dynamics simulations, it is possible to identify the conditions where correlations are important, but where self-assembly has not developed. We also provide a qualitative explanation for the behaviour of spectra beyond the mean-field limit. - Highlights: • The interparticle interaction influences the dynamic susceptibility spectra of magnetic fluids. • The imaginary part maximum shifts to lower frequencies due to the dipolar interparticle interaction. • Chain formation should influence the susceptibility spectrum by shifting the absorption peak to lower frequencies.

  16. Magnetic susceptibility and zone structure of solid solutions in ZrC-NbN and Zrsub(0.5)Nbsub(0.5)Csub(x)Nsub(1-x) systems

    International Nuclear Information System (INIS)

    Gusev, A.I.; Dubrovskaya, L.B.; Shvejkin, G.P.

    1975-01-01

    Face-centered cubic solid solutions in the systems ZrC-NbN and Zrsub(0.5)Nbsub(0.5)Csub(x)Nsub(1-x) arranged to the mutual substitution type have been synthesized. The concentration and temperature dependences of the magnetic susceptibility have been studied. The extremal nature of the concentrational dependences of the magnetic susceptibility and the magnetic susceptibility temperature coefficient in the system ZrC-NbN is determined. The possibility is shown of considering the stoichiometric carbides and nitrides of the transition metals of the same period within the framework of the model of a single zone structure

  17. Mapping Magnetic Susceptibility Anisotropies of White Matter in vivo in the Human Brain at 7 Tesla

    Science.gov (United States)

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A.D.; van Zijl, Peter C. M.

    2012-01-01

    High-resolution magnetic resonance phase- or frequency- shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor (χ¯¯). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS = (χ∥ + 2χ⊥)/3 and a magnetic susceptibility anisotropy, MSA = χ∥ − χ⊥, where χ∥ and χ⊥ are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°–30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1×1×1 mm3 frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from −0.037 to −0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with

  18. Magnetic susceptibility of one-dimensional ferromagnetic CsFeCl3 crystals

    International Nuclear Information System (INIS)

    Tsuboi, T.; Chiba, M.

    1989-01-01

    The parallel and perpendicular magnetic susceptibilities of one-dimensional ferromagnetic CsFeCl 3 crystals have been calculated from magnetization measured as a function of temperature in the range 0 to 70 K by means of a superconducting quantum interference device (SQUID). The experimental results have been compared with data from the literature for other Cs-and Rb-containing crystals with ferromagnetic or antiferromagnetic linear chains. Reliable values of the exchange and anisotropy energies can be estimated from experimental susceptibility data using theoretical g-values and the dynamical correlated-effective field approximation

  19. Susceptibility effects in nuclear magnetic resonance imaging; Suszeptibilitaetseffekte in der Kernspinresonanzbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Ziener, Christian Herbert

    2008-07-01

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  20. Development of a magnetic nanoparticle susceptibility magnitude imaging array

    International Nuclear Information System (INIS)

    Ficko, Bradley W; Nadar, Priyanka M; Hoopes, P Jack; Diamond, Solomon G

    2014-01-01

    There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R 2  > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml −1  mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. (paper)

  1. Application of magnetic susceptibility as a function of temperature, field and frequency

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    2011-01-01

    Roč. 1, č. 2 (2011), E03-E03 ISSN N. [Latinmag Biennial Meeting /2./. 23.11.2011-26.11.2011, Tandil] Institutional research plan: CEZ:AV0Z30130516 Keywords : palaeomagnetism * magnetic susceptibility * geophysics Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www. geofisica .unam.mx/LatinmagLetters/LL11-0102P/E/E03-chadima-1.pdf

  2. Low signal-to-noise FDEM in-phase data: Practical potential for magnetic susceptibility modelling

    Science.gov (United States)

    Delefortrie, Samuël; Hanssens, Daan; De Smedt, Philippe

    2018-05-01

    In this paper, we consider the use of land-based frequency-domain electromagnetics (FDEM) for magnetic susceptibility modelling. FDEM data comprises both out-of-phase and in-phase components, which can be related to the electrical conductivity and magnetic susceptibility of the subsurface. Though applying the FDEM method to obtain information on the subsurface conductivity is well established in various domains (e.g. through the low induction number approximation of subsurface apparent conductivity), the potential for susceptibility mapping is often overlooked. Especially given a subsurface with a low magnetite and maghemite content (e.g. most sedimentary environments), it is generally assumed that susceptibility is negligible. Nonetheless, the heterogeneity of the near surface and the impact of anthropogenic disturbances on the soil can cause sufficient variation in susceptibility for it to be detectable in a repeatable way. Unfortunately, it can be challenging to study the potential for susceptibility mapping due to systematic errors, an often poor low signal-to-noise ratio, and the intricacy of correlating in-phase responses with subsurface susceptibility and conductivity. Alongside use of an accurate forward model - accounting for out-of-phase/in-phase coupling - any attempt at relating the in-phase response with subsurface susceptibility requires overcoming instrument-specific limitations that burden the real-world application of FDEM susceptibility mapping. Firstly, the often erratic and drift-sensitive nature of in-phase responses calls for relative data levelling. In addition, a correction for absolute levelling offsets may be equally necessary: ancillary (subsurface) susceptibility data can be used to assess the importance of absolute in-phase calibration though hereby accurate in-situ data is required. To allow assessing the (importance of) in-phase calibration alongside the potential of FDEM data for susceptibility modelling, we consider an experimental

  3. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Directory of Open Access Journals (Sweden)

    M. E. Gettings

    2005-01-01

    Full Text Available Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same

  4. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Science.gov (United States)

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  5. Magnetic susceptibility in the deep layers of the primary motor cortex in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    M. Costagli

    2016-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive neurological disorder that entails degeneration of both upper and lower motor neurons. The primary motor cortex (M1 in patients with upper motor neuron (UMN impairment is pronouncedly hypointense in Magnetic Resonance (MR T2* contrast. In the present study, 3D gradient-recalled multi-echo sequences were used on a 7 Tesla MR system to acquire T2*-weighted images targeting M1 at high spatial resolution. MR raw data were used for Quantitative Susceptibility Mapping (QSM. Measures of magnetic susceptibility correlated with the expected concentration of non-heme iron in different regions of the cerebral cortex in healthy subjects. In ALS patients, significant increases in magnetic susceptibility co-localized with the T2* hypointensity observed in the middle and deep layers of M1. The magnetic susceptibility, hence iron concentration, of the deep cortical layers of patients' M1 subregions corresponding to Penfield's areas of the hand and foot in both hemispheres significantly correlated with the clinical scores of UMN impairment of the corresponding limbs. QSM therefore reflects the presence of iron deposits related to neuroinflammatory reaction and cortical microgliosis, and might prove useful in estimating M1 iron concentration, as a possible radiological sign of severe UMN burden in ALS patients.

  6. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts

    Czech Academy of Sciences Publication Activity Database

    Starčuková, Jana; Starčuk jr., Zenon; Hubálková, H.; Linetskiy, I.

    2008-01-01

    Roč. 24, č. 6 (2008), s. 715-723 ISSN 0109-5641 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : metallic dental materials * dental alloys * amalgams * MR imaging * magnetic susceptibility * electric conductivity * image artifact Subject RIV: FF - HEENT, Dentistry Impact factor: 2.941, year: 2008

  7. Relationship between chemical composition and magnetic susceptibility in sediment cores from Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Banakar, V.K.; Tomer, A.; Kulkarni, M.

    Three sediment cores in a north–south transect (3 degrees N to 13 degrees S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility (Chi) and Al, Fe...

  8. Specific heat and magnetic susceptibility vs long range order in V3Ga

    International Nuclear Information System (INIS)

    Junod, A.; Fluekiger, R.; Treyvaud, A.; Muller, J.

    1976-01-01

    A new technique of studying the magnetic susceptibility together with the specific heat and the superconducting transition of typical A15-type compounds in different ordering states enables us to consistently isolate the spin paramagnetism. Satisfactory results are obtained for V 3 Ga and these are compared with data on V 3 Au and Nb 3 (Au-Pt). (author)

  9. Magnetic field induced third order susceptibility of third order harmonic generation in a ZnMgSe strained quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J. Abraham Hudson, E-mail: a.john.peter@gmail.com; Peter, A. John, E-mail: a.john.peter@gmail.com [Dept. of Physics, SSM Institute of Engineering and Technology, Dindigul-624002 (India)

    2014-04-24

    Third order susceptibility of third order harmonic generation is investigated in a Zn{sub 0.1}Mg{sub 0.9}Se/Zn{sub 0.8}Mg{sub 0.2}Se/Zn{sub 0.1}Mg{sub 0.9}Se quantum well in the presence of magnetic field strength. The confinement potential is considered as the addition of energy offsets of the conduction band (or valence band) and the strain-induced potential in our calculations. The material dependent effective mass is followed throughout the computation because it has a high influence on the electron energy levels in low dimensional semiconductor systems.

  10. Temperature dependence of magnetic descriptors of Magnetic Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 46, č. 2 (2010), s. 509-512 ISSN 0018-9464 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.052, year: 2010

  11. Continuous Real-time Measurements of Vertical Distribution of Magnetic Susceptibility In Soils

    Science.gov (United States)

    Petrovsky, E.; Hulka, Z.; Kapicka, A.; Magprox Team

    Measurements of top-soil magnetic susceptibility are used in approximative outlining polluted areas. However, one of the serious limitations of the method is discrimina- tion between top-soil layers enhanced by atmospherically deposited anthropogenic particles from those dominated by natural particles migrating from magnetically-rich basement rocks. For this purpose, measurements of vertical distribution of magnetic susceptibility along soil profiles is one of the most effective ways in estimating the effect of lithogenic contribution. Up to now, in most cases soil cores have to be mea- sured in laboratory. This method is quite time consuming and does not allow flexible decision about the suitability of the measured site for surface magnetic mapping. In our contribution we will present a new device enabling continuous real-time measure- ments of vertical distribution of magnetic susceptibility directly in field, performed in holes after soil coring. The method is fast, yielding smooth curves (6 data points per 1 mm dept), at least as sensitive as laboratory methods available until now, and at- tached notebook enables direct, on-line control of the lithogenic versus anthropogenic contributions.

  12. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  13. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility

    KAUST Repository

    Korobeinikov, Andrei; Melnik, Andrey V.

    2013-01-01

    We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.

  14. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex

    NARCIS (Netherlands)

    Taherzadeh, Zhila; VanBavel, Ed; de Vos, Judith; Matlung, Hanke L.; van Montfrans, Gert; Brewster, Lizzy M.; Seghers, Leonard; Quax, Paul H. A.; Bakker, Erik N. T. P.

    2010-01-01

    Taherzadeh Z, VanBavel E, de Vos J, Matlung HL, van Montfrans G, Brewster LM, Seghers L, Quax PH, Bakker EN. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. Am J Physiol Heart Circ Physiol 298: H1273-H1282, 2010. First published February 12, 2010;

  15. Soil magnetic susceptibility mapping as a pollution and provenance tool: an example from southern New Zealand

    Science.gov (United States)

    Martin, A. P.; Ohneiser, C.; Turnbull, R. E.; Strong, D. T.; Demler, S.

    2018-02-01

    The presence or absence, degree and variation of heavy metal contamination in New Zealand soils is a matter of ongoing debate as it affects soil quality, agriculture and human health. In many instances, however, the soil heavy metal concentration data do not exist to answer these questions and the debate is ongoing. To address this, magnetic susceptibility (a common proxy for heavy metal contamination) values were measured in topsoil (0-30 cm) and subsoil (50-70 cm) at grid sites spaced at 8 km intervals across ca. 20 000 km2 of southern New Zealand. Samples were measured for both mass- and volume-specific magnetic susceptibility, with results being strongly, positively correlated. Three different methods of determining anomalies were applied to the data including the topsoil-subsoil difference method, Tukey boxplot method and geoaccumulation index method, with each method filtering out progressively more anomalies. Additional soil magnetic (hysteresis, isothermal remanence and thermomagnetic) measurements were made on a select subset of samples from anomalous sites. Magnetite is the dominant remanence carrying mineral, and magnetic susceptibility is governed by that minerals concentration in soils, rather than mineral type. All except two anomalous sites have a dominant geogenic source (cf. anthropogenic). By proxy, heavy metal contamination in southern New Zealand soils is minimal, making them relatively pristine. The provenance of the magnetic minerals in the anomalous sites can be traced back to likely sources in outcrops of igneous rocks within the same catchment, terrane or rock type: a distance of Soil provenance is a key step when mapping element or isotopic distribution, vectoring to mineralization or studying soil for agricultural suitability, water quality or environmental regulation. Measuring soil magnetic susceptibility is a useful, quick and inexpensive tool that usefully supplements soil geochemical data.

  16. Review of magnetic susceptibility logging and its application to uranium exploration

    International Nuclear Information System (INIS)

    George, D.C.; Scott, J.H.

    1982-01-01

    Borehole measurement of magnetic susceptibility can show anomalies associated with mineralization or alteration. The detection of small anomalies is necessary, so efforts have been made in recent years to improve the sensitivity and the stability of magnetic susceptibility logging tools. Typical tools contain a single coil constructed as a solenoid wound on ferrite rods about 30cm long. The coil is heated to a constant temperature to reduce drift, and careful design is necessary to optimize temperature control and to maximize sensitivity. Measurements of coil resistance and inductance, which indicate conductivity and susceptibility, are made using a Maxwell bridge circuit. Circuit analysis shows that conductivity measurements are difficult and that stringent requirements are placed on phase stability of measurement circuitry. Corrections to the observed log are necessary to account for borehole size. The response of the tool to a thin zones of anomalous susceptibility is double peaked and a set of curves has been developed for interpretation. Calibrations of the tools are made by measuring the tool's response in models of known susceptibility

  17. The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials

    Science.gov (United States)

    Hamilton, N. C.

    2015-03-01

    The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.

  18. AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)

    2017-01-01

    The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.

  19. Generalized magnetic susceptibilities in metals: application of the analytic tetrahedron linear energy method to Sc

    International Nuclear Information System (INIS)

    Rath, J.; Freeman, A.J.

    1975-01-01

    A detailed study of the generalized susceptibility chi(vector q) of Sc metal determined from an accurate augmented-plane-wave method calculation of its energy-band structure is presented. The calculations were done by means of a computational scheme for chi(vector q) derived as an extension of the work of Jepsen and Andersen and Lehmann and Taut on the density-of-states problem. The procedure yields simple analytic expressions for the chi(vector q) integral inside a tetrahedral microzone of the Brillouin zone which depends only on the volume of the tetrahedron and the differences of the energies at its corners. Constant-matrix-element results have been obtained for Sc which show very good agreement with the results of Liu, Gupta, and Sinha (but with one less peak) and exhibit a first maximum in chi(vector q) at (0, 0, 0.31) 2π/c [vs (0, 0, 0.35) 2π/c obtained by Liu et al.] which relates very well to dilute rare-earth alloy magnetic ordering at vector q/sub m/ = (0, 0, 0.28) 2π/c and to the kink in the LA-phonon dispersion curve at (0, 0, 0.27) 2π/c. (U.S.)

  20. Integrated geophysical characterisation of Sunyani municipal solid waste disposal site using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography

    Science.gov (United States)

    Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic

    2018-06-01

    Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.

  1. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    Science.gov (United States)

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  2. Application of Anisotropy of Magnetic Susceptibility to large-scale fault kinematics: an evaluation

    Science.gov (United States)

    Casas, Antonio M.; Roman-Berdiel, Teresa; Marcén, Marcos; Oliva-Urcia, Belen; Soto, Ruth; Garcia-Lasanta, Cristina; Calvin, Pablo; Pocovi, Andres; Gil-Imaz, Andres; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Vernet, Eva; Santolaria, Pablo; Osacar, Cinta; Santanach, Pere; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Villalain, Juan Jose

    2017-04-01

    Major discontinuities in the Earth's crust are expressed by faults that often cut across its whole thickness favoring, for example, the emplacement of magmas of mantelic origin. These long-lived faults are common in intra-plate environments and show multi-episodic activity that spans for hundred of million years and constitute first-order controls on plate evolution, favoring basin formation and inversion, rotations and the accommodation of deformation in large segments of plates. Since the post-Paleozoic evolution of these large-scale faults has taken place (and can only be observed) at shallow crustal levels, the accurate determination of fault kinematics is hampered by scarcely developed fault rocks, lack of classical structural indicators and the brittle deformation accompanying fault zones. These drawbacks are also found when thick clayey or evaporite levels, with or without diapiric movements, are the main detachment levels that facilitate large displacements in the upper crust. Anisotropy of Magnetic Susceptibility (AMS) provides a useful tool for the analysis of fault zones lacking fully developed kinematic indicators. However, its meaning in terms of deformational fabrics must be carefully checked by means of outcrop and thin section analysis in order to establish the relationship between the orientation of magnetic ellipsoid axes and the transport directions, as well as the representativity of scalar parameters regarding deformation mechanisms. Timing of faulting, P-T conditions and magnetic mineralogy are also major constraints for the interpretation of magnetic fabrics and therefore, separating ferro- and para-magnetic fabric components may be necessary in complex cases. AMS results indicate that the magnetic lineation can be parallel (when projected onto the shear plane) or perpendicular (i.e. parallel to the intersection lineation) to the transport direction depending mainly on the degree of shear deformation. Changes between the two end-members can

  3. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the ......Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  4. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G., E-mail: ghsolooki@gmail.com

    2016-09-15

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  5. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  6. Size dependent magnetism of mass selected deposited transition metal clusters

    International Nuclear Information System (INIS)

    Lau, T.

    2002-05-01

    The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)

  7. Spatial variability of soil magnetic susceptibility in an agricultural field located in Eastern Ukraine

    Science.gov (United States)

    Menshov, Oleksandr; Pereira, Paulo; Kruglov, Oleksandr

    2015-04-01

    .05 MS×10-9 m3/kg, and a minimum and a maximum value of 499.33 and 862.27 MS×10-9 m3/kg respectively. The standard deviation was 85.62 and the coefficient of variation 12.48%. This shows that the spatial variability of soil MS was low. The Global Morans I index was of 0.841, a z-score of 7.741 with a p<0.001, indicating that soil MS had a clustered pattern. The variogram results showed that the gaussian model was the the best fitted. The nugget effect was 0.1007. the sill 0.9905 and the nugget/sill ratio of 0.10, which shows that soil MS has a strong spatial dependency. The results of the interpolation tests showed that the errors distribution followed the normal distribution, the average predicted values were similar to the observed and the correlation between these two distributions was high (between 0.85-0.90) in all the cases. The method that predicted better soil MS was LP2 and the less accurate was SK. Soil MS presented high values in the southwestern part and low in the northeast area of the plot. It is clearly observed a increase of soil MS from the top of the slope to the bottom. Acknowledgments RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Boyko, T., Scholger, R., Stanjek, H., MAGPROX team (2004) Topsoil magnetic suseptibility mapping as a tool for pollution monitoring: Repetability of in situ measurments. Journal of Applied Geophysics, 55, 249-259. Dankoub, Z., Ayoubi, S., Khademi, H., Sheng-Gao, L. (2012) Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan Region, Central Iran. Pedosphere, 22, 33-47. Girault, F., Poitou, C., Perrier, F., Koirala, B.P., Bhattarai, M. (2011) Soil characterization using patterns of magnetic susceptibility versus effective radimu concentration. Natural Hazards Earth

  8. Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires

    Directory of Open Access Journals (Sweden)

    A. Zhukov

    2016-11-01

    Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of GMI ratio on magnetic field and different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency

  9. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  10. Magnetic susceptibility of CoFeBSiNb alloys in liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V., E-mail: vesidor@mail.ru [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Hosko, J. [Institute of Physics SAS, Bratislava (Slovakia); Mikhailov, V.; Rozkov, I.; Uporova, N. [Ural State Pedagogical University, Ekaterinburg (Russian Federation); Svec, P.; Janickovic, D.; Matko, I.; Svec Sr, P. [Institute of Physics SAS, Bratislava (Slovakia); Malyshev, L. [Ural Federal University, Ekaterinburg (Russian Federation)

    2014-03-15

    The influence of small additions of gallium and antimony on magnetic susceptibility of the bulk glass forming Co{sub 47}Fe{sub 20.9}B{sub 21.2}Si{sub 4.6}Nb{sub 6.3} alloy was studied in a wide temperature range up to 1830 K by the Faraday’s method. The undercooling for all the samples was measured experimentally. Both Ga and Sb additions were found to increase liquidus and solidification temperatures. However, gallium atoms strengthen interatomic interaction in the melts, whereas antimony atoms reduce it. - Highlights: • Bulk metallic glasses from CoFeBSiNb-based alloys were produced as in situ composites. • Magnetic susceptibility of these alloys was measured in a wide temperature range including liquid state. • Undercooling of these melts was measured experimentally. • Ga additions strengthen interatomic interaction in BMG melts, whereas Sb atoms reduce it.

  11. Magnetic excitation and local magnetic susceptibility of the excitonic insulator Ta2NiSe5 investigated by 77Se NMR

    Science.gov (United States)

    Li, Shang; Kawai, Shunsuke; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-04-01

    77Se NMR measurements were made on polycrystalline and single-crystalline samples to elucidate local magnetic susceptibility and magnetic excitation of Ta2NiSe5 , which is proposed to undergo an exciton condensation accompanied by a structural transition at Tc=328 K . We determine the 77Se Knight shift tensors for the three Se sites and analyze their anisotropy based on the site symmetry. The temperature dependence of the Knight shift is discussed on the basis of spin and orbital susceptibilities calculated for two-chain and two-dimensional three-band models. The large fraction of the Se 4 p orbital polarization due to the mixing between Ni 3 d and Se 4 p orbitals is estimated from the analysis of the transferred hyperfine coupling constant. Also the nuclear spin-lattice relaxation rate 1 /T1 is found not to show a coherent peak just below Tc and to obey the thermally activated temperature dependence with a spin gap energy of 1770 ±40 K . This behavior of 1 /T1 monitors the exciton condensation as proposed by the theoretical study of 1 /T1 based on the three-chain Hubbard model for the excitonic insulator.

  12. The influence of molecular order and microstructure on the R2* and the magnetic susceptibility tensor.

    Science.gov (United States)

    Wisnieff, Cynthia; Liu, Tian; Wang, Yi; Spincemaille, Pascal

    2016-06-01

    In this work, we demonstrate that in the presence of ordered sub-voxel structure such as tubular organization, biomaterials with molecular isotropy exhibits only apparent R2* anisotropy, while biomaterials with molecular anisotropy exhibit both apparent R2* and susceptibility anisotropy by means of susceptibility tensor imaging (STI). To this end, R2* and STI from gradient echo magnitude and phase data were examined in phantoms made from carbon fiber and Gadolinium (Gd) solutions with and without intrinsic molecular order and sub-voxel structure as well as in the in vivo brain. Confidence in the tensor reconstructions was evaluated with a wild bootstrap analysis. Carbon fiber showed both apparent anisotropy in R2* and anisotropy in STI, while the Gd filled capillary tubes only showed apparent anisotropy on R2*. Similarly, white matter showed anisotropic R2* and magnetic susceptibility with higher confidence, while the cerebral veins displayed only strong apparent R2* tensor anisotropy. Ordered sub-voxel tissue microstructure leads to apparent R2* anisotropy, which can be found in both white matter tracts and cerebral veins. However, additional molecular anisotropy is required for magnetic susceptibility anisotropy, which can be found in white matter tracts but not in cerebral veins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tanimoto, Y [Faculty of Pharmacy, Osaka Ohtani University, Nishikiorikita, Tondabayashi 584-8540 (Japan)], E-mail: fuji0710@sci.hiroshima-u.ac.jp

    2009-03-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 {+-} 0.005) x (calculated) - (1.22 {+-} 0.60) x 10{sup -6} in a unit of cm{sup 3} mol{sup -1} and good cost performance.

  14. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    International Nuclear Information System (INIS)

    Fujiwara, Y; Tanimoto, Y

    2009-01-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 ± 0.005) x (calculated) - (1.22 ± 0.60) x 10 -6 in a unit of cm 3 mol -1 and good cost performance.

  15. Magnetic susceptibility correlation of km-thick Eifelian–Frasnian sections (Ardennes and Moravia)

    Czech Academy of Sciences Publication Activity Database

    Boulvain, F.; da Silva, A.C.; Mabille, C.; Hladil, Jindřich; Geršl, M.; Koptíková, Leona; Schnabl, Petr

    2010-01-01

    Roč. 13, č. 4 (2010), s. 309-318 ISSN 1374-8505 R&D Projects: GA AV ČR IAA300130702; GA AV ČR IAAX00130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : Devonian limestone * magnetic susceptibility * Moravian Karst * Ardennes Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.645, year: 2010 http://popups.ulg.ac.be/Geol/docannexe.php?id=3181

  16. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  17. Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces

    OpenAIRE

    Matias,Sammy S. R.; Marques Júnior,José; Siqueira,Diego S.; Pereira,Gener T.

    2014-01-01

    There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, po...

  18. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events.

    Science.gov (United States)

    Rowntree, Kate M; van der Waal, Bennie W; Pulley, Simon

    2017-06-01

    Sediment tracing using a single tracer, low frequency magnetic susceptibility (X lf ), was used to apportion suspended sediment to geologically defined source areas and to interpret sediment source changes during flood events in the degraded catchment of the Vuvu River, a headwater tributary of the Mzimbubu River, South Africa. The method was tested as a simple tool for use by catchment managers concerned with controlling erosion. The geology of the 58 km 2 catchment comprises two distinct formations: basalt in the upper catchment with a characteristically high magnetic susceptibility and shales with a low magnetic susceptibility in the lower catchment. Application of an unmixing model incorporating a Monte Carlo uncertainty analysis showed that X lf provided a means to assign the proportion of each geological province contributing to the river's sediment load. Grab water samples were collected at ten-minute intervals during flood events for subsequent analysis of suspended sediment concentration and the magnetic susceptibility of the filtered sediment. Two floods are presented in detail, the first represents a significant event at the start of the wet season (max. discharge 32 m 3  s -1 ); the second was a smaller flood (max discharge 14 m 3  s -1 ) that occurred a month later. Suspended sediment concentrations during the twelve monitored events showed a characteristic decline over the wet season. The main source of suspended sediment was shown to be from the mudstones in the lower catchment, which contributed 86% of the total measured load. The sediment dynamics during the two floods monitored in detail were quite different from each other. In the first the sediment concentration was high (11 g L -1 ), peaking after the flood peak. The X lf value increased during the event, indicating that contribution to the sediment load from basalt in the upper catchment increased during the recession limb. In the second, smaller flood the sediment peak (6 g L -1

  19. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  20. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  1. Susceptibility tensor imaging (STI) of the brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu

    2017-04-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Susceptibility Tensor Imaging (STI) of the Brain

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  3. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

    NARCIS (Netherlands)

    Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.

    2010-01-01

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the

  4. 87Sr/86Sr dating and preliminary interpretation of magnetic susceptibility logs of giant piston cores from the Rio Grande Rise in the South Atlantic

    Science.gov (United States)

    Lacasse, Christian Michel; Santos, Roberto Ventura; Dantas, Elton Luiz; Vigneron, Quentin; de Sousa, Isabela Moreno Cordeiro; Harlamov, Vadim; Lisniowski, Maria Aline; Pessanha, Ivo Bruno Machado; Frazão, Eugênio Pires; Cavalcanti, José Adilson Dias

    2017-12-01

    Giant piston cores recovered from shallow depths (optimized matching with an internationally recognized timescale of 87Sr/86Sr seawater variation through geological times. Depth-to-age conversion of the magnetic susceptibility logs was implemented based on the identification of correlative peaks between cores and the developed 87Sr/86Sr age model. The influence of Northern Hemisphere glaciation is reflected in these new stratigraphic logs by a gradual increase from ∼2.7 Ma in the lower signal of magnetic susceptibility (below background level), to values approaching the arithmetic means, likely reflecting an overall increase in terrigenous input. The Rio Grande Rise cores have very low Plio-Pleistocene sedimentation rates (∼0.4-0.8 cm/ka), similar to gravity cores from the oligotrophic subtropical South Atlantic (below ∼2000 mbsl), and for which an inverse correlation between carbonate content and magnetic susceptibility was established. The coring depths on the Rio Grande Rise encompass strong gradients in oxygen concentration and other seawater parameters that define today's AAIW/UCDW transition. Depth-dependent variation in sedimentation rates since the onset of Northern Hemisphere glaciation coincides with the incursion of intermediate waters (UCDW, AAIW) in response to the overall reduction of NADW export to the Southern Ocean. Background levels of magnetic susceptibility in the cores suggest that this variation is mainly attributed to terrigenous input. The source region of this material has yet to be traced by considering in particular the mineral composition and paramagnetic properties of the detrital clays.

  5. In Situ Magnetic Susceptibility Variations at Two Contaminated Sites: Brandywine, MD and Bemidji, MN

    Science.gov (United States)

    Donaldson, Y. Y.; Kessouri, P.; Ntarlagiannis, D.; Johnson, T. C.; Day-Lewis, F. D.; Johnson, C. D.; Bekins, B. A.; Slater, L. D.

    2017-12-01

    Geophysical methods are widely used monitoring tools for investigating subsurface processes. Compared to more traditional methods, they are low cost and minimally invasive. Magnetic susceptibility (MS) is a geophysical technique particularly sensitive to the presence of ferri/ ferro-magnetic particles such as iron oxides (e.g., magnetite, hematite and goethite). These oxides can be formed through microbially mediated redox reactions, inducing changes in the soil properties that can be observed by MS measurements. Monitoring MS changes over time provides indications of iron mineral transformations in the ground. These transformations are of particular interest for the characterization of contaminated sites. We acquired borehole MS measurements from two contaminated sites: Brandywine, MD and Bemidji, MN. Active remediation was applied at Brandywine, whereas natural attenuation has been geophysically monitored at Bemidji since 2011 using MS log measurements. High MS values were observed at both sites within the contaminated area only. We hypothesize that this is due to iron reducing bacteria reducing Fe-(III) to Fe-(II) and utilizing contaminants and/or amendments injected as a carbon source. At Bemidji, elevated MS readings were observed in the smear zone and correlate to the presence of magnetite. Furthermore, time-lapse MS observations at Bemidji indicate a decay in signal amplitude over time suggesting further redox transformation into less magnetic particles. For both field examples presented here, we observe variations in magnetic susceptibility within the contaminated areas that can be linked with redox reactions and mineral transformations occurring during the degradation of organic contaminants.

  6. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    Science.gov (United States)

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  7. Magnetic field dependence of vortex activation energy

    Indian Academy of Sciences (India)

    ... the resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 (BSCCO) superconductors. Thermally activated flux flow behaviour is seen in all the three systems and clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 ...

  8. Moellerella wisconsensis: identification, natural antibiotic susceptibility and its dependency on the medium applied.

    Science.gov (United States)

    Stock, Ingo; Falsen, Enevold; Wiedemann, Bernd

    2003-01-01

    The present study establishes a data compilation on biochemical features and natural antibiotic susceptibilities of Moellerella wisconsensis strains. 17 moellerellae isolated from humans (n = 11), food (n = 5) and water (n = 1) were tested. Identification was carried out using two commercially available systems and conventional tests. MIC determinations of 74 antibiotics were performed applying a microdilution procedure in Cation-adjusted Mueller Hinton broth and IsoSensitest broth. M. wisconsensis was naturally sensitive to doxycycline, minocycline, all tested aminoglycosides, numerous beta-lactams, all fluoroquinolones, folate-pathway inhibitors, chloramphenicol and nitrofurantoin. Natural resistance was found with oxacillin, penicillin G, all tested macrolides, lincomycin, streptogramins, ketolides, glycopeptides, fusidic acid, linezolid and rifampicin. Medium-dependent differences in susceptibility affecting clinical assessment criteria were seen with tetracycline, clindamycin and fosfomycin. From the data of the present study it is possible that some moellerellae are misidentified as Klebsiella pneumoniae subsp. ozaenae.

  9. Characterization of a magnetic trap by polarization dependent Zeeman spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Carsten Vandel; Lyngsøe, Jens Kristian; Thorseth, Anders

    2008-01-01

    This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures...

  10. Magnetic susceptibility of LaxCe1-xF3 single crystals

    International Nuclear Information System (INIS)

    Paradowski, M.L.; Pacyna, A.W.; Bombik, A.; Korczak, W.; Korczak, S.Z.

    2000-01-01

    The magnetic susceptibility of La x Ce 1-x F 3 single crystals, for 0 eff and paramagnetic Curie temperature θ p have been obtained, using the Curie-Weiss law in the temperature range 100-300 K. The interconfiguration excited energy E ex , the spin-fluctuation temperature T sf , and the g-values, corresponding to three Kramers doublets in the 2 F 5/2 ground multiplet of Ce 3+ ion in La x Ce 1-x F 3 have been determined, using quantum theory of paramagnetic susceptibility. The mixed-valent and crystal field effects influence significantly the g-values. The effect of the dilution of the paramagnetic Ce 3+ ions with diamagnetic La 3+ ions is also discussed

  11. Magnetic susceptibility of oxygen adsorbed on the surface of spherical and fibrous activated carbon.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kawamura

    2009-02-01

    Full Text Available The magnetic susceptibilities of oxygen adsorbed on the surface of bead-shaped activated carbon and activated carbon fibers were evaluated as a function of temperature between 4.2 K and 300 K, and found to exhibit a sharp peak at around 50 K. This implies that the adsorbed oxygen molecules form an antiferromagnetic state. The relation between the susceptibility and the adsorbed mass suggest that the thickness of the adsorbed oxygen is thin enough to consider a two-dimensional structure for bead–shaped activated carbon and carbon fibers across the fiber axis but thick enough to regard it as three-dimensional along the fiber axis. The result is discussed with reference to the study on one-dimensional oxygen array.

  12. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  13. Avaliação da susceptibilidade magnética usando uma balança analítica Evaluation of the magnetic susceptibility using an analytical scale

    Directory of Open Access Journals (Sweden)

    Antonio Adilton O. Carneiro

    2003-12-01

    Full Text Available A simple system to measure the magnetic susceptibility of different materials is presented. The system uses an analytical scale with sensitivity on the order of micrograms and a permanent NdBFe magnet, based in the Rankine method. In this apparatus, the sample is placed near to the magnet that is fixed on the scale. Depending on the magnetic properties of the sample, an attractive or repulsive force will appear between the magnet and the magnetizing sample. Measuring this force, registered by the scale as a mass, the magnetic parameters such as: permeability and susceptibility of the sample can be determined. Despite it is simplicity the method is quantitative, precise and easily reproducible in many laboratories, what makes it attractive for teaching experiments.

  14. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  15. Neutron diffraction, specific heat and magnetic susceptibility of Ni3(PO4)2

    International Nuclear Information System (INIS)

    Escobal, J.; Pizarro, J.L.; Mesa, J.L.; Rojo, J.M.; Bazan, B.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Ni 3 (PO 4 ) 2 phosphate was synthesized by the ceramic method in air atmosphere. The crystal structure consists of a three-dimensional skeleton constructed from Ni 3 O 14 edge-sharing octahedra, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior was studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at approximately 17.1 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements of Ni 3 (PO 4 ) 2 exhibit a three-dimensional magnetic ordering (λ-type) peak at 17.1 K. Measurements above T N suggest the presence of a small short-range order in this phase. The total magnetic entropy was found to be 28.1 KJ/mol at 50 K. The magnetic structure of the nickel(II) phosphate exhibits ferromagnetic interactions inside the Ni 3 O 14 trimers which are antiferromagnetically coupled between them, giving rise to a purely antiferromagnetic structure

  16. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    Science.gov (United States)

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Age-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters

    Directory of Open Access Journals (Sweden)

    Seok Kyu eKang

    2015-05-01

    Full Text Available Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB, with NKCC1 antagonist bumetanide (BTN as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in postnatal day 7, 10 and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  18. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V. [Ioffe Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  19. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  20. Polarization dependence of two-photon absorption coefficient and nonlinear susceptibility tensor in InP

    International Nuclear Information System (INIS)

    Matsusue, Toshio; Bando, Hiroyuki; Fujita, Shoichi; Takayama, Yusuke

    2011-01-01

    Two-photon absorption (TPA) effect in (001) InP is investigated using fs laser. Its dependences on wavelength and polarization are clarified by single and double beam methods with linearly polarized lights. Characteristic features are revealed and discussed with scaling law, crystal bonding and mutual relation of polarizations for double beams. The results are successfully analyzed on the basis of the third-order susceptibility tensor for comprehensive understanding of TPA effect at any polarization geometry. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Gd3+-ESR and magnetic susceptibility of GdCu4Al8 and GdMn4Al8

    International Nuclear Information System (INIS)

    Coldea, R.; Coldea, M.; Pop, I.

    1994-01-01

    Gd ESR of GdCu 4 Al 8 and GdMn 4 Al 8 and magnetic susceptibility of GdCu 4 Al 8 , GdMn 4 Al 8 , and YMn 4 Al 8 were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 is strongly correlated with the critical value of d∼2.6 angstrom of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn 4 Al 8 , compared with the data for the isostructural compounds GdCu 4 Al 8 and YMn 4 Al 8 , show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn 4 Al 8 and GdMn 4 Al 8 changes from an itinerant electron type to a local-moment type with increasing temperature

  2. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    International Nuclear Information System (INIS)

    Silva, E F; Corrêa, M A; Chesman, C; Bohn, F; Della Pace, R D; Plá Cid, C C; Kern, P R; Carara, M; Alves Santos, O; Rodríguez-Suárez, R L; Azevedo, A; Rezende, S M

    2017-01-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges. (paper)

  3. Influence of the interaction between the inter- and intragranular magnetic responses in the analysis of the ac susceptibility of a granular FeSe0.5Te0.5 superconductor

    Science.gov (United States)

    Mancusi, D.; Polichetti, M.; Cimberle, M. R.; Pace, S.

    2015-09-01

    The temperature-dependent fundamental ac susceptibility of a granular superconductor in the absence of dc fields has been analyzed by developing a phenomenological model for effective magnetic fields, taking into account the influence of the magnetic interaction between the intergranular and the intragranular magnetizations due to demagnetizing effects. For this purpose a policrystal Fe-based superconductor FeSe0.5Te0.5 sample has been studied. By the frequency dependence of the peaks of the temperature-dependent imaginary part of the fundamental complex susceptibility, the dependence on temperature of the characteristic times both for intergranular and intragranular relaxations of magnetic flux are derived, and the corresponding relaxation processes due to combinations of the flux creep, the flux flow and the thermally activated flux flow regimes are identified on the basis of the effective magnetic fields both at the sample surface and at the grains’ surfaces. Such characteristic times, through the Havriliak-Negami function, determine the temperature and the frequency dependences of the complex susceptibility. The comparison of the numerically obtained curves with the experimental ones confirms the relevance, for identifying the intergranular and intragranular contributions to the ac magnetic response and the corresponding flux dynamical regimes, of the interaction between the intergranular and intragranular magnetizations due to demagnetizing effects.

  4. High magnetic susceptibility granodiorite as a source of surface magnetic anomalies in the King George Island, Antarctica

    Science.gov (United States)

    Kon, S.; Nakamura, N.; Funaki, M.; Sakanaka, S.

    2012-12-01

    station) in the western side of King George Island. The plutonic rocks of diorite and granodiorite show high values of bulk magnetic susceptibility of c.a. 0.01-0.4 SI, appearing to be the source of positive magnetic anomaly. We also revealed the preferred petrofabric lineation directions at the sites using anisotropy of magnetic susceptibility (AMS). The AMS showed the plutonic rocks represent the vertical intrusion from the deep seated magma. Our optical microscope observation verified the maximum AMS orientation is parallel to the preferred alignment of framework-forming plagioclase, suggesting the alignment of euhedral magnetite grains along the long-axes of plagioclases. Our ship-borne and foot-borne surveys of geomagnetic filed anomaly agree well with the distribution of the plutonic rocks, revealing the possible origin of surface magnetic anomaly. These suggests that the plutons in this area may be included ACG, and this magnetic surveys is proposed to infer the availability to find out the presence of granitoid.

  5. Low-temperature magnetic susceptibility of the solid solutions (ErxY1-x)3Al5O12

    International Nuclear Information System (INIS)

    Bagdasarov, Kh.S.; Dodokin, A.P.; Sorokin, A.A.

    1988-01-01

    Measurements of magnetic susceptibility of erbium-yttrium alumogarnets in the 0.04-4.2 K temperature range are carried out. (Er x I 1-x ) 3 Al 5 O 12 monocrystals were grown by the method of vertical directed crystallization. The specimens were produced as 5 cm high cylinders 0.63 cm in diameter; the axis of the cylinders coincided with the (100) direction of the crystals. Magnetic susceptibility was measured by the Harsthorn bridge method at the frequency of 33 Hz. The analysis of measurement results shows that susceptibility of the investigated crystals at T >or approx. 2T N is well described by the Curie-Weiss law. Existence of threshold concentration of the magnetic component testifies to an essential role of exchange interactions in establishment of the magnetic order in Er 3 Al 5 O 12

  6. RECONSTRUCTING PALEO-SMT POSITIONS ON THE CASCADIA MARGIN USING MAGNETIC SUSCEPTIBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joel [Univ. of New Hampshire, Durham, NH (United States); Phillips, Stephen [Univ. of New Hampshire, Durham, NH (United States)

    2014-09-30

    Magnetic susceptibility (κ) is a mixed signal in marine sediments, representing primary depositional and secondary diagenetic processes. Production of hydrogen sulfide via anaerobic oxidation of methane (AOM) at the sulfate-methane transition (SMT) and organoclastic sulfate reduction above the SMT can result in the dissolution of iron oxides, altering κ in sediments in methane gas and gas hydrate bearing regions. We investigated records of κ on the Cascadia margin (ODP Sites 1249 and 1252; IODP Site 1325) using a Zr/Rb heavy mineral proxy from XRF core scanning to identify intervals of primary detrital magnetic susceptibility and intervals and predict intervals affected by magnetite dissolutions. We also measured total sulfur content, grain size distributions, total organic carbon (TOC) content, and magnetic mineral assemblage. The upper 100 m of Site 1252 contains a short interval of κ driven by primary magnetite, with multiple intervals (> 90 m total) of decreased κ correlated with elevated sulfur content, consistent with dissolution of magnetite and re-precipitation of pyrite. In the upper 90 m of Site 1249, κ is almost entirely altered by diagenetic processes, with much of the low κ explained by a high degree of pyritization, and some intervals affected by the precipitation of magnetic iron sulfides. At Site 1325, κ between 0-20 and 51-73 mbsf represents primary mineralogy, and in the interval 24-51 mbsf, κ may be reduced due to pyritization. This integrated approach allows for a prediction of primary κ and the amount of κ loss at each site when compared to actual κ measurements. In the case of magnetite dissolution and full pyritization, these drawdowns in κ are supported by sulfur measurements, and the exposure times of magnetite to hydrogen sulfide can be modeled. The presence of methane and methane hydrates at these sites, as well as large variations in TOC content, suggest that the past migration rates of the SMT and variation in sulfate

  7. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  8. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  9. Vortex dynamics and irreversibility line in optimally doped SmFeAsO0.8F0.2 from ac susceptibility and magnetization measurements

    Science.gov (United States)

    Prando, G.; Carretta, P.; de Renzi, R.; Sanna, S.; Palenzona, A.; Putti, M.; Tropeano, M.

    2011-05-01

    Ac susceptibility and static magnetization measurements were performed in the optimally doped SmFeAsO0.8F0.2 superconductor. The field-temperature phase diagram of the superconducting state was drawn, and, in particular, the features of the flux lines were derived. The dependence of the intragrain depinning energy on the magnetic field intensity was derived in the thermally activated flux-creep framework, enlightening a typical 1/H dependence in the high-field regime. The intragrain critical current density was extrapolated in the zero-temperature and zero-magnetic-field limit, showing a remarkably high value Jc0(0)~2×107 A/cm2, which demonstrates that this material is rather interesting for potential future technological applications.

  10. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    Science.gov (United States)

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    Science.gov (United States)

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.

  12. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  13. Geometry dependence of the magnetization reversal process in bridged dots

    International Nuclear Information System (INIS)

    Escobar, R.A.; Lage, E.; D’Albuquerque e Castro, J.; Altbir, D.; Ross, C.A.

    2017-01-01

    Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.

  14. Geometry dependence of the magnetization reversal process in bridged dots

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, R.A. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Lage, E. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States); D’Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21945-970 (Brazil); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago (Chile); Ross, C.A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA (United States)

    2017-06-15

    Based on Monte Carlo numerical simulations: results for the magnetization reversal process in thin circular Ni dots connected by a bridge are presented. The dependence of the process on both the width of the bridge and the orientation of the applied magnetic field has been investigated. It was found that when the applied magnetic field is set parallel to the bridge, the hysteresis curves are weakly dependent on the width of the bridge, being rather close to that of a single dot of the same diameter. On the other hand, when the magnetic field is applied perpendicularly to the bridge, a significant reduction in the coercivity of the system is obtained, even in the case of narrower bridges.

  15. Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials. Comparison of 0.5, 1.5, and 3.0 tesla magnetic fields

    International Nuclear Information System (INIS)

    Matsuura, Hideki; Inoue, Takashi; Ogasawara, Kuniaki; Sasaki, Makoto; Konno, Hiromu; Kuzu, Yasutaka; Nishimoto, Hideaki; Ogawa, Akira

    2005-01-01

    Magnetic resonance (MR) imaging is an important diagnostic tool for neurosurgical diseases but susceptibility artifacts caused by biomaterial instrumentation frequently causes difficulty in visualizing postoperative changes. The susceptibility artifacts caused by neurosurgical biomaterials were compared quantitatively by 0.5, 1.5, and 3.0 Tesla MR imaging. MR imaging of uniform size and shape of pieces ceramic (zirconia), pure titanium, titanium alloy, and cobalt-based alloy was performed at 0.5, 1.5, and 3.0 Tesla. A linear region of interest was defined across the center of the biomaterial in the transverse direction, and the susceptibility artifact diameter was calculated. Susceptibility artifacts developed around all biomaterials at all magnetic field strengths. The artifact diameters caused by pure titanium, titanium alloy, and cobalt-based alloy increased in the order of 0.5, 1.5, to 3.0 Tesla magnetic fields. The artifact diameter of ceramic was not influenced by magnetic field strength, and was the smallest of all biomaterials at all magnetic field strengths. The artifacts caused by biomaterials except ceramic increase with the magnetic field strength. Ceramic instrumentation will minimize artifacts in all magnetic fields. (author)

  16. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Kadoya, N; Chiba, M; Matsushita, H; Jingu, K [Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Sato, K; Nagasaka, T; Yamanaka, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.

  17. Slope and Land Use Changing Effects on Soil Properties and Magnetic Susceptibility in Hilly Lands, Yasouj Region

    Directory of Open Access Journals (Sweden)

    rouhollaah vafaeezadeh

    2017-02-01

    Full Text Available Introduction: Land use changes are the most reasons which affect natural ecosystem protection. Forest soils have high organic matter and suitable structure, but their land use management change usually affects soil properties and decreases soil quality. There are several outcomes of such land use changes and intensification: accelerated soil erosion and decline of soil nutrient conditions, change of hydrological regimes and sedimentation and loss of primary forests and their biodiversity. Establishing effects of land use and land cover changes on soil properties have implications for devising management strategies for sustainable use. Forest land use change in Yasouj caused soil losses and decreased soil quality. The objectives of this study were to assess some soil physical and chemical properties and soil magnetic susceptibility changes in different land uses and slope position. Materials and Methods: Soil samples were taken from natural forest, degraded forest and dryland farm from different slops (0-10, 10-20 and 20-30 percent in sout east of Yasouj. They were from 0–10 cm depth in a completely randomized design with five replications. Soil moisture and temperature regimes in the study area are xeric and mesic, respectively. Particle size distribution was determined by the hydrometer method and soil organic matter, CaCO3 equivalent and bulk density was determined using standard procedures described in Methods of Soil Analysis book. Magnetic susceptibility was measured at low and high frequency of 0.46 kHz (χlf and 4.6 kHz (χHf respectively with a Bartington MS2D meter using approximately 20 g of soil held in a four-dram clear plastic vial. Frequency dependent susceptibility (χfd is expressed as the difference between the high and the low frequency measurements as a percentage of χ at low frequency. Results and Discussion: Soil texture was affected by land use change from silty clay loam in forest to silty loam in dry land farm

  18. Observation of unusual critical region behavior in the magnetic susceptibility of EuSe

    Science.gov (United States)

    Bykovetz, N.; Klein, J.; Lin, C. L.

    2018-05-01

    The Europium Chalcogenides (EuCh: EuO, EuS, EuSe, and EuTe) have been regarded as model examples of simple, cubic, Heisenberg exchange coupled magnetic systems, with a ferromagnetic nearest-neighbor exchange constant J1 and an antiferromagnetic next-nearest-neighbor constant J2. Unlike the other EuCh, EuSe exhibits a range of complex magnetic behaviors, the latter being attributed to EuSe being near the point where J2=-J1, where its magnetism appears to consist of nearly de-coupled 2D ferromagnetic sheets. Analysis of precision SQUID measurements of the magnetic susceptibility χ in EuSe showed that in the region from ˜Tc to ˜2Tc, a fit of the data to the critical equation χ = χ2Tc(T/Tc-1)-γ gives γ=2.0, an exponent not predicted by any current theory. Additionally, this fit predicts that Tc should be ˜0K. We tentatively interpret this by saying that in the paramagnetic region the system "thinks" EuSe should not order above T=0. Tc=0K is predicted by the Mermin-Wagner theorem (MW) for Heisenberg-coupled 2D magnetic systems, and we can show that when J2=-J1, MW can also be applied to the J1, J2 exchange model of the EuCh to give a rigorous Tc=0 prediction. Under 10 kbar applied pressure EuSe exhibits a different γ and fitted Tc. An additional, and rather strange, critical-region effect was discovered. The EuSe sample was found to exhibit a relaxation effect in a small range of temperatures, just above and just below the actual Tc of 4.7K, with time constants of up to 5 minutes. We cannot yet fully explain this observed macroscopic effect.

  19. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  20. Anomalous behaviour of the magnetic susceptibility of the mixed spin-1 and spin- 1/2 anisotropic Heisenberg model in the Oguchi approximation

    International Nuclear Information System (INIS)

    Bobak, Andrej; Dely, Jan; Pokorny, Vladislav

    2010-01-01

    The effects of both an exchange anisotropy and a single-ion anisotropy on the magnetic susceptibility of the mixed spin-1 and spin- 1/2 Heisenberg model are investigated by the use of an Oguchi approximation. Particular emphasis is given to the simple cubic lattice with coordination number z = 6 for which the magnetic susceptibility is determined numerically. Anomalous behaviour in the thermal variation of the magnetic susceptibility in the low-temperature region is found due to the applied negative single-ion anisotropy field strength. Also, the difference between the behaviours of the magnetic susceptibility of the Heisenberg and Ising models is discussed.

  1. Neptunium tetrabromide: a Moessbauer and magnetic susceptibility study below 200K

    International Nuclear Information System (INIS)

    Stevens, J.L.; Jones, E.R. Jr.; Stone, J.A.; Karraker, D.G.

    1974-01-01

    NpBr 4 was studied by 237 Np Moessbauer resonance from 4.2 to 20 0 K and by vibrating-sample magnetometer from 2.2 to 70.5 0 K. The magnetic susceptibility exhibits typical Curie-Weiss behavior about 20 0 K and displays a sharp peak at 12.5 +- 0.5 0 K indicating an antiferromagnetic transition. The Moessbauer spectrum at 4.2 0 K agrees with previous work by Stone and Pillinger [J.A. Stone and W.L. Pillinger, Sym. Faraday Soc., 1, 77(1967)]. At approximately 13 0 K, there is a small decline in H/sub eff/ with paramagnetic relaxation effects remaining at higher temperatures. (U.S.)

  2. Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise

    International Nuclear Information System (INIS)

    Renshaw, P.F.; Levin, J.M.; Kaufman, M.J.; Ross, M.H.; Lewis, R.F.; Harris, G.J.

    1997-01-01

    Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) provides a noninvasive means to create high resolution maps of the regional distribution of cerebral blood volume (CBV). Most DSC MRI studies conducted to date have focused on the evaluation of patients with cerebral neoplasms, ischemia or infarction, and epilepsy. However, preliminary work suggests that DSC MRI may also provide clinically important information for the evaluation of patients with neuropsychiatric disorders, especially dementia and schizophrenia. Additionally, with appropriate modification, DSC MRI may be used to reliably evaluate the effects of pharmacological challenges on cerebral hemodynamics. As pharmacotherapy is an important component in the treatment of a range of psychiatric disorders, the dynamic assessment of changes in cerebral perfusion associated with drug administration may ultimately lead to the development of ''brain function tests'' for a wide range of disorders. (orig.)

  3. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India); Kesavadas, C. [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)], E-mail: chandkesav@yahoo.com; Thomas, B.; Gupta, A.K.; Thamburaj, K.; Kapilamoorthy, T. Raman [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum (India)

    2009-01-15

    Susceptibility weighted imaging (SWI) is a magnetic resonance (MR) technique that is exquisitely sensitive to paramagnetic substances, such as deoxygenated blood, blood products, iron, and calcium. This sequence allows detection of haemorrhage as early as 6 h and can reliably detect acute intracerebral parenchymal, as well as subarachnoid haemorrhage. It detects early haemorrhagic transformation within an infarct and provides insight into the cerebral haemodynamics following stroke. It helps in the diagnosis of cerebral venous thrombosis. It also has applications in the work-up of stroke patients. The sequence helps in detecting microbleeds in various conditions, such as vasculitis, cerebral autosomal dominant arteriopathy, subacute infarcts and leucoencephalopathy (CADASIL), amyloid angiopathy, and Binswanger's disease. The sequence also aids in the diagnosis of vascular malformations and perinatal cerebrovascular injuries. This review briefly illustrates the utility of this MR technique in various aspects of stroke diagnosis and management.

  4. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  5. Gate-dependent orbital magnetic moments in carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten

    2011-01-01

    We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....

  6. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  7. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    Science.gov (United States)

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  8. Effect of Low-Frequency AC Magnetic Susceptibility and Magnetic Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Yuan-Tsung Chen

    2014-01-01

    Full Text Available In this investigation, the low-frequency alternate-current (AC magnetic susceptibility (χac and hysteresis loop of various MgO thickness in CoFeB/MgO/CoFeB magnetic tunneling junction (MTJ determined coercivity (Hc and magnetization (Ms and correlated that with χac maxima. The multilayer films were sputtered onto glass substrates and the thickness of intermediate barrier MgO layer was varied from 6 to 15 Å. An experiment was also performed to examine the variation of the highest χac and maximum phase angle (θmax at the optimal resonance frequency (fres, at which the spin sensitivity is maximal. The results reveal that χac falls as the frequency increases due to the relationship between magnetization and thickness of the barrier layer. The maximum χac is at 10 Hz that is related to the maximal spin sensitivity and that this corresponds to a MgO layer of 11 Å. This result also suggests that the spin sensitivity is related to both highest χac and maximum phase angle. The corresponding maximum of χac is related to high exchange coupling. High coercivity and saturation magnetization contribute to high exchange-coupling χac strength.

  9. Magnetic susceptibility measurements of σ plutonium alloys. Contribution to the study of the 5f electrons localization in the plutonium

    International Nuclear Information System (INIS)

    Meot-Reymond, S.

    1996-01-01

    Physical properties of actinide metals are essentially ruled by the 5f electrons localization. From a theoretically point of view, this localization is more important in the δ-phase than in the α-one. To compare their magnetic behaviour, low temperature magnetic susceptibility measurements have been performed and previous-resistivity data have been analysed. Experimental results and theoretical data can be conciliate by the existence of a Kondo effect in the δ-Pu phase. (author)

  10. Mud crab susceptibility to disease from white spot syndrome virus is species-dependent

    Directory of Open Access Journals (Sweden)

    Sritunyalucksana Kallaya

    2010-11-01

    susceptible than S. paramamosain. Based on our single-challenge and serial challenge results, and on previous published work showing that S. serrata is relatively unaffected by WSSV infection, we propose that susceptibility to white spot disease in the genus Scylla is species-dependent and may also be dose-history dependent. In practical terms for shrimp farmers, it means that S. olivacea and S. paramamosain may pose less threat as WSSV carriers than S. serrata. For crab farmers, our results suggest that rearing of S. serrata would be a better choice than S. paramamosain or S. olivacea in terms of avoiding losses from seasonal outbreaks of white spot disease.

  11. Stochastic model of texture dependence of iodine SCC susceptibility of a zircaloy-2 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Nakajima, Shinichi; Node, Shunsaku; Fujisawa, Takashi; Minamino, Yoritoshi

    1991-01-01

    Effects of textures on statistical parameters of tensile elongations in stress corrosion cracking (SCC) of zircaloy-2 using a slow strain rate test (SSRT) method have been investigated by Weibull distribution method based on stochastic process theory. The SCC is analyzed by assuming a probabilistic state transition model. Tensile directions of test pieces were prepared parallel, 45deg and perpendicular to rolling direction of the sheet. The test pieces in evacuated silica tubes were annealed at 1073K for 7.2x10 3 s, and then quenched into ice water. The annealed pieces with tilt angle α between tensile direction and a basal plane {0001} were 0, 18 and 25deg respectively. The tensile elongations of zircaloy-2 in SCC using the SSRT method are found to obey the single Weibull distribution with location parameters, and the SCC phenomena can be described by the Weibull distribution based on the stochastic process. The values of scale parameter η decrease with the tilt angle α, and the SCC susceptibility can be indicated by the values of scale parameter η. The texture dependence of the values of shape parameters m shows the changes of corrosion process in iodine solution and deformation system in air which are observed in the SSRT. The mechanism of decrement in the SCC susceptibility changes with the tilt angle α. The SCC under SSRT method is found to obey the model of probabilistic state transition. The constant load SCC process which obey the model of probabilistic state transition, is found to be effective for estimation of accelerated SCC condition. (author)

  12. Human leukocyte antigen class II susceptibility conferring alleles among non-insulin dependent diabetes mellitus patients

    International Nuclear Information System (INIS)

    Tipu, H.N.; Ahmed, T.A.; Bashir, M.M.

    2010-01-01

    To determine the frequency of Human Leukocyte Antigen (HLA) class II susceptibility conferring alleles among type 2 Diabetes mellitus patients, in comparison with healthy controls. Cross-sectional comparative study. Patients with non-insulin dependent Diabetes mellitus meeting World Health Organization criteria were studied. These were compared with age and gender matched healthy control subjects. For each subject (patients as well as controls), DNA was extracted from ethylene diamine tetra-acetate sample and HLA class II DRB1 typing was carried out at allele group level (DRB1*01-DRB1*16) by sequence specific primers. Human leukocyte antigen DRB1 type was determined by agarose gel electrophoresis and results were recorded. Frequencies were determined as number of an allele divided by total number of alleles per group; p-value was computed using Pearson's chi-square test. Among the 100 patients, there were 63 males and 37 females with 68 controls. A total of 13 different HLA DRB1 alleles were detected, with DRB1*15 being the commonest in both the groups. The allele DRB1*13 had statistically significant higher frequency in patient group as compared to controls (p 0.005). HLA DRB1*13 was found with a significantly increased frequency in non-insulin dependent Diabetes mellitus. (author)

  13. Magnetic and structural properties of an octanuclear Cu(II) S=1/2 mesoscopic ring: Susceptibility and NMR measurements

    International Nuclear Information System (INIS)

    Lascialfari, A.; Jang, Z. H.; Borsa, F.; Gatteschi, D.; Cornia, A.; Rovai, D.; Caneschi, A.; Carretta, P.

    2000-01-01

    Magnetic susceptibility, 1 H NMR and 63 Cu NMR-NQR experiments on two slightly different species of the molecular S=1/2 antiferromagnetic (AF) ring Cu8, [Cu 8 (dmpz) 8 (OH) 8 ]·2C 5 H 5 N (Cu8P) and [Cu 8 (dmpz) 8 (OH) 8 ]·2C 5 H 5 NO 2 (Cu8N), are presented. The magnetic energy levels are calculated exactly for an isotropic Heisenberg model Hamiltonian in zero magnetic field. From the magnetic susceptibility measurements we estimate the AF exchange coupling constant J∼1000 K and the resulting gap Δ∼500 K between the S T =0 ground state and the S T =1 first excited state. The 63,65 Cu NQR spectra indicate the presence of four crystallographically inequivalent copper nuclei in each ring. From the combination of the 63 Cu NQR spectra and of the 63 Cu NMR spectra at high magnetic field, we estimate the quadrupole coupling constant v Q of each site and the average asymmetry parameter η of the electric-field gradient tensor. The nuclear spin-lattice relaxation rate (NSLR) decreases exponentially on decreasing temperature for all nuclei investigated. The gap parameter extracted from 63 Cu NQR-NSLR is the same as for the susceptibility while a smaller value is obtained from the 63 Cu NMR-NSLR in an external magnetic field of 8.2 T. (c) 2000 The American Physical Society

  14. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  15. Soil and water pollution studies from a waste site deposit in Bantama, Kumasi, Ghana using magnetic susceptibility measurements

    International Nuclear Information System (INIS)

    Hadi, M.; Preko, K.; Ashia, T.

    2012-01-01

    The magnetic susceptibility of soil and water samples from around the Uadara barracks waste site deposit in Bantama, a suburb of Kumasi was measured with the aim of investigating the potential threat of pollution to the soil, streams, fish ponds and other water sources at the site around Armed Forces Senior High School campus which shares the same premises with the barracks. The studied soil samples were picked from the near surface (∼10 cm depth) along profiles taken from the waste site towards the stream and the ponds. Again, water samples were picked along the stream and from ten (10) ponds aligned along the stream. Laboratory measurements of the magnetic susceptibility were done using the Bartington MS2 metre and the MS2B dual frequency sensor for the soil samples, and the MS2G sensor for the water samples. The soil samples from the site registered an average magnetic susceptibility of 180. 04 x 10 -5 SI whereas the water samples recorded an average of -2.3 x 10 -6 SI showing a significant increment in comparison with the standard water magnetic susceptibility of -9.04 x 10 -6 SI. Thus, not withstand the lithology of the area studied, the presence of heavy metals and other chemical waste materials form the Uadara barracks garbage deposit site were found to greatly pollute the soil and particularly the water bodies around the Armed Forces Senior High School. (au)

  16. Antiferromagnetism in the organic conductor bis-tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6]: Static magnetic susceptibility

    DEFF Research Database (Denmark)

    Mortensen, Kell; Tomkiewicz, Yaffa; Bechgaard, Klaus

    1982-01-01

    The anisotropy in the static magnetic susceptibility of bis-tetramethyltetraselenafulvalene hexafluoroarsenate [(TMTSF)2AsF6] has been investigated above and below the metal-to-insulator transition for a range of fields between 0.5 and 30 kG. The results are consistent with the expectations of a ...

  17. Anomalous magnetic susceptibility values and traces of subsurface microbial activity in carbonate banks on San Salvador Island, Bahamas

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Carew, J. L.; Mylroie, J. E.; Pruner, Petr; Kohout, Tomáš; Jell, J. S.; Lacka, B.; Langrová, Anna

    2004-01-01

    Roč. 50, č. 2 (2004), s. 161-182 ISSN 0172-9179 R&D Projects: GA AV ČR(CZ) IAA3013209 Keywords : carbonate rocks * magnetic susceptibility * subsurface microbial diagenesis Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.857, year: 2004

  18. Influence of deuterium on the magnetic susceptibility and thermal expansion of the mixed valence compound CePd3

    International Nuclear Information System (INIS)

    Weinzierl, P.; Blaschko, O.; Fratzl, P.; Krexner, G.; Ernst, G.; Hilscher, G.

    1984-01-01

    The possibility of studying mixed valent rare earth compounds by addition of interstitially solved hydrogen is discussed. First measurements of the thermal expansion and of the magnetic susceptibility of 4 K in intermediate valent CePd 3 Dsub(0.05) are presented. (orig.) [de

  19. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    Science.gov (United States)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  20. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions

    Science.gov (United States)

    Riquier, Laurent; Averbuch, Olivier; Devleeschouwer, Xavier; Tribovillard, Nicolas

    2010-10-01

    To provide a new insight into the diagenetic versus detrital origin of the magnetic susceptibility variations in ancient carbonate sequences, a study was conducted within four Frasnian-Famennian platform carbonate sections from Germany, France and Morocco. The study includes along-section magnetic susceptibility and carbonate content measurements complemented by analyses of magnetic hysteresis parameters, inorganic geochemistry and clay mineralogy. Our results show that the magnetic susceptibility evolution is dominantly controlled by the variations in the concentration of low-coercivity ferromagnetic magnetite grains and, to a lesser extent, of paramagnetic clays. In more detail, hysteresis ratios suggest the coexistence of two magnetite populations with significantly different grain size: (1) a dominantly coarse-grained detrital fraction including a mixture of multi-domain and single-domain particles (2) an authigenic fine-grained fraction composed of a mixture of single-domain and superparamagnetic particles. Despite a diagenetic imprint on the clay assemblages, no relationship is established between magnetic susceptibility and illite crystallinity, therefore discarding a noticeable distortion of primary within-section magnetic susceptibility evolution. The overall inherited character of the magnetic susceptibility fluctuations is corroborated by a significant correlation of magnetic susceptibility with terrigenous proxies (Zr, Th). The poorer correlation of magnetic susceptibility with the Fe content is consistent with the existence of a very fine-grained authigenic magnetite component that possibly induces a global magnetic susceptibility increase at the section scale, but no distortion of the within-section evolution. The magnetic susceptibility curves presented here provide a general record of climate-driven detrital influx and carbonate productivity through Frasnian-Lower Famennian times.

  1. Measurement of magnetic susceptibility on tailings cores report on cores obtained from the Ontario Research Foundation lysimeter experiment

    International Nuclear Information System (INIS)

    1984-10-01

    Bulk susceptibility and induced magnetic remanence results are reported for 40 cores obtained from the uranium tailings lysimeter experiment at the Ontario Research Foundation. Both methods indicate a broad threefold subdivision of the tailings pile. An upper zone is characterized by an enhanced susceptibility level, which is related to enhanced concentration of both magnetite and hematite. Depletion zones, where present, are of limited areal extent and strongly developed. An intermediate zone is characterized by a mixture of large areas of reduced susceptibility that separate smaller regions of slightly enhanced susceptibility. The zones of susceptibility depletion appear to define a dendritic drainage pattern. Locally in this zone magnetite is enhanced and hematite depleted. In the lowermost zone susceptibility levels are reduced over most of the tailings bed. Only in the upper most right hand corner is there any vestige of a positive susceptibility concentration. Both magnetite and hematite are strongly depleted in this lower zone. Visually it is apparent that this lowermost depleted zone correlates to the zones of strongest 'yellowcake' development

  2. Magnetic-field dependence of electrothermal conductivity in YBCO

    Energy Technology Data Exchange (ETDEWEB)

    Marino, A.; Uribe, R. [Universidad del Tolima, Ibague (Colombia); Grupo de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Bogota (Colombia)

    2008-11-15

    Experimental measurements of the electrothermal conductivity (P) near T{sub c}, as a function of external magnetic field were carried out in undoped YBCO (123) superconducting samples. The electrothermal conductivity which relates electrical and thermal currents, depends on the applied magnetic field in high T{sub c} materials, contrary to conventional low T{sub c} superconductors where P is nearly independent of the magnetic field. The experimental P(B,T) data determined from resistivity and thermopower measurements were analyzed in terms of theoretical models and showed a behavior consistent with an order-parameter symmetry (OPS) of d{sub x{sup 2}-y{sup 2}}-wave type. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Magnetization and susceptibility of a parabolic InAs quantum dot with electron–electron and spin–orbit interactions in the presence of a magnetic field at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D. Sanjeev, E-mail: sanjeevchs@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [Department of Physics, CMR College of Engineering and Technology, Hyderabad (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2016-11-15

    The magnetization and susceptibility of a two-electron parabolic quantum dot are studied in the presence of electron–electron and spin–orbit interactions as a function of magnetic field and temperature. The spin–orbit interactions are treated by a unitary transformation and an exactly soluble parabolic interaction model is considered to mimic the electron–electron interaction. The theory is finally applied to an InAs quantum dot. Magnetization and susceptibility are calculated using canonical ensemble approach. Our results show that Temperature has no effect on magnetization and susceptibility in the diamagnetic regime whereas electron–electron interaction reduces them. The temperature however reduces the height of the paramagnetic peak. The Rashba spin–orbit interaction is shown to shift the paramagnetic peak towards higher magnetic fields whereas the Dresselhaus spin–orbit interaction shifts it to the lower magnetic field side. Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures. - Highlights: • Temperature has no effect on magnetization and susceptibility in the diamagnetic regime but reduces the height of the paramagnetic peak. • Electron-electron interaction reduces magnetization and susceptibility in the diamagnetic region. • Rashba spin–orbit interaction shifts the paramagnetic peak towards higher magnetic fields. • Dresselhaus spin–orbit interaction shifts the paramagnetic peak towards lower magnetic fields. • Spin–orbit interaction has no effect on magnetization and susceptibility at larger temperatures.

  4. Mössbauer spectroscopy, magnetization, magnetic susceptibility, and low temperature heat capacity of α-Na2NpO4

    International Nuclear Information System (INIS)

    Smith, Anna L; Hen, Amir; Magnani, Nicola; Colineau, Eric; Griveau, Jean-Christophe; Raison, Philippe E; Caciuffo, Roberto; Konings, Rudy J M; Sanchez, Jean-Pierre; Cheetham, Anthony K

    2016-01-01

    The physical and chemical properties at low temperatures of hexavalent disodium neptunate α-Na 2 NpO 4 are investigated for the first time in this work using Mössbauer spectroscopy, magnetization, magnetic susceptibility, and heat capacity measurements. The Np(VI) valence state is confirmed by the isomer shift value of the Mössbauer spectra, and the local structural environment around the neptunium cation is related to the fitted quadrupole coupling constant and asymmetry parameters. Moreover, magnetic hyperfine splitting is reported below 12.5 K, which could indicate magnetic ordering at this temperature. This interpretation is further substantiated by the existence of a λ-peak at 12.5 K in the heat capacity curve, which is shifted to lower temperatures with the application of a magnetic field, suggesting antiferromagnetic ordering. However, the absence of any anomaly in the magnetization and magnetic susceptibility data shows that the observed transition is more intricate. In addition, the heat capacity measurements suggest the existence of a Schottky-type anomaly above 15 K associated with a low-lying electronic doublet found about 60 cm −1 above the ground state doublet. The possibility of a quadrupolar transition associated with a ground state pseudoquartet is thereafter discussed. The present results finally bring new insights into the complex magnetic and electronic peculiarities of α-Na 2 NpO 4 . (paper)

  5. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  6. Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions

    International Nuclear Information System (INIS)

    Hinatsu, Y.; Fujino, T.

    1988-01-01

    Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions

  7. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  8. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  9. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    Science.gov (United States)

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Temperature dependence of the magnetic anisotropy of metallic Y-Ba-Cu-O single crystals in the normal phase

    International Nuclear Information System (INIS)

    Miljak, M.; Zlatic, V.; Kos, I.; Aviani, I.; Hamzic, A.; Collin, G.

    1990-01-01

    The magnetic anisotropy measurements of metallic Y-Ba-Cu-O compounds in the normal phase reveal a temperature-dependent diamagnetic component of the susceptibility that increases with decreasing temperature. The temperature variation of the susceptibility anisotropy and its total change do not seem to be much affected by the presence of the superconductivity at some lower temperature and could not be accounted for by superconducting fluctuations. Rather, the data remind one of the behavior of some quasi-two-dimensional metals with anisotropic Fermi surfaces, reflecting the properties of the low-energy excitations in the normal phase. The anisotropy measurements above the bulk superconducting transition temperature T c reveal the nonlinear effects, which are due to the onset of superconductivity in disconnected grains. The existence of a two-step transition, typical for granular superconductors, should be taken into consideration if the normal-phase susceptibility data are compared with the theoretical predictions in the vicinity of T c

  11. Magnetic susceptibility of MnZn and NiZn soft ferrites using Laplace transform and the Routh-Hurwitz criterion

    International Nuclear Information System (INIS)

    Fano, Walter Gustavo; Boggi, Silvina; Razzitte, Adrian Cesar

    2011-01-01

    This paper is devoted to study the Routh-Hurwitz stability criterion from the MnZn and NiZn soft ferrites using a phenomenological model with the gyromagnetic spin contribution and domain wall contribution. The magnetodynamic equation and the harmonic oscillator equation have been used to obtain the domain walls and the spin contribution of the magnetic susceptibility. The ferrite materials have been considered as linear, time invariant, isotropic and homogeneous, and the magnetization vector is proportional to the magnetic field vector. The resulting expression of the magnetization in time domain of both ferrites under study has been obtained by mean of the inverse Laplace transformation applying the residue method. The poles of the magnetic susceptibility have negative real parts, which ensures that the response decays exponentially to zero as the time increase. The degree of the numerator's polynomial of the magnetic susceptibility is less than the degree of denominator's polynomial in the magnetic susceptibility function: and the poles are located in the half left s-plane. Then the system is bounded-input, bounded-output (BIBO), and the results agree with the Routh-Hurwitz stability criterion for the MnZn and NiZn soft ferrites. - Research Highlights: → Laplace transform of the magnetic susceptibility of the MnZn and NiZn soft ferrites. → Routh-Hurwitz stability criterion of magnetic materials. → Bode plot of magnetic susceptibility. → Inverse Laplace transform using residue theorem.

  12. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  13. Irreversibility line and magnetic field dependence of the critical current in superconducting MgB sub 2 bulk samples

    CERN Document Server

    Gioacchino, D D; Tripodi, P; Grimaldi, G

    2003-01-01

    The third harmonic components of the ac susceptibility of MgB sub 2 bulk samples have been measured as a function of applied magnetic fields, together with standard magnetization cycles. The irreversibility line (IL) of the magnetic field has been extracted from the onset of the third harmonic components. Using a (1 - t) supalpha glass/liquid best fit where alpha 1.27 IL shows a coherent length xi divergence with exponent nu = 0.63, which indicates a 3D behaviour. Moreover, using the numerical solution of the non-linear magnetic diffusion equation, considering the creep model in a 3D vortex glass, a good description of the vortex dynamics has been obtained. The behaviour of the magnetization amplitude (approx Hz) and the ac susceptibility signals (kHz), at different applied magnetic fields, 3.5 T < H sub d sub c < 4.5 T, and at the reduced temperature 0.86 < t < 0.93 (T = 22 K), shows that the superconducting dynamic response of vortices in the MgB sub 2 samples is not evidently dependent on the f...

  14. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  15. Changes of deep gray matter magnetic susceptibility over 2years in multiple sclerosis and healthy control brain

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    Full Text Available In multiple sclerosis, pathological changes of both tissue iron and myelin occur, yet these factors have not been characterized in a longitudinal fashion using the novel iron- and myelin-sensitive quantitative susceptibility mapping (QSM MRI technique. We investigated disease-relevant tissue changes associated with myelin loss and iron accumulation in multiple sclerosis deep gray matter (DGM over two years. One-hundred twenty (120 multiple sclerosis patients and 40 age- and sex-matched healthy controls were included in this prospective study. Written informed consent and local IRB approval were obtained from all participants. Clinical testing and QSM were performed both at baseline and at follow-up. Brain magnetic susceptibility was measured in major DGM structures. Temporal (baseline vs. follow-up and cross-sectional (multiple sclerosis vs. controls differences were studied using mixed factorial ANOVA analysis and appropriate t-tests. At either time-point, multiple sclerosis patients had significantly higher susceptibility in the caudate and globus pallidus and lower susceptibility in the thalamus. Over two years, susceptibility increased significantly in the caudate of both controls and multiple sclerosis patients. Inverse thalamic findings among MS patients suggest a multi-phase pathology explained by simultaneous myelin loss and/or iron accumulation followed by iron depletion and/or calcium deposition at later stages. Keywords: Quantitative susceptibility mapping, QSM, Iron, Multiple sclerosis, Longitudinal study

  16. Magnetic Susceptibility as a Tool for Investigating Igneous Rocks—Experience from IODP Expedition 304

    Directory of Open Access Journals (Sweden)

    Roger C. Searle

    2008-07-01

    Full Text Available Continuous measurements of magnetic susceptibility have been commonly used on Ocean Drilling Program (ODP and Integrated Ocean Drilling Program (IODPexpeditions to study minor lithological variations (forexample, those related to climatic cycles in sedimentary rocks, but they have been less frequently used on igneous rocks, although important post-cruise studies have utilized them (e.g., Ildefonse and Pezard, 2001. Here I report its use (and that of the closely related electrical conductivity on IODP Expedition 304 to examine igneous crustal rocks. Expedition 304/305 targeted the Atlantis Massif, an oceanic core complex on the Mid-Atlantic Ridge, and recovered a suite of igneous rocks comprising mainly gabbros, troctolites, and some diabases (Blackman et al., 2006; Ildefonse et al., 2006, 2007; IODP Expeditions 304 and 305 Scientists, 2005. Shipboard measurements (on D/V JOIDES Resolution of physical properties were made to characterize lithological units and alteration products, to correlate cored material with down-hole logging data, and to interpret broader-scale geophysical data.

  17. Soil characterization using patterns of magnetic susceptibility versus effective radium concentration

    Directory of Open Access Journals (Sweden)

    F. Girault

    2011-08-01

    Full Text Available Low-field magnetic susceptibility χm and effective radium concentration ECRa, obtained from radon emanation, have been measured in the laboratory with 129 soil samples from Nepal. Samples along horizontal profiles in slope debris or terrace scarps showed rather homogeneous values of both χm and ECRa. One sample set, collected vertically on a lateritic terrace scarp, had homogeneous values of ECRa while χm increased by a factor of 1 to 10 for residual soils and topsoils. However, for a set of samples collected on three imbricated river terraces, values of ECRa, homogeneous over a given terrace, displayed a gradual increase from younger to older terraces. By contrast, χm showed more homogeneous mean values over the three terraces, with a larger dispersion, however, for the younger one. Similarly, Kathmandu sediments exhibited a large increase in ECRa from sand to clay layers, while χm increased moderately. The combination of χm and ECRa, thus, provides a novel tool to characterize quantitatively various soil groups and may be of interest to distinguish modes of alteration or deposition histories.

  18. Soil magnetic susceptibility: A quantitative proxy of soil drainage for use in ecological restoration

    Science.gov (United States)

    Grimley, D.A.; Wang, J.-S.; Liebert, D.A.; Dawson, J.O.

    2008-01-01

    Flooded, saturated, or poorly drained soils are commonly anaerobic, leading to microbially induced magnetite/maghemite dissolution and decreased soil magnetic susceptibility (MS). Thus, MS is considerably higher in well-drained soils (MS typically 40-80 ?? 10-5 standard international [SI]) compared to poorly drained soils (MS typically 10-25 ?? 10-5 SI) in Illinois, other soil-forming factors being equal. Following calibration to standard soil probings, MS values can be used to rapidly and precisely delineate hydric from nonhydric soils in areas with relatively uniform parent material. Furthermore, soil MS has a moderate to strong association with individual tree species' distribution across soil moisture regimes, correlating inversely with independently reported rankings of a tree species' flood tolerance. Soil MS mapping can thus provide a simple, rapid, and quantitative means for precisely guiding reforestation with respect to plant species' adaptations to soil drainage classes. For instance, in native woodlands of east-central Illinois, Quercus alba , Prunus serotina, and Liriodendron tulipifera predominantly occur in moderately well-drained soils (MS 40-60 ?? 10-5 SI), whereas Acer saccharinum, Carya laciniosa, and Fraxinus pennsylvanica predominantly occur in poorly drained soils (MS Urbana, IL, U.S.A.). Through use of soil MS maps calibrated to soil drainage class and native vegetation occurrence, restoration efforts can be conducted more successfully and species distributions more accurately reconstructed at the microecosystem level. ?? 2008 Society for Ecological Restoration International.

  19. Magnetic susceptibility as an indicator to paleo-environmental pollution in an urban lagoon near Istanbul city

    Science.gov (United States)

    Alpar, Bedri; Unlu, Selma; Altinok, Yildiz; Ongen, Sinan

    2014-05-01

    For assessing anthropogenic pollution, magnetic susceptibility profiles and accompanying data were measured along three short cores recovered at the southern part of an urban lagoon; Kucukcekmece, Istanbul, Turkey. This marine inlet, connected to the Sea of Marmara by a very narrow channel, was used as a drinking water reservoir 40-50 years ago before it was contaminated by municipal, agricultural and industrial activities, mainly carried by three streams feeding the lagoon. The magnetic signals decrease gradually from the lake bottom towards the core base showing some characteristic anomalies. These signatures were tested as an environmental magnetic parameter against the lithological diversity (silici-clastic, total organic matter and carbonate), metal enrichments with larger variations (Pb, Mn, Zn, Ni, Co, Cr, U and Al) and probable hydrocarbon contamination. Mineral assemblage was determined by a computer driven X-ray diffractometer. The heavy metal concentrations and total petroleum hydrocarbons (TPH) were measured by ICP-MS and UVF spectrometry, respectively. Magnetic susceptibility shows slightly higher values in interlayers containing higher silici-clastic material and organic content which may suggest first-order changes in the relative supplies of terrigenous and biogenic materials. On the basis of cluster analyses, enhanced magnetic signals could be correlated with the elevated concentrations of Co, Zn, U, Pb and TPH along the cores. The Pb concentrations at the upper parts of the cores were higher than the "Severe Effect Level" and could pose a potential risk for living organisms. Greater amounts of organic carbon tend to accumulate in muddy sediments. In fact, there are a few studies reporting some relationship between enhanced magnetic signals and organic contamination mainly due to petroleum aromatic hydrocarbons. In conclusion, the magnetic susceptibility changes in sedimentary depositional environments could be used as a rapid and cost

  20. Magnetic susceptibility to identify landscape segments on a detailed scale in the region of Jaboticabal, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Mariana dos Reis Barrios

    2012-08-01

    Full Text Available The agricultural potential is generally assessed and managed based on a one-dimensional vision of the soil profile, however, the increased appreciation of sustainable production has stimulated studies on faster and more accurate evaluation techniques and methods of the agricultural potential on detailed scales. The objective of this study was to investigate the possibility of using soil magnetic susceptibility for the identification of landscape segments on a detailed scale in the region of Jaboticabal, São Paulo State. The studied area has two slope curvatures: linear and concave, subdivided into three landscape segments: upper slope (US, concave, middle slope (MS, linear and lower slope (LS, linear. In each of these segments, 20 points were randomly sampled from a database with 207 samples forming a regular grid installed in each landscape segment. The soil physical and chemical properties, CO2 emissions (FCO2 and magnetic susceptibility (MS of the samples were evaluated represented by: magnetic susceptibility of air-dried fine earth (MS ADFE, magnetic susceptibility of the total sand fraction (MS TS and magnetic susceptibility of the clay fraction (MS Cl in the 0.00 - 0.15 m layer. The principal component analysis showed that MS is an important property that can be used to identify landscape segments, because the correlation of this property within the first principal component was high. The hierarchical cluster analysis method identified two groups based on the variables selected by principal component analysis; of the six selected variables, three were related to magnetic susceptibility. The landscape segments were differentiated similarly by the principal component analysis and by the cluster analysis using only the properties with higher discriminatory power. The cluster analysis of MS ADFE, MS TS and MS Cl allowed the formation of three groups that agree with the segment division established in the field. The grouping by cluster

  1. Susceptibility of CoFeB/AlOx/Co Magnetic Tunnel Junctions to Low-Frequency Alternating Current

    Directory of Open Access Journals (Sweden)

    Yuan-Tsung Chen

    2013-10-01

    Full Text Available This investigation studies CoFeB/AlOx/Co magnetic tunneling junction (MTJ in the magnetic field of a low-frequency alternating current, for various thicknesses of the barrier layer AlOx. The low-frequency alternate-current magnetic susceptibility (χac and phase angle (θ of the CoFeB/AlOx/Co MTJ are determined using an cac analyzer. The driving frequency ranges from 10 to 25,000 Hz. These multilayered MTJs are deposited on a silicon substrate using a DC and RF magnetron sputtering system. Barrier layer thicknesses are 22, 26, and 30 Å. The X-ray diffraction patterns (XRD include a main peak at 2θ = 44.7° from hexagonal close-packed (HCP Co with a highly (0002 textured structure, with AlOx and CoFeB as amorphous phases. The full width at half maximum (FWHM of the Co(0002 peak, decreases as the AlOx thickness increases; revealing that the Co layer becomes more crystalline with increasing thickness. χac result demonstrates that the optimal resonance frequency (fres that maximizes the χac value is 500 Hz. As the frequency increases to 1000 Hz, the susceptibility decreases rapidly. However, when the frequency increases over 1000 Hz, the susceptibility sharply declines, and almost closes to zero. The experimental results reveal that the mean optimal susceptibility is 1.87 at an AlOx barrier layer thickness of 30 Å because the Co(0002 texture induces magneto-anisotropy, which improves the indirect CoFeB and Co spin exchange-coupling strength and the χac value. The results concerning magnetism indicate that the magnetic characteristics are related to the crystallinity of Co.

  2. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2017-01-01

    Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  3. Size dependence of magnetization reversal of ring shaped magnetic tunnel junction

    International Nuclear Information System (INIS)

    Chen, C.C.; Kuo, C.Y.; Chang, Y.C.; Chang, C.C.; Horng, Lance; Wu, Teho; Chern, G.; Huang, C.Y.; Tsunoda, M.; Takahashi, M.; Wu, J.C.

    2007-01-01

    The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process

  4. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  5. Parameter dependence of resonant spin torque magnetization reversal

    International Nuclear Information System (INIS)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H.W.

    2012-01-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  6. Parameter dependence of resonant spin torque magnetization reversal

    Science.gov (United States)

    Fricke, L.; Serrano-Guisan, S.; Schumacher, H. W.

    2012-04-01

    We numerically study ultra fast resonant spin torque (ST) magnetization reversal in magnetic tunneling junctions (MTJ) driven by current pulses having a direct current (DC) and a resonant alternating current (AC) component. The precessional ST dynamics of the single domain MTJ free layer cell are modeled in the macro spin approximation. The energy efficiency, reversal time, and reversal reliability are investigated under variation of pulse parameters like direct and AC current amplitude, AC frequency and AC phase. We find a range of AC and direct current amplitudes where robust resonant ST reversal is obtained with faster switching time and reduced energy consumption per pulse compared to purely direct current ST reversal. However, for a certain range of AC and direct current amplitudes a strong dependence of the reversal properties on AC frequency and phase is found. Such regions of unreliable reversal must be avoided for ST memory applications.

  7. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  8. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  9. Finite-size effects on the dynamic susceptibility of CoPhOMe single-chain molecular magnets in presence of a static magnetic field

    Science.gov (United States)

    Pini, M. G.; Rettori, A.; Bogani, L.; Lascialfari, A.; Mariani, M.; Caneschi, A.; Sessoli, R.

    2011-09-01

    The static and dynamic properties of the single-chain molecular magnet Co(hfac)2NITPhOMe (CoPhOMe) (hfac = hexafluoroacetylacetonate, NITPhOMe = 4'-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) are investigated in the framework of the Ising model with Glauber dynamics, in order to take into account both the effect of an applied magnetic field and a finite size of the chains. For static fields of moderate intensity and short chain lengths, the approximation of a monoexponential decay of the magnetization fluctuations is found to be valid at low temperatures; for strong fields and long chains, a multiexponential decay should rather be assumed. The effect of an oscillating magnetic field, with intensity much smaller than that of the static one, is included in the theory in order to obtain the dynamic susceptibility χ(ω). We find that, for an open chain with N spins, χ(ω) can be written as a weighted sum of N frequency contributions, with a sum rule relating the frequency weights to the static susceptibility of the chain. Very good agreement is found between the theoretical dynamic susceptibility and the ac susceptibility measured in moderate static fields (Hdc≤2 kOe), where the approximation of a single dominating frequency for each segment length turns out to be valid. For static fields in this range, data for the relaxation time, τ versus Hdc, of the magnetization of CoPhOMe at low temperature are also qualitatively reproduced by theory, provided that finite-size effects are included.

  10. Magnetic and structural properties of an octanuclear Cu(II) S=1/2 mesoscopic ring: Susceptibility and NMR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, A. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy); Jang, Z. H. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Borsa, F. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy); Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Cornia, A. [Department of Chemistry, University of Modena, Via Campi 183, I-41100 Modena, (Italy); Rovai, D. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Caneschi, A. [Department of Chemistry, University of Florence, Via Maragliano 77, I-50144 Florence, (Italy); Carretta, P. [Department of Physics ' ' A. Volta' ' and Unita INFM, University of Pavia, Via Bassi 6, I-27100 Pavia, (Italy)

    2000-03-01

    Magnetic susceptibility, {sup 1}H NMR and {sup 63}Cu NMR-NQR experiments on two slightly different species of the molecular S=1/2 antiferromagnetic (AF) ring Cu8, [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}N (Cu8P) and [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}NO{sub 2} (Cu8N), are presented. The magnetic energy levels are calculated exactly for an isotropic Heisenberg model Hamiltonian in zero magnetic field. From the magnetic susceptibility measurements we estimate the AF exchange coupling constant J{approx}1000 K and the resulting gap {delta}{approx}500 K between the S{sub T}=0 ground state and the S{sub T}=1 first excited state. The {sup 63,65}Cu NQR spectra indicate the presence of four crystallographically inequivalent copper nuclei in each ring. From the combination of the {sup 63}Cu NQR spectra and of the {sup 63}Cu NMR spectra at high magnetic field, we estimate the quadrupole coupling constant v{sub Q} of each site and the average asymmetry parameter {eta} of the electric-field gradient tensor. The nuclear spin-lattice relaxation rate (NSLR) decreases exponentially on decreasing temperature for all nuclei investigated. The gap parameter extracted from {sup 63}Cu NQR-NSLR is the same as for the susceptibility while a smaller value is obtained from the {sup 63}Cu NMR-NSLR in an external magnetic field of 8.2 T. (c) 2000 The American Physical Society.

  11. Heliocentric distance dependence of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Behannon, K.W.

    1978-01-01

    Recent and ongoing planetary missions have provided and are continuing to provide extensive observations of the variations of the interplanetary magnetic field (IMF) both in time and with heliocentric distance from the sun. Large time variations in both the IMF and its fluctuations are observed. These are produced predominantly by dynamical processes in the interplanetary medium associated with stream interactions. Magnetic field variations near the sun are propagated to greater heliocentric distances, a process also contributing to the observed variability of the IMF. Temporal variations on a time scale comparable to or less than the corotation period complicate attempts to deduce radial gradients of the field and its fluctuations from the various observations. However, recent measurements inward to 0.46 AU and outward to 5 AU suggest that the radial component of the field on average decreases approximately as r -2 , as was predicted by Parker, while the azimuthal component decreases more rapidly than the r -1 dependence predicted by simple theory. Three sets of observations are consistent with r/sup -1.3/ dependence for vertical-barB/sub phi/vertical-bar. The temporal variability of solar wind speed is most likely the predominant contributor to this latter observational result. The long-term average azimuthal component radial gradient is probably consistent with the Parker r -1 dependence when solar wind speed variations are taken into account. The observations of the normal component magnitude vertical-barB/sub theta/vertical-bar are roughly consistent with a heliocentric distance dependence of r/sup -1.4/. The observed radial distance dependence of the total magnitude of the IMF is well described by the Parker formulation. There is observational evidence that amplitudes of fluctuations of the vector field with periods less than 1 day vary with heliocentric distance as approximately r/sup -3/2/, in agreement with theoretical models by Whang and Hollweg

  12. Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co(II) Complexes.

    Science.gov (United States)

    Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro

    2016-01-11

    Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic field effect on indole exciplexes: an anomalous dielectric dependence

    International Nuclear Information System (INIS)

    Sengupta, Tamal; Basu, Samita

    2004-01-01

    Individual exciplex formation between various aromatic hydrocarbons, anthracene, pyrene, all-s-trans-1,4-diphenylbuta-1,3-diene and a heteroaromatic amine, 1,2-dimethylindole, was investigated by steady-state fluorescence and magnetic field effect (MFE). A comparative study was carried out with two other exciplex systems 9-cyanophenanthrene-1,2-dimethylindole and 9-cyanophenanthrene-N-methylindole. The extent of charge transfer and dielectric dependence of MFE reveals the potential role of specific interactions related to exciplex geometry

  14. Downhole logs of natural gamma radiation and magnetic susceptibility and their use in interpreting lithostratigraphy in AND-1B, Antarctica

    Science.gov (United States)

    Williams, T.; Morin, R. H.; Jarrard, R. D.; Jackolski, C. L.; Henrys, S. A.; Niessen, F.; Magens, D.; Kuhn, G.; Monien, D.; Powell, R. D.

    2010-12-01

    The ANDRILL McMurdo Ice Shelf (MIS) project drilled 1285 metres of sediment representing the last 14 million years of glacial history. Downhole geophysical logs were acquired to a depth of 1018 metres, and are complementary to data acquired from the core itself. We describe here the natural gamma radiation (NGR) and magnetic susceptibility logs, and their application to understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. Natural gamma radiation logs cover the whole interval from the sea floor to 1018 metres, and magnetic susceptibility and other logs covered the open-hole intervals between 692-1018 and 237-342 metres. NGR logs were stacked and corrected for signal attenuation through the drill pipe, and magnetic susceptibility logs were corrected for drift. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamict (containing K-bearing clays, K-feldspar, and heavy minerals). In the lower open-hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamicts (relatively high in magnetite), while sandstones generally have high resistivity log values at AND-1B. On the basis of these three downhole logs, three sets of facies can be predicted correctly for 74% of the 692-1018m interval. The logs were then used to predict facies for the 7% of this interval that was unrecovered by coring. Similarly, the NGR log provides the best information on the lithology of the poorly recovered top 25m of AND-1B. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties, and help refine parts of the lithostratigraphy (for example, the varying terrigenous content of diatomites).

  15. Synthesis and magnetic hyperthermia studies on high susceptible Fe1-xMgxFe2O4 superparamagnetic nanospheres

    Science.gov (United States)

    Manohar, A.; Krishnamoorthi, C.

    2017-12-01

    Majority studies on magnetic hyperthermia properties were carried out by modifying the saturation mass magnetization (Ms) of the samples. Here efforts were made to enhance the specific heat generation rate (SHGR) of single domain superparamagnetic (SP) material by modifying its magnetic susceptibility. Well crystallined, inverse spinel structured and close to monosize Fe1-xMgxFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4, & 0.5) compounds with nanosphere geometry (diameter 10 nm) were synthesized by solvothermal reflux method at ≈ 300 °C . In the literature it is reported that magnesium ferrites synthesized at high temperatures yield mixed (normal & inverse) spinel structures. The inverse spinel structure was confirmed by X-ray powder diffraction (XRPD), lattice vibrations and magnetic characteristics of the compounds. The Ms of the compounds decrease with increase of substituent Mg2+ concentration. Under high excitation energy the inter-valance charge transfer whereas under low excitation energy the intra-valance charge transfer process were predominant. The as-synthesized nanospheres were encapsulated by hydrophobic oleic acid and were exchanged by hydrophilic poly(acrylic acid) by chemical exchange process. Estimated magnetic hyperthermia power or SHGR of the x = 0, 0.3 & 0.5 were 11, 11.4 & 22.4 W per gram of respective compounds, respectively, under 63.4 kA m-1 field amplitude and 126 kHz frequency. The SHGR enhances with Mg2+ concentration though its Ms reduces and is attributed to reduced spin-orbital coupling in the compounds with enhanced Mg2+ concentration. This may pave a new way to develop magnetic hyperthermia material by modifying magnetic susceptibility of the compounds against to the reported Ms modification approach. The obtained high SHGR of the biocompatible compounds could be used in magnetic hyperthermia applications in biomedical field.

  16. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baheza, Richard A. [Department of Biomedical Engineering and Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Welch, E. Brian [Institute of Imaging Science and Departments of Radiology and Radiological Sciences and Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gochberg, Daniel F. [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, and Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Sanders, Melinda [Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Harvey, Sara [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gore, John C. [Institute of Imaging Science and Departments of Biomedical Engineering, Radiology and Radiological Sciences, Physics and Astronomy, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics and Astronomy, and Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States)

    2015-03-15

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12

  17. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    Science.gov (United States)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  18. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  19. Evaluation of sclerosis in Modic changes of the spine using susceptibility-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Böker, Sarah M., E-mail: Sarah-maria.boeker@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Bender, Yvonne Y., E-mail: Yi-na.bender@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Adams, Lisa C., E-mail: Lisa.adams@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Fallenberg, Eva M., E-mail: Eva.fallenberg@charite.de [Department of Radiology, Charité, Augustenburger Platz 1, 13353 Berlin (Germany); Wagner, Moritz, E-mail: Moritz.wagner@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Hamm, Bernd, E-mail: Bernd.hamm@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany); Makowski, Marcus R., E-mail: Marcus.makowski@charite.de [Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin (Germany)

    2017-03-15

    Highlights: • SWMR allows a reliable detection of sclerosis in Modic changes. • SWI has a better accuracy for detection of sclerosis in Modic changes than T1/T2w MR. • By applying SWMR the use of additional CT/radiography can be minimized. - Abstract: Purpose: To evaluate the diagnostic performance of susceptibility-weighted magnetic resonance imaging (SWMR) for the differentiation of sclerotic and non-sclerotic Modic changes (MC) of the spine compared to computed tomography (CT) and radiographs. Materials and methods: The Institutional Ethics-Review-Board approved this prospective study in advance. Written consent was obtained from all subjects. SWMR and standard T1/T2 MR of the cervical (n = 21) and/or lumbar spine (n = 34) were performed in 54 patients. 21 patients served as control. 18 patients were evaluated with CT; in all other patients radiographs were available. 67 Modic changes were identified on T1/T2 MR. On SWMR changes were classified as sclerotic and non-sclerotic based on signal intensity measurements. The sensitivity and specificity of SWMR and T1/T2 MR for differentiating between sclerotic and non-sclerotic Modic changes were determined with CT and radiographs as reference standard. Results: On SWMR, signal measurements between sclerotic and non-sclerotic Modic changes differed significantly (p < 0.01). On T1- and T2-weighted MR no significant difference (p > 0.05) was measured. On SWMR, a reliable differentiation between sclerotic and non-sclerotic Modic changes could be achieved, with a sensitivity of 100% and specificity of 95%. In contrast, the combination of T1-/T2-weighted MR yielded a significantly lower sensitivity to detect sclerosis (20%). Conclusion: SWMR allows a reliable detection of sclerosis in Modic changes with a higher accuracy compared to standard spine MR sequences, using radiographs and CT as reference standard.

  20. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Magnetic susceptibilities and thermal expansion of artificial graphites; Susceptibilites magnetiques et dilatation thermique des graphites artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Cornuault, P; Herpin, A; Hering, H; Seguin, M [Commissariat a l' Energie Atomique, Paris (France); Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [French] En partant des mesures de la susceptibilite magnetique faites dans les directions des axes principaux d'un barreau de graphite, on a calcule la fonction de distribution des perpendiculaires aux plans graphitiques dans les cristallites. On a etudie les effets que pouvaient provoquer des modifications dans le procede de fabrication sur l'anisotropie cristalline. En considerant cette anisotropie cristalline, nous avons calcule le coefficient de dilatation thermique pour un bloc compact de cristallites ayant exactement la meme anisotropie d'orientation que le corps poreux en question. La difference entre cette valeur et celle mesuree du coefficient de dilatation, nous permet de calculer la dilatation pour la partie non-graphitique du bloc, en l'occurence, on trouve une valeur negative du coefficient pour cette partie, qui est egalement anisotropique. On a essaye d'en tirer quelques conclusions. (auteur)

  2. Shape Biased Low Power Spin Dependent Tunneling Magnetic Field Sensors

    Science.gov (United States)

    Tondra, Mark; Qian, Zhenghong; Wang, Dexin; Nordman, Cathy; Anderson, John

    2001-10-01

    Spin Dependent Tunneling (SDT) devices are leading candidates for inclusion in a number of Unattended Ground Sensor applications. Continued progress at NVE has pushed their performance to 1OOs of pT I rt. Hz 1 Hz. However, these sensors were designed to use an applied field from an on-chip coil to create an appropriate magnetic sensing configuration. The power required to generate this field (^100mW) is significantly greater than the power budget (^lmW) for a magnetic sensor in an Unattended Ground Sensor (UGS) application. Consequently, a new approach to creating an ideal sensing environment is required. One approach being used at NVE is "shape biasing." This means that the physical layout of the SDT sensing elements is such that the magnetization of the sensing film is correct even when no biasing field is applied. Sensors have been fabricated using this technique and show reasonable promise for UGS applications. Some performance trade-offs exist. The power is easily tinder 1 MW, but the sensitivity is typically lower by a factor of 10. This talk will discuss some of the design details of these sensors as well as their expected ultimate performance.

  3. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  4. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  5. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  6. Magnetism of a sigma-phase Fe{sub 60}V{sub 40} alloy: Magnetic susceptibilities and magnetocaloric effect studies

    Energy Technology Data Exchange (ETDEWEB)

    Bałanda, Maria [Institute of Nuclear Physics, Polish Academy of Science, PL-31-342 Kraków (Poland); Dubiel, Stanisław M., E-mail: Stanislaw.Dubiel@fis.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Kraków (Poland); Pełka, Robert [Institute of Nuclear Physics, Polish Academy of Science, PL-31-342 Kraków (Poland)

    2017-06-15

    Highlights: • Sigma-phase Fe{sub 60}V{sub 40} alloy was studied by means of AC and DC magnetic susceptibilities. • Re-entrant character of the magnetism has been evidenced. • Curie temperature was found as ∼169 K and the spin-freezing temperature as ∼164 K. • Critical exponents β = 0.6, γ = 1.0 and Δ = 1.6 were determined. • Magnetocaloric effect was investigated. - Abstract: Magnetic properties of a sigma-phase Fe{sub 60}V{sub 40} intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-glass system. The magnetic ordering temperature was found to be T{sub C} ≈ 170 K, while the spin-freezing temperature was ∼164 K. Its relative shift per decade of ac frequency was 0.002, a value smaller than that typical of canonical spin-glasses. Magnetic entropy change, ΔS, in the vicinity of T{sub C} was determined for magnetic field, H, ranging between 5 and 50 kOe. Analysis of ΔS in terms of the power law yielded the critical exponent, n, vs. temperature with the minimum value of 0.75 at T{sub C}, while from the analysis of a relative shift of the maximum value of ΔS with the field a critical exponent Δ = 1.7 was obtained. Based on scaling laws relationships values of other two exponents viz. β = 0.6 and γ = 1 were determined.

  7. On the relevance of the ac magnetic susceptibility on the study of superconductors

    International Nuclear Information System (INIS)

    Khoder, A.F.; Couach, M.; Barbara, B.

    1988-01-01

    It is shown that the ac susceptibility method allows to study in details the bulk superconductivity of as well homogeneous and inhomogeneous materials, such as high-T c superconductors. Shielding and Meissner effects at T c can be distinguished by a careful analysis of x' and x'' components of the susceptibility

  8. Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions

    DEFF Research Database (Denmark)

    Fock, Jeppe; Balceris, Christoph; Costo, Rocio

    2018-01-01

    The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the pe...

  9. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  10. Being in "Bad" Company: Power Dependence and Status in Adolescent Susceptibility to Peer Influence

    Science.gov (United States)

    Vargas, Robert

    2011-01-01

    Theories of susceptibility to peer influence have centered on the idea that lower status adolescents are likely to adopt the behaviors of high status adolescents. While status is important, social exchange theorists have shown the value of analyzing exchange relations between actors to understand differences in power. To build on status-based…

  11. Stress susceptibility as a determinant of endothelium-dependent vascular reactivity in rat mesenteric arteries.

    NARCIS (Netherlands)

    Riksen, N.P.; Ellenbroek, B.A.; Cools, A.R.; Siero, H.L.M.; Rongen, G.A.P.J.M.; Smits, B.W.; Russel, F.G.M.; Smits, P.

    2003-01-01

    In order to investigate the consequences of stress susceptibility on vascular function, the authors assessed the respective contributions of nitric oxide (NO), prostanoids, and endothelium-derived hyperpolarizing factor to the vascular tone in rats with a constitutionally determined high and low

  12. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  13. Magnetic-field-dependent microwave absorption in HgSe in weak magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I., E-mail: Anatoly.Veinger@mail.ioffe.ru; Tisnek, T. V.; Kochman, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Okulov, V. I. [Russian Academy of Sciences, Ural Branch, Mikheev Institute of Metal Physics (Russian Federation)

    2017-02-15

    The low-temperature magnetoresistive effect in the semiconductor HgSe:Fe in weak magnetic fields at microwave frequencies is examined. The negative and positive components of magnetoabsorption based on the magnetoresistive effect in the degenerate conduction band are analyzed. The special features of experiments carried out in the investigated frequency range are noted. The momentum and electron-energy relaxation times are determined from the experimental field and temperature dependences.

  14. Magnetic susceptibility of road deposited sediments at a national scale – Relation to population size and urban pollution

    International Nuclear Information System (INIS)

    Jordanova, Diana; Jordanova, Neli; Petrov, Petar

    2014-01-01

    Magnetic properties of road dusts from 26 urban sites in Bulgaria are studied. Temporal variations of magnetic susceptibility (χ) during eighteen months monitoring account for approximately 1/3rd of the mean annual values. Analysis of heavy metal contents and magnetic parameters for the fraction d  2  = −0.84) is observed between the ratio ARM/χ and Pb content. It suggests that Pb is related to brake/tyre wear emissions, releasing larger particles and higher Pb during slow driving – braking. Bulk χ values of road dusts per city show significant correlation with population size and mean annual NO 2 concentration on a log-normal scale. The results demonstrate the applicability of magnetic measurements of road dusts for estimation of mean NO 2 levels at high spatial density, which is important for pollution modelling and health risk assessment. - Highlights: • temporal variations of road dust magnetic susceptibility comprise 1/3 of the signal. • high negative correlation between Pb content and magnetic ratio ARM/χ is obtained. • brake- and tyre ware emissions are the main pollution sources of the road dusts. • road dust magnetic susceptibility rises parallel with logarithm of population size. • linear correlation is found between mean NO 2 concentrations and susceptibility. - Magnetic susceptibility of road dusts on a national scale increases proportionally to the population size and mean NO 2 concentrations due to the effect of traffic related pollution

  15. Feasibility study of determining axial stress in ferromagnetic bars using reciprocal amplitude of initial differential susceptibility obtained from static magnetization by permanent magnets

    Science.gov (United States)

    Deng, Dongge; Wu, Xinjun

    2018-03-01

    An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.

  16. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran

    Science.gov (United States)

    Karimi, Rezvan; Ayoubi, Shamsollah; Jalalian, Ahmad; Sheikh-Hosseini, Ahmad Reza; Afyuni, Majid

    2011-05-01

    Recently methods dealing with magnetometry have been proposed as a proper proxy for assessing the heavy metal pollution of soils. A total of 113 topsoil samples were collected from public parks and green strips along the rim of roads with high-density traffic within the city of Isfahan, central Iran. The magnetic susceptibility (χ) of the collected soil samples was measured at both low and high frequency (χlf and χhf) using the Bartington MS2 dual frequency sensor. As, Cd, Cr, Ba, Cu, Mn, Pb, Zn, Sr and V concentrations were measured in the all collected soil samples. Significant correlations were found between Zn and Cu (0.85) and between Zn and Pb (0.84). The χfd value of urban topsoil varied from 0.45% to 7.7%. Low mean value of χfd indicated that the magnetic properties of the samples are predominately contributed by multi-domain grains, rather than by super-paramagnetic particles. Lead, Cu, Zn, and Ba showed positive significant correlations with magnetic susceptibility, but As, Sr, Cd, Mn, Cr and V, had no significant correlation with the magnetic susceptibility. There was a significant correlation between pollution load index (PLI) and χlf. PLI was computed to evaluate the soil environmental quality of selected heavy metals. Moreover, the results of multiple regression analysis between χlf and heavy metal concentrations indicated the LnPb, V and LnCu could explain approximately 54% of the total variability of χlf in the study area. These results indicate the potential of the magnetometric methods to evaluate the heavy metal pollution of soils.

  17. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    International Nuclear Information System (INIS)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • The dot is subjected to Gaussian white noise. • Role of anisotropy, PDEM and PDDSF have been analyzed. • Noise amplifies and suppresses DMS depending on particular condition. • Findings bear significant technological importance. - Abstract: We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  18. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  19. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  20. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime [Diagnostic Radiology Department, Clinica Quiron, Zaragoza (Spain); Olmos, Salvador [Instituto de Investigacion en Ingenieria de Aragon, Zaragoza (Spain)], E-mail: olmos@unizar.es

    2008-09-15

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  1. Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI

    International Nuclear Information System (INIS)

    Fayed, Nicolas; Davila, Jorge; Medrano, Jaime; Olmos, Salvador

    2008-01-01

    Magnetic resonance imaging (MRI) is the most common and well-established imaging modality for evaluation of intracerebral neoplasms, but there are still some incompletely solved challenges, such as reliable distinction between high- and low-grade tumours, exact delineation of tumour extension, and discrimination between recurrent tumour and radiation necrosis. The aim of this study was to evaluate the contribution of two MRI techniques to non-invasively estimate brain tumour grade. Twenty-four patients referred to MRI examination were analyzed and diagnosed with single intra-axial brain tumour. Lastly, histopathological analysis was performed to verify tumour type. Ten patients presented low-grade gliomas, while the remaining patients showed high-grade tumours, including glioblastomas in eight cases, isolated metastases in four patients and two cases with anaplastic gliomas. MRI examinations were performed on a 1.5-T scanner (Signa, General Electric). The acquisition protocol included the following sequences: saggital T1-weighted localizer, axial T1- and T2-weighted MRI, single-voxel magnetic resonance spectroscopy (MRS), dynamic susceptibility contrast (DSC) MRI and contrast-enhanced T1-weighted MRI. MRS data was analyzed with standard software provided by the scanner manufacturer. The metabolite ratio with the largest significant difference between tumour grades was the choline/creatine (Ch/Cr) ratio with elevated values in high-grade gliomas and metastases. A Ch/Cr ratio equal or larger than 1.55 predicted malignancy grade with 92% sensitivity and 80% specificity. The area under the ROC curve was 0.92 (CI: 95%; 0.81-1). Regarding to perfusion parameters, relative cerebral blood volume (rCBV) maps were estimated from the MR signal intensity time series during bolus passage with two commercial software packages. Two different regions of interest (ROI) were used to evaluate rCBV: lesion centre and perilesional region. All rCBV values were normalized to CBV in a

  2. A new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions

    International Nuclear Information System (INIS)

    Qin Hong; Phillips, Cynthia K.; Davidson, Ronald C.

    2007-01-01

    The susceptibility tensor of a hot, magnetized plasma is conventionally expressed in terms of infinite sums of products of Bessel functions. For applications where the particle's gyroradius is larger than the wavelength, such as alpha particle dynamics interacting with lower-hybrid waves, and the focusing of charged particle beams using a solenoidal field, the infinite sums converge slowly. In this paper, a new derivation of the plasma susceptibility tensor is presented which exploits a symmetry in the particle's orbit to simplify the integration along the unperturbed trajectories. As a consequence, the infinite sums appearing in the conventional expression are replaced by definite double integrals over one gyroperiod, and the cyclotron resonances of all orders are captured by a single term. Furthermore, the double integrals can be carried out and expressed in terms of Bessel functions of complex order, in agreement with expressions deduced previously using the Newburger sum rule. From this new formulation, it is straightforward to derive the asymptotic form of the full hot plasma susceptibility tensor for a gyrotropic but otherwise arbitrary plasma distribution in the large gyroradius limit. These results are of more general importance in the numerical evaluation of the plasma susceptibility tensor. Instead of using the infinite sums occurring in the conventional expression, it is only necessary to evaluate the Bessel functions once according to the new expression, which has significant advantages, especially when the particle's gyroradius is large and the conventional infinite sums converge slowly. Depending on the size of the gyroradius, the computational saving enabled by this representation can be several orders-of-magnitude

  3. Model for the orientation, magnetic field, and temperature dependence of the specific heat of CeCu6

    International Nuclear Information System (INIS)

    Edelstein, A.S.

    1988-01-01

    The results of a model calculation of the orientation, magnetic field, and temperature dependence of the specific heat C of CeCu 6 are found to be in good agreement with the single-crystal data of Amato et al. The model incorporates both the Kondo and crystal-field effects. It is suggested that the low-temperature Wilson's ratio CTchi, where chi is the susceptibility, may not change in an applied field H and that both CT and chi at low temperatures as a function of H may be proportional to the many-body density of states at the energy μH

  4. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  5. Lithology and chronology of ice-sheet fluctuations (magnetic susceptibility of cores from the western Ross Sea)

    Science.gov (United States)

    Jennings, Anne E.

    1993-01-01

    The goals of the marine geology part of WAIS include reconstructing the chronology and areal extent of ice-sheet fluctuations and understanding the climatic and oceanographic influences on ice-sheet history. As an initial step toward attaining these goals, down-core volume magnetic susceptibility (MS) logs of piston cores from three N-S transects in the western Ross Sea are compared. The core transects are within separate petrographic provinces based on analyses of till composition. The provinces are thought to reflect the previous locations of ice streams on the shelf during the last glaciation. Magnetic susceptibility is a function of magnetic mineral composition, sediment texture, and sediment density. It is applied in the western Ross Sea for two purposes: (1) to determine whether MS data differentiates the three transects (i.e., flow lines), and thus can be used to make paleodrainage reconstructions of the late Wisconsinan ice sheet; and (2) to determine whether the MS data can aid in distinguishing basal till diamictons from diamictons of glacial-marine origin and thus, aid paleoenvironmental interpretations. A comparison of the combined data of cores in each transect is presented.

  6. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    Science.gov (United States)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  7. Magnetic properties of high temperature superconductors. AC susceptibility and magnetostriction studies

    Energy Technology Data Exchange (ETDEWEB)

    Heill, L K

    1995-05-01

    The author of this thesis has measured the ac magnetic response function {mu} = {mu}`+i{mu}`` in melt-powder-melt-growth YBa{sub 2}Cu{sub 3}O{sub 7} (Y123) with insulating Y{sub 2}BaCuO{sub 5} (Y211) and in single crystal YBa{sub 2}Cu{sub 3}O{sub 7} (SC) in applied dc fields up to 8 T, oriented both parallel and perpendicular to the crystalline c-axis. Both samples are cubes with sides of about 1 mm. The response of the two samples was mapped out as a function of temperature, excitation field amplitude and frequency, dc field and field orientation. It is found that for both samples the loss peak line (LPL) and hence the irreversibility line (IL) exists at higher temperatures and fields for perpendicular field orientation than for parallel. Strong frequency but weak amplitude dependence is observed for parallel orientation, vice versa for perpendicular orientation. The measured response is strongly non-linear for perpendicular orientation, and intermediate between linear (ohmic) and extremely non-linear (Bean critical state) for parallel orientation. The situation at parallel orientation is close to but above the transition into a vortex solid state, and a power law temperature dependence with exponent 1.5 is obtained for the vortex glass transition line. For perpendicular orientation the response is consistent with that expected in a vortex solid. Pinning barriers are found by means of thermal activation analysis. Anomalous loss peaks {mu}``(T) are observed for the SC sample for intermediate fields in perpendicular orientation. Large magnetostriction is found in a flat single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} sample at low temperature and fields up to 6 T applied along the c-axis. 332 refs., 59 figs., 7 tabs.

  8. Spin-dependent tunneling transport in a lateral magnetic diode

    International Nuclear Information System (INIS)

    Wang, Yu; Shi, Ying

    2012-01-01

    Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.

  9. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record

    Science.gov (United States)

    Hatfield, Robert G.; Stoner, Joseph S.; Reilly, Brendan T.; Tepley, Frank J.; Wheeler, Benjamin H.; Housen, Bernard A.

    2017-09-01

    We use isothermal and temperature dependent in-field and magnetic remanence methods together with electron microscopy to characterize different sieved size fractions from terrestrial sediments collected in Iceland and southern Greenland. The magnetic fraction of Greenland silts (3-63 μm) and sands (>63 μm) is primarily composed of near-stoichiometric magnetite that may be oxidized in the finer clay (samples, in contrast to coarser PSD and multi-domain (MD) discrete magnetites from southern Greenland. We demonstrate the potential of using magnetic properties of the silt fraction for source unmixing by creating known endmember mixtures and by using naturally mixed marine sediments from the Eirik Ridge south of Greenland. We develop a novel approach to ferrimagnetic source unmixing by using low temperature magnetic susceptibility curves that are sensitive to the different crystallinity and cation substitution characteristics of the different source regions. Covariation of these properties with hysteresis parameters suggests sediment source changes have driven the magnetic mineral variations observed in Eirik Ridge sediments since the last glacial maximum. These observations assist the development of a routine method and interpretative framework to quantitatively determine provenance in a geologically realistic and meaningful way and assess how different processes combine to drive magnetic variation in the North Atlantic sediment record.

  10. The Interaction of Magnetizations with an External Electromagnetic Field and a Time-Dependent Magnetic Aharonov-Bohm Effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs

  11. Moessbauer, electron paramagnetic resonance and magnetic susceptibility studies of photosensitive nitrile hydratase from Rhodococcus sp. N-771

    International Nuclear Information System (INIS)

    Nagamune, Teruyuki; Honda, Jun; Kobayashi, Yoshio; Sasabe, Hiroyuki; Endo, Isao; Ambe, Fumitoshi; Teratani, Yoshitaka; Hirata, Akira

    1992-01-01

    Moessbauer, magnetic susceptibility and electron paramagnetic resonance (EPR) studies of inactive and photoactivated NHase enzymes were performed to elucidate the electronic change of non-heme two-iron atom center of the enzyme by photoactivation. These spectroscopic investigations revealed that both the two iron atoms of the active NHase could be assigned to low-spin ferric state, and those of the inactive NHase could each be assigned to low-spin ferric and low-spin ferrous ones. From these results, it was concluded that one of the non-heme iron atoms is oxidized in the inactive NHase during photoactivation. (orig.)

  12. Magnetic susceptibility and spectral gamma logs in the Tithonian-Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary

    Czech Academy of Sciences Publication Activity Database

    Grabowski, J.; Schnyder, J.; Sobien, K.; Koptíková, Leona; Krzemiński, L.; Pszczółkowski, A.; Hejnar, J.; Schnabl, Petr

    2013-01-01

    Roč. 43, June 2013 (2013), s. 1-17 ISSN 0195-6671 Institutional support: RVO:67985831 Keywords : Berriasian * Gamma-ray spectrometry * magnetic susceptibility * palaeoenvironmental trends * Tithonian Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.390, year: 2013

  13. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Yutaka Matsuura

    2018-01-01

    Full Text Available Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1 for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°=30°, σ=31° and θ1=ω1(0°=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  14. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-01-01

    Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1) for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively) of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°)=30°, σ=31° and θ1=ω1(0°)=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  15. Quantitative evaluation of susceptibility effects caused by dental materials in head magnetic resonance imaging

    Science.gov (United States)

    Strocchi, S.; Ghielmi, M.; Basilico, F.; Macchi, A.; Novario, R.; Ferretti, R.; Binaghi, E.

    2016-03-01

    This work quantitatively evaluates the effects induced by susceptibility characteristics of materials commonly used in dental practice on the quality of head MR images in a clinical 1.5T device. The proposed evaluation procedure measures the image artifacts induced by susceptibility in MR images by providing an index consistent with the global degradation as perceived by the experts. Susceptibility artifacts were evaluated in a near-clinical setup, using a phantom with susceptibility and geometric characteristics similar to that of a human head. We tested different dentist materials, called PAL Keramit, Ti6Al4V-ELI, Keramit NP, ILOR F, Zirconia and used different clinical MR acquisition sequences, such as "classical" SE and fast, gradient, and diffusion sequences. The evaluation is designed as a matching process between reference and artifacts affected images recording the same scene. The extent of the degradation induced by susceptibility is then measured in terms of similarity with the corresponding reference image. The matching process involves a multimodal registration task and the use an adequate similarity index psychophysically validated, based on correlation coefficient. The proposed analyses are integrated within a computer-supported procedure that interactively guides the users in the different phases of the evaluation method. 2-Dimensional and 3-dimensional indexes are used for each material and each acquisition sequence. From these, we drew a ranking of the materials, averaging the results obtained. Zirconia and ILOR F appear to be the best choice from the susceptibility artefacts point of view, followed, in order, by PAL Keramit, Ti6Al4V-ELI and Keramit NP.

  16. Age- and sex-dependent susceptibility to phenobarbital-resistant neonatal seizures: role of chloride co-transporters.

    Science.gov (United States)

    Kang, Seok Kyu; Markowitz, Geoffrey J; Kim, Shin Tae; Johnston, Michael V; Kadam, Shilpa D

    2015-01-01

    Ischemia in the immature brain is an important cause of neonatal seizures. Temporal evolution of acquired neonatal seizures and their response to anticonvulsants are of great interest, given the unreliability of the clinical correlates and poor efficacy of first-line anti-seizure drugs. The expression and function of the electroneutral chloride co-transporters KCC2 and NKCC1 influence the anti-seizure efficacy of GABAA-agonists. To investigate ischemia-induced seizure susceptibility and efficacy of the GABAA-agonist phenobarbital (PB), with NKCC1 antagonist bumetanide (BTN) as an adjunct treatment, we utilized permanent unilateral carotid-ligation to produce acute ischemic-seizures in post-natal day 7, 10, and 12 CD1 mice. Immediate post-ligation video-electroencephalograms (EEGs) quantitatively evaluated baseline and post-treatment seizure burdens. Brains were examined for stroke-injury and western blot analyses to evaluate the expression of KCC2 and NKCC1. Severity of acute ischemic seizures post-ligation was highest at P7. PB was an efficacious anti-seizure agent at P10 and P12, but not at P7. BTN failed as an adjunct, at all ages tested and significantly blunted PB-efficacy at P10. Significant acute post-ischemic downregulation of KCC2 was detected at all ages. At P7, males displayed higher age-dependent seizure susceptibility, associated with a significant developmental lag in their KCC2 expression. This study established a novel neonatal mouse model of PB-resistant seizures that demonstrates age/sex-dependent susceptibility. The age-dependent profile of KCC2 expression and its post-insult downregulation may underlie the PB-resistance reported in this model. Blocking NKCC1 with low-dose BTN following PB treatment failed to improve PB-efficacy.

  17. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  18. Magnetic susceptibility and electron–phonon (e–p) interaction in some U and Ce based heavy fermion (HF) systems

    International Nuclear Information System (INIS)

    Sahoo, J.; Shadangi, N.; Nayak, P.

    2015-01-01

    Here an attempt is made to explore the variation of magnetic susceptibility with temperature for different values of the position of f-level (d) and electron–phonon interaction (EPI) strength (r) in some U and Ce based heavy Fermion (HF) systems within Periodic Anderson Model (PAM) in the presence of a static magnetic field B and interaction of phonons with electrons of hybridization band. Since magnetic susceptibility χ is related to the f-electron occupation n ±σ f , the expression for the latter is analytically derived through f–f correlation function following the Green function technique of Zubarev. The numerical analysis of χ as a function of temperature ‘T’ is done for different values of d and r. The results show a good agreement with the experiments for some U and Ce based HFs. An explanation for the existence of a critical value of d w.r.t. E F for switching of nature of χ∼T from U to Ce based HF systems is provided. Our calculated value of the temperature T χmax corresponding to the peak position of χ for small values of hybridization constant γ=0.002 and 0.0036 coincides with the experimental value of 19 K for UPt 3 and 35 K for UPd 2 Al 3 reported by Frings et al. and Geibel et al. respectively. - Highlights: • Variation of magnetic susceptibility χ with temperature T is studied for some HF systems. • Periodic Anderson Model in presence of magnetic field and electron–phonon interaction is used for numerical evaluation. • The existence of a critical value of the position of f-level(d) is proposed for distinction between χ∼T behavior of U and Ce based HF systems. • Results obtained are in good agreement with the experimental observations for some Ce and U based HF systems. • Theoretically evaluated temperature corresponding to the peak value of χ matches with the experimental results of UPt 3 and UPd 2 Al 3

  19. Susceptibility Testing

    Science.gov (United States)

    ... Marker Bicarbonate (Total CO2) Bilirubin Blood Culture Blood Gases Blood Ketones Blood Smear Blood Typing Blood Urea ... hours depending on the method used. There are commercial tests available that offer rapid susceptibility testing and ...

  20. A semimetal model of the normal state magnetic susceptibility and transport properties of Ba(Fe1-xCox)2As2

    International Nuclear Information System (INIS)

    Sales, B.C.; McGuire, M.A.; Sefat, A.S.; Mandrus, D.

    2010-01-01

    A simple two-band 3D model of a semimetal is constructed to determine which normal state features of the Ba(Fe 1-x Co x ) 2 As 2 superconductors can be qualitatively understood within this framework. The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and Seebeck data, and the low temperature Sommerfeld coefficient for 0 < x < 0.3 with only three parameters for all x. The purpose of the model is not to fit the data but to provide a simple starting point for thinking about the physics of these interesting materials. Although many of the static magnetic properties, such as the increase of the magnetic susceptibility with temperature, are reproduced by the model, none of the spin-fluctuation dynamics are addressed. A general conclusion from the model is that the magnetic susceptibility of most semimetals should increase with temperatures.

  1. Erythrocyte enrichment in hematopoietic progenitor cell cultures based on magnetic susceptibility of the hemoglobin.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    Full Text Available Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A, hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes.

  2. Investigation of polluted alluvial soils by magnetic susceptibility methods: a case study of the Litavka River

    Czech Academy of Sciences Publication Activity Database

    Dlouhá, Šárka; Petrovský, Eduard; Kapička, Aleš; Borůvka, L.; Ash, Ch.; Drábek, O.

    2013-01-01

    Roč. 8, č. 4 (2013), s. 151-157 ISSN 1801-5395 Institutional support: RVO:67985530 Keywords : environmental magnetism * Fluvisols * magnetite/maghemite * risk elements Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.615, year: 2013

  3. Measurement of susceptibility artifacts with histogram-based reference value on magnetic resonance images according to standard ASTM F2119.

    Science.gov (United States)

    Heinrich, Andreas; Teichgräber, Ulf K; Güttler, Felix V

    2015-12-01

    The standard ASTM F2119 describes a test method for measuring the size of a susceptibility artifact based on the example of a passive implant. A pixel in an image is considered to be a part of an image artifact if the intensity is changed by at least 30% in the presence of a test object, compared to a reference image in which the test object is absent (reference value). The aim of this paper is to simplify and accelerate the test method using a histogram-based reference value. Four test objects were scanned parallel and perpendicular to the main magnetic field, and the largest susceptibility artifacts were measured using two methods of reference value determination (reference image-based and histogram-based reference value). The results between both methods were compared using the Mann-Whitney U-test. The difference between both reference values was 42.35 ± 23.66. The difference of artifact size was 0.64 ± 0.69 mm. The artifact sizes of both methods did not show significant differences; the p-value of the Mann-Whitney U-test was between 0.710 and 0.521. A standard-conform method for a rapid, objective, and reproducible evaluation of susceptibility artifacts could be implemented. The result of the histogram-based method does not significantly differ from the ASTM-conform method.

  4. Microstructural characterisation and change in a.c. magnetic susceptibility of duplex stainless steel during spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-06-15

    The microstructural changes during long-term (up to 10,000 h) spinodal decomposition in a duplex stain less steel, 7MoPLUS, have been characterised using TEM, a.c. magnetic susceptibility, X-ray diffractometry, microhardness measurement and optical microscopy. The microstructural changes and deformation microstructures of ferrite and austenite upon spinodal decomposition are characterised. The use of a.c. magnetic susceptibility to study the progress of spinodal decomposition is discussed. Above 450 {sup o}C, recent research by K.L. Weng et al. Mater. Sci. Eng. A 379 (2004) 119 has established that spinodal decomposition leads to crisscrossing of dislocations and the development of mottled contrast in the ferrite phase. The present work has shown that at 350 {sup o}C (the low-end of the spinodal range), crisscrossing of dislocations still occurs, but mottled contrast is absent. The G phase tends to be in contact with dislocations and its precipitation lags behind the occurrence of spinodal decomposition. No noticeable microstructural changes could be observed in the austenite phase in the spinodal temperature regime.

  5. Photothermal investigation of local and depth dependent magnetic properties

    International Nuclear Information System (INIS)

    Pelzl, J; Meckenstock, R

    2010-01-01

    To achieve a spatially resolved measurement of magnetic properties two different photothermal approaches are used which rely on heat dissipated by magnetic resonance absorption or thermal modulation of the magnetic properties, respectively. The heat produced by modulated microwave absorption is detected by the classical photothermal methods such as photoacoustic effect and mirage effect. Examples comprise depth resolution of the magnetization of layered tapes and visualisation of magnetic excitations in ferrites. The second photothermal technique relies on the local modulation of magnetic properties by a thermal wave generated with an intensity modulated laser beam incident on the sample. This technique has a higher spatial resolution and sensitivity and has been used to characterize lateral magnetic properties of multilayers and spintronic media. To extend the lateral resolution of the ferromagnetic resonance detection into the nm-range techniques have been developed which are based on the detection of the modulated thermal microwave response by the thermal probe of an atomic force microscope (AFM) or by detection the thermal expansion of the magnetic sample in the course of the resonant microwave absorption with an AFM or tunnelling microscope. These thermal near field based techniques in ferromagnetic resonance have been successfully applied to image magnetic inhomogeneities around nano-structures and to measure the ferromagnetic resonance from magnetic nano-dots.

  6. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  7. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping].

    Science.gov (United States)

    Guan, Ji-Jing; Feng, Yan-Qiu

    2018-03-20

    To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R 2 ) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; Pbrain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.

  8. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  9. Study of the magnetic susceptibilities of some plutonium derivatives; Etude des susceptibilites magnetiques de quelques derives du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-06-01

    We present a detailed description of an automatic recording apparatus for magnetic susceptibility measurement of radioactive samples in the temperature range 4 K - 1200 K. We have measured the magnetic susceptibility of various plutonium compounds: - PuO{sub 2}, Pu{sub 2}O{sub 3}, PuO{sub 2-x}, - PuS, Pu{sub 2}S{sub 3}, Pu{sub 3}S{sub 4}, (U{sub x}Pu{sub 1-x})S - PuN - PuC{sub 1-x}(N,O,H,vacancy), Pu{sub 2}C{sub 3}, (U{sub 0.85}Pu{sub 0.15})C. The curves of susceptibilities versus temperature show many magnetic transitions. The interpretation of these results shows the existence of magnetic moments carried by the 5 f electrons and localized on the metallic sites as well as the great influence of the 'crystal field' in all these compounds. (author) [French] Nous decrivons d'une facon detaillee un appareil permettant de mesurer d'une facon continue et automatique des susceptibilites magnetiques sur des echantillons radioactifs dans un domaine de temperature s'etalant de 4 K a 1200 K. Nous avons mesure les susceptibilites magnetiques de certains composes du plutonium tels que: - PuO{sub 2}, Pu{sub 2}O{sub 3}, PuO{sub 2-x} - PuS, Pu{sub 2}S{sub 3}, Pu{sub 3}S{sub 4}, (U{sub x}Pu{sub 1-x})S - PuN - PuC{sub 1-x}(N,O,H,vacancy), Pu{sub 2}C{sub 3}, (U{sub 0.85}Pu{sub 0.15})C. Les courbes de susceptibilite magnetique en fonction de la temperature mettent en evidence de nombreuses transitions magnetiques. L'interpretation de ces resultats a montre l'existence de moments magnetiques portes par les electrons f et localises sur les sites metalliques ainsi que l'influence tres grande du champ cristallin. (auteur)

  10. Pleomorphic adenoma cells vary in their susceptibility to SV40 transformation depending on the initial karyotype.

    Science.gov (United States)

    Kazmierczak, B; Thode, B; Bartnitzke, S; Bullerdiek, J; Schloot, W

    1992-07-01

    Chromosomal aberrations involving 8q12 or 12q13-15 characterize two cytogenetic subgroups of salivary gland pleomorphic adenomas. As the tumors of the two groups differ in their clinical and histologic characteristics, we decided to determine their susceptibility to SV40 transformation. We transfected cell cultures from 13 adenomas with aberrations involving 8q12 and from seven adenomas with involvement of 12q13-15 using an SV40 plasmid coding for the early region of the viral genome. Whereas all cultures with aberrations of 12q13-15 showed transformed foci, only 4 of the 13 cultures with 8q12 abnormalities showed foci of transformed cells. We also observed a much higher immortalization rate in the first group (3/7 vs. 1/13). All successfully transformed tumor cell cultures showed a relatively stable karyotype in the pre-crisis stage and a high mitotic index, were T-antigen positive, and had an extended life span in vitro.

  11. Padé approximations for the magnetic susceptibilities of Heisenberg antiferromagnetic spin chains for various spin values

    International Nuclear Information System (INIS)

    Law, J M; Benner, H; Kremer, R K

    2013-01-01

    The temperature dependence of the spin susceptibilities of S = 1, 3/2 , 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH 3 ) 4 N[MnCl 3

  12. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  13. Out-of-phase susceptibility and viscous magnetization: alternative tools for magnetic granulometry of sediments and soils

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    2016-01-01

    Roč. 6, Special issue (2016) ISSN 2007-9656. [Biennial Meeting Latinmag /4./. 23.11.2015-27.11.2015, Sao Paulo] Institutional support: RVO:67985831 Keywords : palaeomagnetism * sediments * soils Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www. geofisica .unam.mx/LatinmagLetters/LL16-01-SP/D/D07.pdf

  14. Dimensional dependence of exchange interactions at high magnetic fields

    International Nuclear Information System (INIS)

    Zehnder, U.; Kuhn-Heinrich, B.; Ossau, W.; Waag, A.; Landwehr, G.; Cheng, H.H.; Nicholas, R.J.

    1996-01-01

    We studied the contribution of the breaking of the antiferromagnetically coupled spin clusters to the total magnetization in thin (CdMn)Te layers as a function of the layer thickness by reflectivity spectroscopy in magnetic fields up to 45 T. The experimental results show that the contribution of the breaking of antiferromagnetically coupled spin clusters is reduced by decreasing layer thickness. (author)

  15. Applying the anisotropy of magnetic susceptibility technique to the study of the tectonic evolution of the West Spitsbergen Fold-and-Thrust Belt

    Directory of Open Access Journals (Sweden)

    Katarzyna Dudzisz

    2016-12-01

    Full Text Available We demonstrate the use of the anisotropy of magnetic susceptibility (AMS method to determine the orientation of the principal tectonic strain directions developed during the formation of the West Spitsbergen Fold-and-Thrust Belt (WSFTB. The AMS measurements and extensive rock-magnetic studies of the Lower Triassic rocks reported here were focused on the recognition of the magnetic fabric, the identification of ferromagnetic minerals and an estimation of the influence of ferro- and paramagnetic minerals on magnetic susceptibility. At most sites, the paramagnetic minerals controlled the magnetic susceptibility, and at only one site the impact of ferromagnetic minerals was higher. The AMS technique documented the presence of different types of magnetic fabrics within the sampled sites. At two sites, a normal (Kmin perpendicular to the bedding magnetic fabric of sedimentary origin was detected. This was associated with a good clustering of the maximum AMS axes imposed by tectonic strain. The Kmax magnetic lineation directions obtained here parallel the general NNW–SSE trend of the WSFTB fold axial traces and thrust fronts. The two other investigated sites possessed mixed and inverted fabrics, the latter of which appear to reflect the presence of iron-bearing carbonates.

  16. Dependence of magnetic permeability on residual stresses in alloyed steels

    Directory of Open Access Journals (Sweden)

    E. Hristoforou

    2018-04-01

    Full Text Available A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels’ grade (AISI 4140, TRIP and Duplex were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  17. Dependence of magnetic permeability on residual stresses in alloyed steels

    Science.gov (United States)

    Hristoforou, E.; Ktena, A.; Vourna, P.; Argiris, K.

    2018-04-01

    A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels' grade (AISI 4140, TRIP and Duplex) were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  18. Experimental mathematics on the magnetic susceptibility of the square lattice Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Boukraa, S [LPTHIRM and Departement d' Aeronautique, Universite de Blida (Algeria); Guttmann, A J; Jensen, I [ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Hassani, S; Zenine, N [Centre de Recherche Nucleaire d' Alger, 2 Bd. Frantz Fanon, BP 399, 16000 Alger (Algeria); Maillard, J-M [LPTMC, Universite de Paris, Tour 24, 4eme etage, case 121, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Nickel, B [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)], E-mail: boukraa@mail.univ-blida.dz, E-mail: tonyg@ms.unimelb.edu.au, E-mail: I.Jensen@ms.unimelb.edu.au, E-mail: maillard@lptmc.jussieu.fr, E-mail: maillard@lptl.jussieu.fr, E-mail: njzenine@yahoo.com

    2008-11-14

    We calculate very long low- and high-temperature series for the susceptibility {chi} of the square lattice Ising model as well as very long series for the five-particle contribution {chi}{sup (5)} and six-particle contribution {chi}{sup (6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150 000 CPU hours on computer clusters. The series for {chi} (low- and high-temperature regimes), {chi}{sup (5)} and {chi}{sup (6)} are now extended to 2000 terms. In addition, for {chi}{sup (5)}, 10 000 terms of the series are calculated modulo a single prime, and have been used to find the linear ODE satisfied by {chi}{sup (5)} modulo a prime. A diff-Pade analysis of the 2000 terms series for {chi}{sup (5)} and {chi}{sup (6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the n-particle components of the susceptibility, up to a small set of 'additional' singularities. The exponents at all the singularities of the Fuchsian linear ODE of {chi}{sup (5)} and the (as yet unknown) ODE of {chi}{sup (6)} are given: they are all rational numbers. We find the presence of singularities at w = 1/2 for the linear ODE of {chi}{sup (5)}, and w{sup 2} = 1/8 for the ODE of {chi}{sup (6)}, which are not singularities of the 'physical' {chi}{sup (5)} and {chi}{sup (6)}, that is to say the series solutions of the ODE's which are analytic at w = 0. Furthermore, analysis of the long series for {chi}{sup (5)} (and {chi}{sup (6)}) combined with the corresponding long series for the full susceptibility {chi} yields previously conjectured singularities in some {chi}{sup (n)}, n {>=} 7. The exponents at all these singularities are also seen to be rational numbers. We also present a mechanism of resummation of the logarithmic singularities of the {chi}{sup (n)} leading to the known power-law critical behaviour occurring in

  19. Rate-dependent extensions of the parametric magneto-dynamic model with magnetic hysteresis

    Directory of Open Access Journals (Sweden)

    S. Steentjes

    2017-05-01

    Full Text Available This paper extends the parametric magneto-dynamic model of soft magnetic steel sheets to account for the phase shift between local magnetic flux density and magnetic field strength. This phase shift originates from the damped motion of domain walls and is strongly dependent on the microstructure of the material. In this regard, two different approaches to include the rate-dependent effects are investigated: a purely phenomenological, mathematical approach and a physical-based one.

  20. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    Science.gov (United States)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  1. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  2. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion

    Czech Academy of Sciences Publication Activity Database

    Jakšík, O.; Kodešová, R.; Kapička, Aleš; Klement, A.; Fér, M.; Nikodém, A.

    2016-01-01

    Roč. 11, č. 2 (2016), s. 105-113 ISSN 1801-5395 R&D Projects: GA MZe QJ1230319 Institutional support: RVO:67985530 Keywords : arable land * geomorphologically diverse areas * Chernozem Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.934, year: 2016

  3. Dimensional dependence of exchange interactions at high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, U.; Kuhn-Heinrich, B.; Ossau, W.; Waag, A.; Landwehr, G. [Physikalisches Institut der Universitaet Wuerzburg, Wuerzburg (Germany); Cheng, H.H.; Nicholas, R.J. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)

    1996-12-31

    We studied the contribution of the breaking of the antiferromagnetically coupled spin clusters to the total magnetization in thin (CdMn)Te layers as a function of the layer thickness by reflectivity spectroscopy in magnetic fields up to 45 T. The experimental results show that the contribution of the breaking of antiferromagnetically coupled spin clusters is reduced by decreasing layer thickness. (author) 6 refs, 2 refs

  4. Theory of spin-dependent tunnelling in magnetic junctions

    International Nuclear Information System (INIS)

    Mathon, J.

    2002-01-01

    Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)

  5. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  6. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  7. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    International Nuclear Information System (INIS)

    Franczak, Agnieszka; Levesque, Alexandra; Zabinski, Piotr; Li, Donggang; Czapkiewicz, Maciej; Kowalik, Remigiusz; Bohr, Frédéric

    2015-01-01

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits

  8. Correlation between anisotropy of frequency-dependent susceptibility and anisotropy of out-of-phase susceptibility in loess/paleosol sequences

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin; Hrouda, F.; Kadlec, Jaroslav; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-7053 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 ; RVO:67985530 Keywords : palaeomagnetism * magnetic sdusceptibility * AMS Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7053.pdf

  9. Thickness dependence of magnetization reversal mechanism in perpendicularly magnetized L1{sub 0} FePt films

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Mei; Wang, Xin, E-mail: xinwang@uestc.edu.cn; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang

    2017-04-15

    We have studied the magnetic switching behavior of L1{sub 0}-ordered FePt films with varying thickness. It was found that coercivity is strongly dependent on the film thickness. The obvious variations of the coercivity in the thin films are confirmed by the measurements of structural and magnetic properties. With increasing thickness, the degree of L1{sub 0} chemical ordering increased, while the magnetization reversal process transforms from a pinned two-steps magnetization reversal to a comparatively smooth domain wall motion behavior. Although considering anisotropy, exchange interaction and applied magnetic field, the switching behavior in films is quite complex, the main features of the magnetization reversal mechanism can be understood by performing detailed investigation on the effect of the deposition temperature and the angle of magnetic field. - Highlights: • Series of FePt films with L1{sub 0} phase have been prepared. • We focused on the magnetization reversal mechanism with varying thicknesses. • The angle-dependence of switching process is revealed in the FePt films. • Different switching mechanisms were found by increasing the film thickness.

  10. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  11. Magnetic fabric and flow direction in the Ediacaran Imider dyke swarms (Eastern Anti-Atlas, Morocco), inferred from the Anisotropy of Magnetic Susceptibility (AMS)

    Science.gov (United States)

    Otmane, Khadija; Errami, Ezzoura; Olivier, Philippe; Berger, Julien; Triantafyllou, Antoine; Ennih, Nasser

    2018-03-01

    Located in the Imiter Inlier (Eastern Saghro, Anti-Atlas, Morocco), Ediacaran volcanic dykes have been studied for their petrofabric using Anisotropy of Magnetic Susceptibility (AMS) technique. Four dykes, namely TF, TD, FF and FE show andesitic compositions and are considered to belong to the same dyke swarm. They are oriented respectively N25E, N40E, N50E, and N10E and have been emplaced during a first tectonic event. The dyke FW, oriented N90E displays a composition of alkali basalt and its emplacement is attributed to a subsequent tectonic event. These rocks are propylitized under greenschist facies conditions forming a secondary paragenesis constituted by calcite, chlorite, epidote and sericite. The dykes TF, TD, FF and FE are sub-volcanic calc-alkaline, typical of post-collisional basalts/andesites, belonging to plate margin andesites. The FW dyke shows a within-plate basalt signature; alkaline affinity reflecting a different petrogenetic process. The thermomagnetic analyses show a dominantly ferromagnetic behaviour in the TF dyke core carried by single domain Ti-poor magnetite, maghemite and pyrrhotite. The dominantly paramagnetic susceptibilities in TF dyke rims and TD, FE, FF and FW dykes are controlled by ilmenite, amphibole, pyroxene and chlorite. The magnetic fabrics of the Imider dykes, determined by our AMS study, allows us to reconstitute the tectonic conditions which prevailed during the emplacement of these two generations of volcanic dykes. The first tectonic event was characterized by a roughly NE-SW compression and the second tectonic event is characterized by an E-W shortening followed by a relaxation recording the end of the Pan-African orogeny in the eastern Anti-Atlas.

  12. Size-dependent magnetic transitions in CoFe0.1Cr1.9O4 nanoparticles studied by magnetic and neutron-polarization analysis.

    Science.gov (United States)

    Kumar, D; Galivarapu, J K; Banerjee, A; Nemkovski, K S; Su, Y; Rath, Chandana

    2016-04-29

    Multiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (TC) and spiral ordering temperature (TS) respectively and finally to a lock-in-transition temperature (Tl). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the TC increases from 110 to 119 K which is higher than the TC (95 K) of pure CoCr2O4, the TS remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel-Arrhenius, Vogel-Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (Tg).

  13. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  14. Size-dependent magnetic properties of iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Patsula, Vitalii; Moskvin, Maksym; Dutz, S.; Horák, Daniel

    2016-01-01

    Roč. 88, January (2016), s. 24-30 ISSN 0022-3697 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic materials * chemical synthesis * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.059, year: 2016

  15. Susceptibility of β1 Na+-K+ pump subunit to glutathionylation and oxidative inhibition depends on conformational state of pump.

    Science.gov (United States)

    Liu, Chia-Chi; Garcia, Alvaro; Mahmmoud, Yasser A; Hamilton, Elisha J; Galougahi, Keyvan Karimi; Fry, Natasha A S; Figtree, Gemma A; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2012-04-06

    Glutathionylation of cysteine 46 of the β1 subunit of the Na(+)-K(+) pump causes pump inhibition. However, the crystal structure, known in a state analogous to an E2·2K(+)·P(i) configuration, indicates that the side chain of cysteine 46 is exposed to the lipid bulk phase of the membrane and not expected to be accessible to the cytosolic glutathione. We have examined whether glutathionylation depends on the conformational changes in the Na(+)-K(+) pump cycle as described by the Albers-Post scheme. We measured β1 subunit glutathionylation and function of Na(+)-K(+)-ATPase in membrane fragments and in ventricular myocytes. Signals for glutathionylation in Na(+)-K(+)-ATPase-enriched membrane fragments suspended in solutions that preferentially induce E1ATP and E1Na(3) conformations were much larger than signals in solutions that induce the E2 conformation. Ouabain further reduced glutathionylation in E2 and eliminated an increase seen with exposure to the oxidant peroxynitrite (ONOO(-)). Inhibition of Na(+)-K(+)-ATPase activity after exposure to ONOO(-) was greater when the enzyme had been in the E1Na(3) than the E2 conformation. We exposed myocytes to different extracellular K(+) concentrations to vary the membrane potential and hence voltage-dependent conformational poise. K(+) concentrations expected to shift the poise toward E2 species reduced glutathionylation, and ouabain eliminated a ONOO(-)-induced increase. Angiotensin II-induced NADPH oxidase-dependent Na(+)-K(+) pump inhibition was eliminated by conditions expected to shift the poise toward the E2 species. We conclude that susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump.

  16. Susceptibility of β1 Na+-K+ Pump Subunit to Glutathionylation and Oxidative Inhibition Depends on Conformational State of Pump*

    Science.gov (United States)

    Liu, Chia-Chi; Garcia, Alvaro; Mahmmoud, Yasser A.; Hamilton, Elisha J.; Galougahi, Keyvan Karimi; Fry, Natasha A. S.; Figtree, Gemma A.; Cornelius, Flemming; Clarke, Ronald J.; Rasmussen, Helge H.

    2012-01-01

    Glutathionylation of cysteine 46 of the β1 subunit of the Na+-K+ pump causes pump inhibition. However, the crystal structure, known in a state analogous to an E2·2K+·Pi configuration, indicates that the side chain of cysteine 46 is exposed to the lipid bulk phase of the membrane and not expected to be accessible to the cytosolic glutathione. We have examined whether glutathionylation depends on the conformational changes in the Na+-K+ pump cycle as described by the Albers-Post scheme. We measured β1 subunit glutathionylation and function of Na+-K+-ATPase in membrane fragments and in ventricular myocytes. Signals for glutathionylation in Na+-K+-ATPase-enriched membrane fragments suspended in solutions that preferentially induce E1ATP and E1Na3 conformations were much larger than signals in solutions that induce the E2 conformation. Ouabain further reduced glutathionylation in E2 and eliminated an increase seen with exposure to the oxidant peroxynitrite (ONOO−). Inhibition of Na+-K+-ATPase activity after exposure to ONOO− was greater when the enzyme had been in the E1Na3 than the E2 conformation. We exposed myocytes to different extracellular K+ concentrations to vary the membrane potential and hence voltage-dependent conformational poise. K+ concentrations expected to shift the poise toward E2 species reduced glutathionylation, and ouabain eliminated a ONOO−-induced increase. Angiotensin II-induced NADPH oxidase-dependent Na+-K+ pump inhibition was eliminated by conditions expected to shift the poise toward the E2 species. We conclude that susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump. PMID:22354969

  17. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.

    1992-01-01

    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h

  18. Geochemical normalization of magnetic susceptibility – a simple tool for distinction the sediment provenance and post-depositional processes in floodplain sediments

    Czech Academy of Sciences Publication Activity Database

    Faměra, Martin; Matys Grygar, Tomáš; Elznicová, J.

    2017-01-01

    Roč. 19, APR (2017) ISSN 1607-7962. [EGU General Assembly 2017. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:61388980 Keywords : Magnetic susceptibility Subject RIV: DD - Geochemistry http://meetingorganizer.copernicus.org/EGU2017/EGU2017-2797.pdf

  19. Magnetic susceptibility of the rare earth tungsten oxide bronzes of the defected perovskite-type structure (Rsub(x)WO/sub 3/)

    Energy Technology Data Exchange (ETDEWEB)

    Gesicki, A; Polaczek, A [Warsaw Univ. (Poland)

    1975-01-01

    Magnetic susceptibility of rare earth tungsten bronzes Rsub(x)WO/sub 3/ of cubic symmetry was measured in the 80-293 K range with the Gouy method. In disagreement with the data reported by other authors it was stated that the Curie-Weiss law with negative Weiss parameter was fulfilled in each case. Possible coupling mechanisms are briefly discussed.

  20. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  1. Distribution of Heavy-Metal Contamination in Regulated River-Channel Deposits: a Magnetic Susceptibility and Grain-Size Approach; River Morava, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Famera, M.; Bábek, O.; Matys Grygar, Tomáš; Nováková, Tereza

    2013-01-01

    Roč. 224, č. 5 (2013), 1525-1-1525-18 ISSN 0049-6979 R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:61388980 Keywords : Fluvial transport * Fly-ash spherules * Geochemical background * Heavy metals * Lithology * Magnetic susceptibility Subject RIV: DD - Geochemistry Impact factor: 1.685, year: 2013

  2. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    Science.gov (United States)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  3. Behavior of the dynamic magnetic susceptibility in ybco bula ceramics irradiated with gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, A.; Bouza Dominguez, J.; Cruz Inclan, Carlos M.

    2001-01-01

    Using measurements of the ac susceptibility, the behavior with the irradiation dose of YBa2Cu3O7- bulk ceramics synthesized by the classic reaction method in solid state, was studied. A Co60 gamma chamber model MPX-G-25M and a Cs137 source were employed as gamma ray sources. The behavior of the beginning temperature of the normal - superconducting state transition with the exposition dose show, independently of the incident gamma energy, a monotonous growth until reaching a threshold dose, after which, observe a fall, more abrupt in the case of the Co60. This behavior can be explained using the model that postulates the ability of the gamma radiation, in certain dose intervals, to stimulate the structural reordering in the oxygen sublattice. When the irradiation process takes place in the Co60 gamma chamber, the behavior of the superconducting volume fraction of the sample characterizes by the initial sharp fall with the dose, followed with an attenuation of the decrement. In the case of Cs137 irradiation, the behavior of the superconducting volume fraction is similar to the behavior of the Ton with the dose

  4. Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel

    Science.gov (United States)

    Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.

    2018-01-01

    This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.

  5. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    Gurieva, Tatiana

    2016-05-01

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  6. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  7. Evolution of fabric in Chitradurga granite (south India) - A study based on microstructure, anisotropy of magnetic susceptibility (AMS) and vorticity analysis

    Science.gov (United States)

    Mondal, Tridib Kumar

    2018-01-01

    In this paper, the fabric in massive granite ( 2.6 Ga) from the Chitradurga region (Western Dharwar Craton, south India) is analyzed using microstructure, anisotropy of magnetic susceptibility (AMS) study and kinematic vorticity analysis. The microstructural investigation on the granite shows a progressive textural overprint from magmatic, through high-T to low-T solid-state deformation textures. The mean magnetic foliation in the rocks of the region is dominantly NW-SE striking which have developed during regional D1/D2 deformation on account of NE-SW shortening. The plunge of the magnetic lineation varies from NW to vertical to SE, and interpreted to be a consequence of regional D3 deformation on account of NW-SE to E-W shortening. The vorticity analysis from magnetic fabric in the region reveals that the NW-SE oriented fabric formed under pure shear condition during D1/D2 regional deformation. However, some parts of the region particularly close to the adjacent Chitradurga Shear Zone show that the magnetic fabrics are oblique to the foliation as well as shear zone orientation and inferred to be controlled by simple shearing during D3 regional deformation. The shape preferred orientation (SPO) analysis from oriented thin sections suggest that the shape of the recrystallized quartz grains define the magnetic fabric in Chitradurga granite and the degree of the SPO reduces away from the Chitradurga Shear Zone. It is interpreted that the change in magnetic fabrics in some parts of the granite in the region are dominantly controlled by the late stage sinistral shearing which occurred during the development of Chitradurga Shear Zone. Anisotropy of magnetic susceptibility (AMS) data of granite from the Chitradurga region (West Dharwar Craton, southern India). Km = Mean susceptibility; Pj = corrected degree of magnetic anisotropy; T = shape parameter. K1 and K3 are the maximum and minimum principal axes of the AMS ellipsoid, respectively. dec = Declination; inc

  8. Magnetic Field Dependence and Q of the Josephson Plasma Resonance

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.

    1972-01-01

    of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...

  9. What does the magnetic storm development depend on?

    International Nuclear Information System (INIS)

    Wodnicka, E.B.

    1991-01-01

    Adiabatic drift model applied to the magnetic storm development simulation reveals the significance of initial energy, initial pitch angle and the site of ions injection for the intensity, growth time and growth rate of a storm produced by two ion species - H + and O + . The most severe storms are caused by the ring current intensified by low initial pitch angle ions injected at low radial distance in the postmidnight local time region. (author)

  10. Magnetic anisotropy and pressure dependence of the order temperature in the Gd3(FeTi)29 compound

    International Nuclear Information System (INIS)

    Morellon, L.; Arnold, Z.; Pareti, L.; Albertini, F.; Paoluzi, A.

    1995-01-01

    In this work we report ac initial magnetic susceptibility under pressure, singular point detection (SPD) and linear thermal expansion measurements in the Gd 3 (FeTi) 29 intermetallic compound. From these measurements we have determined the anisotropy field, the order temperature and its pressure dependence. The thermal expansion measurement shows an Invar-like anomaly at the order temperature, T C =520 K, which decreases under increasing pressure with a slope of dT C /dp=-2.7 K/kbar. As the Gd 3+ ion is isotropic, no contribution to the anisotropy from the 4f sublattice is expected and low values of the anisotropy fields have been observed. (orig.)

  11. On the frequency dependence of the magnetic permeability of FeHfO thin films

    NARCIS (Netherlands)

    Bloemen, P.J.H.; Rulkens, B.

    1998-01-01

    The frequency dependence of the magnetic permeability as well as of the electrical impedance have been investigated for soft-magnetic granular FeHfO thin films. The impedance measurements indicate that capacitive effects resulting from the inhomogeneous structure of the layers are of no importance

  12. Effects of Velocity-Dependent Force on the Magnetic Form Factors of Odd-Z Nuclei

    International Nuclear Information System (INIS)

    Tie-Kuang, Dong; Zhong-Zhou, Ren

    2008-01-01

    We investigate the effects of the velocity-dependent force on the magnetic form factors and magnetic moments of odd-Z nuclei. The form factors are calculated with the harmonic-oscillator wavefunctions. It is found that the contributions of the velocity-dependent force manifest themselves in the very large momentum transfer region (q ≥ 4fm- 1 ). In the low and medium q region the contributions of the velocity-dependent force are very small compared with those without this force. However, in the high-q region the contributions of the velocity-dependent force are larger than the normal form factors. The diffraction structures beyond the existing experimental data are found after the contributions of the velocity-dependent force are included. The formula of the correction to the single particle magnetic moment due to the velocity-dependent force is reproduced exactly in the long-wavelength limit (q = 0) of the M1 form factor

  13. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    International Nuclear Information System (INIS)

    Granovsky, A.B.; Inoue, Mitsuteru

    2004-01-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling

  14. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru

    2004-05-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.

  15. Development of a phosphorylated Momordica charantia protein system for inhibiting susceptible dose-dependent C. albicans to available antimycotics: An allosteric regulation of protein.

    Science.gov (United States)

    Qiao, Yuanbiao; Song, Li; Zhu, Chenchen; Wang, Qian; Guo, Tianyan; Yan, Yanhua; Li, Qingshan

    2017-11-15

    A regulatory Momordica charantia protein system was constructed allosterically by in vitro protein phosphorylation, in an attempt to evaluate antimycological pluripotency against dose-dependent susceptibilities in C. albicans. Fungal strain lineages susceptible to ketoconazole, econazole, miconazole, 5-flucytosine, nystatin and amphotericin B were prepared in laboratory, followed by identification via antifungal susceptibility testing. Protein phosphorylation was carried out in reactions with 5'-adenylic, guanidylic, cytidylic and uridylic acids and cyclic adenosine triphosphate, through catalysis of cyclin-dependent kinase 1, protein kinase A and protein kinase C respectively. Biochemical analysis of enzymatic reactions indicated the apparent Michaelis-Menten constants and maximal velocity values of 16.57-91.97mM and 55.56-208.33μM·min -1 , together with an approximate 1:1 reactant stoichiometric ratio. Three major protein phosphorylation sites were theoretically predicted at Thr255, Thr102 and Thr24 by a KinasePhos tool. Additionally, circular dichroism spectroscopy demonstrated that upon phosphorylation, protein folding structures were decreased in random coil, β6-sheet and α1-helix partial regions. McFarland equivalence standard testing yielded the concentration-dependent inhibition patterns, while fungus was grown in Sabouraud's dextrose agar. The minimal inhibitory concentrations of 0.16-0.51μM (at 50% response) were obtained for free protein and phosphorylated counterparts. With respect to the 3-cycling susceptibility testing regimen, individuals of total protein forms were administrated in-turn at 0.14μM/cycle. Relative inhibition ratios were retained to 66.13-81.04% of initial ones regarding the ketoconazole-susceptible C. albicans growth. An inhibitory protein system, with an advantage of decreasing antifungal susceptibilities to diverse antimycotics, was proposed because of regulatory pluripotency whereas little contribution to susceptibility in

  16. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  17. Methods of Blood Oxygen Level-Dependent Magnetic Resonance Imaging Analysis for Evaluating Renal Oxygenation

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI has recently been utilized as a noninvasive tool for evaluating renal oxygenation. Several methods have been proposed for analyzing BOLD images. Regional ROI selection is the earliest and most widely used method for BOLD analysis. In the last 20 years, many investigators have used this method to evaluate cortical and medullary oxygenation in patients with ischemic nephropathy, hypertensive nephropathy, diabetic nephropathy, chronic kidney disease (CKD, acute kidney injury and renal allograft rejection. However, clinical trials of BOLD MRI using regional ROI selection revealed that it was difficult to distinguish the renal cortico-medullary zones with this method, and that it was susceptible to observer variability. To overcome these deficiencies, several new methods were proposed for analyzing BOLD images, including the compartmental approach, fractional hypoxia method, concentric objects (CO method and twelve-layer concentric objects (TLCO method. The compartmental approach provides an algorithm to judge whether the pixel belongs to the cortex or medulla. Fractional kidney hypoxia, measured by using BOLD MRI, was negatively correlated with renal blood flow, tissue perfusion and glomerular filtration rate (GFR in patients with atherosclerotic renal artery stenosis. The CO method divides the renal parenchyma into six or twelve layers of thickness in each coronal slice of BOLD images and provides a R2* radial profile curve. The slope of the R2* curve associated positively with eGFR in CKD patients. Indeed, each method invariably has advantages and disadvantages, and there is generally no consensus method so far. Undoubtedly, analytic approaches for BOLD MRI with better reproducibility would assist clinicians in monitoring the degree of kidney hypoxia and thus facilitating timely reversal of tissue hypoxia.

  18. Destabilizing effect of time-dependent oblique magnetic field on magnetic fluids streaming in porous media.

    Science.gov (United States)

    El-Dib, Yusry O; Ghaly, Ahmed Y

    2004-01-01

    The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.

  19. Magnetic field dependence of the magnon spin diffusion length in the magnetic insulator yttrium iron garnet

    NARCIS (Netherlands)

    Cornelissen, L. J.; van Wees, B. J.

    2016-01-01

    We investigated the effect of an external magnetic field on the diffusive spin transport by magnons in the magnetic insulator Y3Fe5O12, using a nonlocal magnon transport measurement geometry. We observed a decrease in magnon spin diffusion length lambda(m) for increasing field strengths, where

  20. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  1. The dopamine transporter gene may not contribute to susceptibility and the specific personality traits of amphetamine dependence.

    Science.gov (United States)

    Tzeng, Nian-Sheng; Lu, Ru-Band; Yeh, Hui-Wen; Yeh, Yi-Wei; Huang, Chang-Chih; Yen, Che-Hung; Kuo, Shin-Chang; Chen, Chun-Yen; Chang, Hsin-An; Ho, Pei-Shen; Cheng, Serena; Shih, Mei-Chen; Huang, San-Yuan

    2015-04-01

    A substantial amount of evidence suggests that dysfunction of the dopamine transporter may be involved in the pathophysiology of amphetamine dependence (AD). The aim of this study was to examine whether the dopamine transporter gene (DAT1, SLC6A3) is associated with development of AD and whether this gene influences personality traits in patients with AD. Eighteen polymorphisms of the DAT1 gene were analyzed in a case-control study that included 909 Han Chinese men (568 patients with AD and 341 control subjects). The patients fulfilled the DSM-IV-TR criteria for AD. The Tridimensional Personality Questionnaire (TPQ) was used to assess personality traits and to examine the association between these traits and DAT1 gene variants. A weak association was found between the rs27072 polymorphism and development of AD, but these borderline associations were unconfirmed by logistic regression and haplotype analysis. Although harm avoidance and novelty seeking scores were significantly higher in patients than in controls, DAT1 polymorphisms did not influence these scores. This study suggests that high harm avoidance and novelty seeking personality traits may be a risk factor for the development of AD. However, the DAT1 gene may not contribute to AD susceptibility and specific personality traits observed in AD among Han Chinese men. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Secondary magnetic field harmonics dependence on vacuum beam chamber geometry

    Directory of Open Access Journals (Sweden)

    S. Y. Shim

    2013-08-01

    Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.

  3. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki

    2003-01-01

    The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)

  4. Defect formation in LaGa(Mg,Ni)O3-δ : A statistical thermodynamic analysis validated by mixed conductivity and magnetic susceptibility measurements

    Science.gov (United States)

    Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.

    2006-08-01

    A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.

  5. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  6. Paleocurrents of the Middle-Upper Jurassic strata in the Paradox Basin, Colorado, inferred from anisotropy of magnetic susceptibility (AMS)

    Science.gov (United States)

    Ejembi, J. I.; Ferre, E. C.; Potter-McIntyre, S. L.

    2017-12-01

    The Middle-Upper Jurassic sedimentary strata in the southwestern Colorado Plateau recorded pervasive eolian to fluvio-lacustrine deposition in the Paradox Basin. While paleocurrents preserved in the Entrada Sandstone, an eolian deposition in the Middle Jurassic, has been well constrained and show a northwesterly to northeasterly migration of ergs from the south onto the Colorado Plateau, there is yet no clear resolution of the paleocurrents preserved in the Wanakah Formation and Tidwell Member of the Morrison Formation, both of which are important sedimentary sequences in the paleogeographic framework of the Colorado Plateau. New U-Pb detrital zircon geochronology of sandstones from these sequences suggests that an abrupt change in provenance occurred in the early Late Jurassic, with sediments largely sourced from eroding highlands in central Colorado. We measured the anisotropy of magnetic susceptibility (AMS) of sediments in oriented sandstone samples from these three successive sequences; first, to determine the paleocurrents from the orientations of the AMS fabrics in order to delineate the source area and sediments dispersal pattern and second, to determine the depositional mechanisms of the sediments. Preliminary AMS data from two study sites show consistency and clustering of the AMS axes in all the sedimentary sequences. The orientations of the Kmin - Kint planes in the Entrada Sandstone sample point to a NNE-NNW paleocurrent directions, which is in agreement with earlier studies. The orientations of the Kmin - Kint planes in the Wanakah Formation and Tidwell Member samples show W-SW trending paleocurrent directions, corroborating our hypothesis of a shift in provenance to the eroding Ancestral Front Range Mountain, located northeast of the Paradox Basin, during the Late Jurassic. Isothermal remanence magnetization (IRM) of the samples indicate that the primary AMS carriers are detrital, syndepositional ferromagnetic minerals. Thus, we contend that AMS can

  7. Estimation of the frequency and magnetic field dependence of the skin depth in Co-rich magnetic microwires from GMI experiments

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2016-09-01

    Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of the GMI ratio on magnetic field at different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency.

  8. Investigation on magnetic field dependent modulus of epoxidized natural rubber based magnetorheological elastomer

    International Nuclear Information System (INIS)

    Yunus, N. A.; Mazlan, S. A.; Ubaidillah; Aziz, S. A. A.; Khairi, M. H. Ahmad; Wahab, N. A. A.; Shilan, S. T.

    2016-01-01

    This paper presents an investigation on the use of epoxidized natural rubber (ENR) as a matrix of magnetorheological elastomers (MREs). Isotropic ENR-based MRE samples were synthesized by homogeneously mixed the ENR compound with carbonyl iron particles (CIPs). The microstructure of the sample was observed, and the magnetic field-dependent moduli were analyzed using rheometer. The influences of excitation frequency, CIPs content and magnetic field on the field-dependent moduli of ENR-based MREs were evaluated through dynamic shear test. The microstructure of MRE samples demonstrated the dispersed CIPs in the ENR matrix. The remarkable increment of storage and loss moduli of the ENR-based MREs has exhibited the magnetically controllable storage and loss moduli of the samples when exposed to the magnetic field. Consequently, the CIPs content, frequency and magnetic field were significantly influenced the dynamic moduli of the ENR-based MREs. (paper)

  9. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    Science.gov (United States)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  10. Magnetic field dependence of vortex activation energy: A ...

    Indian Academy of Sciences (India)

    follows a parabolic behaviour unlike a power-law dependence seen in Bi2Sr2Ca2Cu3O10. ..... SP thanks Department of Science of Technology, India and SDK thanks. Council of Scientific and Industrial Research, India for financial support.

  11. Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2016-01-01

    Conclusions: Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.

  12. Simultaneous MR quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis.

    Science.gov (United States)

    Leporq, B; Lambert, S A; Ronot, M; Vilgrain, V; Van Beers, B E

    2017-10-01

    Non-alcoholic steatohepatitis (NASH) is characterized at histology by steatosis, hepatocyte ballooning and inflammatory infiltrates, with or without fibrosis. Although diamagnetic material in fibrosis and inflammation can be detected with quantitative susceptibility imaging, fatty acid composition changes in NASH relative to simple steatosis have also been reported. Therefore, our aim was to develop a single magnetic resonance (MR) acquisition and post-processing scheme for the diagnosis of steatohepatitis by the simultaneous quantification of hepatic fat content, fatty acid composition, T 2 * transverse relaxation time and magnetic susceptibility in patients with non-alcoholic fatty liver disease. MR acquisition was performed at 3.0 T using a three-dimensional, multi-echo, spoiled gradient echo sequence. Phase images were unwrapped to compute the B 0 field inhomogeneity (ΔB 0 ) map. The ΔB 0 -demodulated real part images were used for fat-water separation, T 2 * and fatty acid composition quantification. The external and internal fields were separated with the projection onto dipole field method. Susceptibility maps were obtained after dipole inversion from the internal field map with single-orientation Bayesian regularization including spatial priors. Method validation was performed in 32 patients with biopsy-proven, non-alcoholic fatty liver disease from which 12 had simple steatosis and 20 NASH. Liver fat fraction and T 2 * did not change significantly between patients with simple steatosis and NASH. In contrast, the saturated fatty acid fraction increased in patients with NASH relative to patients with simple steatosis (48 ± 2% versus 44 ± 4%; p magnetic susceptibility decreased (-0.30 ± 0.27 ppm versus 0.10 ± 0.14 ppm; p magnetic susceptibility as NASH marker was 0.91 (95% CI: 0.79-1.0). Simultaneous MR quantification of fat content, fatty acid composition, T 2 * and magnetic susceptibility is feasible in the liver. Our preliminary results

  13. Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma

    Energy Technology Data Exchange (ETDEWEB)

    Villaseca, C.; Ruiz-Martínez, V.C.; Pérez-Soba, C.

    2017-07-01

    Magnetic susceptibility (MS) has been measured in Variscan granites from central Spain. They yield values in the order of 15 to 180μSI units for S- and I-type granites, indicating that both types belong to the ilmenite series. Only samples from magnetite-bearing leucogranites from the I-type La Pedriza massif show high MS values, in the order of 500-1400μSI, reflecting the presence of this ferromagnetic mineral. Mineral chemistry of magmatic Fe-rich minerals (mainly biotite) suggests similar oxidation values for both granite types. MS values change in highly fractionated granites accordingly either with the presence of rare new Fe-oxide phases (some I-type leucogranites) or with the marked modal amount decrease of Fe-rich minerals (I- and S-type leucogranites). The redox state in highly fractionated granite melts is mostly controlled by magmatic processes that modify redox conditions inherited from the source region. Thus, the occurrence of magnetite or ilmenite in granites is primarily controlled by the oxidation state of the source material but also by the differentiation degree of the granite melt. The presence of magnetite in some Variscan I-type leucogranites might be a consequence of crystal fractionation processes in a more limited mafic mineral assemblage than in S-type granite melts.

  14. Magnetic Resonance Imaging Susceptibility-Weighted Imaging Lesion and Contrast Enhancement May Represent Infectious Intracranial Aneurysm in Infective Endocarditis.

    Science.gov (United States)

    Cho, Sung-Min; Rice, Cory; Marquardt, Robert J; Zhang, Lucy Q; Khoury, Jean; Thatikunta, Prateek; Buletko, Andrew B; Hardman, Julian; Uchino, Ken; Wisco, Dolora

    2017-01-01

    Infectious intracranial aneurysm (IIA) can complicate infective endocarditis (IE). We aimed to describe the magnetic resonance imaging (MRI) characteristics of IIA. We reviewed IIAs among 116 consecutive patients with active IE by conducting a neurological evaluation at a single tertiary referral center from January 2015 to July 2016. MRIs and digital cerebral angiograms (DSA) were reviewed to identify MRI characteristics of IIAs. MRI susceptibility weighted imaging (SWI) was performed to collect data on cerebral microbleeds (CMBs) and sulcal SWI lesions. Out of 116 persons, 74 (63.8%) underwent DSA. IIAs were identified in 13 (17.6% of DSA, 11.2% of entire cohort) and 10 patients with aneurysms underwent MRI with SWI sequence. Nine (90%) out of 10 persons with IIAs had CMB >5 mm or sulcal lesions in SWI (9 in sulci, 6 in parenchyma, and 5 in both). Five out of 8 persons who underwent MRI brain with contrast had enhancement within the SWI lesions. In a multivariate logistic regression analysis, both sulcal SWI lesions (p < 0.001, OR 69, 95% CI 7.8-610) and contrast enhancement (p = 0.007, OR 16.5, 95% CI 2.3-121) were found to be significant predictors of the presence of IIAs. In the individuals with IE who underwent DSA and MRI, we found that neuroimaging characteristics, such as sulcal SWI lesion with or without contrast enhancement, are associated with the presence of IIA. © 2017 S. Karger AG, Basel.

  15. Magnetic field dependence of the critical superconducting current induced by the proximity effect in silicon

    International Nuclear Information System (INIS)

    Nishino, T.; Kawabe, U.; Yamada, E.

    1986-01-01

    The magnetic field dependence of the critical superconducting current induced by the proximity effect in heavily-boron-doped Si is studied experimentally. It is found that the critical current flowing through the p-type-Si-coupled junction decreases with increasing applied magnetic field. The critical current can be expressed as the product of three factors: the current induced by de Gennes's proximity effect, the exponential decrease due to pair breaking by the magnetic field, and the usual diffraction-pattern-like dependence on the magnetic field due to the Josephson effect. The second factor depends on the carrier concentration in the semiconductor. The local critical current shows a rapid decrease at the edge of the electrodes

  16. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  17. Zn induced in-gap electronic states in La214 probed by uniform magnetic susceptibility: relevance to the suppression of superconducting T c

    Science.gov (United States)

    Islam, R. S.; Naqib, S. H.

    2018-02-01

    Substitution of isovalent non-magnetic defects, such as Zn, in the CuO2 plane strongly modifies the magnetic properties of strongly electron correlated hole doped cuprate superconductors. The reason for enhanced uniform magnetic susceptibility, χ, in Zn substituted cuprates is debatable. Generally the defect induced magnetic behavior has been analyzed mainly in terms of two somewhat contrasting scenarios. The first one is due to independent localized moments appearing in the vicinity of Zn arising because of the strong electronic/magnetic correlations present in the host compound and the second one is due to transfer of quasiparticle (QP) spectral weight and creation of weakly localized low-energy electronic states associated with each Zn atom in place of an in-plane Cu. If the second scenario is correct, one should expect a direct correspondence between Zn induced suppression of the superconducting transition temperature, T c, and the extent of the enhanced magnetic susceptibility at low temperature. In this case, the low-T enhancement of χ would be due to weakly localized QP states at low energy and these electronic states will be precluded from taking part in Cooper pairing. We explore this second possibility by analyzing the χ(T) data for La2-x Sr x Cu1-y Zn y O4 with different hole contents, p (=x), and Zn concentrations (y) in this paper. The results of our analysis support this scenario.

  18. Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy

    Science.gov (United States)

    Hedayatnasab, Z.; Abnisa, F.; Daud, W. M. A. Wan

    2018-03-01

    The application of superparamagnetic nanoparticles as heating agents in hyperthermia therapy has made a therapeutic breakthrough in cancer treatment. The high efficiency of this magnetic hyperthermia therapy has derived from a great capability of superparamagnetic nanoparticles to generate focused heat in inaccessible tumors being effectively inactivated. The main challenges of this therapy are the improvement of the induction heating power of superparamagnetic nanoparticles and the control of the hyperthermia temperature in a secure range of 42 °C to 47 °C, at targeted area. The variation of these hyperthermia properties is principally dependent on the magnetic nanoparticles as well as the magnetic field leading to enhance the efficiency of magnetic hyperthermia therapy at targeted area and also avoid undue heating to healthy cells. The present study evaluates the magnetic hyperthermia therapy through the determination of superparamagnetic nanoparticles properties and magnetic field’ parameters.

  19. Susceptibility to Hamstring Injuries in Soccer: A Prospective Study Using Muscle Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2016-05-01

    Running-related hamstring strain injuries remain a delicate issue in several sports such as soccer. Their unremittingly high incidence and recurrence rates indicate that the underlying risk has not yet been fully identified. Among other factors, the importance of neuromuscular coordination and the quality of interplay between the different hamstring muscle bellies is thought to be a key determinant within the intrinsic injury risk. Muscle functional magnetic resonance imaging (mfMRI) is one of the tools that has been proven to be valid for evaluating intermuscular coordination. To investigate the risk of sustaining an index or recurring soccer-related hamstring injury by exploring metabolic muscle characteristics using mfMRI. Cohort study; Level of evidence, 2. A total of 27 healthy male soccer players and 27 soccer players with a history of hamstring injuries underwent standardized mfMRI. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise, and a postexercise scan. The exercise-related T2 change, or the signal intensity shift between both scans, was used to detect differences in metabolic characteristics between (1) the different hamstring muscle bellies and (2) the prospective cohorts based on the (re)occurrence of hamstring injuries during a follow-up period of 18 months. The risk of sustaining a first hamstring injury was associated with alterations in the intermuscular hierarchy in terms of the magnitude of the metabolic response after a heavy eccentric effort, with the dominant role of the semitendinosus set aside for a higher contribution of the biceps femoris (P = .017). Receiver operating characteristic (ROC) curve analysis demonstrated that this variable was significantly able to predict the occurrence of index injuries with a sensitivity of 100% and a specificity of 70% when the metabolic activity of the biceps femoris exceeded 10%. The risk of sustaining a reinjury was associated with a substantial deficit

  20. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  1. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-01-01

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow

  2. Spin-Dependent Processes Measured without a Permanent Magnet.

    Science.gov (United States)

    Fontanesi, Claudio; Capua, Eyal; Paltiel, Yossi; Waldeck, David H; Naaman, Ron

    2018-05-07

    A novel Hall circuit design that can be incorporated into a working electrode, which is used to probe spin-selective charge transfer and charge displacement processes, is reviewed herein. The general design of a Hall circuit based on a semiconductor heterostructure, which forms a shallow 2D electron gas and is used as an electrode, is described. Three different types of spin-selective processes have been studied with this device in the past: i) photoinduced charge exchange between quantum dots and the working electrode through chiral molecules is associated with spin polarization that creates a local magnetization and generates a Hall voltage; ii) charge polarization of chiral molecules by an applied voltage is accompanied by a spin polarization that generates a Hall voltage; and iii) cyclic voltammetry (current-voltage) measurements of electrochemical redox reactions that can be spin-analyzed by the Hall circuit to provide a third dimension (spin) in addition to the well-known current and voltage dimensions. The three studies reviewed open new doors into understanding both the spin current and the charge current in electronic materials and electrochemical processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Temperature dependence of the magnetization of disc shaped NiO nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lindgard, P.A.; Lefmann, Kim

    2002-01-01

    as a temperature dependent contribution of a structural peak in contrast to bulk NiO. The two magnetic signals vanish at the same temperature. The data are interpreted on the basis of an extended mean field model on disc shaped NiO particles. This model includes the finite size dependence of the effective field...

  4. Structural, magnetic characterization (dependencies of coercivity and loss with the frequency) of magnetic cores based in Finemet

    Science.gov (United States)

    Osinalde, M.; Infante, P.; Domínguez, L.; Blanco, J. M.; del Val, J. J.; Chizhik, A.; González, J.

    2017-12-01

    We report changes of coercivity, induced magnetic anisotropy, magneto-optical domain structure and frequency dependencies of coercivity and energy loss (up to 10 MHz) associated with the structural modifications produced by thermal treatments under applied magnetic field (field annealing) in toroidal wound cores of Fe73.5Cu1Nb3Si15.5B7 amorphous alloy. The thermal treatment (535 °C, 1 h) leads to the typical nanocrystalline structure of α-Fe(Si) nanograins (60-65% relative volume, 10-20 nm average grain size embedded in a residual amorphous matrix, while the magnetic field with the possibility to be applied in two directions to the toroidal core axis, that is in transverse (which is equivalent to the transverse direction of the ribbon) or longitudinal (equivalent to the longitudinal direction of the ribbon), develops a macroscopic uniaxial magnetic anisotropy in the transverse (around 245 J/m3) or longitudinal (around 85 J/m3) direction of the ribbon, respectively. It is remarkable the quasi-unhysteretic character of the cores with these two kinds of field annealing as comparing with that of the as-quenched one. Magneto-optical study by Kerr-effect of the ribbons provides useful information on the domain structure of the surface in agreement with the direction and intensity of the induced magnetic anisotropy. This induced uniaxial magnetic anisotropy plays a very important role on the Hc(f) and EL(f) curves, (f: frequency), being drastic the presence and direction of the induced magnetic anisotropy. In addition, these frequency dependencies show a significant change at the frequency around 100 Hz.

  5. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  6. Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study.

    Science.gov (United States)

    Saha, Surajit; Cao, Bing-Chen; Motapothula, M; Cong, Chun-Xiao; Sarkar, Tarapada; Srivastava, Amar; Sarkar, Soumya; Patra, Abhijeet; Ghosh, Siddhartha; Ariando; Coey, J M D; Yu, Ting; Venkatesan, T

    2016-11-15

    Here, we report the presence of defect-related states with magnetic degrees of freedom in crystals of LaAlO 3 and several other rare-earth based perovskite oxides using inelastic light scattering (Raman spectroscopy) at low temperatures in applied magnetic fields of up to 9 T. Some of these states are at about 140 meV above the valence band maximum while others are mid-gap states at about 2.3 eV. No magnetic impurity could be detected in LaAlO 3 by Proton-Induced X-ray Emission Spectroscopy. We, therefore, attribute the angular momentum-like states in LaAlO 3 to cationic/anionic vacancies or anti-site defects. Comparison with the other rare earth perovskites leads to the empirical rule that the magnetic-field-sensitive transitions require planes of heavy elements (e.g. lanthanum) and oxygen without any other light cations in the same plane. These magnetic degrees of freedom in rare earth perovskites with useful dielectric properties may be tunable by appropriate defect engineering for magneto-optic applications.

  7. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    Science.gov (United States)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  8. Magnetic Anisotropic Susceptibility Studies on Impact Structures in the Serra Geral Basalt, Paraná Basin, Brazil

    Science.gov (United States)

    Crosta, A. P.; MacDonald, W. D.

    2009-12-01

    Studies of magnetic properties of shocked basalt are underway for two impact craters in the 132 Ma Serra Geral basalt of southern Brazil: the Vista Alegre crater (25.95°S, 41.69°W) in the state of Paraná, with a diameter of 12.4 km, and the Vargeão crater (26.81°S, 52.17°W) in Santa Catarina, of 9.5 km. Shatter cones and quartz planar deformation features (pdfs) have been found at both structures. Uplifted crater rims and external ejecta deposits have been removed by erosion at both craters. The interior of the Vista Alegre crater contains ejecta fallback deposits, typically reworked and weathered, and basalts of the crater floor are poorly exposed. In contrast, shocked basalts are exposed across the interior of the Vargeão structure, ejecta fallback deposits have been removed by erosion, and a central domal uplift of quartzose strata from beneath the basalt is found. Discounting the possibility of differential erosion rates, these differences might suggest that the Vargeão is the older of the two structures. Laboratory experiments elsewhere have suggested that major axes of the ellipse of anisotropic susceptibility (K1 major; K3 minor) could be aligned with the direction of propagation of the shockwave accompanying impact processes. Insufficient exposures exist at Vista Alegre to test this hypothesis. Oriented samples along a NNW-trending diametral profile across the better exposed Vargeão structure did not show a radial alignment of either K1 or K3 relative to the centre of that structure. In general, the mean susceptibility at Vargeão is lower towards the center; the degree of anisotropy is low (Pjcentral uplift. The shape factor (T) varies considerably (-0.5 (prolate) to +0.7 (oblate)); most magnetofabrics are oblate. Only 3 of 16 sites are prolate, and those are near the crater margin. K3 (minimum) axes are mainly steep, with a mean direction steep and slightly north of the center. K1 (maximum) axes are mainly gently plunging (tendency to preferring

  9. Perpendicular magnetic anisotropy at the interface between ultrathin Fe film and MgO studied by angular-dependent x-ray magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, J. [Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Koo, J. W.; Mitani, S. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Sukegawa, H. [National Institute for Materials Science (NIMS), Tsukuba 305-0047 (Japan); Takagi, Y.; Yokoyama, T. [Institute of Molecular Science, Okazaki, Aichi 444-8585 (Japan)

    2014-09-22

    Interface perpendicular magnetic anisotropy (PMA) in ultrathin Fe/MgO (001) has been investigated using angular-dependent x-ray magnetic circular dichroism (XMCD). We found that anisotropic orbital magnetic moments deduced from the analysis of XMCD contribute to the large PMA energies, whose values depend on the annealing temperature. The large PMA energies determined from magnetization measurements are related to those estimated from the XMCD and the anisotropic orbital magnetic moments through the spin-orbit interaction. The enhancement of anisotropic orbital magnetic moments can be explained mainly by the hybridization between the Fe 3d{sub z}{sup 2} and O 2p{sub z} states.

  10. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  11. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  12. Magnetic-Field-Orientation Dependent Magnetoelectric Effect in FeBSiC/PZT/FeBSiC Composites

    Directory of Open Access Journals (Sweden)

    Jun-Xian Ye

    2014-01-01

    Full Text Available We investigate the magnetic-field-orientation dependent magnetoelectric (ME effect in the FeBSiC/Pb(Zr,TiO3(PZT/FeBSiC laminates. It is shown that, by only using the bias-magnetic-field dependent ME response measured with the magnetic-field parallel to the surface plane of PZT slab, the magnetic-field-orientation dependent ME coefficient upon magnetic-fields of various amplitudes can be obtained via computer simulations. The simulation results match well the experimental measurements, demonstrating the applicability of the ME laminates-based sensors in detecting magnetic-fields with uncertain amplitudes and/or orientations in environment.

  13. Elastic oscillation damping and magnetic susceptibility in Y19Fe81 spin glass in the temperature range 70-300 K

    International Nuclear Information System (INIS)

    Zolotukhin, I.V.; Balalaev, S.Yu.

    1990-01-01

    Relaxation properties of Y 19 Fe 81 spin glass (SG) were investigated by means of internal friction(IF). Relaxation process resulting from transition to SG state was determined at sound range frequencies in amorphous alloy. On the basis of the obtained results concerning IF and magnetic susceptibility it follows, that relaxation of certain part of cluster magnetic moments lies within 10 -5 -10 -3 s limits with 0.11±0.06 eV activation energy. IF technique is shown to be used for investigation into relaxation properties, in particular, for acquisition of data on temperature of transition to SG' state

  14. Magnetic-field-dependent morphology of self-organized Fe on stepped Si(111) surfaces

    International Nuclear Information System (INIS)

    Cougo dos Santos, M.; Geshev, J.; Pereira, L. G.; Schmidt, J. E.

    2009-01-01

    The present work reports on Fe thin films grown on vicinal Si(111) substrates via rf magnetron sputtering. The dependencies of the growth mode and magnetic properties of the obtained iron nanostructures on both crystallographic surface orientation and on the direction of the very weak stray magnetic field from the magnetron gun were studied. Scanning tunneling microscopy images showed strong dependence of the Fe grains' orientation on the stray field direction in relation to the substrate's steps demonstrating that, under appropriately directed magnetic field, Si surfaces can be used as templates for well-defined self-assembled iron nanostructures. Magneto-optical Kerr effect hysteresis loops showed an easy-axis coercivity almost one order of magnitude smaller for the film deposited with stray field applied along the steps, accompanied with a change in the magnetization reversal mode. Phenomenological models involving coherent rotation and/or domain-wall unpinning were used for the interpretation of these results.

  15. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  16. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  17. Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion

    International Nuclear Information System (INIS)

    Kashid, Vikas; Shah, Vaishali; Salunke, H G; Mokrousov, Yuriy; Blügel, Stefan

    2015-01-01

    We have investigated different geometries of two-dimensional (2D) infinite length Ni nanowires of increasing width using spin density functional theory calculations. Our simulations demonstrate that the parallelogram motif is the most stable and structures that incorporate the parallelogram motif are more stable as compared to rectangular structures. The wires are conducting and the conductance channels increase with increasing width. The wires have a non-linear behavior in the ballistic anisotropic magnetoresistance ratios (BAMR) with respect to the magnetization directions. All 2D nanowires as well as Ni (1 1 1) and Ni (1 0 0) monolayer investigated are ferromagnetic under the Stoner criterion and exhibit enhanced magnetic moments as compared to bulk Ni and the respective Ni monolayers. The easy axis for all nickel nanowires under investigation is observed to be along the wire axis. The double rectangular nanowire exhibits a magnetic anomaly with a smaller magnetic moment when compared to Ni (1 0 0) monolayer and is the only structure with an easy axis perpendicular to the wire axis. The Stoner parameter which has been known to be structure independent in bulk and surfaces is found to vary with the structure and the width of the nanowires. The less stable rectangular and rhombus shaped nanowires have a higher ferromagnetic strength than parallelogram shaped nanowires. (paper)

  18. Quantification of susceptibility artifacts in 0.5, 1.5 and 3.0 tesla magnetic resonance imaging produced from various biomaterials

    International Nuclear Information System (INIS)

    Matsuura, Hideki

    2002-01-01

    Several studies have examined various biomaterials to minimize susceptibility artifacts using low magnetic fields such as 0.5 Tesla or 1.5 Tesla, but no work has been done with high magnetic field. The purpose of the present study was to quantify the susceptibility artifacts produced from various biomaterials for neurosurgical implants in 0.5, 1.5 and 3.0 Tesla MR scanner. We performed MR imaging of six kinds of ceramics, two kinds of Co-based alloys with different combination, pure titanium, titanium alloy and stainless steel. Images were transferred to computer and analyzed. On all biomaterials, susceptibility artifacts developed parallel to the direction of the main magnetic field at both ends. Ceramics had considerably smaller artifact diameter compared with other biomaterials. Among ceramics, the artifact diameter of zirconia was the smallest. There were few differences between the artifact diameter of pure titanium and that of titanium alloy. Ceramics are promising biomaterials for minimum artifacts in higher field MR system. Although it is necessary to carry out degradation tests or retention force evaluation of the ceramics, we considered the ceramics are the most suitable biomaterials for the artifacts in MR imaging. (author)

  19. Magnetic state dependent transient lateral photovoltaic effect in patterned ferromagnetic metal-oxide-semiconductor films

    Directory of Open Access Journals (Sweden)

    Isidoro Martinez

    2015-11-01

    Full Text Available We investigate the influence of an external magnetic field on the magnitude and dephasing of the transient lateral photovoltaic effect (T-LPE in lithographically patterned Co lines of widths of a few microns grown over naturally passivated p-type Si(100. The T-LPE peak-to-peak magnitude and dephasing, measured by lock-in or through the characteristic time of laser OFF exponential relaxation, exhibit a notable influence of the magnetization direction of the ferromagnetic overlayer. We show experimentally and by numerical simulations that the T-LPE magnitude is determined by the Co anisotropic magnetoresistance. On the other hand, the magnetic field dependence of the dephasing could be described by the influence of the Lorentz force acting perpendiculary to both the Co magnetization and the photocarrier drift directions. Our findings could stimulate the development of fast position sensitive detectors with magnetically tuned magnitude and phase responses.

  20. Time-Transgressive Nature of the Magnetic Susceptibility Record across the Chinese Loess Plateau at the Pleistocene/Holocene Transition

    Science.gov (United States)

    Dong, Yajie; Wu, Naiqin; Li, Fengjiang; Huang, Linpei; Wen, Wenwen

    2015-01-01

    The loess stratigraphic boundary at the Pleistocene/Holocene transition defined by the magnetic susceptibility (MS) has previously been assumed to be synchronous with the Marine Isotope Stage (MIS) 2/1 boundary, and approximately time-synchronous at different sections across the Chinese Loess Plateau (CLP). However, although this assumption has been used as a basis for proxy-age model of Chinese loess deposits, it has rarely been tested by using absolute dating methods. In this study, we applied a single-aliquot regenerative-dose (SAR) protocol to the 45–63 μm quartz grain-size fraction to derive luminescence ages for the last glacial and Holocene sections of three loess sections on a transect from southeast to northwest across the CLP. Based on the 33 closely spaced optically stimulated luminescence (OSL) samples from the three sections, OSL chronologies were established using a polynomial curve fit at each section. Based on the OSL chronology, the timing of the Pleistocene/Holocene boundary, as defined by rapid changes in MS values, is dated at ~10.5 ka, 8.5 ka and 7.5 ka in the Yaoxian section, Jingchuan and Huanxian sections respectively. These results are clearly inconsistent with the MIS 2/1 boundary age of 12.05 ka, and therefore we conclude that the automatic correlation of the Pleistocene/Holocene transition, as inferred from the MS record, with the MIS 2/1 boundary is incorrect. The results clearly demonstrate that the marked changes in MS along the southeast to northwest transect are time-transgressive among the different sites, with the timing of significant paleosol development as indicated by the MS record being delayed by 3–4 ka in the northwest compared to the southeast. Our results suggest that this asynchronous paleosol development during the last deglacial was caused by the delayed arrival of the summer monsoon in the northwest CLP compared to the southeast. PMID:26186443

  1. Time-Transgressive Nature of the Magnetic Susceptibility Record across the Chinese Loess Plateau at the Pleistocene/Holocene Transition.

    Directory of Open Access Journals (Sweden)

    Yajie Dong

    Full Text Available The loess stratigraphic boundary at the Pleistocene/Holocene transition defined by the magnetic susceptibility (MS has previously been assumed to be synchronous with the Marine Isotope Stage (MIS 2/1 boundary, and approximately time-synchronous at different sections across the Chinese Loess Plateau (CLP. However, although this assumption has been used as a basis for proxy-age model of Chinese loess deposits, it has rarely been tested by using absolute dating methods. In this study, we applied a single-aliquot regenerative-dose (SAR protocol to the 45-63 μm quartz grain-size fraction to derive luminescence ages for the last glacial and Holocene sections of three loess sections on a transect from southeast to northwest across the CLP. Based on the 33 closely spaced optically stimulated luminescence (OSL samples from the three sections, OSL chronologies were established using a polynomial curve fit at each section. Based on the OSL chronology, the timing of the Pleistocene/Holocene boundary, as defined by rapid changes in MS values, is dated at ~10.5 ka, 8.5 ka and 7.5 ka in the Yaoxian section, Jingchuan and Huanxian sections respectively. These results are clearly inconsistent with the MIS 2/1 boundary age of 12.05 ka, and therefore we conclude that the automatic correlation of the Pleistocene/Holocene transition, as inferred from the MS record, with the MIS 2/1 boundary is incorrect. The results clearly demonstrate that the marked changes in MS along the southeast to northwest transect are time-transgressive among the different sites, with the timing of significant paleosol development as indicated by the MS record being delayed by 3-4 ka in the northwest compared to the southeast. Our results suggest that this asynchronous paleosol development during the last deglacial was caused by the delayed arrival of the summer monsoon in the northwest CLP compared to the southeast.

  2. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease.

    Science.gov (United States)

    Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi

    2017-12-01

    Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.

  3. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  4. Magnetic dependence of cyclotron transition absorption in piezoelectric materials based on the quantum transport theory

    International Nuclear Information System (INIS)

    Lee, S.H.; Lee, J.T.; Sug, J.Y.; Lee, J.H.; Sa-Gong, G.

    2011-01-01

    We investigated theoretically the magnetic field dependence of the quantum optical transition of quasi 2-Dimensional Landau splitting system, in CdS and ZnO. Through the analysis of the current work, we found the increasing properties of the optical Quantum Transition Line Shapes (QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in CdS and ZnO. We also found that QTLW, γ(B) total of CdS total of ZnO in the magnetic field region B < 25 Tesla.

  5. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  6. Magnetization-dependent viscosity in brute-force-polarized liquid 3He

    DEFF Research Database (Denmark)

    Vermeulen, G.A.; Schuhl, A.; Joffrin, J.

    1988-01-01

    A new method to measure the magnetization dependence of the viscosity in polarized liquid He3 is presented. The magnetization is obtained by "brute-force polarization" at 45 mK in magnetic fields up to 11 T; it is subsequently destroyed by saturation of the NMR signal. Our result, a relative...... increase of the viscosity of (31.5)×10-3 at 3.9% polarization and a pressure of 30 bars, disagrees with a prediction based on the "nearly metamagnetic" model....

  7. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  8. Temperature dependence of magnetization reversal in Co and Fe3O4 nanowire arrays

    International Nuclear Information System (INIS)

    Kazakova, Olga; Erts, Donats; Crowley, Timothy A.; Kulkarni, Jaideep S.; Holmes, Justin D.

    2005-01-01

    In this paper, we investigate the magnetization reversal of cobalt and magnetite nanowires, 4 nm in diameter, synthesized within the pores of mesoporous silica thin films. A SQUID magnetometer was used to study the magnetic properties of the nanowire arrays over a broad temperature interval, T=1.8-300 K. The magnetization reversal process was found to be strongly temperature dependent. While a coherent rotation may occur at room temperature, a process involving the formation of domain structures takes place as the temperature decreases down to 1.8 K

  9. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  10. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  12. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOX barriers

    Science.gov (United States)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; Huang, S.; Kato, H.; Bi, C.; Xu, M.; LeRoy, B. J.; Wang, W. G.

    2018-02-01

    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here, we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.

  13. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    International Nuclear Information System (INIS)

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-01-01

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs

  14. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  15. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  16. TIME-DEPENDENT SUPPRESSION OF OSCILLATORY POWER IN EVOLVING SOLAR MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D.B.; Keys, P.H. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Jain, R., E-mail: krishna.prasad@qub.ac.uk [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2016-05-20

    Oscillation amplitudes are generally smaller within magnetically active regions like sunspots and plage when compared to their surroundings. Such magnetic features, when viewed in spatially resolved power maps, appear as regions of suppressed power due to reductions in the oscillation amplitudes. Employing high spatial- and temporal-resolution observations from the Dunn Solar Telescope (DST) in New Mexico, we study the power suppression in a region of evolving magnetic fields adjacent to a pore. By utilizing wavelet analysis, we study for the first time how the oscillatory properties in this region change as the magnetic field evolves with time. Image sequences taken in the blue continuum, G-band, Ca ii K, and H α filters were used in this study. It is observed that the suppression found in the chromosphere occupies a relatively larger area, confirming previous findings. Also, the suppression is extended to structures directly connected to the magnetic region, and is found to get enhanced as the magnetic field strength increased with time. The dependence of the suppression on the magnetic field strength is greater at longer periods and higher formation heights. Furthermore, the dominant periodicity in the chromosphere was found to be anti-correlated with increases in the magnetic field strength.

  17. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.

    Science.gov (United States)

    Miah, M Idrish

    2009-03-13

    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  18. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  19. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  20. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  1. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    International Nuclear Information System (INIS)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-01-01

    Highlights: → Rectangular YBCO bulks to realize a compact combination. → The gap effect was added to consider in the trapped flux density mapping. → The trapped-flux dependence between single and combined bulks is gap related. → It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65 Ba 2 Cu 3 O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  2. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  3. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    International Nuclear Information System (INIS)

    Singh, Akhilesh Kumar; Hsu, Jen-Hwa; Perumal, Alagarsamy

    2016-01-01

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)] 2 /FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T A =200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T A ≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T A =300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T A and temperature. A large reduction in coercivity (H C ) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H C (T), i.e., a broad minimum in H C (T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H C (T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T C ) with T A (x). The multilayer films annealed at 200 °C exhibit low value of T C with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T C with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and nature of interfaces. - Highlights: • Preparation and

  4. Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status.

    Directory of Open Access Journals (Sweden)

    Michele D Binder

    2016-03-01

    Full Text Available Multiple Sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system. The risk of developing MS is strongly influenced by genetic predisposition, and over 100 loci have been established as associated with susceptibility. However, the biologically relevant variants underlying disease risk have not been defined for the vast majority of these loci, limiting the power of these genetic studies to define new avenues of research for the development of MS therapeutics. It is therefore crucial that candidate MS susceptibility loci are carefully investigated to identify the biological mechanism linking genetic polymorphism at a given gene to the increased chance of developing MS. MERTK has been established as an MS susceptibility gene and is part of a family of receptor tyrosine kinases known to be involved in the pathogenesis of demyelinating disease. In this study we have refined the association of MERTK with MS risk to independent signals from both common and low frequency variants. One of the associated variants was also found to be linked with increased expression of MERTK in monocytes and higher expression of MERTK was associated with either increased or decreased risk of developing MS, dependent upon HLA-DRB1*15:01 status. This discordant association potentially extended beyond MS susceptibility to alterations in disease course in established MS. This study provides clear evidence that distinct polymorphisms within MERTK are associated with MS susceptibility, one of which has the potential to alter MERTK transcription, which in turn can alter both susceptibility and disease course in MS patients.

  5. Organization dependent collective magnetic properties of secondary nanostructures with differential spatial ordering and magnetic easy axis orientation

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, K. [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Sarma, D.D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Deb, P., E-mail: pdeb@tezu.ernet.in [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India)

    2016-06-15

    Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (γ-Fe{sub 2}O{sub 3}), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non-monotonic field dependence of ZFC peak temperature (T{sub peak}). The lowest value of the blocking temperature (T{sub B}) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. - Highlights: • Three organization states of magnetic nanoparticles were developed. • Aggregation enhances the H{sub c} and M{sub r}/M{sub s,} while spherical clustering shows opposite. • Organization morphology hardly effects on FC memory effect. • Developed secondary systems can have renewed application potentials in wide spectrum.

  6. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  7. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  8. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  9. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination; Methode de cartographie de susceptibilite magnetique sur carottes de forage. Mesures experimentales pour la determination de structures geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Delrive, C

    1993-11-08

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10{sup -5} SI units and can generate magnetic susceptibility maps with 4 x 4 mm{sup 2} pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends.

  10. Characterization of magnetic core-shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy-A comparative study

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Schilling, Meinhard

    2009-01-01

    We have compared the structure parameters of magnetic core-shell nanoparticles determined from fluxgate magnetorelaxometry measurements applying the moment superposition model with the results from other methods. For the characterization of the magnetic cores, the nanoparticles are immobilized by freeze-drying. The core size distribution estimated for superparamagnetic Fe 3 O 4 magnetic nanoparticles (MNPs) with polyacrylic acid shell agrees well with that from transmission electron microscopy measurements. The distribution of hydrodynamic diameters of nanoparticle suspensions estimated from magnetorelaxometry measurements is in good agreement with that obtained from ac susceptibility and photon correlation spectroscopy measurements. Advantages of magnetorelaxometry compared to the other two integral techniques are that it is fast and the signal is less dominated by larger particles.

  11. Temperature dependence of dynamical permeability characterization of magnetic thin films using shorted microstrip line probe

    International Nuclear Information System (INIS)

    Li, Xiling; Li, Chengyi; Chai, Guozhi

    2017-01-01

    A temperature dependence microwave permeability characterization system of magnetic thin film up to 10 GHz is designed and fabricated. This system can be used at temperatures ranging from room temperature to 200 °C, and is based on a shorted microstrip probe, which is made by microwave printed circuit board. Without contacting the magnetic thin films to the probe, the microwave permeability of the film can be detected without any limitations of sample size and with almost the same accuracy, as shown by comparison with the results obtained from a shorted microstrip transmission-line fixture. The complex permeability can be deduced by an analytical approach from the measured reflection coefficient of a strip line ( S 11 ) with and without a ferromagnetic film material on it. The procedures are the same with the shorted microstrip transmission-line method. The microwave permeability of an oblique deposited CoZr thin film was investigated with this probe. The results show that the room temperature dynamic permeability of the CoZr film is in good agreement with the results obtained from the established short-circuited microstrip perturbation method. The temperature dependence permeability results fit well with the Landau–Lifshitz–Gilbert equation. Development of the temperature-dependent measurement of the magnetic properties of magnetic thin film may be useful for the high-frequency application of magnetic devices at high temperatures. (paper)

  12. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic subfabrics of some minerals: an introductory study

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Pokorný, J.

    2017-01-01

    Roč. 208, č. 1 (2017), s. 385-402 ISSN 0956-540X R&D Projects: GA AV ČR IAAX00130801 Institutional support: RVO:67985831 Keywords : magnetic and electrical properties * magnetic fabrics and anisotropy * magnetic mineralogy and petrology * rock and mineral magnetism Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.414, year: 2016

  13. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    Science.gov (United States)

    2012-10-01

    Toyota Prius uses 2.2 pounds of neodymium, one tenth the mass of corresponding iron magnets.17 Americans will buy approximately 180,000 Priuses this...United States is entirely dependent on external sources, which essentially means dependence on America’s largest economic competitor and fastest-growing...squelched by Chinese government-funded 25 competitors will help hedge against this. Continued exploration of alternative materials and technologies

  14. Field-angle dependence of magnetic resonance in Pt/NiFe films

    International Nuclear Information System (INIS)

    Inoue, H.Y.; Harii, K.; Saitoh, E.

    2007-01-01

    Ferromagnetic resonance in NiFe/ amorphous Pt bilayer thin films was investigated with changing the external field direction. The spectral width of the ferromagnetic resonance depends critically on the external-magnetic-field direction. We found that the sample dependence of the spectral width is enhanced with deviation of external field direction from the direction along the film plain, implying an important role of spin directions in field-induced spin-decoherence mechanism in Pt

  15. Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots

    Science.gov (United States)

    Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.

    2018-02-01

    Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.

  16. Strain-dependent magnetic anisotropy in GaMnAs on InGaAs templates

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Schwaiger, Stephan; Dreher, Lukas; Schoch, Wladimir; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2008-07-01

    We have systematically studied the influence of strain on the magnetic anisotropy of GaMnAs by means of HRXRD reciprocal space mapping and angle-dependent magnetotransport. For this purpose, a series of GaMnAs layers with Mn contents of {proportional_to}5% was grown by low-temperature MBE on relaxed InGaAs/GaAs templates with different In concentrations, enabling us to vary the strain in the GaMnAs layers continuously from tensile to compressive, including the unstrained state. Considering both, as-grown and annealed samples, the anisotropy parameter describing the uniaxial out-of-plane magnetic anisotropy has been found to vary linearly with hole density and strain. As a consequence, the out-of-plane direction gradually undergoes a transition from a magnetic hard axis to a magnetic easy axis from compressive to tensile strain.

  17. Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment

    Energy Technology Data Exchange (ETDEWEB)

    Idigoras, O., E-mail: o.idigoras@nanogune.eu; Suszka, A. K.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Vavassori, P. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, The Basque Foundation for Science, E-48011 Bilbao (Spain); Obry, B.; Hillebrands, B. [Fachbereich Physik and Landesforschungzentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern (Germany); Landeros, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso (Chile)

    2014-02-28

    This work studies the influence of crystallographic alignment onto magnetization reversal in partially epitaxial Co films. A reproducible growth sequence was devised that allows for the continuous tuning of grain orientation disorder in Co films with uniaxial in-plane anisotropy by the controlled partial suppression of epitaxy. While all stable or meta-stable magnetization states occurring during a magnetic field cycle exhibit a uniform magnetization for fully epitaxial samples, non-uniform states appear for samples with sufficiently high grain orientation disorder. Simultaneously with the occurrence of stable domain states during the magnetization reversal, we observe a qualitative change of the applied field angle dependence of the coercive field. Upon increasing the grain orientation disorder, we observe a disappearance of transient domain wall propagation as the dominating reversal process, which is characterized by an increase of the coercive field for applied field angles away from the easy axis for well-ordered epitaxial samples. Upon reaching a certain disorder threshold level, we also find an anomalous magnetization reversal, which is characterized by a non-monotonic behavior of the remanent magnetization and coercive field as a function of the applied field angle in the vicinity of the nominal hard axis. This anomaly is a collective reversal mode that is caused by disorder-induced frustration and it can be qualitatively and even quantitatively explained by means of a two Stoner-Wohlfarth particle model. Its predictions are furthermore corroborated by Kerr microscopy and by Brillouin light scattering measurements.

  18. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    Science.gov (United States)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  19. Temperature dependence of the magnetic excitation spectrum of Dy2Fe14B

    International Nuclear Information System (INIS)

    Loewenhaupt, M.; Fabi, P.; Sosnowska, I.; Frick, B.; Eccleston, R.

    1995-01-01

    We present inelastic magnetic neutron scattering spectra of polycrystalline Dy 2 Fe 14 B measured between 2 and 650 K employing different time-of-flight spectrometers. At the lowest temperatures we can identify in the magnetic excitation spectra the following features: (i) a dominant line at Δ=12 meV with a shoulder at 11.1 meV, and (ii) two weak lines at 3.8 and 5.5 meV. The temperature dependence of the average position Δ of the dominant line follows roughly the temperature dependence of the spontaneous magnetization of Y 2 Fe 14 B indicating that the energy of this mode is substantially fixed by the molecular fields of the surrounding Fe moments. Slight deviations, however, indicate that the Dy level spacing is not equidistant due to crystal field effects. ((orig.))

  20. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile

    Science.gov (United States)

    Sial, A. N.; Toselli, A. J.; Saavedra, J.; Parada, M. A.; Ferreira, V. P.

    1999-03-01

    Magmatic epidote (mEp)-bearing granitoids from five Neoproterozoic tectonostratigraphic terranes in Northeastern (NE) Brazil, Early Palaeozoic calc-alkalic granitoids in Northwestern (NW) Argentina and from three batholiths in Chile have been studied. The elongated shape of some of these plutons suggests that magmas filled fractures and that dyking was probably the major mechanism of emplacement. Textures reveal that, in many cases, epidote underwent partial dissolution by host magma and, in these cases, may have survived dissolution by relatively rapid upward transport by the host magma. In plutons where such a mechanism is not evident, unevenly distributed epidote at outcrop scale is armoured by biotite or near-solidus K-feldspar aggregates, which probably grew much faster than epidote dissolution, preventing complete resorption of epidote by the melt. Al-in-hornblende barometry indicates that, in most cases, amphibole crystallized at P≥5 kbar. Kyanite-bearing thermal aureoles surrounding plutons that intruded low-grade metamorphic rocks in NE Brazil support pluton emplacement at intermediate to high pressure. mEp show overall chemical variation from 20 to 30 mol% (mole percent) pistacite (Ps) and can be grouped into two compositional ranges: Ps 20-24 and Ps 27-30. The highest Ps contents are in epidotes of plutons in which hornblende solidified under Pcorrosion of individual epidote crystals included in plagioclase in high-K calc-alkalic granitoids in NE Brazil, emplaced at 5-7 kbar pressure, yielded estimates of magma transport rate from 70 to 350 m year -1. Most of these plutons lack Fe-Ti oxide minerals and Fe +3 is mostly associated with the epidote structure. Consequently, magnetic susceptibility (MS) in the Neoproterozoic granitoids in NE Brazil, as well as Early Palaeozoic plutons in Argentina and Late Palaeozoic plutons in Chile, is usually low (3.0×10 -3 SI, typical of magnetite-series granitoids crystallized under higher oxygen fugacity. In NE

  1. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T.

    Science.gov (United States)

    Meloni, Antonella; Hezel, Fabian; Positano, Vincenzo; Keilberg, Petra; Pepe, Alessia; Lombardi, Massimo; Niendorf, Thoralf

    2014-06-01

    Realizing the challenges and opportunities of effective transverse relaxation rate (R2 *) mapping at high and ultrahigh fields, this work examines magnetic field strength (B0 ) dependence and segmental artifact distribution of myocardial R2 * at 1.5, 3.0, and 7.0 T. Healthy subjects were considered. Three short-axis views of the left ventricle were examined. R2 * was calculated for 16 standard myocardial segments. Global and mid-septum R2 * were determined. For each segment, an artifactual factor was estimated as the deviation of segmental from global R2 * value. The global artifactual factor was significantly enlarged at 7.0 T versus 1.5 T (P = 0.010) but not versus 3.0 T. At 7.0 T, the most severe susceptibility artifacts were detected in the inferior lateral wall. The mid-septum showed minor artifactual factors at 7.0 T, similar to those at 1.5 and 3.0 T. Mean R2 * increased linearly with the field strength, with larger changes for global heart R2 * values. At 7.0 T, segmental heart R2 * analysis is challenging due to macroscopic susceptibility artifacts induced by the heart-lung interface and the posterior vein. Myocardial R2 * depends linearly on the magnetic field strength. The increased R2 * sensitivity at 7.0 T might offer means for susceptibility-weighted and oxygenation level-dependent MR imaging of the myocardium. Copyright © 2013 Wiley Periodicals, Inc.

  2. A new differential equations-based model for nonlinear history-dependent magnetic behaviour

    International Nuclear Information System (INIS)

    Aktaa, J.; Weth, A. von der

    2000-01-01

    The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations

  3. Mixing of photons with light pseudoscalars in time-dependent magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola; Arza, Ariel; Gamboa, Jorge [Universidad de Santiago de Chile, Departmento de Fisica, Santiago (Chile)

    2016-11-15

    The effects of an external time-dependent magnetic field in the conversion probability of photon- to axion-like particles are studied. Our findings show that for a certain time regime, the amplitude of the produced axion-like field can be enlarged with respect to the static case, thus enhancing the probability of conversion. (orig.)

  4. Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    DEFF Research Database (Denmark)

    Tomita, S; Nose´, M; Iyemori, T

    2010-01-01

    activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT...

  5. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  6. Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films

    Science.gov (United States)

    Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet

    2018-02-01

    Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.

  7. Optimum Depth of Investigation and Conductivity Response Rejection of the Different Electromagnetic Devices Measuring Apparent Magnetic Susceptibility

    OpenAIRE

    Benech , Christophe; Marmet , Eric

    1999-01-01

    International audience; Electromagnetic susceptibility surveys are valuable for archaeological prospection owing to their ability to cover large areas of land. Their use, however, is often compromised by the conductivity influence of the soil and the limited investigation depth of the susceptibility response. To examine these constraints further, we compared the characteristics of two types of apparatus: coincident loop (e.g. Bartington MS2 field coil) and 'Slingram' instruments (EM38, SH3, C...

  8. Charles River Sprague Dawley rats lack early age-dependent susceptibility to DMBA-induced mammary carcinogenesis.

    Science.gov (United States)

    Gear, R B; Yan, M; Schneider, J; Succop, P; Heffelfinger, S C; Clegg, D J

    2007-10-04

    Developmental stages of mammary glands influence their susceptibility to initiating events related to carcinogenesis. The "window of susceptibility" to mammary carcinogenesis is classically defined as the time in early puberty when the mammary gland morphology is most sensitive to initiation events. Administration of the polyaromatic hydrocarbon, 7,12-dimethylbenz(a)anthracene (DMBA), in a single oral dose yields maximal mammary tumor formation when administered in this "window". We examined the DMBA treated mammary glands, precursor lesions, and morphology of the uninvolved mammary epithelium for the first 100 days of life for Charles River Sprague Dawley CD(R) IGS. Our goal was to determine the DMBA dose at which 50% of the rats (IC50) developed carcinoma in situ (CIS) within three months of dosing. Here we demonstrate, rather than the classical U-shaped dose curve in which there is maximum sensitivity for DMBA at 50 days, there is an increasing degree of sensitivity with age in the CD(R) IGS rat. Additionally, we report that vehicle-treated animals developed mammary CIS without any known initiator, and 100 day virgin animals demonstrated lactational changes, independent of DMBA exposure or dose. Lastly, we demonstrate this strain of virgin female rats has elevated pituitary prolactin immunoreactivity independent of the level of mammary differentiation. We conclude this strain of Charles River Sprague Dawley rats has prolactin-induced pituitary stimulation, and therefore, the window of susceptibility for mammary tumorigenesis is absent.

  9. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Kucherov, M. M. [Siberian Federal University, Institute of Space and Information Technologies (Russian Federation)

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  10. Chirality dependent pinning and depinning of magnetic vortex domain walls at nano-constrictions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanan P, Vineeth; Kumar, P.S. Anil, E-mail: anil@physics.iisc.ernet.in

    2017-01-15

    The implementation of magnetic domain wall (DW) based memory and logic devices critically depend on the control over DW assisted magnetization reversal processes. Here we investigate the magnetization reversal by DW injection, pinning and depinning at a geometrical constriction in permalloy nanowire (NW) driven by external in-plane magnetic field, using local electrical probes. The observations of two distinct depinning field values are identified with the help of micromagnetic simulations, as being due to vortex DWs of different chiralities. Statistical analysis gave an estimate of chirality dependent pinning probability of DWs at this constriction. The stochastic nature of the DW based reversal driven by magnetic field is revealed here. The asymmetry in the depinning field of the DWs to move to either side of constriction indicates the asymmetric nature of the barrier potential seen by the DWs. The results demonstrate the difficulties in achieving deterministic switching behavior of DW assisted reversal, and provide a platform to understand the main bottlenecks in the technological implementation of DWs.

  11. Temperature dependence of magnetic properties of Cu80Co19Ni1 thin microwires

    International Nuclear Information System (INIS)

    Garcia, C.; Zhukov, A.; Zhukova, V.; Larin, V.; Gonzalez, J.; Val, J.J. del; Knobel, M.

    2007-01-01

    In the present work, we report the studies of temperature dependence of magnetic properties in thin microwires with composition Cu 80 Co 19 Ni 1 . An extensive study of structural and magnetic characterization was realized. The structure was observed using X-ray diffraction with CuK α radiation. The magnetic measurements were carried out using a SQUID at temperatures between 5 and 300 K. The as-prepared Cu 80 Co 19 Ni 1 microwire presents a coercivity of about 80 Oe. The variation of the coercivity and remanent magnetization at 5-300 K were obtained from the hysteresis loops. From the difference of the ZFC and FC curves below T=100 K, we can assume the presence of small superparamagnetic grains embedded in the Cu matrix. Those superparamagnetic grains should be blocked at temperatures below the maximum of the magnetization observed below 50 K. The measurements show an unusual temperature dependence of the coercive field, consequence of a coexistence of blocked and unblocked particles, and the typical decreasing behaviour of the remanence increasing temperature

  12. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    Directory of Open Access Journals (Sweden)

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  13. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  14. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  15. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    Science.gov (United States)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  16. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    International Nuclear Information System (INIS)

    Cui, B S; Guo, X B; Wu, K; Li, D; Zuo, Y L; Xi, L

    2016-01-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe 65 Co 35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (∼4 GPa for PI as compared to ∼180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work. (paper)

  17. Magnetic field dependence observed by 27 Al NMR of species contained in alumina colloidal dispersions

    International Nuclear Information System (INIS)

    Morgado Junior, Edisson; Menezes, Sonia M.C.; San Gil, Rosane

    1995-01-01

    The behaviour of some aluminium species front a magnetic field have been investigated by 27 Al NMR analysis, this method was used for characterization of an octahedric aluminium specie from sols prepared by bohemite acid peptization. X-ray diffraction data have identified the mineral structure. The results have been shown and discussed, and NMR spectra were also presented and studied. Concluding this work, the nature of a colloidal specie of alumina was clarified through the dependence research of magnetic field by 27 Al NMR

  18. Automatic magnetic susceptibility measurements between 4 K and 1200 K; Mesure automatique des susceptibilites magnetiques de 4 K a 1200 K

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We give a detailed description of a Faraday magnetic susceptibility balance which operates from 4 K to 1200 K. Some preliminary results on platinum and tantalum illustrate the precision and the sensitivity of the measurements. The apparatus has been designed for measurements on the plutonium compounds which present severe health hazards. (author) [French] Nous decrivons en detail un appareil permettant la mesure des susceptibilites magnetiques de 4 K a 1200 K par la methode de FARADAY. Quelques resultats preliminaires sur le platine et le titane montrent la precision et la sensibilite des mesures, L'appareil a ete adapte aux mesures sur les composes particulierement dangereux du plutonium. (auteur)

  19. Hydrostatic Pressure Study on 3-K Phase Superconductivity in Sr2RuO4-Ru Eutectic Crystals by AC Magnetic Susceptibility Measurements

    International Nuclear Information System (INIS)

    Yaguchi, Hiroshi; Watanabe, Hiromichi; Sakaue, Akira

    2012-01-01

    We have investigated the effect of hydrostatic pressure on 3-K phase superconductivity in Sr 2 RuO 4 -Ru eutectic crystals by means of AC magnetic susceptibility measurements. We have found that the application of hydrostatic pressure suppresses the superconducting transition temperature T c of the 3-K phase with a pressure coefficient of dT c /dP ≈ −0.2 K/GPa, similar to the case of the 1.5-K phase. We have also observed that the effect of hydrostatic pressure on the 3-K phase seems to be elastic whilst that of uniaxial pressure is plastic.

  20. Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease.

    Science.gov (United States)

    Bertani, Ilaria; Iori, Valentina; Trusel, Massimo; Maroso, Mattia; Foray, Claudia; Mantovani, Susanna; Tonini, Raffaella; Vezzani, Annamaria; Chiesa, Roberto

    2017-10-25

    Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder caused by prion protein (PrP) misfolding, clinically recognized by cognitive and motor deficits, electroencephalographic abnormalities, and seizures. Its neurophysiological bases are not known. To assess the potential involvement of NMDA receptor (NMDAR) dysfunction, we analyzed NMDA-dependent synaptic plasticity in hippocampal slices from Tg(CJD) mice, which model a genetic form of CJD. Because PrP depletion may result in functional upregulation of NMDARs, we also analyzed PrP knock-out (KO) mice. Long-term potentiation (LTP) at the Schaffer collateral-commissural synapses in the CA1 area of ∼100-d-old Tg(CJD) mice was comparable to that of wild-type (WT) controls, but there was an inversion of metaplasticity, with increased GluN2B phosphorylation, which is indicative of enhanced NMDAR activation. Similar but less marked changes were seen in PrP KO mice. At ∼300 d of age, the magnitude of LTP increased in Tg(CJD) mice but decreased in PrP KO mice, indicating divergent changes in hippocampal synaptic responsiveness. Tg(CJD) but not PrP KO mice were intrinsically more susceptible than WT controls to focal hippocampal seizures induced by kainic acid. IL-1β-positive astrocytes increased in the Tg(CJD) hippocampus, and blocking IL-1 receptor signaling restored normal synaptic responses and reduced seizure susceptibility. These results indicate that alterations in NMDA-dependent glutamatergic transmission in Tg(CJD) mice do not depend solely on PrP functional loss. Moreover, astrocytic IL-1β plays a role in the enhanced synaptic responsiveness and seizure susceptibility, suggesting that targeting IL-1β signaling may offer a novel symptomatic treatment for CJD. SIGNIFICANCE STATEMENT Dementia and myoclonic jerks develop in individuals with Creutzfeldt-Jakob disease (CJD), an incurable brain disorder caused by alterations in prion protein structure. These individuals are prone to seizures and have high