WorldWideScience

Sample records for dependent gene expression

  1. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  2. Assessing numerical dependence in gene expression summaries with the jackknife expression difference.

    Directory of Open Access Journals (Sweden)

    John R Stevens

    Full Text Available Statistical methods to test for differential expression traditionally assume that each gene's expression summaries are independent across arrays. When certain preprocessing methods are used to obtain those summaries, this assumption is not necessarily true. In general, the erroneous assumption of dependence results in a loss of statistical power. We introduce a diagnostic measure of numerical dependence for gene expression summaries from any preprocessing method and discuss the relative performance of several common preprocessing methods with respect to this measure. Some common preprocessing methods introduce non-trivial levels of numerical dependence. The issue of (between-array dependence has received little if any attention in the literature, and researchers working with gene expression data should not take such properties for granted, or they risk unnecessarily losing statistical power.

  3. Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells

    Science.gov (United States)

    Befani, Christina; Mylonis, Ilias; Gkotinakou, Ioanna-Maria; Georgoulias, Panagiotis; Hu, Cheng-Jun; Simos, George; Liakos, Panagiotis

    2013-01-01

    Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators. PMID:23958427

  4. Age Dependent Variability in Gene Expression in Fischer 344 ...

    Science.gov (United States)

    Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in

  5. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Directory of Open Access Journals (Sweden)

    Xionghui Zhou

    Full Text Available Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer. In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis. Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene

  6. Light-Dependent Expression of Four Cryptic Archaeal Circadian Gene Homologs

    Directory of Open Access Journals (Sweden)

    Michael eManiscalco

    2014-03-01

    Full Text Available Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. To investigate this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12 during balanced growth in H. volcanii. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes results in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

  7. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus

    Directory of Open Access Journals (Sweden)

    Yokoyama Jun

    2009-09-01

    Full Text Available Abstract Background In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor in bumblebees (Bombus ignitus and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. Findings A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%. As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P P = 0.018, within foragers. Conclusion These findings indicate that Bifor expression is size dependent and support the idea that Bifor expression levels are related to behavioral caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.

  8. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype

    Directory of Open Access Journals (Sweden)

    Guiliano David

    2002-07-01

    Full Text Available Abstract Background "Alternatively-activated" macrophages are found in Th2-mediated inflammatory settings such as nematode infection and allergic pulmonary inflammation. Due in part to a lack of markers, these cells have not been well characterized in vivo and their function remains unknown. Results We have used murine macrophages elicited by nematode infection (NeMφ as a source of in vivo derived alternatively activated macrophages. Using three distinct yet complementary molecular approaches we have established a gene expression profile of alternatively activated macrophages and identified macrophage genes that are regulated in vivo by IL-4. First, genes abundantly expressed were identified by an expressed sequence tag strategy. Second, an array of 1176 known mouse genes was screened for differential expression between NeMφ from wild type or IL-4 deficient mice. Third, a subtractive library was screened to identify novel IL-4 dependent macrophage genes. Differential expression was confirmed by real time RT-PCR analysis. Conclusions Our data demonstrate that alternatively activated macrophages generated in vivo have a gene expression profile distinct from any macrophage population described to date. Several of the genes we identified, including those most abundantly expressed, have not previously been associated with macrophages and thus this study provides unique new information regarding the phenotype of macrophages found in Th2-mediated, chronic inflammatory settings. Our data also provide additional in vivo evidence for parallels between the inflammatory processes involved in nematode infection and allergy.

  9. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells.

  10. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Angela M Mabb

    Full Text Available Topoisomerase 1 (TOP1 inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.

  11. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.

    Science.gov (United States)

    Prigent-Combaret, C; Vidal, O; Dorel, C; Lejeune, P

    1999-10-01

    To get further information on bacterial surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli K-12, random insertion mutagenesis with Mu dX, a mini-Mu carrying the promoterless lacZ gene, was performed with an ompR234 adherent strain, and a simple screen was developed to assess changes in gene expression in biofilm cells versus planktonic cells. This screen revealed that major changes in the pattern of gene expression occur during biofilm development: the transcription of 38% of the genes was affected within biofilms. Different cell functions were more expressed in sessile bacteria: the OmpC porin, the high-affinity transport system of glycine betaine (encoded by the proU operon), the colanic acid exopolysaccharide (wca locus, formerly called cps), tripeptidase T (pepT), and the nickel high-affinity transport system (nikA). On the other hand, the syntheses of flagellin (fliC) and of a putative protein of 92 amino acids (f92) were both reduced in biofilms. Such a genetic reprogramming of gene expression in biofilms seems to result from changes in multiple environmental physicochemical conditions. In this work, we show that bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell density than in the liquid phase.

  12. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  13. Local Adaptation of Sun-Exposure-Dependent Gene Expression Regulation in Human Skin

    Science.gov (United States)

    Kita, Ryosuke; Fraser, Hunter B.

    2016-01-01

    Sun-exposure is a key environmental variable in the study of human evolution. Several skin-pigmentation genes serve as classical examples of positive selection, suggesting that sun-exposure has significantly shaped worldwide genomic variation. Here we investigate the interaction between genetic variation and sun-exposure, and how this impacts gene expression regulation. Using RNA-Seq data from 607 human skin samples, we identified thousands of transcripts that are differentially expressed between sun-exposed skin and non-sun-exposed skin. We then tested whether genetic variants may influence each individual’s gene expression response to sun-exposure. Our analysis revealed 10 sun-exposure-dependent gene expression quantitative trait loci (se-eQTLs), including genes involved in skin pigmentation (SLC45A2) and epidermal differentiation (RASSF9). The allele frequencies of the RASSF9 se-eQTL across diverse populations correlate with the magnitude of solar radiation experienced by these populations, suggesting local adaptation to varying levels of sunlight. These results provide the first examples of sun-exposure-dependent regulatory variation and suggest that this variation has contributed to recent human adaptation. PMID:27760139

  14. Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis.

    Science.gov (United States)

    Sun, Rongfang; Qi, Huayu

    2014-01-01

    Nucleosomes are basic chromatin structural units that are formed by DNA sequences wrapping around histones. Global chromatin states in different cell types are specified by combinatorial effects of post-translational modifications of histones and the expression of histone variants. During mouse spermatogenesis, spermatogonial stem cells (SSCs) self-renew while undergo differentiation, events that occur in the company of constant re-modeling of chromatin structures. Previous studies have shown that testes contain highly expressed or specific histone variants to facilitate these epigenetic modifications. However, mechanisms of regulating the epigenetic changes and the specific histone compositions of spermatogenic cells are not fully understood. Using real time quantitative RT-PCR, we examined the dynamic expression of replication-dependent histone genes in post-natal mouse testes. It was found that distinct sets of histone genes are expressed in various spermatogenic cells at different stages during spermatogenesis. While gonocyte-enriched testes from mice at 2-dpp (days post partum) express pre-dominantly thirteen histone variant genes, SSC-stage testes at 9-dpp highly express a different set of eight histone genes. During differentiation stage when testes are occupied mostly by spermatocytes and spermatids, another twenty-two histone genes are expressed much higher than the rest, including previously known testis-specific hist1h1t, hist1h2ba and hist1h4c. In addition, histone genes that are pre-dominantly expressed in gonocytes and SSCs are also highly expressed in embryonic stem cells. Several of them were changed when embryoid bodies were formed from ES cells, suggesting their roles in regulating pluripotency of the cells. Further more, differentially expressed histone genes are specifically localized in either SSCs or spermatocytes and spermatids, as demonstrated by in situ hybridization using gene specific probes. Taken together, results presented here

  15. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    Science.gov (United States)

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  16. Learning-dependent gene expression of CREB1 isoforms in the molluscan brain

    Directory of Open Access Journals (Sweden)

    Hisayo Sadamoto

    2010-05-01

    Full Text Available Cyclic AMP-responsive element binding protein1 (CREB1 has multiple functions in gene regulation. Various studies have reported that CREB1-dependent gene induction is necessary for memory formation and long-lasting behavioral changes in both vertebrates and invertebrates. In the present study, we characterized Lymnaea CREB1 (LymCREB1 mRNA isoforms of spliced variants in the central nervous system (CNS of the pond snail Lymnaea stagnalis. Among these spliced variants, the three isoforms that code a whole LymCREB1 protein are considered to be the activators for gene regulation. The other four isoforms, which code truncated LymCREB1 proteins with no kinase inducible domain, are the repressors. For a better understanding of the possible roles of different LymCREB1 isoforms, the expression level of these isoform mRNAs was investigated by a real-time quantitative RT-PCR method. Further, we examined the changes in gene expression for all the isoforms in the CNS after conditioned taste aversion (CTA learning or backward conditioning as a control. The results showed that CTA learning increased LymCREB1 gene expression, but it did not change the activator/repressor ratio. Our findings showed that the repressor isoforms, as well as the activator ones, are expressed in large amounts in the CNS, and the gene expression of CREB1 isoforms appeared to be specific for the given stimulus. This was the first quantitative analysis of the expression patterns of CREB1 isoforms at the mRNA level and their association with learning behavior.

  17. Alginate-Dependent Gene Expression Mechanism in Sphingomonas sp. Strain A1

    Science.gov (United States)

    Hayashi, Chie; Takase, Ryuichi; Momma, Keiko; Maruyama, Yukie; Murata, Kousaku

    2014-01-01

    Sphingomonas sp. strain A1, a Gram-negative bacterium, directly incorporates alginate polysaccharide into the cytoplasm through a periplasmic alginate-binding protein-dependent ATP-binding cassette transporter. The polysaccharide is degraded to monosaccharides via the formation of oligosaccharides by endo- and exotype alginate lyases. The strain A1 proteins for alginate uptake and degradation are encoded in both strands of a genetic cluster in the bacterial genome and inducibly expressed in the presence of alginate. Here we show the function of the alginate-dependent transcription factor AlgO and its mode of action on the genetic cluster and alginate oligosaccharides. A putative gene within the genetic cluster seems to encode a transcription factor-like protein (AlgO). Mutant strain A1 (ΔAlgO mutant) cells with a disrupted algO gene constitutively produced alginate-related proteins. DNA microarray analysis indicated that wild-type cells inducibly transcribed the genetic cluster only in the presence of alginate, while ΔAlgO mutant cells constitutively expressed the genetic cluster. A gel mobility shift assay showed that AlgO binds to the specific intergenic region between algO and algS (algO-algS). Binding of AlgO to the algO-algS intergenic region diminished with increasing alginate oligosaccharides. These results demonstrated a novel alginate-dependent gene expression mechanism. In the absence of alginate, AlgO binds to the algO-algS intergenic region and represses the expression of both strands of the genetic cluster, while in the presence of alginate, AlgO dissociates from the algO-algS intergenic region via binding to alginate oligosaccharides produced through the lyase reaction and subsequently initiates transcription of the genetic cluster. This is the first report on the mechanism by which alginate regulates the expression of the gene cluster. PMID:24816607

  18. Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels.

    Science.gov (United States)

    Schuhmacher, Marino; Eick, Dirk

    2013-01-01

    The proto-oncogene c-myc encodes a basic helix-loop-helix leucine zipper transcription factor (c-Myc). c-Myc plays a crucial role in cell growth and proliferation. Here, we examined how expression of c-Myc target genes and cell proliferation depend on variation of c-Myc protein levels. We show that proliferation rates, the number of cells in S-phase, and cell size increased in a dose-dependent manner in response to increasing c-Myc levels. Likewise, the mRNA levels of c-Myc responsive genes steadily increased with rising c-Myc levels. Strikingly, steady-state mRNA levels of c-Myc target genes did not saturate even at highest c-Myc concentrations. These characteristics predestine c-Myc levels as a cellular rheostat for the control and fine-tuning of cell proliferation and growth rates.

  19. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner.

    Science.gov (United States)

    Neerincx, Andreas; Rodriguez, Galaxia M; Steimle, Viktor; Kufer, Thomas A

    2012-05-15

    Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.

  20. Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jens Köhler

    Full Text Available BACKGROUND: Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1 phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition. METHODOLOGY/PRINCIPAL FINDING: Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701 as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.

  1. Chloromethane-dependent expression of the cmu gene cluster of Hyphomicrobium chloromethanicum.

    Science.gov (United States)

    Borodina, Elena; McDonald, Ian R; Murrell, J Colin

    2004-07-01

    The methylotrophic bacterium Hyphomicrobium chloromethanicum CM2 can utilize chloromethane (CH(3)Cl) as the sole carbon and energy source. Previously genes cmuB, cmuC, cmuA, and folD were shown to be essential for the growth of Methylobacterium chloromethanicum on CH(3)Cl. These CH(3)Cl-specific genes were subsequently detected in H. chloromethanicum. Transposon and marker exchange mutagenesis studies were carried out to identify the genes essential for CH(3)Cl metabolism in H. chloromethanicum. New developments in genetic manipulation of Hyphomicrobium are presented in this study. An electroporation protocol has been optimized and successfully applied for transformation of mutagenesis plasmids into H. chloromethanicum to generate stable CH(3)Cl-negative mutants. Both transposon and marker exchange mutageneses were highly applicable for genetic analysis of Hyphomicrobium. A reliable and reproducible selection procedure for screening of CH(3)Cl utilization-negative mutants has also been developed. Mutational inactivation of cmuB, cmuC, or hutI resulted in strains that were unable to utilize CH(3)Cl or to express the CH(3)Cl-dependent polypeptide CmuA. Reverse transcription-PCR analysis indicated that cmuB, cmuC, cmuA, fmdB, paaE, hutI, and metF formed a single cmuBCA-metF operon and were coregulated and coexpressed in H. chloromethanicum. This finding led to the conclusion that, in cmuB and cmuC mutants, impaired expression of cmuA was likely to be due to a polar effect of the defective gene (cmuB or cmuC) located upstream (5') of cmuA. The detrimental effect of mutation in hutI on the upstream (5')-located cmuA is not clear but indicated that all the genes located within the cmuBCA-metF operon are coordinately expressed. Expression of the cmuBCA-metF transcript was also shown to be strictly CH(3)Cl inducible and was not repressed by the alternative C(1) substrate methanol. Sequence analysis of a transposon mutant (D20) led to the discovery of the previously

  2. TGFβ-dependent gene expression shows that senescence correlates with abortive differentiation along several lineages in Myc-induced lymphomas.

    Science.gov (United States)

    Müller, Judith; Samans, Birgit; van Riggelen, Jan; Fagà, Giovanni; Peh K N, Raquel; Wei, Chia-Lin; Müller, Heiko; Amati, Bruno; Felsher, Dean; Eilers, Martin

    2010-12-01

    Deregulated expression of Myc under the control of an immunoglobulin enhancer induces lymphoma formation in mice. The development of lymphomas is limited by TGFβ-dependent senescence and high levels of Myc expression are continuously required to antagonize senescence. The biological processes underlying senescence are not fully resolved. We report here a comprehensive analysis of TGFβ-dependent alterations in gene expression when the Myc transgene is switched off. Our data show that Myc-induced target genes are downregulated in a TGFβ-independent manner. In contrast, TGFβ is required to upregulate a broad spectrum of genes that are characteristic of different T-cell lineages when Myc is turned off. The analysis reveals a significant overlap between these Myc-repressed genes with genes that are targets of polycomb repressive complexes in embryonic stem cells. Therefore, TGFβ-dependent senescence is associated with gene expression patterns indicative of abortive cellular differentiation along several lineages.

  3. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    Directory of Open Access Journals (Sweden)

    Anthony J E Berndt

    2015-12-01

    Full Text Available Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE that binds BMP-activated pMad, and a homeodomain-response element (HD-RE that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp, as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP

  4. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    Science.gov (United States)

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  5. Space experiment "Rad Gene"-report 1; p53-Dependent gene expression in human cultured cells exposed to space environment

    Science.gov (United States)

    Takahashi, Akihisa; Ohnishi, Takeo; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki

    The space environment contains two major biologically significant influences: space radiations and microgravity. A p53 tumor suppressor protein plays a role as a guardian of the genome through the activity of p53-centered signal transduction pathways. The aim of this study was to clarify the biological effects of space radiations, microgravity and a space environment on the gene and protein expression of p53-dependent regulated genes. Space experiments were performed with two human cultured lymphoblastoid cell lines: one cells line (TSCE5) bears a wild-type p53 gene status, and another cells line (WTK1) bears a mutated p53 gene status. Un-der one gravity or microgravity condition, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station (ISS) for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples also were cultured for 8 days in the CBEF on the ground during the same periods as space flight. Gene and protein expression was analyzed by using DNA chip (a 44k whole human genome microarray, Agilent Technologies Inc.) and protein chip (PanoramaTM Ab MicroArray, Sigma-Aldrich Co.), respectively. In addition, we analyzed the gene expression in cultured cells after space flight during 133 days with frozen condition. We report the results and discussion from the viewpoint of the functions of the up-regulated and down-regulated genes after an exposure to space radiations and/or microgravity. The initial goal of this space experiment was completely achieved. It is expected that data from this type of work will be helpful in designing physical protection from the deleterious effects of space radiations during long term stays in space.

  6. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish; Scholpa, Natalie E.; Weber, Thomas J.

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogen that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.

  7. Tissue distribution, gender- and genotype-dependent expression of autophagy-related genes in avian species.

    Directory of Open Access Journals (Sweden)

    Alissa Piekarski

    Full Text Available As a result of the genetic selection of broiler (meat-type breeders chickens for enhanced growth rate and lower feed conversion ratio, it has become necessary to restrict feed intake. When broilers are fed ad libitum, they would become obese and suffer from several health-related problems. A vital adaptation to starvation is autophagy, a self-eating mechanism for recycling cellular constituents. The autophagy pathway has witnessed dramatic growth in the last few years and extensively studied in yeast and mammals however, there is a paucity of information in avian (non-mammalian species. Here we characterized several genes involved in autophagosome initiation and elongation in Red Jungle fowl (Gallus gallus and Japanese quail (coturnix coturnix Japonica. Both complexes are ubiquitously expressed in chicken and quail tissues (liver, leg and breast muscle, brain, gizzard, intestine, heart, lung, kidney, adipose tissue, ovary and testis. Alignment analysis showed high similarity (50.7 to 91.5% between chicken autophagy-related genes and their mammalian orthologs. Phylogenetic analysis demonstrated that the evolutionary relationship between autophagy genes is consistent with the consensus view of vertebrate evolution. Interestingly, the expression of autophagy-related genes is tissue- and gender-dependent. Furthermore, using two experimental male quail lines divergently selected over 40 generations for low (resistant, R or high (sensitive, S stress response, we found that the expression of most studied genes are higher in R compared to S line. Together our results indicate that the autophagy pathway is a key molecular signature exhibited gender specific differences and likely plays an important role in response to stress in avian species.

  8. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression].

    Science.gov (United States)

    Tokumoto, Maki; Satoh, Masahiko

    2012-01-01

    Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.

  9. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

    NARCIS (Netherlands)

    Fu, Jingyuan; Wolfs, Marcel G M; Deelen, Patrick; Westra, Harm Jan; Fehrmann, Rudolf S N; te Meerman, Gerhardus; Buurman, Wim A; Rensen, Sander S M; Groen, Hendricus; Weersma, Rinse K; van den Berg, Leonard H; Veldink, Jan; Ophoff, Roel A; Snieder, Harold; van Heel, David; Jansen, Ritsert C; Hofker, Marten H; Wijmenga, Cisca; Franke, Lude

    2012-01-01

    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human

  10. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.

    Science.gov (United States)

    Bhattacherjee, Vasker; Mukhopadhyay, Partha; Singh, Saurabh; Johnson, Charles; Philipose, John T; Warner, Courtney P; Greene, Robert M; Pisano, M Michele

    2007-06-01

    profiles of neural crest- and mesoderm-derived mesenchymal cells from the first branchial arch revealed over 140 genes that exhibited statistically significant differential levels of expression. The gene products of many of these differentially expressed genes have previously been linked to the development of mesoderm- or neural crest-derived tissues in the embryo. Interestingly, however, hitherto uncharacterized coding sequences with highly significant differences in expression between the two embryonic progenitor cell types were also identified. These lineage-dependent mesenchymal cell molecular fingerprints offer the opportunity to elucidate additional mechanisms governing cellular growth, differentiation, and morphogenesis of the embryonic orofacial region. The chemokine stromal cell-derived factor 1, (SDF-1), was found to exhibit greater expression in mesoderm-derived mesenchyme in the branchial arch when compared with neurectoderm, suggesting a possible chemotactic role for SDF-1 in guiding the migratory neural crest cells to their destination. The novel combination of genetic labeling of the neural crest cell population by EGFP coupled with isolation of cells by LCM for gene expression analysis has enabled, for the first time, the generation of gene expression profiles of distinct embryonic cell lineages.

  11. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes.

    Science.gov (United States)

    Hobbs, Ryan P; DePianto, Daryle J; Jacob, Justin T; Han, Minerva C; Chung, Byung-Min; Batazzi, Adriana S; Poll, Brian G; Guo, Yajuan; Han, Jingnan; Ong, SuFey; Zheng, Wenxin; Taube, Janis M; Čiháková, Daniela; Wan, Fengyi; Coulombe, Pierre A

    2015-08-01

    Expression of the intermediate filament protein keratin 17 (K17) is robustly upregulated in inflammatory skin diseases and in many tumors originating in stratified and pseudostratified epithelia. We report that autoimmune regulator (Aire), a transcriptional regulator, is inducibly expressed in human and mouse tumor keratinocytes in a K17-dependent manner and is required for timely onset of Gli2-induced skin tumorigenesis in mice. The induction of Aire mRNA in keratinocytes depends on a functional interaction between K17 and the heterogeneous nuclear ribonucleoprotein hnRNP K. Further, K17 colocalizes with Aire protein in the nucleus of tumor-prone keratinocytes, and each factor is bound to a specific promoter region featuring an NF-κB consensus sequence in a relevant subset of K17- and Aire-dependent proinflammatory genes. These findings provide radically new insight into keratin intermediate filament and Aire function, along with a molecular basis for the K17-dependent amplification of inflammatory and immune responses in diseased epithelia.

  12. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  13. KCNE gene expression is dependent on the proliferation and mode of activation of leukocytes.

    Science.gov (United States)

    Solé, Laura; Vallejo-Gracia, Albert; Roig, Sara R; Serrano-Albarrás, Antonio; Marruecos, Laura; Manils, Joan; Gómez, Diana; Soler, Concepció; Felipe, Antonio

    2013-01-01

    Voltage-dependent K (+) (Kv) channels are tightly regulated during the immune system response. Leukocytes have a limited repertoire of Kv channels, whose physiological role is under intense investigation. A functional Kv channel is an oligomeric complex composed of pore-forming and ancillary subunits. The KCNE gene family is a novel group of modulatory Kv channel elements in leukocytes. Here, we characterized the gene expression of KCNEs (1-5) in leukocytes and investigated their regulation during leukocyte proliferation and mode of activation. Murine bone-marrow-derived macrophages, human Jurkat T-lymphocytes and human Raji B-cells were analyzed. KCNEs (1-5) are expressed in all leukocytes lineages. Most KCNE mRNAs show cell cycle-dependent regulation and are differentially regulated under specific insults. Our results further suggest a new and yet undefined physiological role for KCNE subunits in the immune system. Putative associations of these ancillary proteins with Kv channels would yield a wide variety of biophysically and pharmacologically distinct channels that fine-tune the immunological response.

  14. Interfering with TGFβ-induced Smad3 nuclear accumulation differentially affects TGFβ-dependent gene expression

    Directory of Open Access Journals (Sweden)

    Dittmer Jürgen

    2003-03-01

    Full Text Available Abstract Background Transforming growth factor-β (TGFβ plays an important role in late-stage carcinogenesis by stimulating invasive behavior of cancer cells, promoting neo-angiogenesis and by helping cancer cells to escape surveillance by the immune system. It also supports colonization of the bone by metastatic breast cancer cells by increasing expression of osteolytic parathyroid hormone-related protein (PTHrP. Interfering with TGFβ signalling may thus weaken the malignant properties of cancer cells. We investigated to what extent two inhibitors, SB-202190 and SB-203580, interfere with TGFβ-signalling in invasive MDA-MB-231 breast cancer cells. These compounds, formerly used as p38-MAPK-specific inhibitors, were recently also demonstrated to inhibit TGFβ type I receptor kinase. Results Our results show that these inhibitors delay the onset of TGFβ-induced nuclear accumulation of Smad3 and reduces its amplitude. This effect was accompanied by a strong reduction in TGFβ-responsivess of the slow-responder genes pthrp, pai-1 and upa, while the reactivity of the fast-responder gene smad7 to TGFβ remained almost unchanged. Neither was the TGFβ response of the fast-responder ese-1/esx gene, whose expression we found to be strongly downregulated by TGFβ, affected by the inhibitors. Conclusion The data show that SB-202190 and SB-203580 suppress TGFβ-dependent activation of genes that are important for the acquisition of invasive behavior, while having no effect on the expression of the natural TGFβ inhibitor Smad7. This suggests that these compounds are potent inhibitors of malignant behavior of cancer cells.

  15. Interleukin-1-induced activation of the small GTPase Rac1 depends on receptor internalization and regulates gene expression.

    Science.gov (United States)

    Windheim, Mark; Hansen, Benjamin

    2014-01-01

    Interleukin 1 (IL-1) triggers the internalization of its cognate receptor from the plasma membrane. We recently demonstrated that this internalization is of critical importance for the IL-1-induced gene expression. In this study we report that the IL-1-induced activation of the small GTPase Rac1 requires receptor endocytosis. We further show that the depletion of Rac1 reduces the IL-1-dependent gene expression without affecting signaling events that are initiated at the plasma membrane. Collectively, we provide evidence for a key role of Rac1 in a pathway that regulates IL-1-induced gene expression depending on receptor endocytosis.

  16. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply.

    Science.gov (United States)

    Barabasz, Anna; Krämer, Ute; Hanikenne, Marc; Rudzka, Justyna; Antosiewicz, Danuta Maria

    2010-06-01

    Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P(1B)-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was introduced into N. tabacum var. Xanthi for expression under the control of its endogenous A. halleri promoter known to confer high and cell-type specific expression levels in both A. halleri and the non-hyperaccumulator A. thaliana. The transgene was expressed at similar levels in both roots and shoots upon long-term exposure to low Zn, control, and increased Zn concentrations. A down-regulation of AhHMA4 transcript levels was detected with 10 muM Zn resupply to tobacco plants cultivated in low Zn concentrations. In general, a transcriptional regulation of AhHMA4 in tobacco contrasted with the constitutively high expression previously observed in A. halleri. Differences in root/shoot partitioning of Zn and Cd between transgenic lines and the wild type were strongly dependent on metal concentrations in the hydroponic medium. Under low Zn conditions, an increased Zn accumulation in the upper leaves in the AhHMA4-expressing lines was detected. Moreover, transgenic plants exposed to cadmium accumulated less metal than the wild type. Both modifications of zinc and cadmium accumulation are noteworthy outcomes from the biofortification perspective and healthy food production. Expression of AhHMA4 may be useful in crops grown on soils poor in Zn.

  17. The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression

    Directory of Open Access Journals (Sweden)

    Ramachandran Vinoy K

    2012-01-01

    Full Text Available Abstract Background Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium requires expression of the extracellular virulence gene expression programme (STEX, activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp. Recently, next-generation transcriptomics (RNA-seq has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq to define the high-resolution transcriptomic architecture of wild-type S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results Here we report the precise mapping of transcriptional start sites (TSSs for 78% of the S. Typhimurium open reading frames (ORFs. The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs and 302 candidate antisense RNAs (asRNAs. We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34% and 20% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.

  18. CLONING, SEQUENCING, AND EXPRESSION OF BACILLUS-SUBTILIS GENES INVOLVED IN ATP-DEPENDENT NUCLEASE SYNTHESIS

    NARCIS (Netherlands)

    KOOISTRA, J; VENEMA, G

    1991-01-01

    The genes encoding the subunits of the Bacillus subtilis ATP-dependent nuclease (add genes) have been cloned. The genes were located on an 8.8-kb SalI-SmaI chromosomal DNA fragment. Transformants of a recBCD deletion mutant of Escherichia coli with plasmid pGV1 carrying this DNA fragment showed ATP-

  19. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  20. Age and sex dependent changes in liver gene expression during the life cycle of the rat

    Directory of Open Access Journals (Sweden)

    Branham William S

    2010-11-01

    Full Text Available Abstract Background Age- and sex-related susceptibility to adverse drug reactions and disease is a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of hepatic genes expressed at various life cycle stages will impact susceptibility to adverse drug reactions. Understanding the basal liver gene expression patterns is a necessary first step in addressing this hypothesis and will inform our assessments of adverse drug reactions as the liver plays a central role in drug metabolism and biotransformation. Untreated male and female F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 52, 78, and 104 weeks of age. Liver tissues were collected for histology and gene expression analysis. Whole-genome rat microarrays were used to query global expression profiles. Results An initial list of differentially expressed genes was selected using criteria based upon p-value (p Conclusions These results suggest an underlying role for genes in specific clusters in potentiating age- and sex-related differences in susceptibility to adverse health effects. Furthermore, such a comprehensive picture of life cycle changes in gene expression deepens our understanding and informs the utility of liver gene expression biomarkers.

  1. PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression.

    Science.gov (United States)

    Desch, Michael; Schubert, Thomas; Schreiber, Andrea; Mayer, Sandra; Friedrich, Björn; Artunc, Ferruh; Todorov, Vladimir T

    2010-11-01

    The second messenger cAMP plays an important role in the regulation of renin gene expression. Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is known to stimulate renin gene transcription acting through PPARγ-binding sequences in renin promoter. We show now that activation of PPARγ by unsaturated fatty acids or thiazolidinediones drastically augments the cAMP-dependent increase of renin mRNA in the human renin-producing cell line Calu-6. The underlying mechanism involves potentiation of agonist-induced cAMP increase and up-regulation of adenylate cyclase 6 (AC6) gene expression. We identified a palindromic element with a 3-bp spacer (Pal3) in AC6 intron 1 (AC6Pal3). AC6Pal3 bound PPARγ and mediated trans-activation by PPARγ agonist. AC6 knockdown decreased basal renin mRNA level and attenuated the maximal PPARγ-dependent stimulation of the cAMP-induced renin gene expression. AC6Pal3 decoy oligonucleotide abrogated the PPARγ-dependent potentiation of cAMP-induced renin gene expression. Treatment of mice with PPARγ agonist increased AC6 mRNA kidney levels. Our data suggest that in addition to its direct effect on renin gene transcription, PPARγ "sensitizes" renin gene to cAMP via trans-activation of AC6 gene. AC6 has been identified as PPARγ target gene with a functional Pal3 sequence.

  2. Time Dependent Gene Expression Changes in the Liver of Mice Treated with Benzene

    Directory of Open Access Journals (Sweden)

    S.V.S. Rana

    2008-01-01

    Full Text Available Benzene is used as a general purpose solvent. Benzene metabolism starts from phenol and ends with p-benzoquinone and o-benzoquinone. Liver injury inducted by benzene still remains a toxicologic problem. Tumor related genes and immune responsive genes have been studied in patients suffering from benzene exposure. However, gene expression profiles and pathways related to its hepatotoxicity are not known. This study reports the results obtained in the liver of BALB/C mice (SLC, Inc., Japan administered 0.05 ml/100 g body weight of 2% benzene for six days. Serum, ALT, AST and ALP were determined using automated analyzer (Fuji., Japan. Histopathological observations were made to support gene expression data. c-DNA microarray analyses were performed using Affymetrix Gene-chip system. After six days of benzene exposure, twenty five genes were down regulated whereas nineteen genes were up-regulated. These gene expression changes were found to be related to pathways of biotransformation, detoxification, apoptosis, oxidative stress and cell cycle. It has been shown for the first time that genes corresponding to circadian rhythms are affected by benzene. Results suggest that gene expression profile might serve as potential biomarkers of hepatotoxicity during benzene exposure.

  3. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  4. Age-dependent expression of osteochondrosis-related genes in equine leukocytes

    OpenAIRE

    Mendoza García, Luis; Piquemal, David; Lejeune, Jean-Philippe; Vander Heyden, Laurent; Noguier, F.; Bruno, R; Sandersen, Charlotte; Serteyn, Didier

    2015-01-01

    Introduction:  Osteochondrosis (OC) is a developmental disease in horses which has a significant impact on the horse's welfare and performance. The early disturbance in the process of endochondral ossification progresses to inflammatory and repair processes in older horses. Previously, differentially expressed genes in leukocytes of OC-affected horses have been identified. The aim of the present study is to detect age-related changes in these differentially expressed genes. Materials and Meth...

  5. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression

    DEFF Research Database (Denmark)

    Varmanen, P.; Vogensen, F.K.; Hammer, Karin;

    2003-01-01

    The heat shock response in bacterial cells is characterized by rapid induction of heat shock protein expression, followed by an adaptation period during which heat shock protein synthesis decreases to a new steady-state level. In this study we found that after a shift to a high temperature the Clp...... ATPase (ClpE) in Lactococcus lactis is required for such a decrease in expression of a gene negatively regulated by the heat shock regulator (CtsR). Northern blot analysis showed that while a shift to a high temperature in wild-type cells resulted in a temporal increase followed by a decrease......E by Western blot analysis revealed that at a high temperature CIpE is subjected to ClpP-dependent processing and that disruption of the zinc finger domain renders GpE more susceptible. Interestingly, this domain resembles the N-terminal region of McsA, which was recently reported to interact with the Cts...

  6. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  7. Immune- and wound-dependent differential gene expression in an ancient insect.

    Science.gov (United States)

    Johnston, Paul R; Rolff, Jens

    2013-01-01

    Two of the main functions of the immune system are to control infections and to contribute to wound closure. Here we present the results of an RNAseq study of immune- and wound-response gene expression in the damselfly Coenagrion puella, a representative of the odonates, the oldest taxon of winged insects. De novo assembly of RNAseq data revealed a rich repertoire of canonical immune pathways, as known from model insects, including recognition, transduction and effector gene expression. A shared set of immune and wound repair genes were differentially expressed in both wounded and immune-challenged larvae. Moreover 3-fold more immune genes were induced only in the immune-challenged treatment. This is consistent with the notion that the immune-system reads a balance of signals related to wounding and infection and that the response is tailored accordingly.

  8. PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone.

    Science.gov (United States)

    Rivas-Estilla, Ana Maria; Svitkin, Yuri; Lopez Lastra, Marcelo; Hatzoglou, Maria; Sherker, Averell; Koromilas, Antonis E

    2002-11-01

    Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.

  9. Sex-dependent gene expression in early brain development of chicken embryos

    Directory of Open Access Journals (Sweden)

    Stigson Michael

    2006-02-01

    Full Text Available Abstract Background Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms. Results Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44 encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation. Conclusion In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.

  10. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos.

    Science.gov (United States)

    Lukowski, Chris M; Drummond, Danna Lynne; Waskiewicz, Andrew J

    2011-12-01

    Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development--roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer--a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.

  11. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  12. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Directory of Open Access Journals (Sweden)

    Takayuki eFujiwara

    2015-08-01

    Full Text Available The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase, NIR (nitrite reductase and NRT (the nitrate/nitrite transporter are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 hour by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  13. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

    Science.gov (United States)

    Fujiwara, Takayuki; Kanesaki, Yu; Hirooka, Shunsuke; Era, Atsuko; Sumiya, Nobuko; Yoshikawa, Hirofumi; Tanaka, Kan; Miyagishima, Shin-Ya

    2015-01-01

    The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase), NIR (nitrite reductase), and NRT (the nitrate/nitrite transporter) are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR, or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 h by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.

  14. Sox17-dependent gene expression and early heart and gut development in Sox17-deficient mouse embryos.

    Science.gov (United States)

    Pfister, Sabine; Jones, Vanessa J; Power, Melinda; Truisi, Germaine L; Khoo, Poh-Lynn; Steiner, Kirsten A; Kanai-Azuma, Masami; Kanai, Yoshiakira; Tam, Patrick P L; Loebel, David A F

    2011-01-01

    Sox17 is a transcription factor that is required for maintenance of the definitive endoderm in mouse embryos. By expression profiling of wild-type and mutant embryos and Sox17-overexpressing hepatoma cells, we identified genes with Sox17-dependent expression. Among the genes that were up-regulated in Sox17-null embryos and down-regulated by Sox17 expressing HepG2 cells is a set of genes that are expressed in the developing liver, suggesting that one function of Sox17 is the repression of liver gene expression, which is compatible with a role for Sox17 in maintaining the definitive endoderm in a progenitor state. Consistent with these findings, Sox17(-/-) cells display a diminished capacity to contribute to the definitive endoderm when transplanted into wild-type hosts. Analysis of gene ontology further revealed that many genes related to heart development were downregulated in Sox17-null embryos. This is associated with the defective development of the heart in the mutant embryos, which is accompanied by localised loss of Myocd-expressing cardiogenic progenitors and the malformation of the anterior intestinal portal.

  15. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    Science.gov (United States)

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  16. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  17. Diet-dependent gene expression in honey bees: honey vs. sucrose or high fructose corn syrup.

    Science.gov (United States)

    Wheeler, Marsha M; Robinson, Gene E

    2014-07-17

    Severe declines in honey bee populations have made it imperative to understand key factors impacting honey bee health. Of major concern is nutrition, as malnutrition in honey bees is associated with immune system impairment and increased pesticide susceptibility. Beekeepers often feed high fructose corn syrup (HFCS) or sucrose after harvesting honey or during periods of nectar dearth. We report that, relative to honey, chronic feeding of either of these two alternative carbohydrate sources elicited hundreds of differences in gene expression in the fat body, a peripheral nutrient-sensing tissue analogous to vertebrate liver and adipose tissues. These expression differences included genes involved in protein metabolism and oxidation-reduction, including some involved in tyrosine and phenylalanine metabolism. Differences between HFCS and sucrose diets were much more subtle and included a few genes involved in carbohydrate and lipid metabolism. Our results suggest that bees receive nutritional components from honey that are not provided by alternative food sources widely used in apiculture.

  18. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  19. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Simian, Marina; Liaw, Jane; Timpl, Rupert; Werb, Zena; Bissell, Mina J..

    2000-02-01

    Nidogen-1 (entactin) acts as a bridge between the extracellular matrix molecules laminin-1 and type IV collagen, and thus participates in the assembly of basement membranes. To investigate the role of nidogen-1 in regulating cell-type-specific gene expression in mammary epithelium, we designed a culture microecosystem in which each component, including epithelial cells, mesenchymal cells, lactogenic hormones and extracellular matrix, could be controlled. We found that primary and established mesenchymal and myoepithelial cells synthesized and secreted nidogen-1, whereas expression was absent in primary and established epithelial cells. In an epithelial cell line containing mesenchymal cells, nidogen-1 was produced by the mesenchymal cells but deposited between the epithelial cells. In this mixed culture, mammary epithelial cells express b-casein in the presence of lactogenic hormones. Addition of either laminin-1 plus nidogen-1, or laminin-1 alone to mammary epithelial cells induced b- casein production. We asked whether recombinant nidogen-1 alone could signal directly for b-casein. Nidogen-1 did not induce b-casein synthesis in epithelial cells, but it augmented the inductive capacity of laminin-1. These data suggest that nidogen-1 can cooperate with laminin-1 to regulate b-casein expression. Addition of full length nidogen-1 to the mixed cultures had no effect on b-casein gene expression; however, a nidogen-1 fragment containing the laminin-1 binding domain, but lacking the type IV collagen-binding domain, had a dominant negative effect on b-casein expression. These data point to a physiological role for nidogen-1 in the basement membrane-induced gene expression by epithelial cells.

  20. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Chih [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Hsueh, Chi-Mei [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chen, Chiu-Yuan [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Chen, Tzu-Hsiu, E-mail: hsiu@mail.chna.edu.tw [Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Shih-Lan, E-mail: h2326@vghtc.gov.tw [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan (China)

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  1. Time-dependent gene expression analysis after mouse skeletal muscle contusion

    Institute of Scientific and Technical Information of China (English)

    Weihua Xiao; Yu Liu; Beibei Luo; Linlin Zhao; Xiaoguang Liu; Zhigang Zeng; Peijie Chen

    2016-01-01

    Background: Though the mechanisms of skeletal muscle regeneration are deeply understood, those involved in muscle contusion, one of the most common muscle injuries in sports medicine clinics, are not. The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury. Methods: In this study, a total of 72 mice were used. Eight of them were randomly chosen for the control group, while the rest were subjected to muscle contusion. Subsequently, their gastrocnemius muscles were harvested at different time points. The changes in muscle morphology were assessed by hematoxylin and eosin (HE) stain. In addition, the gene expression was analyzed by real-time polymerase chain reaction. Results: The data showed that the expression of many genes, i.e., specific markers of immune cells and satellite cells, regulatory factors for muscle regeneration, cytokines, and chemokines, increased in the early stages of recovery, especially in the first 3 days. Furthermore, there were strict rules in the expression of these genes. However, almost all the genes returned to normal at 14 days post-injury. Conclusion: The sequence of immune cells invaded after muscle contusion was neutrophils, M1 macrophages and M2 macrophages. Some CC (CCL2, CCL3, and CCL4) and CXC (CXCL10) chemokines may be involved in the chemotaxis of these immune cells. HGF may be the primary factor to activate the satellite cells after muscle contusion. Moreover, 2 weeks are needed to recover when acute contusion happens as used in this study.

  2. The Role of Sugar-related Regulation in the Light-dependent Alterations of Arabidopsis Glutamate Dehydrogenase Genes Expression

    Directory of Open Access Journals (Sweden)

    E.Yu. Garnik

    2014-12-01

    Full Text Available Expression of gdh1 and gdh2 genes of Arabidopsis thaliana increases in the dark and decreases in the light. The reason of such alteration seems to be a glucose rising in photosynthetic cell in the light, but this hypothesis needs to be confirmed. In this work we investigate the role of glucose and hexokinase 1 in the light-dependent regulation of the gdh1 and gdh2 expression. A comparison of expression profiles of apl3, gdh1, gdh2 genes in presenсe of exogenous sucrose in the dark and in the light has demonstrated that sugar-related repression of gdh1 and gdh2 genes is insufficient to provide the high decrease of their transcripts in the light. Using Arabidopsis mutant gin2-1 with a defect in hxk1 gene we demonstrated that such a decrease is not depended on the regulatory function of hexokinase 1. We presume that light- dependent alterations of gdh1 and gdh2 expression are mediated by some chloroplast-to-nucleus regulatory signals.

  3. Unequal and genotype-dependent expression of mitochondrial genes in larvae of the pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Curole, Jason P; Meyer, Eli; Manahan, Donal T; Hedgecock, Dennis

    2010-04-01

    Mitochondria are essential for regulation of energy metabolism, but little is known about patterns of mitochondrial genome expression in invertebrates. To explore the association of mitochondrial expression with differential growth of Crassostrea gigas, the Pacific oyster, we crossed two inbred lines to produce inbred and hybrid larvae, which grew at different rates under the same environmental conditions. Using high-throughput cloning and sequencing methods, we identified 1.1 million expressed sequence tags from the mitochondrial genome, 96.7% of which were perfect matches to genes targeted by the method. Expression varied significantly among genes, ranging over nearly four orders of magnitude, from mt:lRNA, which constituted 21% of all transcripts, to mt:CoII, which constituted less than 0.02% of all transcripts. Variable expression of genes coding for subunits of macromolecular complexes (e.g., mt:CoI and mt:CoII) implies that stoichiometry in these complexes must be regulated post-transcriptionally. Surprisingly, the mitochondrial transcriptome contained non-coding transcripts, which may play a role in the regulation of mitochondrial function. Finally, mitochondrial expression depended strongly on maternal factors and nuclear-cytoplasmic interactions, which may explain previously observed growth differences between reciprocal hybrids. Differences in mitochondrial gene expression could provide a biochemical index for the metabolic basis of genetically determined differences in larval growth.

  4. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Maria D Chikina

    2009-06-01

    Full Text Available Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal data.

  5. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    OpenAIRE

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days o...

  6. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation.

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    Full Text Available BACKGROUND: Brain-derived neurotrophic factor (BDNF is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365. Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2 and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS, phosphotidylinositol-3-kinase (PI3K, and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. CONCLUSIONS: These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.

  7. Two mechanisms for putrescine-dependent transcriptional expression of the putrescine aminotransferase gene, ygjG, in Escherichia coli.

    Science.gov (United States)

    Kim, Young-Sik; Shin, Hyun-Chul; Lee, Jong-Ho

    2014-09-01

    In this study, on evaluating the physiological function and mechanism of putrescine, we found that putrescine supplementation (1 mM) increases transcription of the putrescine aminotransferase gene, ygjG. Putrescine-dependent expression was confirmed by measuring β-galactosidase activity and with reverse transcription-polymerase chain reaction. To understand the role of putrescine in ygjG expression, we genetically characterized and found that a knockout mutation in an alternative sigma factor, rpoS, abolished putrescine-dependent ygjG-lacZ expression. In the rpoS mutant, RpoS overexpression complemented the mutant phenotype. However, RpoS overexpression induced ygjG-lacZ expression with putrescine supplementation but not without supplementation. We also found that the loss of putrescine-dependent ygjG-lacZ expression induced by rpoS was completely restored under nitrogen-starvation conditions. The putrescine-dependent expression of ygjG-lacZ under this condition was clearly dependent on another alternative sigma factor, rpoN, and its cognate activator ntrC. These results show that rpoS is required for putrescine-dependent ygjG-lacZ expression, but the effect of putrescine on this expression is not caused by simple modulation of RpoS synthesis. Putrescine-dependent expression of ygjG-lacZ was controlled by at least two sigma factors: rpoS under excess nitrogen conditions and rpoN under nitrogen-starvation conditions. These results suggest that putrescine plays an important role in the nitrogen regulation system.

  8. Dose-dependent Differential Effects of Risedronate on Gene Expression in Osteoblasts

    OpenAIRE

    Wang, J.; Stern, P H

    2011-01-01

    Bisphosphonates have multiple effects on bone. Their actions on osteoclasts lead to inhibition of bone resorption, at least partially through apoptosis. Effects on osteoblasts vary, with modifications in the molecule and concentration both resulting in qualitatively different responses. To understand the mechanism of the differential effects of high and low bisphosphonate concentrations on osteoblast activity, we compared the effects of 10−8M and 10−4M risedronate on gene expression in UMR-10...

  9. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression

    KAUST Repository

    Nagymihály, Marianna

    2017-04-13

    The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes\\' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.

  10. Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors

    Institute of Scientific and Technical Information of China (English)

    GAN Hui-zhu; ZHENG De-ming; ZHANG Gui-zhen; ZHAO Ji-sheng; ZHANG Feng-chun; BU Li-sha; YANG Shao-juan; PIAO Song-lan; DU Zhen-wu; GAO Shen

    2005-01-01

    Background RNA interference using short hairpin RNA (shRNA) can mediate sequence-specific inhibition of gene expression in mammalian cells. A vector-based approach for synthesizing shRNA has been developed recently. Overexpression of P-glycoprotein (P-gp), the MDR1 gene product, confers multidrug resistance (MDR) to cancer cells. In this study, we reversed MDR using shRNA expression vectors in a multidrug-resistant human breast cancer cell line (MCF-7/AdrR). Methods The two shRNA expression vectors were constructed and introduced into MCF-7/AdrR cells. Expression of MDR1 mRNA was assessed by RT-PCR, and P-gp expression was determined by Western Blot and immunocytochemistry. Apoptosis and sensitization of the breast cancer cells to doxorubicin were quantified by flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. Cellular daunorubicin accumulation was assayed by laser confocal scanning microscopy (LCSM). Statistical significance of differences in mean values was evaluated by Student's t tests. P<0.05 was considered statistically significant.Results In MCF-7/AdrA cells transfected with MDR1-A and MDR1-B shRNA expression vectors, RT-PCR showed that MDR1 mRNA expression was reduced by 40.9% (P<0.05), 30.1% (P<0.01) (transient transfection) and 37.6 % (P<0.05), 28.0% (P<0.01) (stable transfection), respectively. Western Blot and immunocytochemistry showed that P-gp expression was significantly and specifically inhibited. Resistance against doxorubicin was decreased from 162-fold to 109-fold (P<0.05), 54-fold (P<0.01) (transient transfection) and to 108-fold (P<0.05), 50-fold (P<0.01) (stable transfection). Furthermore, shRNA vectors significantly enhanced the cellular daunorubicin accumulation. The combination of shRNA vectors and doxorubicin significantly induced apoptosis in MCF-7/AdrR cells. Conclusions shRNA expression vectors effectively reduce MDR expression in a sustained fashion and can restore the sensitivity of drug-resistant cancer

  11. Extracellular ATP activates NFAT-dependent gene expression in neuronal PC12 cells via P2X receptors

    Directory of Open Access Journals (Sweden)

    Becker Walter

    2011-09-01

    Full Text Available Abstract Background Treatment of neuronal PC12 cells with ATP induces depolarisation and increases intracellular calcium levels via purinergic receptors. In many cell types, sustained elevation of intracellular calcium levels cause changes in gene expression via activation of the transcription factor NFAT (nuclear factor of activated T cells. We have therefore characterised the signalling pathway by which ATP regulates NFAT-dependent gene expression in PC12 cells. Results The activation of NFAT transcriptional activity by extracellular ATP was characterised with the help of reporter gene assays. Treatment of PC12 cells with ATP elicited a dose-dependent increase in luciferase activity (EC50 = 78 μM. UTP, 4-benzoylbenzoyl ATP and α,β-methylene ATP did not mimic the effect of ATP, which was abolished by treatment with the P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS. This pharmacological characterisation provides evidence for a critical role of ionotropic P2X receptors. Blockade of L-type voltage-dependent calcium channels by nifedipine reduced the response of NFAT to ATP, indicating that a depolarisation-mediated calcium influx was required for maximal NFAT activation. Inhibition of store-operated calcium entry by the pyrazole derivative BTP2 also diminished ATP-dependent NFAT activation. Furthermore, ATP-induced NFAT activation was associated with the activation of the mitogen-activated protein kinases ERK1/2. Finally, treatment with ATP increased the levels of the NFAT target transcripts, RCAN1-4 (regulator of calcineurin and BDNF (brain derived neurotrophic factor. Conclusion The present data show that ATP induces NFAT-dependent changes in gene expression in PC12 cells by acting on P2X receptors. Maximal NFAT activation depends on both depolarisation-induced calcium influx and store-operated calcium entry and requires the activity of the protein phosphatase calcineurin and the mitogen-activated protein

  12. The NADP-dependent glutamate dehydrogenase gene from the astaxanthin producer Xanthophyllomyces dendrorhous: use of Its promoter for controlled gene expression.

    Science.gov (United States)

    Rodríguez-Sáiz, Marta; Godio, Ramiro P; Alvarez, Vanessa; de la Fuente, Juan Luis; Martín, Juan F; Barredo, José Luis

    2009-02-01

    The gdhA gene encoding the NADP-dependent glutamate dehydrogenase (GDH) activity from Xanthophyllomyces dendrorhous has been cloned and characterized, and its promoter used for controlled gene expression in this red-pigmented heterobasidiomycetous yeast. We determined the nucleotide sequence of a 4701 bp DNA genomic fragment, showing an open reading frame of 1871 bp interrupted by five introns with fungal consensus splice-site junctions. The predicted protein (455 amino acids; 49 kDa) revealed high identity to GDHs, especially to those from the fungi Cryptococcus neoformans (70%), Sclerotinia sclerotiorum (66%), and several species of Aspergillus (66-67%). Gene phylogenies support the grouping of X. dendrorhous GDH close to those from the majority of the filamentous fungi. The promoter region of the gdhA gene (PgdhA) contains a TATA-like box and two large pyrimidine stretches. The use of PgdhA for gene expression was validated by electrotransformation of X. dendrorhous using an in-frame fusion with the hygromycin resistance gene (hygR) as a reporter. X. dendrorhous transformants were able to grow in YEME complex medium and in Czapek minimal medium supplemented with 50 microg/ml hygromycin, but gene expression in Czapek medium was repressed when using ammonium acetate as a nitrogen source. PgdhA is a valuable tool for controlled gene expression in Basidiomycetes.

  13. Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers.

    Science.gov (United States)

    García-Díaz, Diego; Campión, Javier; Milagro, Fermín I; Martínez, Jose A

    2007-11-01

    It has been reported that apelin functions as an adipokine, which has been associated to obesity and insulin resistance. The objective of this study was to analyze the apelin mRNA expression in white adipose tissue (WAT) from high-fat (Cafeteria) fed rats, in order to examine potential relationships with obesity markers and other related risk factors. Animals fed on the high-fat diet during 56 days increased their body weight, total body fat and WAT depots weights when compared to controls. Apelin subcutaneous mRNA expression was higher in the Cafeteria than in the Control fed group and this increase was partially reversed by dietary vitamin C supplementation. Statistically significant associations between subcutaneous apelin gene expression and almost all the studied variables were identified, being of special interest the correlations found with serum leptin (r=0.517), liver malondialdehyde (MDA) levels (r=0.477), and leptin, IRS-3 and IL-1ra retroperitoneal mRNA expression (r=0.701; r=0.692 and r=0.561, respectively). These associations evidence a possible role for apelin in the excessive weight gain induced by high-fat feeding and increased adiposity, insulin-resistance, liver oxidative stress and inflammation.

  14. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.

    Science.gov (United States)

    Mendes-Ferreira, Ana; Barbosa, Catarina; Jimenez-Marti, Elena; Del Olmo, Marcel Li; Mendes-Faia, Arlete

    2010-09-01

    Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here we investigated by real time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16 and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. Strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120h and 72h, respectively. In the presence of 267mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently up-regulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated to sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for genetic improvement of wine yeasts.

  15. Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signalling in the prors1-1 mutant

    Directory of Open Access Journals (Sweden)

    Luca eTadini

    2012-12-01

    Full Text Available Perturbations in organellar gene expression (OGE and the thylakoid redox state (TRS activate retrograde signalling pathways that adaptively modify nuclear gene expression (NGE, according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1 which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signalling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signalling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific, which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins.

  16. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis].

    Directory of Open Access Journals (Sweden)

    Xiaolan Jiang

    Full Text Available Phenolic compounds in tea plant [Camellia sinensis (L.] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs.

  17. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis].

    Science.gov (United States)

    Jiang, Xiaolan; Liu, Yajun; Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs.

  18. Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts.

    Science.gov (United States)

    Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J

    2012-03-27

    The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  19. pH-Dependent DNA Distortion and Repression of Gene Expression by Pectobacterium atrosepticum PecS.

    Science.gov (United States)

    Deochand, Dinesh K; Meariman, Jacob K; Grove, Anne

    2016-07-15

    Transcriptional activity is exquisitely sensitive to changes in promoter DNA topology. Transcription factors may therefore control gene activity by modulating the relative positioning of -10 and -35 promoter elements. The plant pathogen Pectobacterium atrosepticum, which causes soft rot in potatoes, must alter gene expression patterns to ensure growth in planta. In the related soft-rot enterobacterium Dickeya dadantii, PecS functions as a master regulator of virulence gene expression. Here, we report that P. atrosepticum PecS controls gene activity by altering promoter DNA topology in response to pH. While PecS binds the pecS promoter with high affinity regardless of pH, it induces significant DNA distortion only at neutral pH, the pH at which the pecS promoter is repressed in vivo. At pH ∼8, DNA distortions are attenuated, and PecS no longer represses the pecS promoter. A specific histidine (H142) located in a crevice between the dimerization- and DNA-binding regions is required for pH-dependent changes in DNA distortion and repression of gene activity, and mutation of this histidine renders the mutant protein incapable of repressing the pecS promoter. We propose that protonated PecS induces a DNA conformation at neutral pH in which -10 and -35 promoter elements are suboptimally positioned for RNA polymerase binding; on deprotonation of PecS, binding is no longer associated with significant changes in DNA conformation, allowing gene expression. We suggest that this mode of gene regulation leads to differential expression of the PecS regulon in response to alkalinization of the plant apoplast.

  20. A specific CBP/p300-dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis.

    Science.gov (United States)

    Boussouar, F; Goudarzi, A; Buchou, T; Shiota, H; Barral, S; Debernardi, A; Guardiola, P; Brindle, P; Martinez, G; Arnoult, C; Khochbin, S; Rousseaux, S

    2014-05-01

    Histone hyperacetylation is thought to drive the replacement of histones by transition proteins that occur in elongating spermatids (ElS) after a general shut down of transcription. The molecular machineries underlying this histone hyperacetylation remain still undefined. Here, we focused our attention on the role of Cbp and p300 in histone hyperacetylation and in the preceding late-gene transcriptional activity in ElS. A strategy was designed to partially deplete Cbp and p300 in ElS. These cells progressed normally through spermiogenesis and showed normal histone hyperacetylation and removal. However, a genome-wide transcriptomic analysis, performed in the round spermatids (RS) and ElS, revealed the existence of a gene regulatory circuit encompassing genes presenting high expression levels in pre-meiotic cells, undergoing a repressed state in spermatocytes and early post-meiotic cells, but becoming reactivated in ElS, just prior to the global shutdown of transcription. Interestingly, this group of genes was over-represented within the genes affected by Cbp/p300 knock down and were all involved in metabolic remodelling. This study revealed the occurrence of a tightly regulated Cbp/p300-dependent gene expression programme that drives a specific metabolic state both in progenitor spermatogenic cells and in late transcriptionally active spermatids and confirmed a special link between Cpb/p300 and cell metabolism programming previously shown in somatic cells. © 2014 American Society of Andrology and European Academy of Andrology.

  1. Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis.

    Science.gov (United States)

    Turano, F J; Thakkar, S S; Fang, T; Weisemann, J M

    1997-04-01

    Two distinct cDNA clones encoding NAD(H)-dependent glutamate dehydrogenase (NAD[H]-GDH) in Arabidopsis thaliana were identified and sequenced. The genes corresponding to these cDNA clones were designated GDH1 and GDH2. Analysis of the deduced amino acid sequences suggest that both gene products contain putative mitochondrial transit polypeptides and NAD(H)- and alpha-ketoglutarate-binding domains. Subcellular fractionation confirmed the mitochondrial location of the NAD(H)-GDH isoenzymes. In addition, a putative EF-hand loop, shown to be associated with Ca2+ binding, was identified in the GDH2 gene product but not in the GDH1 gene product. GDH1 encodes a 43.0-kD polypeptide, designated alpha, and GDH2 encodes a 42.5-kD polypeptide, designated beta. The two subunits combine in different ratios to form seven NAD(H)-GDH isoenzymes. The slowest-migrating isoenzyme in a native gel, GDH1, is a homohexamer composed of alpha subunits, and the fastest-migrating isoenzyme, GDH7, is a homohexamer composed of beta subunits. GDH isoenzymes 2 through 6 are heterohexamers composed of different ratios of alpha and beta subunits. NAD(H)-GDH isoenzyme patterns varied among different plant organs and in leaves of plants irrigated with different nitrogen sources or subjected to darkness for 4 d. Conversely, there were little or no measurable changes in isoenzyme patterns in roots of plants treated with different nitrogen sources. In most instances, changes in isoenzyme patterns were correlated with relative differences in the level of alpha and beta subunits. Likewise, the relative difference in the level of alpha or beta subunits was correlated with changes in the level of GDH1 or GDH2 transcript detected in each sample, suggesting that NAD(H)-GDH activity is controlled at least in part at the transcriptional level.

  2. Gender-dependent Expression of Murine Irf5 Gene: Implications for Sex Bias in Autoimmunity

    Science.gov (United States)

    Shen, Hui; Panchanathan, Ravichandran; Rajavelu, Priya; Duan, Xin; Gould, Karen A.; Choubey, Divaker

    2010-01-01

    Molecular mechanisms that contribute to sex bias in the development of systemic lupus erythematosus (SLE), an autoimmune disease, remain unknown. We found that the expression levels of interferon regulatory factor 5 (IRF5), a lupus susceptibility factor, depend on gender of mice. We found that steady-state levels of the Irf5 mRNA were relatively higher in splenic cells from certain autoimmune-prone mice (for example, NZB and NZB/W F1) than in non-autoimmune C57BL/6 mice. Additionally, levels of Irf5 mRNA and protein were higher in females than in strain and age-matched males. Accordingly, splenic cells from estrogen receptor-alpha (ERα) knockout, when compared with the wild-type (ERα+/+), female mice expressed relatively lower levels of Irf5 mRNA and the treatment of splenic cells with 17β-estradiol increased the levels. Furthermore, splenic B cells from the female mice had relatively more IRF5 protein in the nucleus than the male mice. Collectively, our observations demonstrate a gender bias in the expression and sub-cellular localization of the murine IRF5. PMID:20802013

  3. Cellular phenotype-dependent and -independent effects of vitamin C on the renewal and gene expression of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5 M, but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was

  4. The mitochondria mediate the induction of NOX1 gene expression by aldosterone in an ATF-1-dependent manner.

    Science.gov (United States)

    Fu, Yanping; Shi, Gang; Wu, Yong; Kawai, Yasuyuki; Tian, Qing; Yue, Linlin; Xia, Qinjie; Miyamori, Isamu; Fan, Chunyuan

    2011-06-01

    High aldosterone (Ald) levels can induce hypertrophy of vascular smooth muscle cells (VSMCs), which carries high risks of heart failure. A previous study showed that Ald induces hypertrophy of VSMCs by up-regulating NOX1, a catalytic subunit of NADPH oxidase that produces superoxides. However, the precise mechanism remains unknown. Diphenylene iodonium (DPI) is known as an inhibitor of complex I in the mitochondrial respiratory chain, and it was also found to almost completely suppress the induction of NOX1 mRNA and the phosphorylation of activating transcription factor (ATF-1) by PGF2α or PDGF in a rat VSMC cell line. In this study, we found that the Ald-induced phosphorylation of ATF-1 and NOX1 expression was significantly suppressed by DPI. Silencing of ATF-1 gene expression attenuated the induction of NOX1 mRNA expression, and over-expression of ATF-1 restored Ald-induced NOX1 expression. On the basis of this data, we show that the mitochondria mediate aldosterone-induced NOX1 gene expression in an ATF-1-dependent manner.

  5. Defective Gonadotropin-Dependent Ovarian Folliculogenesis and Granulosa Cell Gene Expression in Inhibin-Deficient Mice

    Science.gov (United States)

    Nagaraja, Ankur K.; Middlebrook, Brooke S.; Rajanahally, Saneal; Myers, Michelle; Li, Qinglei; Matzuk, Martin M.; Pangas, Stephanie A.

    2010-01-01

    Inhibin-α knockout (Inha−/−) female mice develop sex cord-stromal ovarian cancer with complete penetrance and previous studies demonstrate that the pituitary gonadotropins (FSH and LH) are influential modifiers of granulosa cell tumor development and progression in inhibin-deficient females. Recent studies have demonstrated that Inha−/− ovarian follicles develop precociously to the early antral stage in prepubertal mice without any increase in serum FSH. These studies suggest that in the absence of inhibins, granulosa cells differentiate abnormally and thus at sexual maturity may undergo an abnormal response to gonadotropin signaling contributing to tumor development. To test this hypothesis, we stimulated immature wild-type and Inha−/− female mice with gonadotropin analogs prior to tumor formation and subsequently examined gonadotropin-induced ovarian follicle development as well as preovulatory and human chorionic gonadotropin-induced gene expression changes in granulosa cells. We find that at 3 wk of age, inhibin-deficient ovaries do not show further antral development or undergo cumulus expansion. In addition, there are widespread alterations in the transcriptome of gonadotropin-treated Inha−/− granulosa cells, with significant changes in genes involved in extracellular matrix and cell-cell communication. These data indicate the gonadotropins initiate an improper program of cell differentiation prior to tumor formation in the absence of inhibins. PMID:20739397

  6. The age dependency of gene expression for plasma lipids, lipoproteins, and apolipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Snieder, H.; Doornen, L.J.P. van; Boomsma, D.I. [Vrije Universiteit, Amsterdam (Netherlands)

    1997-03-01

    The aim of this study was to investigate and disentangle the genetic and nongenetic causes of stability and change in lipids and (apo)lipoproteins that occur during the lifespan. Total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a) (Lp[a]) were measured in a group of 160 middle-aged parents and their twin offspring (first project) and in a group of 203 middle-aged twin pairs (second project). Combining the data of both projects enabled the estimation of the extent to which measured lipid parameters are influenced by different genes in adolescence and adulthood. To that end, an extended quantitative genetic model was specified, which allowed the estimation of heritabilities for each sex and generation separately. Heritabilities were similar for both sexes and both generations. Larger variances in the parental generation could be ascribed to proportional increases in both unique environmental and additive genetic variance from childhood to adulthood, which led to similar heritability estimates in adolescent and middle-aged twins. Although the magnitudes of heritabilities were similar across generations, results showed that, for total cholesterol, triglycerides, HDL, and LDL, partly different genes are expressed in adolescence compared to adulthood. For triglycerides, only 46% of the genetic variance was common to both age groups; for total cholesterol this was 80%. Intermediate values were found for HDL (66%) and LDL (76%). For ApoA1, ApoB, and Lp(a), the same genes seem to act in both generations. 56 refs., 2 figs., 5 tabs.

  7. Flow-dependent regulation of vascular function and gene expression in rat superior mesenteric artery

    Institute of Scientific and Technical Information of China (English)

    XIA Shang; DENG Chang-sheng

    2009-01-01

    Background Mesenteric artery thrombosis is prone to occur at specific arterial regions with different fluid flow patterns,yet mechanistic links between blood flow and vascular function remain unclear. This study aired to investigate the role of blood flow in regulation of vascular function and gene expression in rats.Methods Isometric tension was recorded in wire myograph to examine vascular function of specific regions (trunk parts and proximal parts from the origin) with different blood flow in superior mesenteric artery (SMA). Endothelial nitric oxide syntheses (eNOS), phosphorylated-eNOS (p-eNOS), serine-threonine kinase Akt and phosphorylated-Akt (p-Akt) protein expressions in SMA were examined by Western blotting. Significance was analyzed using a Student's ttest or analysis of variance (ANOVA) followed by a Dunnett's multiple-comparison post hoc test.Results Compared with trunks, proximal parts exhibited severely impaired relaxant responses to acetylcholine (Ach) (1 nmol/L to 10 pmol/L) (P 0.05).Conclusion Critical components that drive the vascular function and influence the localization of mesenteric artery thrombosis are flow-responsive elements within the vascular endothelium.

  8. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis.

    Science.gov (United States)

    Huang, Tianpei; Yu, Xiaomin; Gelbič, Ivan; Guan, Xiong

    2015-09-01

    Gene expression profiles are important data to reveal the functions of genes putatively involved in crucial biological processes. RNA arbitrarily primed polymerase chain reaction (RAP-PCR) and specifically primed reverse transcription polymerase chain reaction (RT-PCR) were combined to screen differentially expressed genes following development of a commercial Bacillus thuringiensis subsp. kurstaki strain 8010 (serotype 3a3b). Six differentially expressed transcripts (RAP1 to RAP6) were obtained. RAP1 encoded a putative triple helix repeat-containing collagen or an exosporium protein H related to spore pathogenicity. RAP2 was homologous to a ClpX protease and an ATP-dependent protease La (LonB), which likely acted as virulence factors. RAP3 was homologous to a beta subunit of propionyl-CoA carboxylase required for the development of Myxococcus xanthus. RAP4 had homology to a quinone oxidoreductase involved in electron transport and ATP formation. RAP5 showed significant homology to a uridine kinase that mediates phosphorylation of uridine and azauridine. RAP6 shared high sequence identity with 3-methyl-2-oxobutanoate-hydroxymethyltransferase (also known as ketopantoate hydroxymethyltransferase or PanB) involved in the operation of the tricarboxylic acid cycle. The findings described here would help to elucidate the molecular mechanisms underlying the differentiation process of B. thuringiensis and unravel novel pathogenic genes.

  9. Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives

    Directory of Open Access Journals (Sweden)

    Hummel Oliver

    2009-02-01

    Full Text Available Abstract Background Mouse embryonic stem (ES cells remain pluripotent in vitro when grown in the presence of the cytokine Leukaemia Inhibitory Factor (LIF. Identification of LIF targets and of genes regulating the transition between pluripotent and early differentiated cells is a critical step for understanding the control of ES cell pluripotency. Results By gene profiling studies carried out with mRNAs from ES cells and their early derivatives treated or not with LIF, we have identified i LIF-dependent genes, highly expressed in pluripotent cells, whose expression level decreases sharply upon LIF withdrawal [Pluri genes], ii LIF induced genes [Lifind genes] whose expression is differentially regulated depending upon cell context and iii genes specific to the reversible or irreversible committed states. In addition, by hierarchical gene clustering, we have identified, among eight independent gene clusters, two atypical groups of genes, whose expression level was highly modulated in committed cells only. Computer based analyses led to the characterization of different sub-types of Pluri and Lifind genes, and revealed their differential modulation by Oct4 or Nanog master genes. Individual knock down of a selection of Pluri and Lifind genes leads to weak changes in the expression of early differentiation markers, in cell growth conditions in which these master genes are still expressed. Conclusion We have identified different sets of LIF-regulated genes depending upon the cell state (reversible or irreversible commitment, which allowed us to present a novel global view of LIF responses. We are also reporting on the identification of genes whose expression is strictly regulated during the commitment step. Furthermore, our studies identify sub-networks of genes with a restricted expression in pluripotent ES cells, whose down regulation occurs while the master knot (composed of OCT4, SOX2 and NANOG is still expressed and which might be down

  10. Characterization and expression analysis of calcium-dependent protein kinase genes in rice(Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    WANG Jiaojiao; GUO Li; XIAO Kai

    2007-01-01

    Under abiotic stress,the calcium-dependent protein kinases (CDPKs) in plant species are activated by the fluctuated Ca2+ levels in cytoplasm and thereby provide a mechanism to decode calcium signals.In this paper,twenty-two rice CDPK genes were identified based on scanning the rice genome released in National Center for Biotechnology Information (NCBI).It was found that there were dramatic differences on the DNA length,cDNA length,open reading frame (ORF) and the translated amino acids among the rice CDPK genes,with the highest diversity on the DNA length.Calculations of the exon/intron numbers and the lengths of exon and intron revealed that all of the rice CDPK genes had the longest exon at the position of exon 1,but the lengths of introns in different genes showed different patterns.The gene structure and phylogenetic analysis indicated that the rice CDPK genes had derived at least from two different ancestors during the evolution.The expression analysis elucidated that the rice CDPK genes showed different patterns under normal growth (CK) and salt stress condition,including constitutively expression (OsCDPK4,OsCDPK18,OsCDPK19 and OsCDPK24),down- or up-regulated in roots by salt stress (OsCDPK10 and OsCDPK16),up-regulated in leaves by salt stress (OsCDPK6,OsCDPK20 and OsCDPK13),and no detected transcripts under CK and salt stress condition.There-fore,the members of rice CDPK gene family should be evolutionally divergent and several members could play an important role in transducing the signal of salt stress.

  11. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    Science.gov (United States)

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-09-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.

  12. [Effectiveness of expression of tdh gene of Vibrio parahaemolyticus depends on two point mutations in promoter region].

    Science.gov (United States)

    Shalu, O A; Pisanov, R V; Monakhova, E V

    2012-12-01

    A molecular-biological study of the clinical strains of Vibrio parahaemolyticus that contain genes of thermostable direct hemolysin Tdh) and Tdh-related hemolysin (Trh). Using Southern blot hybridization, it is shown that genomes of strains that carry determinants of both hemolysins (tdh(+)-trh+) represent a single copy, whereas in tdh2+RH+ strains, there are two copies (tdh1 and tdh2). All of the examined tdh+trh+ and some of the tdh+trh strains either did not express the tdh gene or did not express the tdh gene (Kanagawa negative or KP-) or expressed it weakly and not often (Kanagawa intermediate, KP+), unlike several Kanagawa positive tdh+trh- strains. To establish the reasons for KP -/+ phenotypes, tdh, tdh11, and tdh2 genes of 13 strains isolated in Russia and neighboring foreign countries were sequenced, followed by the biotransformation analysis of the obtained sequences, as well as a comparison with those of a number of strains presented in GenBank. The results revealed that the weak expression of the tdh gene depends, not only on one point mutation in the promoter region (substitution of A for G in the -35 region), as was thought previously, but also on the second substitution (G for A in the -3 position relative to the -10 sequence), which is quite sufficient when the former is absent. Therefore, the reversion of KP -/+ strains that contain one of these substitutions can take place as a result of a single reverse point mutation, and they should be considered potentially dangerous. Strains that contain both substitutions may revert with lesser probability because, in this case, both mutations are necessary.

  13. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes.

    Science.gov (United States)

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-11-23

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.

  14. Ontogenesis of gonadal aromatase gene expression in atlantic silverside (Menidia menidia) populations with genetic and temperature-dependent sex determination.

    Science.gov (United States)

    Duffy, Tara A; Picha, Matthew E; Won, Eugene T; Borski, Russell J; McElroy, Anne E; Conover, David O

    2010-08-01

    Cytochrome P450 aromatase (P450arom), an enzyme that converts testosterone to 17beta-estradiol, is an important mediator of sex determination in teleosts with genetic sex determination (GSD) and temperature-dependent sex determination (TSD). We compared the ontogenetic expression of P450arom in two populations of Atlantic silversides, Menidia menidia, which exhibit TSD (South Carolina) or GSD (Nova Scotia, Canada) using quantitative, real-time polymerase chain reaction (qRT-PCR). Embryos and newly hatched larvae were reared at an intermediate sex ratio-producing temperature (21 degrees C), and older larvae and juveniles were reared at temperatures that feminize (15 degrees C) and masculinize (28 degrees C) to assess the temperature response of P450arom during development. Before sex determination, embryos and newly-hatched larvae displayed negligible P450arom expression, indicating minimal upregulation of this gene before sex determination. Gene expression increased in both populations during sex differentiation. Nova Scotia fish with GSD exhibited presumptive male- and female-like expression levels during early sex differentiation that were not influenced by temperature. South Carolina fish displayed low levels of expression at 28 degrees C with significantly heightened expression in some individuals at 15 degrees C, indicating that P450arom is temperature sensitive in the population with TSD. Populations also differed in the timing and maximal levels of P450arom expression, with fish from Nova Scotia exhibiting both the highest and earliest increase in expression in presumptive females. Our results support the hypothesis that P450arom is involved in female sex differentiation in this species, but is only responsive to temperature in M. menidia populations that exhibit TSD.

  15. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5.

    Science.gov (United States)

    Alberdi, Maria; Iglesias, Marcos; Tejedor, Sonia; Merino, Ramón; López-Rodríguez, Cristina; Aramburu, Jose

    2017-01-01

    Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts. Here we have used mice with a conditional deletion of Nfat5 in mature T lymphocytes to explore osmostress-dependent and -independent functions of this factor. In vitro experiments with CD4 T cells stimulated in hyperosmotic medium showed that NFAT5 enhanced the expression of IL-2 and the Th17-associated gene products RORγt and IL-23R. By contrast, NFAT5-deficient CD4 T cells activated in vivo by anti-CD3 antibody exhibited a different activation profile and were skewed towards enhanced interferon γ (IFNγ) and IL-17 expression and attenuated Treg responses. Using a model of experimental colitis, we observed that mice lacking NFAT5 in T cells exhibited exacerbated intestinal colitis and enhanced expression of IFNγ in draining lymph nodes and colon. These results show that NFAT5 can modulate different T-cell responses depending on stress conditions and stimulatory context.

  16. Expression of NF-kappaB dependent genes in human cells in response to heavy ion beams

    Science.gov (United States)

    Hellweg, Christine; Baumstark-Khan, Christa; Ruland, Rebecca; Schmitz, Claudia; Lau, Patrick; Testard, Isabelle; Reitz, Guenther

    Space radiation is a primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. Understanding of the cellular and molecular processes underlying cell death and transformation related events by space radiation may allow better risk estimation and development of appropriate countermeasures. The pathway leading to activation of the transcription factor nuclear factor κB (NF-κB) and increased transcription of its target gene might modulate cellular radiation response. Previous studies suggest a linear energy transfer (LET) dependency of transcription factor nuclear factor κB (NF-κB) activation: high LET radiation activates NF-κB more efficiently than low LET radiation. In this work, the relative expressions of several NF-κB regulated genes (Gadd45β, NFKBIA encoding the NF-κB inhibitor IκBα, and the anti-apoptotic genes XIAP, bcl-2, and bcl-xL) were examined by quantitative real-time Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Human embryonic cells with neuronal differentiation potential (HEK/293) were exposed to accelerated heavy ions or to X-rays (200 kV) or incubated in presence of the strong NF-κB activator tumor necrosis factor α (TNF-α). Target gene expression data were normalized to the expression index of several unregulated reference genes (B2M, GAPDH, PBGD, HPRT). NFKBIA expression is enhanced for 24 h after TNF-α treatment, while Gadd45β expression was only temporarily up-regulated. High doses of X-rays (8 and 16 Gy) and of 13 C ions (75 MeV/n, LET 33 keV/µm, 4.7 Gy) up-regulate NFKBIA and Gadd45β expression temporarily. 13 C ion with higher LET (35 MeV/n, 73 keV/µm) enhance NFKBIA expression already after 1 Gy, and a passing up-regulation of Bcl-2, bcl-xL and XIAP expression was observed 2 h after 0.5 Gy. 20 Ne (95 MeV/A, 80 keV/µm) and 36 Ar ions (95 MeV/A, 271 keV/µm) were the strongest inducers of Gadd45β, NFKBIA, and XIAP with doses from 0.5 to 3.8 Gy

  17. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight.

    Science.gov (United States)

    Lutz, Claudia C; Robinson, Gene E

    2013-06-01

    The natural history of adult worker honey bees (Apis mellifera) provides an opportunity to study the molecular basis of learning in an ecological context. Foragers must learn to navigate between the hive and floral locations that may be up to miles away. Young pre-foragers prepare for this task by performing orientation flights near the hive, during which they begin to learn navigational cues such as the appearance of the hive, the position of landmarks, and the movement of the sun. Despite well-described spatial learning and navigation behavior, there is currently limited information on the neural basis of insect spatial learning. We found that Egr, an insect homolog of Egr-1, is rapidly and transiently upregulated in the mushroom bodies in response to orientation. This result is the first example of an Egr-1 homolog acting as a learning-related immediate-early gene in an insect and also demonstrates that honey bee orientation uses a molecular mechanism that is known to be involved in many other forms of learning. This transcriptional response occurred both in naïve bees and in foragers induced to re-orient. Further experiments suggest that visual environmental novelty, rather than exercise or memorization of specific visual cues, acts as the stimulus for Egr upregulation. Our results implicate the mushroom bodies in spatial learning and emphasize the deep conservation of Egr-related pathways in experience-dependent plasticity.

  18. Suppression of erythropoietin gene expression by cadmium depends on inhibition of HIF-1, not stimulation of GATA-2

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Naoshi; Imagawa, Shigehiko; Nakano, Yoko; Nagasawa, Toshiro [Division of Hematology, Institute of Clinical Medicine, University of Tsukuba, 305-8575, Tsukuba, Ibaraki (Japan); Suzuki, Norio; Yamamoto, Masayuki [Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, 305-8577, Tsukuba, Ibaraki (Japan)

    2003-05-01

    Long-term exposure of rats to cadmium (Cd) resulted in a marked suppression of erythropoietin (Epo) mRNA expression in the kidneys and the development of severe anemia. A recent report revealed that Cd inhibited hypoxia-inducible factor 1 (HIF-1) binding activity and Epo mRNA expression and protein production. However, Epo gene expression is also regulated by transcription factor GATA-2, which binds to the GATA binding site of the Epo promoter. To elucidate the mechanism of suppression of Epo by Cd, the effect of Cd on GATA-2 function was studied. Epo promoter/enhancer luciferase constructs, one with the wild-type promoter and another with a promoter with a mutant GATA site, were transfected into Hep3B cells. No significant difference in Epo promoter activity in these two types of cells was observed in the presence of Cd. The binding activity of GATA-2 was not affected by Cd. This study showed that Cd inhibited HIF-1 binding activity and Epo promoter activity, and then suppressed Epo protein production. Inhibition of Epo gene expression by Cd depends on suppression of HIF-1 binding activity, not on alteration of GATA function. (orig.)

  19. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    Science.gov (United States)

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA.

  20. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...... increases the activation of transcription of a fatty acid-responsive promoter, whereas coexpression with thioesterase decreases the fatty acid-mediated response. Conflicting data exist in support of the notion that fatty acyl-CoA are natural ligands for peroxisomal proliferator-activated receptor alpha...

  1. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  2. Dose-dependent Inhibition of Gynecophoral Canal Protein Gene Expression in Vitro in the Schistosome (Schistosomajaponicum) by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    Guo-Feng CHENG; Jiao-Jiao LIN; Yi SHI; You-Xin JIN; Zhi-Qiang FU; Ya-Mei JIN; Yuan-Cong ZHOU; You-Min CAI

    2005-01-01

    The gynecophoral canal protein gene SjGCP of Schistosoma japonicum that is necessary for the pairing between the male and female worms is specifically expressed in the adult male worm. This protein is widely distributed in the adult female worm after pairing. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence were employed to analyze the relationship between the RNAi effect and dsRNA dosage in the parasites. The results revealed that the inhibition of SjGCP expression by siRNA is dose-dependent. RT-PCR analysis showed that the SjGCP transcript level was reduced by 75%when 100 nM dsRNA was applied.

  3. Expression of TNF-alpha-dependent apoptosis-related genes in the peripheral blood of Malagasy subjects with tuberculosis.

    Directory of Open Access Journals (Sweden)

    Niaina Rakotosamimanana

    Full Text Available The majority of Mycobacterium tuberculosis (Mtb infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective "protective immunity" against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23, their close household contacts (n = 80, and community controls (n = 46 were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be

  4. Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression.

    Directory of Open Access Journals (Sweden)

    Carmen Leida

    Full Text Available Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed.

  5. Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification

    Directory of Open Access Journals (Sweden)

    Spaink Herman P

    2011-06-01

    Full Text Available Abstract Background With the zebrafish increasingly being used in immunology and infectious disease research, there is a need for efficient molecular tools to evaluate immune gene expression in this model species. RT-MLPA (reverse transcription - multiplex ligation-dependent probe amplification provides a sensitive and reproducible method, in which fluorescently labelled amplification products of unique lengths are produced for a defined set of target transcripts. The method employs oligonucleotide probes that anneal to adjacent sites on a target sequence and are then joined by a heat-stable ligase. Subsequently, multiplex PCR with universal primers gives rise to amplicons that can be analyzed with standard sequencing equipment and relative quantification software. Allowing the simultaneous quantification of around 40 selected markers in a one-tube assay, RT-MLPA is highly useful for high-throughput screening applications. Findings We employed a dual-colour RT-MLPA probe design for chemical synthesis of probe pairs for 34 genes involved in Toll-like receptor signalling, transcriptional activation of the immune response, cytokine and chemokine production, and antimicrobial defence. In addition, six probe pairs were included for reference genes unaffected by infections in zebrafish. First, we established assay conditions for adult zebrafish infected with different strains of Mycobacterium marinum causing acute and chronic disease. Addition of competitor oligonucleotides was required to achieve peak heights in a similar range for genes with different expression levels. For subsequent analysis of embryonic samples it was necessary to adjust the amounts of competitor oligonucleotides, as the expression levels of several genes differed to a large extent between adult and embryonic tissues. Assay conditions established for one-day-old Salmonella typhimurium-infected embryos could be transferred without further adjustment to five-day-old M. marinum

  6. Temporal expression of staphylococcal enterotoxin h in comparison with accessory gene regulator-dependent and -independent enterotoxins.

    Science.gov (United States)

    Lis, Elżbieta; Podkowik, Magdalena; Bystroń, Jarosław; Stefaniak, Tadeusz; Bania, Jacek

    2012-02-01

    Using sandwich enzyme-linked immunosorbent assay (ELISA), the production of staphylococcal enterotoxin (SE) H was determined in 22 Staphylococcus aureus isolates bearing the seh gene. Samples of supernatants were taken at four time points corresponding to exponential phase (optical density at 600 nm [OD(600)] 0.3 to 0.6), late exponential phase (OD(600) 2 to 4), early stationary phase (OD(600) 4 to 6), and late stationary phase (OD(600) 7 to 12). In four isolates, SEH was detectable at a very low level at the first time point. In 18 isolates, the earliest SEH production was detected in the late exponential phase. For all isolates, there was an increase of SEH concentration with time. Western blot analysis revealed that SEH production, similar to SEA, started in the early exponential phase (OD(600) ∼ 0.5). Isolates with high SEH productivity, as measured by ELISA, demonstrated a higher seh transcription as well. sec transcription was induced in the stationary phase. An induction in the sea transcript was observed during mid- to late exponential phase. Expression profile of seh was similar to that of sea. We showed that the seh expression profile is similar to that of Agr-independent sea and not to that of Agr-dependent sec genes. SEH can be effectively expressed at low bacterial counts, meaning that even in an environment not favorable for S. aureus growth, seh-bearing strains can pose a risk for food safety.

  7. VEGF-A isoforms differentially regulate ATF-2–dependent VCAM-1 gene expression and endothelial–leukocyte interactions

    Science.gov (United States)

    Fearnley, Gareth W.; Odell, Adam F.; Latham, Antony M.; Mughal, Nadeem A.; Bruns, Alexander F.; Burgoyne, Nicholas J.; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C.; Hollstein, Monica C.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2014-01-01

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell–cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform–specific stimulation of VCAM-1 gene expression, which controls endothelial–leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform–specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A–stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A–stimulated VCAM-1 expression and endothelial–leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial–leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. PMID:24966171

  8. Chloromethane-Dependent Expression of the cmu Gene Cluster of Hyphomicrobium chloromethanicum

    OpenAIRE

    Borodina, Elena; McDonald, Ian R.; Murrell, J. Colin

    2004-01-01

    The methylotrophic bacterium Hyphomicrobium chloromethanicum CM2 can utilize chloromethane (CH3Cl) as the sole carbon and energy source. Previously genes cmuB, cmuC, cmuA, and folD were shown to be essential for the growth of Methylobacterium chloromethanicum on CH3Cl. These CH3Cl-specific genes were subsequently detected in H. chloromethanicum. Transposon and marker exchange mutagenesis studies were carried out to identify the genes essential for CH3Cl metabolism in H. chloromethanicum. New ...

  9. Histone hyperacetylation within the β-globin locus is context-dependent and precedes high-level gene expression

    Science.gov (United States)

    Fromm, George; de Vries, Christina; Byron, Rachel; Fields, Jennifer; Fiering, Steven; Groudine, Mark; Bender, M. A.; Palis, James

    2009-01-01

    Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the β-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications “hyperacetylated domains.” Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine β-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of β-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within β-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form. PMID:19690338

  10. Histone hyperacetylation within the beta-globin locus is context-dependent and precedes high-level gene expression.

    Science.gov (United States)

    Fromm, George; de Vries, Christina; Byron, Rachel; Fields, Jennifer; Fiering, Steven; Groudine, Mark; Bender, M A; Palis, James; Bulger, Michael

    2009-10-15

    Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the beta-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications "hyperacetylated domains." Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine beta-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of beta-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within beta-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form.

  11. Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone's level of tolerance.

    Science.gov (United States)

    Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A

    2014-09-01

    An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014

  12. Cloning, sequencing and expression of the Schwanniomyces occidentalis NADP-dependent glutamate dehydrogenase gene.

    Science.gov (United States)

    De Zoysa, P A; Connerton, I F; Watson, D C; Johnston, J R

    1991-08-01

    The cloned NADP-specific glutamate dehydrogenase (GDH) genes of Aspergillus nidulans (gdhA) and Neurospora crassa (am) have been shown to hybridize under reduced stringency conditions to genomic sequences of the yeast Schwanniomyces occidentalis. Using 5' and 3' gene-specific probes, a unique 5.1 kb BclI restriction fragment that encompasses the entire Schwanniomyces sequence has been identified. A recombinant clone bearing the unique BclI fragment has been isolated from a pool of enriched clones in the yeast/E. coli shuttle vector pWH5 by colony hybridization. The identity of the plasmid clone was confirmed by functional complementation of the Saccharomyces cerevisiae gdh-1 mutation. The nucleotide sequence of the Schw. occidentalis GDH gene, which consists of 1380 nucleotides in a continuous reading frame of 459 amino acids, has been determined. The predicted amino acid sequence shows considerable homology with GDH proteins from other fungi and significant homology with all other available GDH sequences.

  13. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    Energy Technology Data Exchange (ETDEWEB)

    Medina, D.; Oborn, C.J. (Baylor College of Medicine, Houston, TX (USA)); Li, M.L.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  15. CTX-M-1 β-lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Overgaard, Martin; Nielsen, Søren S.

    2015-01-01

    blaCTX-M-1 mRNA expression and CTX-M-1 protein levels were dependent on cefotaxime concentration, growth phase and gene location. These results provide insight into the expression of cephalosporin resistance in CTX-M-1-producing E. coli, improving our understanding of the relationship between...

  16. Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza.

    Science.gov (United States)

    Shao, Fenjuan; Lu, Shanfa

    2014-01-01

    RNA-dependent RNA polymerases (RDRs) act as key components of the small RNA biogenesis pathways and play significant roles in post-transcriptional gene silencing (PTGS) and antiviral defense. However, there is no information about the RDR gene family in Salvia miltiorrhiza, an emerging model medicinal plant with great economic value. Through genome-wide predication and subsequent molecular cloning, five full-length S. miltiorrhiza RDR genes, termed SmRDR1-SmRDR5, were identified. The length of SmRDR cDNAs varies between 3,262 (SmRDR5) and 4,130 bp (SmRDR3). The intron number of SmRDR genes varies from 3 (SmRDR1, SmRDR3 and SmRDR4) to 17 (SmRDR5). All of the deduced SmRDR protein sequences contain the conserved RdRp domain. Moreover, SmRDR2 and SmRDR4 have an additional RRM domain. Based on the phylogenetic tree constructed with sixteen RDRs from Arabidopsis, rice and S. miltiorrhiza, plant RDRs may be divided into four groups (RDR1-RDR4). The RDR1 group contains an AtRDR and an OsRDR, while includes two SmRDRs. On the contrary, the RDR3 group contains three AtRDRs and two OsRDRs, but has only one SmRDR. SmRDRs were differentially expressed in flowers, leaves, stems and roots of S. miltiorrhiza and responsive to methyl jasmonate treatment and cucumber mosaic virus infection. The results suggest the involvement of RDRs in S. miltiorrhiza development and response to abiotic and biotic stresses. It provides a foundation for further studying the regulation and biological functions of SmRDRs and the biogenesis pathways of small RNAs in S. miltiorrhiza.

  17. Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Fenjuan Shao

    Full Text Available RNA-dependent RNA polymerases (RDRs act as key components of the small RNA biogenesis pathways and play significant roles in post-transcriptional gene silencing (PTGS and antiviral defense. However, there is no information about the RDR gene family in Salvia miltiorrhiza, an emerging model medicinal plant with great economic value. Through genome-wide predication and subsequent molecular cloning, five full-length S. miltiorrhiza RDR genes, termed SmRDR1-SmRDR5, were identified. The length of SmRDR cDNAs varies between 3,262 (SmRDR5 and 4,130 bp (SmRDR3. The intron number of SmRDR genes varies from 3 (SmRDR1, SmRDR3 and SmRDR4 to 17 (SmRDR5. All of the deduced SmRDR protein sequences contain the conserved RdRp domain. Moreover, SmRDR2 and SmRDR4 have an additional RRM domain. Based on the phylogenetic tree constructed with sixteen RDRs from Arabidopsis, rice and S. miltiorrhiza, plant RDRs may be divided into four groups (RDR1-RDR4. The RDR1 group contains an AtRDR and an OsRDR, while includes two SmRDRs. On the contrary, the RDR3 group contains three AtRDRs and two OsRDRs, but has only one SmRDR. SmRDRs were differentially expressed in flowers, leaves, stems and roots of S. miltiorrhiza and responsive to methyl jasmonate treatment and cucumber mosaic virus infection. The results suggest the involvement of RDRs in S. miltiorrhiza development and response to abiotic and biotic stresses. It provides a foundation for further studying the regulation and biological functions of SmRDRs and the biogenesis pathways of small RNAs in S. miltiorrhiza.

  18. Regulation of gene expression by 17β-estradiol in the arcuate nucleus of the mouse through ERE-dependent and ERE-independent mechanisms.

    Science.gov (United States)

    Yang, Jennifer A; Mamounis, Kyle J; Yasrebi, Ali; Roepke, Troy A

    2016-03-01

    17β-Estradiol (E2) modulates gene expression in the hypothalamic arcuate nucleus (ARC) to control homeostatic functions. In the ARC, estrogen receptor (ER) α is highly expressed and is an important contributor to E2's actions, controlling gene expression through estrogen response element (ERE)-dependent and -independent mechanisms. The objective of this study was to determine if known E2-regulated genes are regulated through these mechanisms. The selected genes have been shown to regulate homeostasis and have been separated into three subsections: channels, receptors, and neuropeptides. To determine if ERE-dependent or ERE-independent mechanisms regulate gene expression, two transgenic mouse models, an ERα knock-out (ERKO) and an ERα knock-in/knock-out (KIKO), which lacks a functional ERE binding domain, were used in addition to their wild-type littermates. Females of all genotypes were ovariectomized and injected with oil or estradiol benzoate (E2B). Our results suggest that E2B regulates multiple genes through these mechanisms. Of note, Cacna1g and Kcnmb1 channel expression was increased by E2B in WT females only, suggesting an ERE-dependent regulation. Furthermore, the NKB receptor, Tac3r, was suppressed by E2B in WT and KIKO females but not ERKO females, suggesting that ERα-dependent, ERE-independent signaling is necessary for Tac3r regulation. The adrenergic receptor Adra1b was suppressed by E2B in all genotypes indicating that ERα is not the primary receptor for E2B's actions. The neuropeptide Tac2 was suppressed by E2B through ERE-dependent mechanisms. These results indicate that E2B activates both ERα-dependent and independent signaling in the ARC through ERE-dependent and ERE-independent mechanisms to control gene expression.

  19. The melatonin agonist ramelteon induces duration-dependent clock gene expression through cAMP signaling in pancreatic INS-1 β-cells.

    Directory of Open Access Journals (Sweden)

    Keiji Nishiyama

    Full Text Available Prolonged exposure to melatonin improves glycemic control in animals. Although glucose metabolism is controlled by circadian clock genes, little is known about the role of melatonin signaling and its duration in the regulation of clock gene expression in pancreatic β-cells. Activation of MT1 and MT2 melatonin receptors inhibits cAMP signaling, which mediates clock gene expression. Therefore, this study investigated exposure duration-dependent alterations in cAMP element-binding protein (CREB phosphorylation and clock gene expression that occur during and after exposure to ramelteon, a selective melatonin agonist used to treat insomnia. In rat INS-1 cells, a pancreatic β-cell line endogenously expressing melatonin receptors, ramelteon persistently decreased CREB phosphorylation during the treatment period (2-14 h, whereas the subsequent washout induced an enhancement of forskolin-stimulated CREB phosphorylation in a duration- and concentration-dependent manner. This augmentation was blocked by forskolin or the melatonin receptor antagonist luzindole. Similarly, gene expression analyses of 7 clock genes revealed the duration dependency of the effects of ramelteon on Rev-erbα and Bmal1 expression through melatonin receptor-mediated cAMP signaling; longer exposure times (14 h resulted in greater increases in the expression and signaling of Rev-erbα, which is related to β-cell functions. Interestingly, this led to amplified oscillatory Rev-erbα and Bmal1 expression after agonist washout and forskolin stimulation. These results provide new insights into the duration-dependent effects of ramelteon on clock gene expression in INS-1 cells and may improve the understanding of its effect in vivo. The applicability of these results to pancreatic islets awaits further investigation.

  20. Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression

    National Research Council Canada - National Science Library

    Mostafavi, Mina; Lewis, Jainee Christa; Saini, Tanisha; Bustamante, Julian Albert; Gao, Ivan Thomas; Tran, Tuyet Thi; King, Sean Nicholas; Huang, Zhenzhong; Chen, Joseph C

    2014-01-01

    .... A tightly regulated promoter that enables titratable expression of a cloned gene in these different models is highly desirable, as it can facilitate observation of phenotypes that would otherwise...

  1. Intrinsic androgen-dependent gene expression patterns revealed by comparison of genital fibroblasts from normal males and individuals with complete and partial androgen insensitivity syndrome

    Directory of Open Access Journals (Sweden)

    Schweikert Hans-Udo

    2007-10-01

    Full Text Available Abstract Background To better understand the molecular programs of normal and abnormal genital development, clear-cut definition of androgen-dependent gene expression patterns, without the influence of genotype (46, XX vs. 46, XY, is warranted. Previously, we have identified global gene expression profiles in genital-derived fibroblasts that differ between 46, XY males and 46, XY females with complete androgen insensitivity syndrome (CAIS due to inactivating mutations of the androgen receptor (AR. While these differences could be due to cell autonomous changes in gene expression induced by androgen programming, recent work suggests they could also be influenced by the location from which the fibroblasts were harvested (topology. To minimize the influence of topology, we compared gene expression patterns of fibroblasts derived from identical urogenital anlagen: the scrotum in normally virilized 46, XY males and the labia majora from completely feminized 46, XY individuals with CAIS. Results 612 transcripts representing 440 unique genes differed significantly in expression levels between scrotum and CAIS labia majora, suggesting the effects of androgen programming. While some genes coincided with those we had identified previously (TBX3, IGFBP5, EGFR, CSPG2, a significant number did not, implying that topology had influenced gene expression in our previous experiments. Supervised clustering of gene expression data derived from a large set of fibroblast cultures from individuals with partial AIS revealed that the new, topology controlled data set better classified the specimens. Conclusion Inactivating mutations of the AR, in themselves, appear to induce lasting changes in gene expression in cultured fibroblasts, independent of topology and genotype. Genes identified are likely to be relevant candidates to decipher androgen-dependent normal and abnormal genital development.

  2. Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots.

    Science.gov (United States)

    Hayashi, Satomi; Reid, Dugald E; Lorenc, Michał T; Stiller, Jiri; Edwards, David; Gresshoff, Peter M; Ferguson, Brett J

    2012-10-01

    All lateral organ development in plants, such as nodulation in legumes, requires the temporal and spatial regulation of genes and gene networks. A total mRNA profiling approach using RNA-seq to target the specific soybean (Glycine max) root tissues responding to compatible rhizobia [i.e. the Zone Of Nodulation (ZON)] revealed a large number of novel, often transient, mRNA changes occurring during the early stages of nodulation. Focusing on the ZON enabled us to discard the majority of root tissues and their developmentally diverse gene transcripts, thereby highlighting the lowly and transiently expressed nodulation-specific genes. It also enabled us to concentrate on a precise moment in early nodule development at each sampling time. We focused on discovering genes regulated specifically by the Bradyrhizobium-produced Nod factor signal, by inoculating roots with either a competent wild-type or incompetent mutant (nodC(-) ) strain of Bradyrhizobium japonicum. Collectively, 2915 genes were identified as being differentially expressed, including many known soybean nodulation genes. A number of unknown nodulation gene candidates and soybean orthologues of nodulation genes previously reported in other legume species were also identified. The differential expression of several candidates was confirmed and further characterized via inoculation time-course studies and qRT-PCR. The expression of many genes, including an endo-1,4-β-glucanase, a cytochrome P450 and a TIR-LRR-NBS receptor kinase, was transient, peaking quickly during the initiation of nodule ontogeny. Additional genes were found to be down-regulated. Significantly, a set of differentially regulated genes acting in the gibberellic acid (GA) biosynthesis pathway was discovered, suggesting a novel role of GAs in nodulation. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  3. Human chorionic somatomammotropin and growth hormone gene expression in rat pituitary tumor cells is dependent on proximal promoter sequences

    Energy Technology Data Exchange (ETDEWEB)

    Nachtigal, M.W.; Nickel, B.E.; Klassen, M.E.; Cattini, P.A. (Univ. of Manitoba, Winnipeg (Canada)); Zhang, Wengang; Eberhardt, N.L. (Univ. of California, San Francisco (USA))

    1989-06-12

    Human placental chorionic somatomammotropin (hCS-A or hCS-B) and pituitary growth hormone (hGH-N) are related by structure and function. The hCS-A gene is expressed in rat pituitary tumor (GC) cells after gene transfer. Deletion of hCS-A 5{prime}-flanking DNA reveals repressor activity upstream of nucleotide {minus}132, and a region essential for expression in GC cells between nucleotides {minus}94 and {minus}61. The sequences in this region differ from the equivalent hGH-N gene DNA by one nucleotide, and include the binding site for a pituitary-specific factor (GHF-1), required for hGH-N expression in GC cells. Exchange of hGH-N with hCS-A gene DNA in this region maintains expression in GC cells. By contrast, modification of these sequences blocks expression. These data indicate that proximal promoter sequences, equivalent to those bound by GHF-1 on the hGH-N gene, are required for hCS-A expression in GC cells.

  4. Expression analysis of argonaute, Dicer-like, and RNA-dependent RNA polymerase genes in cucumber (Cucumis sativus L.) in response to abiotic stress

    Indian Academy of Sciences (India)

    DEFANG GAN; MENGDAN ZHAN; FENG YANG; QIQI ZHANG; KELING HU; WENJUAN XU; QINGHUI LU; LING ZHANG; DANDI LIANG

    2017-06-01

    Posttranscriptional control of gene expression can be achieved through RNA interference when the activities of Dicer-like (DCL), argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins are significant. In this study, we analysed the expression of seven AGO, five DCL and eight RDR genes in cucumber under cold, heat, hormone, salinity and dehydration treatments using quantitative reverse-transcription PCR (qRT-PCR). All CsAGO, CsDCL and CsRDR genes were differentially expressed under abiotic stress treatment. In response to abiotic stress treatment, most genes were expressed at higher levels in flowers or stems than in other organs, whereas some CsAGOs (CsAGO1c, CsAGO6 and CsAGO7) and CsRDRs (CsRDR1d andCsRDR2) were highly expressed in roots during dehydration treatment. The expression patterns indicate that most CsDCLs, CsAGOs and CsRDRs respond to abiotic stress, and stems or flowers are the most sensitive organs, followed by roots. This is the first report of expression analysis of all CsDCL, CsAGO and CsRDR family genes in cucumber under abiotic stress, whichprovides basic information and insights into the putative roles of these genes in abiotic stress. The results of this study should serve as a basis for further functional characterization of these gene families in cucumber and related Cucurbitaceae species.

  5. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Excessive intake of dietary fat is known to be a contributing factor in the development of obesity. In this study, we determined the dose-dependent effects of dietary fat on the development of this metabolic condition with a focus on changes in gene expression in the small intestine. C57BL/6J mice were fed diets with either 10, 20, 30 or 45 energy% (E% derived from fat for four weeks (n = 10 mice/diet. We found a significant higher weight gain in mice fed the 30E% and 45E% fat diet compared to mice on the control diet. These data indicate that the main shift towards an obese phenotype lies between a 20E% and 30E% dietary fat intake. Analysis of differential gene expression in the small intestine showed a fat-dose dependent gradient in differentially expressed genes, with the highest numbers in mice fed the 45E% fat diet. The main shift in fat-induced differential gene expression was found between the 30E% and 45E% fat diet. Furthermore, approximately 70% of the differentially expressed genes were changed in a fat-dose dependent manner. Many of these genes were involved in lipid metabolism-related processes and were already differentially expressed on a 30E% fat diet. Taken together, we conclude that up to 20E% of dietary fat, the small intestine has an effective 'buffer capacity' for fat handling. From 30E% of dietary fat, a switch towards an obese phenotype is triggered. We further speculate that especially fat-dose dependently changed lipid metabolism-related genes are involved in development of obesity.

  6. Context-dependent expression of the foraging gene in field colonies of ants: the interacting roles of age, environment and task.

    Science.gov (United States)

    Ingram, Krista K; Gordon, Deborah M; Friedman, Daniel A; Greene, Michael; Kahler, John; Peteru, Swetha

    2016-08-31

    Task allocation among social insect workers is an ideal framework for studying the molecular mechanisms underlying behavioural plasticity because workers of similar genotype adopt different behavioural phenotypes. Elegant laboratory studies have pioneered this effort, but field studies involving the genetic regulation of task allocation are rare. Here, we investigate the expression of the foraging gene in harvester ant workers from five age- and task-related groups in a natural population, and we experimentally test how exposure to light affects foraging expression in brood workers and foragers. Results from our field study show that the regulation of the foraging gene in harvester ants occurs at two time scales: levels of foraging mRNA are associated with ontogenetic changes over weeks in worker age, location and task, and there are significant daily oscillations in foraging expression in foragers. The temporal dissection of foraging expression reveals that gene expression changes in foragers occur across a scale of hours and the level of expression is predicted by activity rhythms: foragers have high levels of foraging mRNA during daylight hours when they are most active outside the nests. In the experimental study, we find complex interactions in foraging expression between task behaviour and light exposure. Oscillations occur in foragers following experimental exposure to 13 L : 11 D (LD) conditions, but not in brood workers under similar conditions. No significant differences were seen in foraging expression over time in either task in 24 h dark (DD) conditions. Interestingly, the expression of foraging in both undisturbed field and experimentally treated foragers is also significantly correlated with the expression of the circadian clock gene, cycle Our results provide evidence that the regulation of this gene is context-dependent and associated with both ontogenetic and daily behavioural plasticity in field colonies of harvester ants. Our results underscore

  7. Histomorphology and small intestinal sodium-dependent glucose transporter 1 gene expression in piglets fed phytic acid and phytase-supplemented diets.

    Science.gov (United States)

    Woyengo, T A; Rodriguez-Lecompte, J C; Adeola, O; Nyachoti, C M

    2011-08-01

    An experiment was conducted to determine the effect of dietary phytic acid (PA) and phytase supplementation on small intestinal histomorphology and Na-dependent glucose transporter 1 (SGLT1) gene expression in piglets. Twenty-four piglets with an average initial BW of 7.60 ± 0.73 kg were randomly assigned to 3 experimental diets, to give 8 piglets per diet. The diets were a casein-cornstarch-based diet that was supplemented with 0 or 2% PA, or 2% PA (as Na phytate) plus an Escherichia coli-derived phytase at 500 phytase units/kg. The basal diet was formulated to meet the 1998 NRC energy, digestible AA, mineral, and vitamin requirements for piglets. After 10 d of feeding, the piglets were killed to determine small intestinal histomorphology and small intestinal SGLT1 gene expression. Phytic acid supplementation did not affect (P > 0.1) villus height (VH) and the VH-to-crypt depth (CD) ratio, but did decrease (P 0.1) VH, CD, and the VH-to-CD ratio. Phytic acid supplementation reduced SGLT1 gene expression in the duodenum, jejunum, and ileum by 1.1-, 5.4-, and 2.4-fold, respectively. Phytase supplementation increased SGLT1 gene expression in the jejunum by 2.6-fold, but reduced SGLT1 gene expression in the duodenum and ileum by 2.0- and 4.0-fold, respectively. In conclusion, PA reduced CD in the jejunum and SGLT1 gene expression in the duodenum, jejunum, and ileum, whereas phytase supplementation increased the expression of SGLT1 in the jejunum. The reduced SGLT1 gene expression by PA implies that PA reduces nutrient utilization in pigs partly through reduced expression of SGLT1, which is involved in glucose and Na absorption. The increased expression of SGLT1 in the jejunum by phytase supplementation implies that phytase alleviated the negative effects of PA partly through increased expression of SGLT1.

  8. Positively regulated glycerol/G3P-dependent Bacillus subtilis gene expression system based on anti-termination.

    Science.gov (United States)

    Lewin, Anna; Su, Xiao-Dong; Hederstedt, Lars

    2009-01-01

    Plasmid pLALA was constructed for glycerol or glycerol-3-phosphate inducible plasmid-borne gene expression in Bacillus subtilis and closely related Gram-positive bacteria. Gene expression using pLALA is based on anti-termination of transcription and involves the B. subtilis GlpP protein that in the presence of glycerol-3-phosphate acts as an anti-terminator protein by binding to the 5'-untranslated region of glpD mRNA. Properties and the usefulness of the system, denoted LALA, were validated by inducible production in B. subtilis strains of two water-soluble proteins (beta-galactosidase and a protein phospho-tyrosine phosphatase), and one integral membrane protein (heme A synthase). Advantages with LALA is that it is based on positive control, does not involve a DNA-binding protein, and that glycerol, a cheap and stable compound, can be used as inducer of gene expression.

  9. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident.

    Directory of Open Access Journals (Sweden)

    Michael Abend

    Full Text Available The strong and consistent relationship between irradiation at a young age and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis in humans. We thus evaluated differential gene expression in thyroid tissue in relation to iodine-131 (I-131 doses received from the Chernobyl accident. Sixty three of 104 papillary thyroid cancers diagnosed between 1998 and 2008 in the Ukrainian-American cohort with individual I-131 thyroid dose estimates had paired RNA specimens from fresh frozen tumor (T and normal (N tissue provided by the Chernobyl Tissue Bank and satisfied quality control criteria. We first hybridized 32 randomly allocated RNA specimen pairs (T/N on 64 whole genome microarrays (Agilent, 4×44 K. Associations of differential gene expression (log(2(T/N with dose were assessed using Kruskall-Wallis and trend tests in linear mixed regression models. While none of the genes withstood correction for the false discovery rate, we selected 75 genes with a priori evidence or P kruskall/P trend <0.0005 for validation by qRT-PCR on the remaining 31 RNA specimen pairs (T/N. The qRT-PCR data were analyzed using linear mixed regression models that included radiation dose as a categorical or ordinal variable. Eleven of 75 qRT-PCR assayed genes (ACVR2A, AJAP1, CA12, CDK12, FAM38A, GALNT7, LMO3, MTA1, SLC19A1, SLC43A3, ZNF493 were confirmed to have a statistically significant differential dose-expression relationship. Our study is among the first to provide direct human data on long term differential gene expression in relation to individual I-131 doses and to identify a set of genes potentially important in radiation carcinogenesis.

  10. The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer elements.

    Science.gov (United States)

    Riabowol, K T; Fink, J S; Gilman, M Z; Walsh, D A; Goodman, R H; Feramisco, J R

    1988-11-03

    Transcriptional regulation of eukaryotic genes by cyclic AMP requires a cAMP-dependent protein kinase (A kinase). Two hypotheses have been proposed to explain how the holoenzyme of the A kinase induces transcription. The regulatory subunits of the A kinase, which bind cAMP and DNA, and have amino-acid homology with the Escherichia coli catabolite activator protein could directly stimulate gene expression. Alternatively, phosphorylation by the catalytic subunits could induce transcription by activating proteins involved in gene transcription. To distinguish between these models, we microinjected purified preparations of the catalytic and regulatory subunits of A kinase into tissue culture cells and monitored expression of a stably integrated fusion gene containing a cAMP-responsive human promoter fused to a bacterial reporter gene, or of the endogenous c-fos gene. The catalytic subunit stimulated expression of these genes, whereas the regulatory subunit did not. These results indicate that the catalytic subunit of A kinase is sufficient to induce expression of two cAMP-responsive genes, without increasing levels of cAMP.

  11. Prostaglandin E-2 differentially modulates IL-5 gene expression in activated human T lymphocytes depending on the costimulatory signal

    NARCIS (Netherlands)

    Borger, P; Vellenga, E; Gringhuis, SI; Timmerman, JAB; Lummen, C; Postma, DS; Kauffman, HF

    1998-01-01

    Background: Protein kinase A (PKA) activation is documented to be inhibitory for T helper cell (T-H1)-like cytokines (IL-2, IFN-gamma), whereas T-H2-like cytokines (IL-4, IL-5) are not affected or upregulated. We have recently shown that IL-4 gene expression can be inhibited by PKA activation but de

  12. Regulation of per and cry genes reveals a central role for the D-box enhancer in light-dependent gene expression.

    Directory of Open Access Journals (Sweden)

    Philipp Mracek

    Full Text Available Light serves as a key environmental signal for synchronizing the circadian clock with the day night cycle. The zebrafish represents an attractive model for exploring how light influences the vertebrate clock mechanism. Direct illumination of most fish tissues and cell lines induces expression of a broad range of genes including DNA repair, stress response and key clock genes. We have previously identified D- and E-box elements within the promoter of the zebrafish per2 gene that together direct light-induced gene expression. However, is the combined regulation by E- and D-boxes a general feature for all light-induced gene expression? We have tackled this question by examining the regulation of additional light-inducible genes. Our results demonstrate that with the exception of per2, all other genes tested are not induced by light upon blocking of de novo protein synthesis. We reveal that a single D-box serves as the principal light responsive element within the cry1a promoter. Furthermore, upon inhibition of protein synthesis D-box mediated gene expression is abolished while the E-box confers light driven activation as observed in the per2 gene. Given the existence of different photoreceptors in fish cells, our results implicate the D-box enhancer as a general convergence point for light driven signaling.

  13. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner.

    Science.gov (United States)

    Ly, Anna; Ishiguro, Lisa; Kim, Denise; Im, David; Kim, Sung-Eun; Sohn, Kyoung-Jin; Croxford, Ruth; Kim, Young-In

    2016-07-01

    Maternal folic acid supplementation can alter DNA methylation and gene expression in the developing fetus, which may confer disease susceptibility later in life. We determined which gestation period and organ were most sensitive to the modifying effect of folic acid supplementation during pregnancy on DNA methylation and gene expression in the offspring. Pregnant rats were randomized to a control diet throughout pregnancy; folic acid supplementation at 2.5× the control during the 1st, 2nd or 3rd week of gestation only; or folic acid supplementation throughout pregnancy. The brain, liver, kidney and colon from newborn pups were analyzed for folate concentrations, global DNA methylation and gene expression of the Igf2, Er-α, Gr, Ppar-α and Ppar-γ genes. Folic acid supplementation during the 2nd or 3rd week gestation or throughout pregnancy significantly increased brain folate concentrations (Pfolic acid supplementation throughout pregnancy significantly increased liver folate concentrations (P=.005), in newborn pups. Brain global DNA methylation incrementally decreased from early to late gestational folic acid supplementation and was the lowest with folic acid supplementation throughout pregnancy (P=.026). Folic acid supplementation in late gestation or throughout pregnancy significantly decreased Er-α, Gr and Ppar-α gene expression in the liver (Pfolic acid supplementation. Maternal folic acid supplementation affects tissue folate concentrations, DNA methylation and gene expression in the offspring in a gestation-period-dependent and organ-specific manner.

  14. Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zu, T; Verna, J; Ballester, R

    2001-09-01

    Intracellular signaling by mitogen-activated protein (MAP) kinase cascades plays an essential role in the cellular response to environmental stress. In the yeast Saccharomyces cerevisiae, the PKC1-regulated, stress-activated MAP kinase pathway, the MPK1 cascade, is activated by heat and by a decrease in osmolarity. The genes WSC1, WSC2 and WSC3 encode putative receptors that maintain cell wall integrity under conditions of heat stress. Genetic studies place the function of the WSC genes upstream of the MPK1 kinase cascade. To further define the role of the WSC family in the stress response we determined whether: (1) the wscdelta mutants are sensitive to other environmental stress conditions, in addition to heat shock; (2) expression from four transcriptional control elements, known to be activated by stress, is impaired in wscdelta mutants; and (3) Wsc4, a Wsc homolog, has functions that overlap with those of the other Wsc family members. We report here that deletion of WSC and PKC1 causes hypersensitivity to ethanol, hydrogen peroxide and DNA-damaging drugs. In wscdelta mutants expression of beta-galactosidase from the AP-1 response element (ARE), the heat shock response element (HSE) or the stress response element (STRE) is not reduced. In contrast, expression of a reporter gene placed under the control of the Rlm1 (transcription factor)-dependent response element is significantly reduced in wscdelta mutants. This suggests that the lysis defect of wscdelta mutants is at least in part caused by a defect in transcriptional regulation by Rlm1. Phenotypic analysis of the effect of deleting WSC4 in a wsc1delta mutant show that, unlike WSC2 or WSC3, deletion of WSC4 does not exacerbate the lysis defect of a wsc1delta strain. In contrast, deletion of WSC4 enhances the sensitivity of the wsc1delta mutant to heat shock, ethanol, and a DNA-damaging drug, suggesting that WSC4 plays a role in the response to environmental stress but that its function may differ from those of

  15. Gene expression analysis of a panel of cell lines that differentially restrict HIV-1 CA mutants infection in a cyclophilin a-dependent manner.

    Directory of Open Access Journals (Sweden)

    Vaibhav B Shah

    Full Text Available HIV-1 replication is dependent on binding of the viral capsid to the host protein cyclophilin A (CypA. Interference with cyclophilin A binding, either by mutations in the HIV-1 capsid protein (CA or by the drug cyclosporine A (CsA, inhibits HIV-1 replication in cell culture. Resistance to CsA is conferred by A92E or G94D substitutions in CA. The mutant viruses are also dependent on CsA for their replication. Interestingly, infection of some cell lines by these mutants is enhanced by CsA, while infection of others is not affected by the drug. The cells are thus termed nonpermissive and permissive, respectively, for infection by CsA-dependent mutants. The mechanistic basis for the cell type dependence is not well understood, but has been hypothesized to result from a dominant-acting host factor that blocks HIV-1 infection by a mechanism that requires CypA binding to the viral capsid. In an effort to identify a CypA-dependent host restriction factor, we adopted a strategy involving comparative gene expression analysis in three permissive and three non-permissive cell types. We ranked the genes based on their relative overexpression in non-permissive cell types compared to the permissive cell types. Based on specific selection criteria, 26 candidate genes were selected and targeted using siRNA in nonpermissive (HeLa cells. Depletion of none of the selected candidate genes led to the reversal of CsA-dependent phenotype of the A92E mutant. Our data suggest that none of the 26 genes tested is responsible for the dependence of the A92E mutant on CsA. Our study provides gene expression data that may be useful for future efforts to identify the putative CypA-dependent HIV-1 restriction factor and in studies of other cell-specific phenotypes.

  16. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate

    Energy Technology Data Exchange (ETDEWEB)

    Labrie, C.; Simard, J.; Zhao, H.F.; Belanger, A.; Pelletier, G.; Labrie, F. (Laval Univ. Medical Center, Quebec (Canada))

    1989-06-01

    Androgens play a major role in the development, growth, and function of accessory sexual organs, especially the prostate. However, the testis is not the sole source of circulating androgens in man, since the adrenal gland secretes dehydroepiandrosterone (DHEA), DHEA sulfate, and androstenedione (delta 4-dione) in large quantities. The aim of the present study was to investigate the effect of plasma concentrations of DHEA and delta 4-dione similar to those found in adult man on sensitive and specific markers of androgen action in the rat ventral prostate. In addition to ventral prostate weight, we have measured the steady state levels of the mRNAs encoding the C1 component of rat prostatic binding protein (PBP-C1) and spermine-binding protein (SBP) using 35S-labeled cDNA probes for in situ hybridization. One week after castration, ventral prostate weight fell 84%, while prostatic 5 alpha-dihydrotestosterone (DHT) and androgen-dependent mRNAs were undetectable. When administered via Silastic implants to castrated adult rats for 1 week, plasma concentrations of 1.37 +/- 0.06 ng/ml DHEA or 0.43 +/- 0.08 ng/ml delta 4-dione independently caused increases in ventral prostate weight to 33% and 65% of normal values, respectively. The same plasma levels of DHEA and delta 4-dione resulted in high intraprostatic levels of DHT to 1.19 +/- 0.34 and 3.66 +/- 0.89 ng/g tissue, respectively. Furthermore, DHEA caused an increase in the steady state levels of PBP-C1 and SBP mRNAs to 50% and 57% of the normal state, respectively, while delta 4-dione caused increases corresponding to 80% and 119% of control values, respectively. Castrated adult rats receiving testosterone at a concentration of 1.66 +/- 0.37 ng/ml plasma maintained normal ventral prostate weight and gene expression levels.

  17. Strain dependent gene expression and neurochemical levels in the brain of zebrafish: focus on a few alcohol related targets.

    Science.gov (United States)

    Pan, Y; Chatterjee, D; Gerlai, R

    2012-12-05

    The zebrafish is becoming increasingly popular in behavior genetics because it may allow one to conduct large scale mutation and drug screens facilitating the discovery of mechanisms of complex traits. Strain differences in adult zebrafish behavior have already been reported, which may have important implications in neurobehavioral genetics. For example, we have found the AB and SF strains to differ in their behavioral responses to both acute and chronic alcohol exposure. In the current study, we further characterize these strains using semi-quantitative RT-PCR to measure the expression of ten selected genes and HPLC to measure the levels of nine neurochemicals. We chose the target genes and neurochemicals based upon their potential involvement in alcohol and other drugs of abuse related mechanisms. We quantified the expression of the genes encoding D1-R, D2a-R, D4a-R dopamine receptors, GABA(A)-R, GABA(B)-R1, GAD1, MAO, NMDA-R (NR2D subunit), 5HT-R1bd and SLC6 a4a. We found the gene encoding D1 dopamine receptor over-expressed and the genes encoding GABA(B1) receptor and solute family carrier protein 6 (SLC6) 4a under-expressed in SF compared to AB. We also found the level of all (dopamine, DOPAC, Serotonin, GABA, Glutamate, Glycine, Aspartate, Taurine) but one (5HIAA) neurochemicals tested decreased in SF as compared to AB. These results, combined with previously identified behavioral differences between the AB and SF strains, demonstrate the importance of strain characterization in zebrafish. They now also allow formulation of working hypotheses about possible mechanisms underlying the differential effects of acute and chronic alcohol treatment on these two zebrafish strains.

  18. A novel statistical algorithm for gene expression analysis helps differentiate pregnane X receptor-dependent and independent mechanisms of toxicity.

    Directory of Open Access Journals (Sweden)

    M Ann Mongan

    Full Text Available Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1 We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2 We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR(+/+ and pregnane X receptor-knockout (PXR(-/- mice after 96 h exposure to CMP013, an inhibitor of β-secretase (β-site of amyloid precursor protein cleaving enzyme 1 or BACE1. Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR(+/+ animals. Comparison of concordant expression changes between PXR(+/+ and PXR(-/- mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport.

  19. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element.

    Directory of Open Access Journals (Sweden)

    Helit Cohen

    Full Text Available Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.

  20. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: Two components in radiation-induced genomic instability?

    Energy Technology Data Exchange (ETDEWEB)

    Huumonen, Katriina [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Korkalainen, Merja [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Boman, Eeva; Heikkilä, Janne [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Höytö, Anne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Lahtinen, Tapani [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Luukkonen, Jukka [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Viluksela, Matti [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Naarala, Jonne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Juutilainen, Jukka, E-mail: jukka.juutilainen@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland)

    2014-07-15

    Highlights: • Development with time of radiation-induced genomic instability (RIGI) was studied. • Dose–response of micronuclei showed marked time-dependent changes. • A new model assuming two components in RIGI was found to fit with the data. • The persisting component of RIGI seems to be independent of dose above a threshold. • Increasing heterogeneity was characteristic to delayed gene expression changes. - Abstract: Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was measured at the same points in time by PCR arrays profiling the expression of 84 cancer-relevant genes. The micronucleus results showed a gradual decrease in the slope of the dose–response curve between days 2 and 15. The data were consistent with a model assuming two components in RIGI. The first component is characterized by dose-dependent increase in micronuclei. It may persist more than ten cell generations depending on dose, but eventually disappears. The second component is more persistent and independent of dose above a threshold higher than 0.2 Gy. Gene expression analysis 2 days after irradiation at 5 Gy showed consistent changes in genes that typically respond to DNA damage. However, the consistency of changes decreased with time, suggesting that non-specificity and increased heterogeneity of gene expression are characteristic to the second, more persistent component of RIGI.

  1. Ca2+ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca2+-Dependent Nuclear Gene Expression

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    2015-07-01

    Full Text Available In polarized cells or cells with complex geometry, clustering of plasma-membrane (PM ion channels is an effective mechanism for eliciting spatially restricted signals. However, channel clustering is also seen in cells with relatively simple topology, suggesting it fulfills a more fundamental role in cell biology than simply orchestrating compartmentalized responses. Here, we have compared the ability of store-operated Ca2+ release-activated Ca2+ (CRAC channels confined to PM microdomains with a similar number of dispersed CRAC channels to activate transcription factors, which subsequently increase nuclear gene expression. For similar levels of channel activity, we find that channel confinement is considerably more effective in stimulating gene expression. Our results identify a long-range signaling advantage to the tight evolutionary conservation of channel clustering and reveal that CRAC channel aggregation increases the strength, fidelity, and reliability of the general process of excitation-transcription coupling.

  2. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  3. Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing WANG; Jie YANG; Hui CANG; Yan Qiong ZOU; Jing YI

    2005-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) could enhance the sensitivity of tumor cells to arsenic trioxide (As2O3)-induced apoptosis via generation of ROS,but the molecular mechanism has not been elucidated.Here,we carried out cDNA microarray-based global transcription profiling of HeLa cells in response to As2O3/emodin cotreatment,comparing with As2O3-only treatment.The results showed that the expression of a number of genes was substantially altered at two time points.These genes are involved in different aspects of cell function.In addition to redox regulation and apoptosis,ROS affect genes encoding proteins associated with cell signaling,organelle functions,cell cycle,cytoskeleton,etc.These data suggest that based on the cytotoxicity of As2O3,emodin mobilize every genomic resource through which the As2O3-induced apoptosis is facilitated.

  4. Characterization of heterologously expressed transporter genes by patch- and voltage-clamp methods: Application to cyclic nucleotide-dependent responses

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2013-09-03

    The application of patch- and voltage-clamp methods to study ion transport can be limited by many hurdles: the size of the cells to be patched and/or stabbed, the subcellular localization of the molecule of interest, and its density of expression that could be too low even in their own native environment. Functional expression of genes using recombinant DNA technology not only overcomes those hurdles but also affords additional and elegant investigations such as single-point mutation studies and subunit associations/regulations. In this chapter, we give a step-by-step description of two electrophysiological methods, patch clamp and two-electrode voltage clamp (TEVC), that are routinely used in combination with heterologous gene expression to assist researchers interested in the identification and characterization of ion transporters. We describe how to (1) obtain and maintain the cells suitable for the use with each of the above-mentioned methods (i.e., HEK-293 cells and yeast spheroplasts to use with the patch-clamp methodology and Xenopus laevis oocytes with TEVC), (2) transfect/inject them with the gene of interest, and (3) record ion transport activities. © Springer Science+Business Media New York 2013.

  5. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination.

    Science.gov (United States)

    Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C

    2015-01-01

    To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.

  6. Effect of chronic administration of morphine on the gene expression level of sodium-dependent vitamin C transporters in rat hippocampus and lumbar spinal cord.

    Science.gov (United States)

    Zarebkohan, Amir; Javan, Mohammad; Satarian, Leila; Ahmadiani, Abolhasan

    2009-07-01

    Chronic morphine leads to dependence, tolerance, and neural apoptosis. Vitamin C inhibits the withdrawal syndrome in morphine-dependent subjects and prevents apoptosis in experimental models. Sodium-dependent vitamin C transporter (SVCT) type-2 is the main transporter for carrying vitamin C into the brain and neural cells. The mechanism(s) by which vitamin C inhibits morphine dependence in not understood. SVCT activity determines the vitamin C availably within the nervous system. We have examined the alterations in the expression of SVCT1, SVCT2, and its splice variants in morphine-tolerant rats. Morphine (20 mg/kg) was injected twice/day to male rats for either 7 or 14 days. The development of analgesic tolerance was assessed using tail-flick test. Lumbar spinal cord and the hippocampus were isolated for RNA extraction. Semiquantitative reverse transcriptase-polymerase chain reaction method was used to assess the levels of gene expression. Administration of morphine for 7 or 14 days reduced the expression level of SVCT2 in both hippocampus and dorsal lumbar spinal cord of rats. SVCT2 expression was reduced in vitamin C-, and vitamin C combined with morphine-treated animals. Results did not show SVCT2 splice variation. SVCT1 did not express in control or morphine-treated rats. It seems that reduced expression level of SVCT2 might be involved in the development of morphine side effects such as tolerance and dependency.

  7. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  8. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice

    Science.gov (United States)

    Liang, Ying; Liu, Yue; Hou, Bailing; Zhang, Wei; Liu, Ming; Sun, Yu-E; Gu, Xiaoping

    2016-01-01

    Background cAMP response element binding protein (CREB)-dependent gene expression plays an important role in central sensitization. CREB-regulated transcription coactivator 1 (CRTC1) dramatically increases CREB-mediated transcriptional activity. Brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, and miRNA-212/132, which are highly CREB responsive, function downstream from CREB/CRTC1 to mediate activity-dependent synaptic plasticity and in turn loops back to amplify CREB/CRTC1 signaling. This study aimed to investigate the role of spinal CRTC1 in the maintenance of bone cancer pain using an RNA interference method. Results Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeNCrlVr mice to induce bone cancer pain. Western blotting was applied to examine the expression of spinal phospho-Ser133 CREB and CRTC1. We further investigated effects of repeated intrathecal administration with Adenoviruses expressing CRTC1-small interfering RNA (siRNA) on nociceptive behaviors and on the upregulation of CREB/CRTC1-target genes associated with bone cancer pain. Inoculation of osteosarcoma cells induced progressive mechanical allodynia and spontaneous pain, and resulted in upregulation of spinal p-CREB and CRTC1. Repeated intrathecal administration with Adenoviruses expressing CRTC1-siRNA attenuated bone cancer–evoked pain behaviors, and reduced CREB/CRTC1-target genes expression in spinal cord, including BDNF, NR2B, and miR-212/132. Conclusions Upregulation of CRTC1 enhancing CREB-dependent gene transcription in spinal cord may play an important role in bone cancer pain. Inhibition of spinal CRTC1 expression reduced bone cancer pain. Interruption to the positive feedback circuit between CREB/CRTC1 and its targets may contribute to the analgesic effects. These findings may provide further insight into the mechanisms and treatment of bone cancer pain. PMID:27060162

  9. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA.

    Science.gov (United States)

    Wolfers, Simon; Kamerewerd, Jens; Nowrousian, Minou; Sigl, Claudia; Zadra, Ivo; Kürnsteiner, Hubert; Kück, Ulrich; Bloemendal, Sandra

    2015-04-01

    The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.

  10. Loss of RNA-dependent RNA polymerase 2 (RDR2 function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs.

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2009-11-01

    Full Text Available Transposable elements (TEs comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally silenced. RNA-dependent RNA polymerase 2 (RDR2 is a component of the RNA-directed DNA methylation (RdDM silencing pathway. In maize, loss of mediator of paramutation1 (mop1 encoded RDR2 function results in reactivation of transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs (siRNAs that recruit RNA silencing components. An RNA-seq experiment conducted on shoot apical meristems (SAMs revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most differentially expressed DNA TEs (78% were up-regulated in the mop1 mutant. In contrast, most differentially expressed retrotransposons (68% were down-regulated. This striking difference suggests that distinct silencing mechanisms are applied to different silencing templates. In addition, >6,000 genes (24% of analyzed genes, including nearly 80% (286/361 of genes in chromatin modification pathways, were differentially expressed. Overall, two-thirds of differentially regulated genes were down-regulated in the mop1 mutant. This finding suggests that RDR2 plays a significant role in regulating the expression of not only transposons, but also of genes. A re-analysis of existing small RNA data identified both RDR2-sensitive and RDR2-resistant species of 24 nt siRNAs that we hypothesize may at least partially explain the complex changes in the expression of genes and transposons observed in the mop1 mutant.

  11. Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup: Differential gene expression and thyroid hormones dependence during metamorphosis

    Directory of Open Access Journals (Sweden)

    Manchado Manuel

    2008-01-01

    Full Text Available Abstract Background Eukaryotic elongation factor 1 alpha (eEF1A is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (Solea senegalensis is a commercially important flatfish in which eEF1A gene remains to be characterized. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of five different eEF1A genes, referred to as SseEF1A1, SseEF1A2, SseEF1A3, SseEF1A4, and Sse42Sp50. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of SseEF1A1 and SseEF1A2 as the Senegalese sole counterparts of mammalian eEF1A1 and eEF1A2, respectively, and of Sse42Sp50 as the ortholog of Xenopus laevis and teleost 42Sp50 gene. The other two elongation factors, SseEF1A3 and SseEF1A4, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of SseEF1A gene expressions by thyroid hormones (THs, larvae were exposed to the goitrogen thiourea (TU. TU-treated larvae exhibited lower SseEF1A4 mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of SseEF1A4 with respect to untreated controls, demonstrating that its expression is up-regulated by THs. Conclusion We

  12. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence.

    Directory of Open Access Journals (Sweden)

    Mohammed Mamdani

    Full Text Available Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA on genome-wide mRNA and microRNA (miRNA expression in Nucleus Accumbens (NAc of subjects with alcohol dependence (AD; N = 18 and of matched controls (N = 18, six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05. Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05. In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001. Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA. In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL analysis provides novel insights into the etiological mechanisms of AD.

  13. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    Science.gov (United States)

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. A TDG/CBP/RARα Ternary Complex Mediates the Retinoic Acid-dependent Expression of DNA Methylation-sensitive Genes

    Directory of Open Access Journals (Sweden)

    Hélène Léger

    2014-02-01

    Full Text Available The thymine DNA glycosylase (TDG is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα, resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG’s epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.

  15. Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process

    Science.gov (United States)

    Jedrak, Jakub; Ochab-Marcinek, Anna

    2016-09-01

    We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the n th cumulant of the protein number distribution depends on the n th moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.

  16. The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts.

    Science.gov (United States)

    Bruins, Wendy; Bruning, Oskar; Jonker, Martijs J; Zwart, Edwin; van der Hoeven, Tessa V; Pennings, Jeroen L A; Rauwerda, Han; de Vries, Annemieke; Breit, Timo M

    2008-03-01

    Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53(-/-) mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53(-/-), possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53(-/-) but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.

  17. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns.

    Science.gov (United States)

    Lema, S C; Sanders, K E; Walti, K A

    2015-02-01

    Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a

  18. Mga2p processing by hypoxia and unsaturated fatty acids in Saccharomyces cerevisiae: impact on LORE-dependent gene expression.

    Science.gov (United States)

    Jiang, Yide; Vasconcelles, Michael J; Wretzel, Sharon; Light, Anne; Gilooly, Laura; McDaid, Kevin; Oh, Chan-Seok; Martin, Charles E; Goldberg, Mark A

    2002-06-01

    In Saccharomyces cerevisiae, OLE1 encodes a delta9 fatty acid desaturase, an enzyme that plays a critical role in maintaining the correct ratio of saturated to monounsaturated fatty acids in the cell membrane. Previous studies have demonstrated that (i) OLE1 expression is repressed by unsaturated fatty acids (UFAs) and induced by low oxygen tension, (ii) a component of this regulation is mediated through the same low oxygen response element (LORE) in the OLE1 promoter, and (iii) Mga2p is involved in LORE-dependent hypoxic induction of OLE1. We now report that LORE-CYC1 basal promoter-lacZ fusion reporter assays demonstrate that UFAs repress the reporter expression under hypoxic conditions in a dose-dependent manner via LORE. Electrophoretic mobility shift assays show that UFAs repress the hypoxia-induced complex formation with LORE. Studies with a construct encoding a truncated form of Mga2p support the hypothesis that both hypoxia and UFA signals affect the processing of Mga2p and the UFA repression of OLE1 hypoxic induction is mediated through Mga2p. Data from Western blot assays provide evidence that under normoxic conditions, Mga2p processing produces approximately equimolar levels of the membrane-bound and processed forms and is unaffected by UFAs. Hypoxic induction of OLE1, however, is associated with increased processing of the protein, resulting in an approximately fivefold increase in the soluble active form that is counteracted by exposure of the cells to unsaturated fatty acids. Data from this study suggest that the Mga2p-LORE interaction plays an important role in OLE1 expression under both normoxic and hypoxic conditions.

  19. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  20. Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound Poisson process

    CERN Document Server

    Jędrak, Jakub

    2016-01-01

    We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g. oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the RC low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the $n$-th cumulant of the protein number distribution depends on the $n$-th moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of varian...

  1. Protein kinase Cmu downregulation of tumor-necrosis-factor-induced apoptosis correlates with enhanced expression of nuclear-factor-kappaB-dependent protective genes.

    Science.gov (United States)

    Johannes, F J; Horn, J; Link, G; Haas, E; Siemienski, K; Wajant, H; Pfizenmaier, K

    1998-10-01

    Protein kinase Cmu (PKCmu) represents a new subtype of the PKC family characterized by the presence of a pleckstrin homology (PH) domain and an amino-terminal hydrophobic region. In order to analyse the potential role of PKCmu in signal-transduction pathways, stable PKCmu transfectants were established with human and murine cell lines. All transfectants showed a reduced sensitivity to tumor-necrosis-factor (TNF)-induced apoptosis, which correlated with the amount of transgene expressed and with an enhanced basal transcription rate of NF-kappaB-driven genes including the inhibitor of apoptosis protein 2 (cIAP2) and TNF-receptor-associated protein 1 (TRAF1). Sensitivity to apoptosis induced by the lipid mediator ceramide was unchanged in PKCmu transfectants. In support of a PKCmu action on NF-kappaB, we show enhancement and downregulation of TNF-induced expression of a NF-kappaB-dependent reporter gene by transient overexpression of wild-type and kinase-negative mutants of PKCmu, respectively. Interestingly, no significant changes were found in an electrophoretic mobility shift assay, indicative of PKCmu action downstream of IkappaB degradation, probably by modulation of the transactivation capacity of NF-kappaB. The dominant negative action of the kinase-negative mutant further suggest a regulatory role of PKCmu for NF-kappaB-dependent gene expression.

  2. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression.

    Science.gov (United States)

    Wheeler, Damian G; Groth, Rachel D; Ma, Huan; Barrett, Curtis F; Owen, Scott F; Safa, Parsa; Tsien, Richard W

    2012-05-25

    Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.

  3. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Directory of Open Access Journals (Sweden)

    Maggie L Chow

    Full Text Available Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess

  4. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Science.gov (United States)

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  5. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    Science.gov (United States)

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.

  6. Laminin-5 Induces Osteogenic Gene Expression in Human Mesenchymal Stem Cells through an ERK-dependent Pathway

    Science.gov (United States)

    Klees, Robert F.; Salasznyk, Roman M.; Kingsley, Karl; Williams, William A.; Boskey, Adele; Plopper, George E.

    2005-01-01

    The laminin family of proteins is critical for managing a variety of cellular activities including migration, adhesion, and differentiation. In bone, the roles of laminins in controlling osteogenic differentiation of human mesenchymal stem cells (hMSC) are unknown. We report here that laminin-5 is found in bone and expressed by hMSC. hMSC isolated from bone synthesize laminin-5 and adhere to exogenous laminin-5 through α3β1 integrin. Adhesion to laminin-5 activates extracellular signal-related kinase (ERK) within 30 min and leads to phosphorylation of the osteogenic transcription factor Runx2/CBFA-1 within 8 d. Cells plated on laminin-5 for 16 d express increased levels of osteogenic marker genes, and those plated for 21 d deposit a mineralized matrix, indicative of osteogenic differentiation. Addition of the ERK inhibitor PD98059 mitigates these effects. We conclude that contact with laminin-5 is sufficient to activate ERK and to stimulate osteogenic differentiation in hMSC. PMID:15574877

  7. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia ruckeri i.p. vaccination

    DEFF Research Database (Denmark)

    2007-01-01

    M in the head-kidney and Y. ruckeri specific antibodies in plasma measured by ELISA. However, no regulation of the teleost specific immunoglobulin IgT, which was generally expressed at a much lower level than IgM, could be detected. The study indicated that both innate and specific adaptive immune response......The immune response in rainbow trout against a bacterin of Yersinia ruckeri, a bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25° C. Rainbow trout were immunized by i.p. injection of a Y. ruckeri (serotype O1) water based bacterin and compared to control...... and higher at high water temperature with major expression at 25° C. The pro-inflammatory cytokine IL-1ß and INF¿ was significantly up-regulated in all immunized groups whereas the cytokine IL-10 was merely up-regulated in fish kept at 15 and 25° C. The gene encoding the C5a (anaphylatoxin) receptor...

  8. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Hansen, T

    1995-01-01

    -phosphate concentrations in muscle have been found in non-insulin-dependent diabetes mellitus (NIDDM) patients when examined during a hyperglycemic hyperinsulinemic clamp. These findings [correction of finding] are consistent with a defect in glucose transport and/or phosphorylation. In the present study...... +/- 5% in controls (P = 0.08) of total muscle HK activity when measured at a glucose media of 0.11 mmol/liter and 31 +/- 4 and 47 +/- 7% (P = 0.02) when measured at 0.11 mmol/liter of glucose. HKII mRNA, HKII immunoreactive protein level, and HKII activity were significantly decreased in NIDDM patients...... with fasting plasma glucose concentrations (r = -0.45, P = 0.004; r = -0.54, P concentrations (r = -0.46, P = 0.003; r = -0.37, P = 0.02, respectively). In conclusion, NIDDM patients are characterized by a reduced activity and a reduced gene...

  9. SIRT3 interacts with the daf-16 homolog FOXO3a in the Mitochondria, as well as increases FOXO3a Dependent Gene expression

    Science.gov (United States)

    Jacobs, Kristi Muldoon; Pennington, J. Daniel; Bisht, Kheem S.; Aykin-Burns, Nukhet; Kim, Hyun-Seok; Mishra, Mark; Sun, Lunching; Nguyen, Phuongmai; Ahn, Bong-Hyun; Leclerc, Jaime; Deng, Chu-Xia; Spitz, Douglas R.; Gius, David

    2008-01-01

    Cellular longevity is a complex process relevant to age-related diseases including but not limited to chronic illness such as diabetes and metabolic syndromes. Two gene families have been shown to play a role in the genetic regulation of longevity; the Sirtuin and FOXO families. It is also established that nuclear Sirtuins interact with and under specific cellular conditions regulate the activity of FOXO gene family proteins. Thus, we hypothesize that a mitochondrial Sirtuin (SIRT3) might also interact with and regulate the activity of the FOXO proteins. To address this we used HCT116 cells overexpressing either wild-type or a catalytically inactive dominant negative SIRT3. For the first time we establish that FOXO3a is also a mitochondrial protein and forms a physical interaction with SIRT3 in mitochondria. Overexpression of a wild-type SIRT3 gene increase FOXO3a DNA-binding activity as well as FOXO3a dependent gene expression. Biochemical analysis of HCT116 cells over expressing the deacetylation mutant, as compared to wild-type SIRT3 gene, demonstrated an overall oxidized intracellular environment, as monitored by increase in intracellular superoxide and oxidized glutathione levels. As such, we propose that SIRT3 and FOXO3a comprise a potential mitochondrial signaling cascade response pathway. PMID:18781224

  10. In vivo effect of glucose-dependent insulinotropic peptide (GIP) on the gene expression of calcitonin peptides in human subcutaneous adipose tissue.

    Science.gov (United States)

    Pivovarova, Olga; Gögebakan, Ozlem; Osterhoff, Martin A; Nauck, Michael; Pfeiffer, Andreas F H; Rudovich, Natalia

    2012-11-10

    Increased plasma levels of calcitonin gene-related peptide-I (CGRP-I) and procalcitonin (Pro-CT) (both also named calcitonin peptides (CT peptides)) are associated with obesity and systemic inflammation. Glucose-dependent insulinotropic polypeptide (GIP), a nutrient-dependent incretin hormone, was recently found to induce CGRP-I and CT expression in human adipocytes in vitro. However, a physiological relevance of a possible interaction between GIP and CT peptides has not yet been studied. In this study, we analyzed the effect of GIP on the expression of CGRP-I and CT mRNA in human subcutaneous adipose tissue within a randomized, controlled trial. Seventeen male obese subjects were infused with GIP [2.0 pmol kg(-1) min(-1) for 240 min] or placebo, either in the fasting state, during euglycemic-hyperinsulinemic (EC) or hyperglycemic-hyperinsulinemic clamps (HC). The CGRP-I gene expression was detected in all investigated adipose tissue samples, whereas very low CT expression was found in only 8 out of 116 analyzed samples. No significant influence of either GIP or glucose and insulin infusions on the CGRP-I and CT expression was observed in any of the individual experiments (GIP infusion, EC and HC) or in the combined analysis of all experiments with and without GIP. Furthermore, CGRP-I expression was not correlated with plasma GIP level before or after 240 min of infusions or clamps. In contrast to in vitro data, an acute application of GIP has no effect on mRNA expression of CT peptides in subcutaneous adipose tissue of obese humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Kathryn Miller-Jensen

    Full Text Available The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV, integrate their genomes into those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells randomly 'switch' between high and low expressing states in a manner that may be related to viral latency. Here we extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR promoter that modulate the fraction of genomic integrations that specify 'Switching' phenotypes. Our screen identified mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study

  12. Cannabis-dependence risk relates to synergism between neuroticism and proenkephalin SNPs associated with amygdala gene expression: case-control study.

    Directory of Open Access Journals (Sweden)

    Didier Jutras-Aswad

    Full Text Available Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2 and proenkephalin (PENK genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown.Healthy young adults (18-27 years with cannabis dependence and without a dependence diagnosis were studied (N = 50/group in relation to a priori-determined single nucleotide polymorphisms (SNPs of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997 significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers. Neuroticism mediated (15.3%-19.5% the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect.Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk.

  13. Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts.

    Science.gov (United States)

    Kanaya, Sousuke; Nemoto, Eiji; Ebe, Yukari; Somerman, Martha J; Shimauchi, Hidetoshi

    2010-09-01

    Cementoblasts, tooth root lining cells, are responsible for laying down cementum on the root surface, a process that is indispensable for establishing a functional periodontal ligament. Cementoblasts share phenotypical features with osteoblasts. Elevated levels of extracellular Ca(2+) have been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of extracellular Ca(2+) signaling in cementogenesis has not been examined. Using RT-PCR, we found that elevated levels of extracellular Ca(2+) increase fibroblast growth factor (FGF)-2 gene expression with a peak at 6h. Pretreatment with a protein kinase A (PKA) inhibitor, H89, or an adenylate cyclase inhibitor, MDL-12,330A, inhibited Ca(2+)-stimulated Fgf-2 expression. In contrast, pretreatment with the protein kinase C (PKC) inhibitor GF-109203X or the phospholipase C (PLC) inhibitor U73122 did not affect the expression of Fgf-2 transcripts, suggesting that the increase in Fgf-2 expression was dependent on the PKA but not the PLC/PKC signaling pathway. Treatment with an activator of adenylate cyclase, forskolin, or a cell-permeable analog of cAMP, 8-Br-cAMP, enhanced Ca(2+)-stimulated Fgf-2 expression, but a single treatment with forskolin or 8-Br-cAMP did not, suggesting that cAMP generation is indispensable but not sufficient for Ca(2+)-stimulated FGF2 expression. Next, we examined the cation specificity of the putative receptor and showed that treatment with trivalent/divalent inorganic ions, Ca(2+), Gd(3+), Sr(2+), or Al(3+), caused a dose-dependent increase in Fgf-2 mRNA levels in a cAMP-dependent fashion, whereas Mg(2+) and the organic ions neomycin and spermine had no effect on Fgf-2 gene expression levels. These findings suggest that an extracellular Ca(2+)-sensing mechanism is present in cementoblasts and its activation leads to FGF-2 stimulation in a cAMP/PKA dependent fashion. Understanding the pathway regulating key genes involved in modulating the

  14. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

    Science.gov (United States)

    Marqués-Torrejón, M Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Lopez-Contreras, Andrés J; Fernández-Capetillo, Oscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis.

  15. Campylobacter jejuni dsb gene expression is regulated by iron in a Fur-dependent manner and by a translational coupling mechanism

    Directory of Open Access Journals (Sweden)

    Grabowska Anna D

    2011-07-01

    Full Text Available Abstract Background Many bacterial extracytoplasmic proteins are stabilized by intramolecular disulfide bridges that are formed post-translationally between their cysteine residues. This protein modification plays an important role in bacterial pathogenesis, and is facilitated by the Dsb (disulfide bond family of the redox proteins. These proteins function in two parallel pathways in the periplasmic space: an oxidation pathway and an isomerization pathway. The Dsb oxidative pathway in Campylobacter jejuni is more complex than the one in the laboratory E. coli K-12 strain. Results In the C. jejuni 81-176 genome, the dsb genes of the oxidative pathway are arranged in three transcriptional units: dsbA2-dsbB-astA, dsbA1 and dba-dsbI. Their transcription responds to an environmental stimulus - iron availability - and is regulated in a Fur-dependent manner. Fur involvement in dsb gene regulation was proven by a reporter gene study in a C. jejuni wild type strain and its isogenic fur mutant. An electrophoretic mobility shift assay (EMSA confirmed that analyzed genes are members of the Fur regulon but each of them is regulated by a disparate mechanism, and both the iron-free and the iron-complexed Fur are able to bind in vitro to the C. jejuni promoter regions. This study led to identification of a new iron- and Fur-regulated promoter that drives dsbA1 gene expression in an indirect way. Moreover, the present work documents that synthesis of DsbI oxidoreductase is controlled by the mechanism of translational coupling. The importance of a secondary dba-dsbI mRNA structure for dsbI mRNA translation was verified by estimating individual dsbI gene expression from its own promoter. Conclusions The present work shows that iron concentration is a significant factor in dsb gene transcription. These results support the concept that iron concentration - also through its influence on dsb gene expression - might control the abundance of extracytoplasmic proteins

  16. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...... were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, bFGF...

  17. Expression of the gene for resistance to phaseolotoxin (argK depends on the activity of genes phtABC in Pseudomonas syringae pv. phaseolicola.

    Directory of Open Access Journals (Sweden)

    Selene Aguilera

    Full Text Available The bacterium Pseudomonas syringae pv. phaseolicola produces phaseolotoxin in a temperature dependent manner, being optimally produced between 18°C and 20°C, while no detectable amounts are present above 28°C. Phaseolotoxin is an effective inhibitor of ornithine carbamoyltransferase (OCTase activity from plant, mammalian and bacterial sources and causes a phenotypic requirement for arginine. To protect the cell from its own toxin, P. syringae pv. phaseolicola synthesizes a phaseolotoxin-resistant OCTase (ROCT. The ROCT is the product of the argK gene and is synthesized only under conditions leading to phaseolotoxin synthesis. The argK gene is included in a chromosomal fragment named Pht cluster, which contains genes involved in the synthesis of phaseolotoxin. The aim of the present work was to investigate the possible involvement of other genes included in the Pht cluster in the regulation of gene argK. We conducted transcriptional analyses of argK in several mutants unable to produce phaseolotoxin, transcriptional fusions and electrophoretic mobility shift assays, which allowed us to determine that genes phtABC, located within the Pht cluster, participate in the transcriptional repression of gene argK at temperatures not permissive for phaseolotoxin biosynthesis. This repression is mediated by a protein present in both toxigenic and nontoxigenic strains of P. syringae and in E. coli, and requires the coordinated participation of phtA, phtB and phtC products in order to carry out an efficient argK repression.

  18. The α-hydroxyketone LAI-1 regulates motility, Lqs-dependent phosphorylation signalling and gene expression of Legionella pneumophila.

    Science.gov (United States)

    Schell, Ursula; Simon, Sylvia; Sahr, Tobias; Hager, Dominik; Albers, Michael F; Kessler, Aline; Fahrnbauer, Felix; Trauner, Dirk; Hedberg, Christian; Buchrieser, Carmen; Hilbi, Hubert

    2016-02-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, employs the autoinducer compound LAI-1 (3-hydroxypentadecane-4-one) for cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, comprising the autoinducer synthase LqsA, the sensor kinases LqsS and LqsT, as well as the response regulator LqsR. Lqs-regulated processes include pathogen-host interactions, production of extracellular filaments and natural competence for DNA uptake. Here we show that synthetic LAI-1 promotes the motility of L. pneumophila by signalling through LqsS/LqsT and LqsR. Upon addition of LAI-1, autophosphorylation of LqsS/LqsT by [γ-(32) P]-ATP was inhibited in a dose-dependent manner. In contrast, the Vibrio cholerae autoinducer CAI-1 (3-hydroxytridecane-4-one) promoted the phosphorylation of LqsS (but not LqsT). LAI-1 did neither affect the stability of phospho-LqsS or phospho-LqsT, nor the dephosphorylation by LqsR. Transcriptome analysis of L. pneumophila treated with LAI-1 revealed that the compound positively regulates a number of genes, including the non-coding RNAs rsmY and rsmZ, and negatively regulates the RNA-binding global regulator crsA. Accordingly, LAI-1 controls the switch from the replicative to the transmissive growth phase of L. pneumophila. In summary, the findings indicate that LAI-1 regulates motility and the biphasic life style of L. pneumophila through LqsS- and LqsT-dependent phosphorylation signalling.

  19. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  20. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Science.gov (United States)

    2013-01-01

    The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable. PMID:24024041

  1. DRPLA transgenic mouse substrains carrying single copy of full-length mutant human DRPLA gene with variable sizes of expanded CAG repeats exhibit CAG repeat length- and age-dependent changes in behavioral abnormalities and gene expression profiles.

    Science.gov (United States)

    Suzuki, Kazushi; Zhou, Jiayi; Sato, Toshiya; Takao, Keizo; Miyagawa, Tsuyoshi; Oyake, Mutsuo; Yamada, Mitunori; Takahashi, Hitoshi; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2012-05-01

    Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant progressive neurodegenerative disorder with intellectual deterioration and various motor deficits including ataxia, choreoathetosis, and myoclonus, caused by an abnormal expansion of CAG repeats in the DRPLA gene. Longer expanded CAG repeats contribute to an earlier age of onset, faster progression, and more severe neurological symptoms in DRPLA patients. In this study, we have established DRPLA transgenic mouse lines (sublines) harboring a single copy of the full-length mutant human DRPLA gene carrying various lengths of expanded CAG repeats (Q76, Q96, Q113, and Q129), which have clearly shown motor deficits and memory disturbance whose severity increases with the length of expanded CAG repeats and age, and successfully replicated the CAG repeat length- and age-dependent features of DRPLA patients. Neuronal intranuclear accumulation of the mutant DRPLA protein has been suggested to cause transcriptional dysregulation, leading to alteration in gene expression and neuronal dysfunction. In this study, we have conducted a comprehensive analysis of gene expression profiles in the cerebrum and cerebellum of transgenic mouse lines at 4, 8, and 12 weeks using multiple microarray platforms, and demonstrated that both the number and expression levels of the altered genes are highly dependent on CAG repeat length and age in both brain regions. Specific groups of genes and their function categories were identified by further agglomerative cluster analysis and gene functional annotation analysis. Calcium signaling and neuropeptide signaling, among others, were implicated in the pathophysiology of DRPLA. Our study provides unprecedented CAG-repeat-length-dependent mouse models of DRPLA, which are highly valuable not only for elucidating the CAG-repeat-length-dependent pathophysiology of DRPLA but also for developing therapeutic strategies for DRPLA.

  2. ck2-Dependent Phosphorylation of Progesterone Receptors (PR) on Ser81 Regulates PR-B Isoform-Specific Target Gene Expression in Breast Cancer Cells ▿

    Science.gov (United States)

    Hagan, Christy R.; Regan, Tarah M.; Dressing, Gwen E.; Lange, Carol A.

    2011-01-01

    Progesterone receptors (PR) are critical mediators of mammary gland development and contribute to breast cancer progression. Progestin-induced rapid activation of cytoplasmic protein kinases leads to selective regulation of growth-promoting genes by phospho-PR species. Herein, we show that phosphorylation of PR Ser81 is ck2 dependent and progestin regulated in intact cells but also occurs in the absence of PR ligands when cells enter the G1/S phase of the cell cycle. T47D breast cancer cells stably expressing a PR-B mutant receptor that cannot be phosphorylated at Ser79/81 (S79/81A) formed fewer soft agar colonies. Regulation of selected genes by PR-B, but not PR-A, also required Ser79/81 phosphorylation for basal and/or progestin-regulated (BIRC3, HSD11β2, and HbEGF) expression. Additionally, wild-type (wt) PR-B, but not S79/81A mutant PR, was robustly recruited to a progesterone response element (PRE)-containing transcriptional enhancer region of BIRC3; abundant ck2 also associated with this region in cells expressing wt but not S79/81A PR. We conclude that phospho-Ser81 PR provides a platform for ck2 recruitment and regulation of selected PR-B target genes. Understanding how ligand-independent PRs function in the context of high levels of kinase activities characteristic of breast cancer is critical to understanding the basis of tumor-specific changes in gene expression and will speed the development of highly selective treatments. PMID:21518957

  3. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  4. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  5. Disruption of zebrafish cyclin G-associated kinase (GAK function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    Directory of Open Access Journals (Sweden)

    Szeto Daniel P

    2010-01-01

    Full Text Available Abstract Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK, differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells.

  6. Co2+-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA, and prtA

    NARCIS (Netherlands)

    Manzoor, Irfan; Shafeeq, Sulman; Kloosterman, Tomas; Kuipers, Oscar

    2015-01-01

    Manganese (Mn2+)-, zinc (Zn2+)- and copper (Cu2+) play significant roles in transcriptional gene regulation, physiology, and virulence of Streptococcus pneumoniae. So far, the effect of the important transition metal ion cobalt (Co2+) on gene expression of S. pneumoniae has not yet been explored. He

  7. HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.

    Science.gov (United States)

    Lundberg, Lina E; Stenberg, Per; Larsson, Jan

    2013-04-01

    Heterochromatin protein 1a (HP1a) is a chromatin-associated protein important for the formation and maintenance of heterochromatin. In Drosophila, the two histone methyltransferases SETDB1 and Su(var)3-9 mediate H3K9 methylation marks that initiates the establishment and spreading of HP1a-enriched chromatin. Although HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4-specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggest that HP1a, SETDB1 and Su(var)3-9 repress genes on chromosome 4, where non-ubiquitously expressed genes are preferentially targeted, and stimulate genes in pericentromeric regions. Further, we showed that on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In addition, we found that transposons are repressed by HP1a and Su(var)3-9 and that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.

  8. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    Science.gov (United States)

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  9. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Aslan Hwanhwi; Kang, Chang-Min; Lee, Young Min; Lee, Hanbyul; Yun, Cheol-Won; Kim, Gyu-Hyeok; Kim, Jae-Jin

    2016-12-01

    The white rot fungus Peniophora incarnata KUC8836 has received an attention as the greatest degrader of polycyclic aromatic hydrocarbons (PAHs), which are hazardous xenobiotics and recalcitrant pollutants. To characterize the mechanisms through which MnP degrades PAHs, heterologous expression of manganese-dependent peroxidase (MnP) gene pimp1 was performed in Saccharomyces cerevisiae BY4741 via the pGEM-T Easy vector, resulting in the recombinant plasmid pESC-URA/pimp1 containing the MnP signal peptide. MnP was significantly secreted into the culture medium with galactose as an active protein with higher efficiency (3.58 U mL(-1)) by transformants than by the wild-type S. cerevisiae. The recombinant MnP protein was shown to have a molecular weight of 44 kDa by western blotting analysis. With regard to enhancing the bioremediation of PAHs in the environment, anthracene was effectively degraded by the MnP encoded by pimp1, with a degradation rate of 6.5% when Tween 80 was added. In addition, the MnP activity of the transformant exhibited the highest efficiency (2.49 U mL(-1)) during the degradation. These results show that pimp1 might be useful for biodegradation and gene expression technologies at a transcriptional level, and genetic approaches can be improved by incorporating the highly ligninolytic gene pimp1 and the fungus P. incarnata KUC8836.

  10. GPR54 regulates ERK1/2 activity and hypothalamic gene expression in a Gα(q/11 and β-arrestin-dependent manner.

    Directory of Open Access Journals (Sweden)

    Jacob M Szereszewski

    Full Text Available G protein-coupled receptor 54 (GPR54 is a G(q/11-coupled 7 transmembrane-spanning receptor (7TMR. Activation of GPR54 by kisspeptin (Kp stimulates PIP(2 hydrolysis, Ca(2+ mobilization and ERK1/2 MAPK phosphorylation. Kp and GPR54 are established regulators of the hypothalamic-pituitary-gonadal (HPG axis and loss-of-function mutations in GPR54 are associated with an absence of puberty and hypogonadotropic hypogonadism, thus defining an important role of the Kp/GPR54 signaling system in reproductive function. Given the tremendous physiological and clinical importance of the Kp/GPR54 signaling system, we explored the contributions of the GPR54-coupled G(q/11 and β-arrestin pathways on the activation of a major downstream signaling molecule, ERK, using G(q/11 and β-arrestin knockout mouse embryonic fibroblasts. Our study revealed that GPR54 employs the G(q/11 and β-arrestin-2 pathways in a co-dependent and temporally overlapping manner to positively regulate ERK activity and pERK nuclear localization. We also show that while β-arrestin-2 potentiates GPR54 signaling to ERK, β-arrestin-1 inhibits it. Our data also revealed that diminished β-arrestin-1 and -2 expression in the GT1-7 GnRH hypothalamic neuronal cell line triggered distinct patterns of gene expression following Kp-10 treatment. Thus, β-arrestin-1 and -2 also regulate distinct downstream responses in gene expression. Finally, we showed that GPR54, when uncoupled from the G(q/11 pathway, as is the case for several naturally occurring GPR54 mutants associated with hypogonadotropic hypogonadism, continues to regulate gene expression in a G protein-independent manner. These new and exciting findings add significantly to our mechanistic understanding of how this important receptor signals intracellularly in response to kisspeptin stimulation.

  11. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring.

    Science.gov (United States)

    Clayton, Zoe E; Vickers, Mark H; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M

    2015-01-01

    Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing.

  12. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  13. JNK-dependent NFATc1 pathway positively regulates IL-13 gene expression induced by (-)-epigallocatechin-3-gallate in human basophilic KU812 cells.

    Science.gov (United States)

    Wu, Haitao; Qi, Hang; Iwasaki, Dai; Zhu, Beiwei; Shimoishi, Yasuaki; Murata, Yoshiyuki; Nakamura, Yoshimasa

    2009-10-01

    (-)-Epigallocatechin-3-gallate (EGCG) has been reported to possess a wide range of biological and pharmacological properties. In this study, we investigated the effects of EGCG on IL-13 gene expression in human basophilic KU812 cells. The IL-13 mRNA expression level was dose-dependently increased by treatment with EGCG (5-20 microM) for 1 h and additional incubation in a medium for 23 h. EGCG significantly increased the intracellular peroxide level as detected by the peroxide-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. A pharmacological experiment using catalase and a structure-activity relationship study revealed that the exogenously produced H(2)O(2) significantly, but partially, contributed to the IL-13 expression as well as the intracellular oxidative status. Furthermore, EGCG at the concentration required for IL-13 up-regulation activated c-Jun NH(2)-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 mitogen-activated protein kinase in KU812 cells. Transfection of a JNK-specific siRNA as well as treatment with a JNK-specific inhibitor, SP600125, significantly reduced the EGCG-induced IL-13 mRNA expression, by 47.1 and 44.6%, respectively. In addition, we observed the nuclear translocation, mRNA up-regulation, and activation of DNA binding with the IL-13 promoter of nuclear factor of activated T cells (NFATc1) in the EGCG-treated cells. These data provide biological evidence that EGCG induces IL-13 mRNA expression via the JNK-dependent NFATc1 pathway in KU812 cells.

  14. The deficit of male-biased genes on the D. melanogaster X chromosome is expression-dependent: a consequence of dosage compensation?

    Science.gov (United States)

    Vicoso, Beatriz; Charlesworth, Brian

    2009-05-01

    In Drosophila, there is a consistent deficit of male-biased genes on the X chromosome. It has been suggested that male-biased genes may evolve from initially unbiased genes as a result of increased expression levels in males. If transcription rates are limited, a large increase in expression in the testis may be harder to achieve for single-copy X-linked genes than for autosomal genes, because they are already hypertranscribed due to dosage compensation. This hypothesis predicts that the larger the increase in expression required to make a male-biased gene, the lower the chance of this being achievable if it is located on the X chromosome. Consequently, highly expressed male-biased genes should be located on the X chromosome less often than lowly expressed male-biased genes. This pattern is observed in our analysis of publicly available data, where microarray data or EST data are used to detect male-biased genes in D. melanogaster and to measure their expression levels. This is consistent with the idea that limitations in transcription rates may prevent male-biased genes from accumulating on the X chromosome.

  15. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    Science.gov (United States)

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  16. Glucocorticoid receptor-dependent gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Phillip Phuc Le

    2005-08-01

    Full Text Available While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies.

  17. High-level expression of heme-dependent catalase gene katA from Lactobacillus Sakei protects Lactobacillus rhamnosus from oxidative stress.

    Science.gov (United States)

    An, Haoran; Zhou, Hui; Huang, Ying; Wang, Guohong; Luan, Chunguang; Mou, Jing; Luo, Yunbo; Hao, Yanling

    2010-06-01

    Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H(2)O(2)), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H(2)O(2) through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H(2)O(2) and the catalase activity reached 2.85 mumol H(2)O(2)/min/10(8) c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H(2)O(2) challenge were increased 600 and 10(4)-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.

  18. Timing of cyclin E gene expression depends on the regulated association of a bipartite repressor element with a novel E2F complex.

    Science.gov (United States)

    Le Cam, L; Polanowska, J; Fabbrizio, E; Olivier, M; Philips, A; Ng Eaton, E; Classon, M; Geng, Y; Sardet, C

    1999-04-01

    Transient induction of the cyclin E gene in late G1 gates progression into S. We show that this event is controlled via a cyclin E repressor module (CERM), a novel bipartite repressor element located near the cyclin E transcription start site. CERM consists of a variant E2F-binding site and a contiguous upstream AT-rich sequence which cooperate during G0/G1 to delay cyclin E expression until late G1. CERM binds the protein complex CERC, which disappears upon progression through G0-G1 and reappears upon entry into the following G1. CERC disappearance correlates kinetically with the liberation of the CERM module in vivo and cyclin E transcriptional induction. CERC contains E2F4/DP1 and a pocket protein, and sediments faster than classical E2F complexes in a glycerol gradient, suggesting the presence of additional components in a novel high molecular weight complex. Affinity purified CERC binds to CERM but not to canonical E2F sites, thus displaying behavior different from known E2F complexes. In cells nullizygous for members of the Rb family, CERC is still detectable and CERM-dependent repression is functional. Thus p130, p107 and pRb function interchangeably in CERC. Notably, the CERC-CERM complex dissociates prematurely in pRb-/- cells in correspondence with the premature expression of cyclin E. Thus, we identify a new regulatory module that controls repression of G1-specific genes in G0/G1.

  19. Mechanisms of Nrf2/Keap1-Dependent Phase II Cytoprotective and Detoxifying Gene Expression and Potential Cellular Targets of Chemopreventive Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Biswa Nath Das

    2013-01-01

    Full Text Available Isothiocyanates (ITCs are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review, we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to electrophiles and oxidants.

  20. Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Caulobacter crescentus.

    OpenAIRE

    1990-01-01

    Chromosome replication in the asymmetrically dividing bacteria Caulobacter crescentus is discontinuous with the new, motile swarmer cell undergoing an obligatory presynthetic gap period (G1 period) of 60 min before the initiation of DNA synthesis and stalk formation. To examine the regulation of the cell division cycle at the molecular level, we have cloned the DNA chain elongation gene dnaC from a genomic DNA library constructed in cosmid vector pLAFR1-7. To ensure that the cloned sequence c...

  1. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  2. Interruption of env gene expression depending on the length of the SV40 early region used for the polyA signal.

    Science.gov (United States)

    Yamakawa, Kei; Takase-Yoden, Sayaka; Watanabe, Rihito

    2005-12-01

    In order to invent a screening system to check in vivo gene function and the efficiency of gene transfer mediated by a retroviral vector system, we established a novel packaging cell, PacNIH/A8, based on the neuropathogenic retrovirus A8-V. To construct the expression vector, pA8(Psi-), which expresses the genes gag, pol and env derived from A8-V, the SV40 early region was used for the polyadenylation signal (polyA signal). When a 0.85 kbp fragment in the SV40 early region was employed for the expression vector (pA8(Psi-)beta), env expression was abolished. This abolition was rescued by shortening the SV40 early region to 0.14 kbp (pA8(Psi-)delta). The NHI3T3 cells transfected with pA8(Psi-)delta showed expressions of both env and gag genes.

  3. Noise in eukaryotic gene expression

    Science.gov (United States)

    Blake, William J.; KÆrn, Mads; Cantor, Charles R.; Collins, J. J.

    2003-04-01

    Transcription in eukaryotic cells has been described as quantal, with pulses of messenger RNA produced in a probabilistic manner. This description reflects the inherently stochastic nature of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell-cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

  4. Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria.

    Science.gov (United States)

    Bezy, Ryan P; Wiltbank, Lisa; Kehoe, David M

    2011-11-08

    The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environments. The light color sensory system controlling PC expression is well understood, but PE regulation has not been resolved. In the filamentous cyanobacterium Fremyella diplosiphon UTEX 481, two systems control PE synthesis in response to light color. The first is the Rca pathway, a two-component system controlled by a phytochrome-class photoreceptor, which transcriptionally represses cpeCDESTR (cpeC) expression during growth in red light. The second is the Cgi pathway, which has not been characterized. We determined that the Cgi system also regulates PE synthesis by repressing cpeC expression in red light, but acts posttranscriptionally, requiring the region upstream of the CpeC translation start codon. cpeC RNA stability was comparable in F. diplosiphon cells grown in red and green light, and a short transcript that included the 5' region of cpeC was detected, suggesting that the Cgi system operates by transcription attenuation. The roles of four predicted stem-loop structures within the 5' region of cpeC RNA were analyzed. The putative stem-loop 31 nucleotides upstream of the translation start site was required for Cgi system function. Thus, the Cgi system appears to be a unique type of signal transduction pathway in which the attenuation of cpeC transcription is regulated by light color.

  5. Statin induction of liver fatty acid-binding protein (L-FABP) gene expression is peroxisome proliferator-activated receptor-alpha-dependent.

    Science.gov (United States)

    Landrier, Jean-François; Thomas, Charles; Grober, Jacques; Duez, Hélène; Percevault, Frédéric; Souidi, Maâmar; Linard, Christine; Staels, Bart; Besnard, Philippe

    2004-10-29

    Statins are drugs widely used in humans to treat hypercholesterolemia. Statins act by inhibiting cholesterol synthesis resulting in the activation of the transcription factor sterol-responsive element-binding protein-2 that controls the expression of genes involved in cholesterol homeostasis. Statin therapy also decreases plasma triglyceride and non-esterified fatty acid levels, but the mechanism behind this effect remains more elusive. Liver fatty acid-binding protein (L-FABP) plays a role in the influx of long-chain fatty acids into hepatocytes. Here we show that L-FABP is a target for statins. In rat hepatocytes, simvastatin treatment induced L-FABP mRNA levels in a dose-dependent manner. Moreover, L-FABP promoter activity was induced by statin treatment. Progressive 5'-deletion analysis revealed that the peroxisome proliferator-activated receptor (PPAR)-responsive element located at position -67/-55 was responsible for the statin-mediated transactivation of the rat L-FABP promoter. Moreover, treatment with simvastatin and the PPARalpha agonist Wy14,649 resulted in a synergistic induction of L-FABP expression (mRNA and protein) in rat Fao hepatoma cells. This effect was also observed in vivo in wild-type mice but not in PPARalpha-null animals demonstrating the direct implication of PPARalpha in L-FABP regulation by statin treatment. Statin treatment resulted in a rise in PPARalpha mRNA levels both in vitro and in vivo and activated the mouse PPARalpha promoter in a reporter assay. Altogether, these data demonstrate that L-FABP expression is up-regulated by statins through a mechanism involving PPARalpha. Moreover, PPARalpha might be a statin target gene. These effects might contribute to the triglyceride/non-esterified fatty acid-lowering properties of statins.

  6. Cytokine-dependent and–independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling

    Directory of Open Access Journals (Sweden)

    Burleigh Barbara A

    2009-05-01

    Full Text Available Abstract Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.

  7. Fasting Upregulates PPAR Target Genes in Brain and Influences Pituitary Hormone Expression in a PPAR Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bettina König

    2009-01-01

    PPAR target genes implicated in -oxidation of fatty acids (acyl-CoA oxidase, carnitine palmitoyltransferase-1, medium chain acyl-CoA dehydrogenase and ketogenesis (mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in pituitary gland and partially also in frontal cortex and diencephalon compared to nonfasted animals. These data strongly indicate that fasting activates PPAR in brain and pituitary gland. Furthermore, pituitary prolactin and luteinizing hormone- mRNA concentrations were increased upon fasting in wild-type mice but not in mice lacking PPAR. For proopiomelanocortin and thyrotropin-, genotype-specific differences in pituitary mRNA concentrations were observed. Thus, PPAR seems to be involved in transcriptional regulation of pituitary hormones.

  8. The Escherichia coli modE gene: effect of modE mutations on molybdate dependent modA expression.

    Science.gov (United States)

    McNicholas, P M; Chiang, R C; Gunsalus, R P

    1996-11-15

    The Escherichia coli modABCD operon, which encodes a high-affinity molybdate uptake system, is transcriptionally regulated in response to molybdate availability by ModE. Here we describe a highly effective enrichment protocol, applicable to any gene with a repressor role, and establish its application in the isolation of transposon mutations in modE. In addition we show that disruption of the ModE C-terminus abolishes derepression in the absence of molybdate, implying this region of ModE controls the repressor activity. Finally, a mutational analysis of a proposed molybdate binding motif indicates that this motif does not function in regulating the repressor activity of ModE.

  9. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    Science.gov (United States)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  10. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  11. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  12. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation.

    Science.gov (United States)

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated (13)C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type-specific responses to the different radiation types.

  13. Differential behavior within a grapevine cluster: decreased ethylene-related gene expression dependent on auxin transport is correlated with low abscission of first developed berries.

    Directory of Open Access Journals (Sweden)

    Nathalie Kühn

    Full Text Available In grapevine, fruit abscission is known to occur within the first two to three weeks after flowering, but the reason why some berries in a cluster persist and others abscise is not yet understood. Ethylene sensitivity modulates abscission in several fruit species, based on a mechanism where continuous polar auxin transport across the pedicel results in a decrease in ethylene perception, which prevents abscission. In grapevine, flowering takes about four to seven days in a single cluster, thus while some flowers are developing into berries, others are just starting to open. So, in this work it was assessed whether uneven flowering accounted for differences in berry abscission dependent on polar auxin transport and ethylene-related gene expression. For this, flowers that opened in a cluster were tagged daily, which allowed to separately analyze berries, regarding their ability to persist. It was found that berries derived from flowers that opened the day that flowering started--named as "first berries"--had lower abscission rate than berries derived from flowers that opened during the following days--named as "late berries". Use of radiolabeled auxin showed that "first berries" had higher polar auxin transport, correlated with lower ethylene content and lower ethylene-related transcript abundance than "late berries". When "first berries" were treated with a polar auxin transport inhibitor they showed higher ethylene-related transcript abundance and were more prone to abscise than control berries. This study provides new insights on fruit abscission control. Our results indicate that polar auxin transport sustains the ability of "first berries" to persist in the cluster during grapevine abscission and also suggest that this could be associated with changes in ethylene-related gene expression.

  14. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  15. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation.

    Directory of Open Access Journals (Sweden)

    Krishna Samanta

    Full Text Available Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.

  16. Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation.

    Science.gov (United States)

    Samanta, Krishna; Douglas, Sophie; Parekh, Anant B

    2014-01-01

    Ca2+ flux into mitochondria is an important regulator of cytoplasmic Ca2+ signals, energy production and cell death pathways. Ca2+ uptake can occur through the recently discovered mitochondrial uniporter channel (MCU) but whether the MCU is involved in shaping Ca2+ signals and downstream responses to physiological levels of receptor stimulation is unknown. Here, we show that modest stimulation of leukotriene receptors with the pro-inflammatory signal LTC4 evokes a series of cytoplasmic Ca2+ oscillations that are rapidly and faithfully propagated into mitochondrial matrix. Knockdown of MCU or mitochondrial depolarisation, to reduce the driving force for Ca2+ entry into the matrix, prevents the mitochondrial Ca2+ rise and accelerates run down of the oscillations. The loss of cytoplasmic Ca2+ oscillations appeared to be a consequence of enhanced Ca2+-dependent inactivation of InsP3 receptors, which arose from the loss of mitochondrial Ca2+ buffering. Ca2+ dependent gene expression in response to leukotriene receptor activation was suppressed following knockdown of the MCU. In addition to buffering Ca2+ release, mitochondria also sequestrated Ca2+ entry through store-operated Ca2+ channels and this too was prevented following loss of MCU. MCU is therefore an important regulator of physiological pulses of cytoplasmic Ca2+.

  17. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus

    2007-01-01

    for IL-20 expression. By electrophoretic mobility shift assay two kappaB-binding sites were identified upstream from the start codon in the IL-20 gene. Supershift analysis revealed binding of the p50/p65 heterodimer. Furthermore, the p38 MAPK was shown to exert its effects on IL-20 expression through...

  18. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms.

    Science.gov (United States)

    Hoffman, Matthew P; Kidder, Benjamin L; Steinberg, Zachary L; Lakhani, Saba; Ho, Susan; Kleinman, Hynda K; Larsen, Melinda

    2002-12-01

    Analyses of gene expression profiles at five different stages of mouse submandibular salivary gland development provide insight into gland organogenesis and identify genes that may be critical at different stages. Genes with similar expression profiles were clustered, and RT-PCR was used to confirm the developmental changes. We focused on fibroblast growth factor receptor 1 (FGFR1), as its expression is highest early in gland development. We extended our array results and analyzed the developmental expression patterns of other FGFR and FGF isoforms. The functional significance of FGFR1 was confirmed by submandibular gland organ culture. Antisense oligonucleotides decreased expression of FGFR1 and reduced branching morphogenesis of the glands. Inhibiting FGFR1 signaling with SU5402, a FGFR1 tyrosine kinase inhibitor, reduced branching morphogenesis. SU5402 treatment decreased cell proliferation but did not increase apoptosis. Fgfr, Fgf and Bmp gene expression was localized to either the mesenchyme or the epithelium by PCR, and then measured over time by real time PCR after SU5402 treatment. FGFR1 signaling regulates Fgfr1, Fgf1, Fgf3 and Bmp7 expression and indirectly regulates Fgf7, Fgf10 and Bmp4. Exogenous FGFs and BMPs added to glands in culture reveal distinct effects on gland morphology. Glands cultured with SU5402 were then rescued with exogenous BMP7, FGF7 or FGF10. Taken together, our results suggest specific FGFs and BMPs play reciprocal roles in regulating branching morphogenesis and FGFR1 signaling plays a central role by regulating both FGF and BMP expression.

  19. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.).

    Science.gov (United States)

    Feraud, Magali; Masclaux-Daubresse, Céline; Ferrario-Méry, Sylvie; Pageau, Karine; Lelandais, Maud; Ziegler, Christine; Leboeuf, Edouard; Jouglet, Tiphaine; Viret, Lauriane; Spampinato, Axelle; Paganelli, Vanina; Hammouda, Mounir Ben; Suzuki, Akira

    2005-11-01

    GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5' flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, (15)NH4(+) was incorporated into [5-(15)N]glutamine and [2-(15)N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2-(15)N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2-(15)N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15-20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides

  20. Gene expression regulation of the TLR9 and MyD88-dependent pathways in rock bream against rock bream iridovirus (RBIV) infection.

    Science.gov (United States)

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-09-13

    Rock bream iridovirus (RBIV), which is a member of the Megalocytivirus genus, causes severe mass mortalities in rock bream in Korea. To date, the innate immune defense mechanisms of rock bream against RBIV is unclear. In this study, we assessed the expression levels of genes related to TLR9 and MyD88-dependent pathways in RBIV-infected rock bream in high, low or no mortality conditions. In the high mortality group (100% mortality at 15 days post infection (dpi)), high levels of TLR9 and MyD88 expressions (6.4- and 2.4-fold, respectively) were observed at 8 d and then reduced (0.6- and 0.1-fold, respectively) with heavy viral loads at 10 dpi (2.21 × 10(7)/μl). Moreover, TRAF6, IRF5, IL1β, IL8, IL12 and TNFα expression levels showed no statistical significance until 10 dpi. Conversely, in the low mortality group (28% expected mortality at 35 dpi), TLR9, MyD88 and TRAF6 expression levels were significantly higher than those in the control group at several sampling points until 30 dpi. Higher levels of IRF5, IL1β, IL8, IL12 and TNFα expression were also observed, however, these were not significantly different from those of the control group. In the no mortality group (0% mortality at 40 dpi), significantly higher levels of MyD88 (2 d, 4 d and 40 dpi), TRAF6 (2 dpi), IL1β (4 dpi) and IL8 (2 d and 4 dpi) expression were observed. In summary, RBIV-infected rock bream induces innate immune response, which could be a major contributing factor to effective fish control over viral transcription. MyD88, TRAF6, IL1β and IL8-related immune responses were activated in fish survivor condition (low or no mortality group). This is a critical factor for RBIV disease recovery; however, these immune responses did not efficiently respond in fish dead condition (high mortality group). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chlamydia psittaci reference genes for normalisation of expression data differ depending on the culture conditions and selected time points during the chlamydial replication cycle

    Directory of Open Access Journals (Sweden)

    Van Lent Sarah

    2016-12-01

    Full Text Available Introduction: Chlamydia psittaci is a gram-negative obligate intracellular pathogen of birds. Poultry infections lead to economic losses and can be transmitted to humans. No vaccine is available and the bacterium-host cell interaction is not completely understood. Replicating bacteria cause pneumonia, but C. psittaci can also be non-replicating and persistent inside the cytoplasm of avian cells. RT-qPCR provides insight into the molecular pathogenesis of both active replicating and persistent Chlamydia psittaci in birds, but requires identification of stably expressed reference genes to avoid biases. Material and Methods: We investigated the expression stability of 10 C. psittaci candidate reference genes for gene expression analysis during normal growth and penicillin-induced persistence. C. psittaci Cal10 was cultured in HeLa229 and RNA was extracted. The expression level of each candidate was examined by RT-qPCR and Cq values were analysed using geNorm. Results: The genes tyrS, gidA, radA, and 16S rRNA ranked among the most stably expressed. The final selected reference genes differed according to the bacterial growth status (normal growth versus persistent status, and the time points selected during the duration of the normal chlamydial developmental cycle. Conclusion: The study data show the importance of systematic validation of reference genes to confirm their stability within the strains and under the conditions selected.

  2. Gene expression changes in the olfactory bulb of mice induced by exposure to diesel exhaust are dependent on animal rearing environment.

    Directory of Open Access Journals (Sweden)

    Satoshi Yokota

    Full Text Available There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m(3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust.

  3. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.

    Science.gov (United States)

    Rimaux, T; Rivière, A; Illeghems, K; Weckx, S; De Vuyst, L; Leroy, F

    2012-07-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.

  4. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine.

    Science.gov (United States)

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-01-01

    This study was conducted to examine the effects of dietary valine on the physical and flavor characteristics, fatty acid (FA) profile, antioxidant status and Nrf2-dependent antioxidant enzyme gene expression in the muscle of young grass carp (Ctenopharyngodon idella) fed increasing levels of valine (4.3, 8.0, 10.6, 13.1, 16.9 and 19.1 g/kg) for 8 weeks. Compared with the control group, the group fed valine showed improved physical characteristics of fish fillets (increased relative shear force, hydroxyproline, protein and lipid levels and decreased cathepsin B and L activities, as well as cooking loss, were observed). Moreover, valine improved the flavor of young grass carp fillets by increasing the amino acid (AA) concentration in fish muscle (increased aspartic acid, threonine, glutamine, cystine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine and valine concentrations were observed). Additionally, optimal valine supplementation increased the potential health benefits to humans by decreasing the saturated FA (C15:0 and C16:0) concentration and increasing the unsaturated FA (monounsaturated FAs (MUFAs), such as C16:1, C18:1c+t and C20:1, and polyunsaturated FAs (PUFAs), such as C18:3n-3, C20:2 and C22:6) concentration. In addition, the reduced glutathione (GSH) content and the activities of Cu/Zn superoxide dismutase (SOD1), catalase (CAT) and Selenium-dependent glutathione peroxydase (Se-GPx) increased under valine supplementation (P levels increased with dietary valine levels, possibly due to the up-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) in muscle (P antioxidant status and regulated the expression of the antioxidant enzyme genes Nrf2, Keap1, TOR and S6K1 in fish fillets.

  5. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) Fillets Fed Dietary Valine

    Science.gov (United States)

    Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2017-01-01

    This study was conducted to examine the effects of dietary valine on the physical and flavor characteristics, fatty acid (FA) profile, antioxidant status and Nrf2-dependent antioxidant enzyme gene expression in the muscle of young grass carp (Ctenopharyngodon idella) fed increasing levels of valine (4.3, 8.0, 10.6, 13.1, 16.9 and 19.1 g/kg) for 8 weeks. Compared with the control group, the group fed valine showed improved physical characteristics of fish fillets (increased relative shear force, hydroxyproline, protein and lipid levels and decreased cathepsin B and L activities, as well as cooking loss, were observed). Moreover, valine improved the flavor of young grass carp fillets by increasing the amino acid (AA) concentration in fish muscle (increased aspartic acid, threonine, glutamine, cystine, methionine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine and valine concentrations were observed). Additionally, optimal valine supplementation increased the potential health benefits to humans by decreasing the saturated FA (C15:0 and C16:0) concentration and increasing the unsaturated FA (monounsaturated FAs (MUFAs), such as C16:1, C18:1c+t and C20:1, and polyunsaturated FAs (PUFAs), such as C18:3n-3, C20:2 and C22:6) concentration. In addition, the reduced glutathione (GSH) content and the activities of Cu/Zn superoxide dismutase (SOD1), catalase (CAT) and Selenium-dependent glutathione peroxydase (Se-GPx) increased under valine supplementation (P < 0.05). Furthermore, the SOD1, CAT and Se-GPx mRNA levels increased with dietary valine levels, possibly due to the up-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the down-regulation of Kelch-like-ECH-associated protein 1 (Keap1) in muscle (P < 0.05). In conclusion, valine improved the physical and flavor characteristics, FA profile, and antioxidant status and regulated the expression of the antioxidant enzyme genes Nrf2, Keap1, TOR

  6. Differentiation of expression proifles of two calcineurin subunit genes in chicken skeletal muscles during early postnatal growth depending on anatomical location of muscles and breed

    Institute of Scientific and Technical Information of China (English)

    SHAN Yan-ju; XU Wen-juan; SHU Jing-ting; ZHANG Ming; SONG Wei-tao; TAO Zhi-yun; ZHU Chun-hong; LI Hui-fang

    2016-01-01

    Calcineurin (Cn or CaN) is implicated in the control of skeletal muscle ifber phenotype and hypertrophy. However, little information is available concerning the expression of Cn in chickens. In the present study, the expression of two Cn subunit genes (CnAα andCnB1) was quantiifed by qPCR in the lateral gastrocnemius (LG, mainly composing of red fast-twitch myoifbers), the soleus (mainly composing of red slow-twitch myoifbers) and the extensor digitorum longus (EDL, mainly composing of white fast-twitch myoifbers) from Qingyuan partridge chickens (QY, slow-growing chicken breed) and Recessive White chickens (RW, fast-growing chicken breed) on different days (1, 8, 22, 36, 50 and 64 days post-hatching). Although CnAα andCnB1 gene expressions were variable with different trends in different skeletal muscles in the two chicken breeds during postnatal growth, it is highly muscle phenotype and breed speciifc. In general, the levels ofCnAαandCnB1gene expressions of the soleus were lower than those of EDL and LG in both chicken breeds at the same stages. Compared be-tween the two chicken breeds, the levels ofCnAα gene expression of the three skeletal muscles in QY chickens were higher than those in RW chickens on days 1 and 22. However, on day 64, the levels of bothCnAα andCnB1 gene expressions of the three skeletal muscles were lower in QY chickens than those in RW chickens. Correlation analysis of the levels of CnAα andCnB1 gene expressions of the same skeletal muscle showed that there were positive correlations for al three skeletal muscle tissues in two chicken breeds. These results provide some valuable clues to understand the role of Cn in the development of chicken skeletal muscles, with a function that may be related to meat quality.

  7. Dependence of expression of regulatory master genes of embryonic development in pancreatic cancer cells on the intracellular concentration of the master regulator PDX1.

    Science.gov (United States)

    Kondratyeva, L G; Didych, D A; Chernov, I P; Kopantzev, E P; Stukacheva, E A; Vinogradova, T V; Sverdlov, E D

    2017-07-01

    Exogenous expression of the gene encoding the pancreatic master regulator PDX1 in cell lines with different degrees of differentiation of pancreatic cancer cells is accompanied by changes in the expression of known master genes involved in cancer progression. In BxPC3(PDX+) cells, as compared to BxPC3(PDX-), we detected an increased expression of the following genes: NKX6.1 (2 times), NR5A2 (2.5 times), KLF5 (1.8 times), ZEB1 (3 times), and ONECUT1 (1.3 times), as well as a decreased expression of MUC1 and SLUG genes (3 and 2 times, respectively). In PANC1(PDX+) cells, as compared to the control PANC1(PDX-) cells, we detected a decreased expression of ISL1 (2 times) and an increased expressed of KRT8 (2 times) and MUC1 (by 30%). In the high-grade cell lines (including the BxPC3 line studied), the total content of sites containing the marks of active enhancers was higher than that in the low-grade cell lines (PANC1).

  8. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  9. A preliminary perusal of ACE I/D polymorphism with adiposity traits and blood pressure among the AO NAGAS: Does gender-dependent gene expression matter?

    Directory of Open Access Journals (Sweden)

    Imkongtenla Pongen

    2016-12-01

    Full Text Available This study aims to evaluate the association of gender-dependent expression of angiotensin converting enzyme gene polymorphism (I/D with adiposity markers and blood pressure among AoNagas.57AoNagas[Males (n =26; Females (n = 31; Mean Age: 30.56±7.5 and 31.9 ±8.3 1]residing in Delhi were included in this cross sectionalstudy. Anthropometric measurements and blood pressure were taken using standardized techniques. Adiposity indices viz., BMI, WHR and WHtR were computed. Body fat percentage was assessed by bioelectricimpedance technique using Tanita Body composition analyzer (T-6360. Venous blood samples were withdrawn for DNA extraction and genotyping of ACE gene (I/D polymorphism was established by polymerase chain reaction (PCR. In female participants with DD homozygote, risk of both general and central obesity as depicted by BMI, body fat percentage, WC, WHR and WHtR were higher than ID heterozygote. Risk of hypertension was found to be greater among males with DD homozygote rather than females with DD homozygote. In males, obesity was not found to be associated with hypertension in either DD or ID genotypic variants of ACE. Whereas, in females obesity was significantly and positively correlated with hypertension in both DD and ID genotype. DD homozygous form of ACE is linked with both obesity and blood pressure in females and only with blood pressure in males. This genotype-by-gender interaction gives us a facet in understanding the complex genetic basis of adiposity and blood pressure phenotypes.

  10. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  11. Intraneuronal Amyloid Beta Accumulation Disrupts Hippocampal CRTC1-Dependent Gene Expression and Cognitive Function in a Rat Model of Alzheimer Disease.

    Science.gov (United States)

    Wilson, Edward N; Abela, Andrew R; Do Carmo, Sonia; Allard, Simon; Marks, Adam R; Welikovitch, Lindsay A; Ducatenzeiler, Adriana; Chudasama, Yogita; Cuello, A Claudio

    2017-02-01

    In Alzheimer disease (AD), the accumulation of amyloid beta (Aβ) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aβ peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aβ accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aβ caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA.

    Science.gov (United States)

    Perrone-Bizzozero, N I; Cansino, V V; Kohn, D T

    1993-03-01

    We have previously shown that nerve growth factor (NGF) selectively stabilizes the GAP-43 mRNA in PC12 cells. To study the cellular mechanisms for this post-transcriptional control and to determine the contribution of mRNA stability to GAP-43 gene expression, we examined the effects of several agents that affect PC12 cell differentiation on the level of induction and rate of degradation of the GAP-43 mRNA. The NGF-mediated increase in GAP-43 mRNA levels and neurite outgrowth was mimicked by the phorbol ester TPA, but not by dibutyryl cAMP or the calcium ionophore A12783. Downregulation of protein kinase C (PKC) by high doses of phorbol esters or selective PKC inhibitors prevented the induction of this mRNA by NGF, suggesting that NGF and TPA act through a common PKC-dependent pathway. In mRNA decay studies, phorbol esters caused a selective 6-fold increase in the half-life of the GAP-43 mRNA, which accounts for most of the induction of this mRNA by TPA. The phorbol ester-induced stabilization of GAP-43 mRNA was blocked by the protein kinase inhibitor polymyxin B and was partially inhibited by dexamethasone, an agent that blocks GAP-43 expression and neuronal differentiation in PC12 cells. In contrast, the rates of degradation and the levels of the GAP-43 mRNA in control and TPA-treated cells were not affected by cycloheximide treatment. Thus, changes in GAP-43 mRNA turnover do not appear to require continuous protein synthesis. In conclusion, these data suggest that PKC activity regulates the levels of the GAP-43 mRNA in PC12 cells through a novel, translation-independent mRNA stabilization mechanism.

  13. Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxia-inducible factor binding in primary non-tumor pituitary cells.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2012-09-28

    Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (-264/-259) and investigated whether HIF-1 is associated with insulin regulation of "endogenous" hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.

  14. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  15. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.

    Science.gov (United States)

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-03-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-D-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg(-1). It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum.

  16. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    Science.gov (United States)

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  17. Bayesian modeling of differential gene expression.

    Science.gov (United States)

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  18. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms.

    Science.gov (United States)

    Cai, Demin; Wang, Junjian; Jia, Yimin; Liu, Haoyu; Yuan, Mengjie; Dong, Haibo; Zhao, Ruqian

    2016-01-01

    Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H3K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.

  19. Expression-dependent folding of interphase chromatin.

    Directory of Open Access Journals (Sweden)

    Hansjoerg Jerabek

    Full Text Available Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.

  20. A novel benzofuran, 4-methoxybenzofuran-5-carboxamide, from Tephrosia purpurea suppressed histamine H1 receptor gene expression through a protein kinase C-δ-dependent signaling pathway.

    Science.gov (United States)

    Shill, Manik Chandra; Mizuguchi, Hiroyuki; Karmakar, Sanmoy; Kadota, Takuya; Mukherjee, Pulok K; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Nemoto, Hisao; Takeda, Noriaki; Fukui, Hiroyuki

    2016-01-01

    Histamine H1 receptor (H1R) gene is upregulated in patients with allergic rhinitis (AR), and its expression level is strongly correlated with the severity of allergic symptoms. We previously reported isolation of the putative anti-allergic compound, 4-methoxybenzofuran-5-carboxamide (MBCA) from Tephrosia purpurea and its chemical synthesis (Shill et al., Bioorg Med Chem 2015;23:6869-6874). However, the mechanism underlying its anti-allergic activity remains to be elucidated. Here, we report the mechanism of MBCA on phorbol 12-myristate-13-acetate (PMA)- or histamine-induced upregulation of H1R gene expression in HeLa cells, and in vivo effects of MBCA were also determined in toluene-2,4-diisocyanate (TDI)-sensitized rats. MBCA suppressed PMA- and histamine-induced upregulation of H1R expression at both mRNA and protein levels and inhibited PMA-induced phosphorylation of PKCδ at Tyr(311) and subsequent translocation to the Golgi. Furthermore, MBCA ameliorated allergic symptoms and suppressed the elevation of H1R and helper T cell type 2 (Th2) cytokine mRNAs in TDI-sensitized rats. Data suggest that MBCA alleviates nasal symptoms in TDI-sensitized rats through the inhibition of H1R and Th2 cytokine gene expression. The mechanism of its H1R gene suppression underlies the inhibition of PKCδ activation.

  1. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2

    NARCIS (Netherlands)

    Afzal, Muhammad; Shafeeq, Sulman; Kuipers, Oscar P

    2015-01-01

    In this study, we have explored the impact of ascorbic acid on the transcriptome of Streptococcus pneumoniae D39. The expression of several genes and operons, including the ula operon (which has been previously shown to be involved in ascorbic acid utilization), the AdcR regulon (which has been prev

  2. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    Science.gov (United States)

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  3. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    Science.gov (United States)

    Márkus, Nóra M; Hasel, Philip; Qiu, Jing; Bell, Karen F S; Heron, Samuel; Kind, Peter C; Dando, Owen; Simpson, T Ian; Hardingham, Giles E

    2016-01-01

    Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  4. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    Directory of Open Access Journals (Sweden)

    Nóra M Márkus

    Full Text Available Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs, however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes, differing neuronal subtype (CA3 vs. CA1 hippocampus and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  5. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1.

    Science.gov (United States)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-10-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20-40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes. Exogenous

  6. Expression of a neuroendocrine gene signature in gastric tumor cells from CEA 424-SV40 large T antigen-transgenic mice depends on SV40 large T antigen.

    Directory of Open Access Journals (Sweden)

    Fritz Ihler

    Full Text Available BACKGROUND: A large fraction of murine tumors induced by transgenic expression of SV40 large T antigen (SV40 TAg exhibits a neuroendocrine phenotype. It is unclear whether SV40 TAg induces the neuroendocrine phenotype by preferential transformation of progenitor cells committed to the neuroendocrine lineage or by transcriptional activation of neuroendocrine genes. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we analyzed CEA424-SV40 TAg-transgenic mice that develop spontaneous tumors in the antral stomach region. Immunohistology revealed expression of the neuroendocrine marker chromogranin A in tumor cells. By ELISA an 18-fold higher level of serotonin could be detected in the blood of tumor-bearing mice in comparison to nontransgenic littermates. Transcriptome analyses of antral tumors combined with gene set enrichment analysis showed significant enrichment of genes considered relevant for human neuroendocrine tumor biology. This neuroendocrine gene signature was also expressed in 424GC, a cell line derived from a CEA424-SV40 TAg tumor, indicating that the tumor cells exhibit a similar neuroendocrine phenotype also in vitro. Treatment of 424GC cells with SV40 TAg-specific siRNA downregulated expression of the neuroendocrine gene signature. CONCLUSIONS/SIGNIFICANCE: SV40 TAg thus appears to directly induce a neuroendocrine gene signature in gastric carcinomas of CEA424-SV40 TAg-transgenic mice. This might explain the high incidence of neuroendocrine tumors in other murine SV40 TAg tumor models. Since the oncogenic effect of SV40 TAg is caused by inactivation of the tumor suppressor proteins p53 and RB1 and loss of function of these proteins is commonly observed in human neuroendocrine tumors, a similar mechanism might cause neuroendocrine phenotypes in human tumors.

  7. Hybrid weakness in a rice interspecific hybrid is nitrogen-dependent, and accompanied by changes in gene expression at both total transcript level and parental allele partitioning

    Science.gov (United States)

    Lin, Xiuyun; Wang, Jie; Yu, Jiamiao; Sun, Yue; Miao, Yiling; Li, Qiuping; Sanguinet, Karen A.; Liu, Bao

    2017-01-01

    Background Hybrid weakness, a phenomenon opposite to heterosis, refers to inferior growth and development in a hybrid relative to its pure-line parents. Little attention has been paid to the phenomenological or mechanistic aspect of hybrid weakness, probably due to its rare occurrence. Methodology/Principal findings Here, using a set of interspecific triploid F1 hybrids between Oryza sativa, ssp. japonica (genome AA) and a tetraploid wild rice species, O. alta (genome, CCDD), we investigated the phenotypic and physiological differences between the F1 hybrids and their parents under normal and nitrogen-limiting conditions. We quantified the expression levels of 21 key genes involved in three important pathways pertinent to the assayed phenotypic and physiological traits by real-time qRT-PCR. Further, we assayed expression partitioning of parental alleles for eight genes in the F1 hybrids relative to the in silico “hybrids” (parental cDNA mixture) under both normal and N-limiting conditions by using locus-specific cDNA pyrosequencing. Conclusions/Significance We report that the F1 hybrids showed weakness in several phenotypic traits at the final seedling-stage compared with their corresponding mid-parent values (MPVs). Nine of the 21 studied genes showed contrasted expression levels between hybrids and parents (MPVs) under normal vs. N-limiting conditions. Interestingly, under N-limiting conditions, the overtly enhanced partitioning of maternal allele expression in the hybrids for eight assayed genes echo their attenuated hybrid weakness in phenotypes, an observation further bolstered by more resemblance of hybrids to the maternal parent under N-limiting conditions compared to normal conditions in a suite of measured physiological traits. Our observations suggest that both overall expression level and differential partitioning of parental alleles of critical genes contribute to condition-specific hybrid weakness. PMID:28248994

  8. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat?

    Directory of Open Access Journals (Sweden)

    Gottwald Sven

    2012-08-01

    Full Text Available Abstract Background Fusarium head blight (FHB caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant and Lynx (susceptible. The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat. Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant

  9. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  10. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4 expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21(Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.

  11. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  12. Zipf's Law in Gene Expression

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  13. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  14. The histone demethylase LSD1 is required for estrogen-dependent S100A7 gene expression in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Eun [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749 (Korea, Republic of); Jang, Yeun Kyu, E-mail: ykjang@yonsei.ac.kr [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Yonsei Biomolecule Research Initiative, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer S100A7 gene is up-regulated in response to estrogen in breast cancer cells. Black-Right-Pointing-Pointer Histone demethylase LSD1 can associate physically with S100A7 gene promoters. Black-Right-Pointing-Pointer E2-induced S100A7 expression requires the enzymatic activity of LSD1. Black-Right-Pointing-Pointer S100A7 inhibits cell proliferation, implying its tumor suppressor-like function. -- Abstract: S100A7, a member of S100 calcium binding protein family, is highly associated with breast cancer. However, the molecular mechanism of S100A7 regulation remains unclear. Here we show that long-term treatment with estradiol stimulated S100A7 expression in MCF7 breast cancer cells at both the transcriptional and translational levels. Both treatment with a histone demethylase LSD1 inhibitor and shRNA-based knockdown of LSD1 expression significantly decreased 17{beta}-estradiol (E2)-induced S100A7 expression. These reduced E2-mediated S100A7 expression are rescued by the overexpressed wild-type LSD1 but not by its catalytically inactive mutant. Our data showed in vivo association of LSD1 with S100A7 promoters, confirming the potential role of LSD1 in regulating S100A7 expression. S100A7 knockdown increased both normal cell growth and estrogen-induced cell proliferation, suggesting a negative influence by S100A7 on the growth of cancer cells. Together, our data suggest that estrogen-induced S100A7 expression mediated by the histone demethylase LSD1 may downregulate breast cancer cell proliferation, implying a potential tumor suppressor-like function for S100A7.

  15. UVB-dependent changes in the expression of fast-responding early genes is modulated by huCOP1 in keratinocytes.

    Science.gov (United States)

    Fazekas, B; Polyánka, H; Bebes, A; Tax, G; Szabó, K; Farkas, K; Kinyó, A; Nagy, F; Kemény, L; Széll, M; Ádám, É

    2014-11-01

    Ultraviolet (UV) B is the most prominent physical carcinogen in the environment leading to the development of various skin cancers. We have previously demonstrated that the human ortholog of the Arabidopsis thaliana constitutive photomorphogenesis 1 (COP1) protein, huCOP1, is expressed in keratinocytes in a UVB-regulated manner and is a negative regulator of p53 as a posttranslational modifier. However, it was not known whether huCOP1 plays a role in mediating the UVB-induced early transcriptional responses of human keratinocytes. In this study, we report that stable siRNA-mediated silencing of huCOP1 affects the UVB response of several genes within 2 h of irradiation, indicating that altered huCOP1 expression sensitizes the cells toward UVB. Pathway analysis identified a molecular network in which 13 of the 30 examined UVB-regulated genes were organized around three central proteins. Since the expression of the investigated genes was upregulated by UVB in the siCOP1 cell line, we hypothesize that huCOP1 is a repressor of the identified pathway. Several members of the network have been implicated previously in the pathogenesis of non-melanoma skin cancers; therefore, clarifying the role of huCOP1 in these skin diseases may have clinical relevance in the future.

  16. Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2.

    Science.gov (United States)

    Stockinger, Eric J; Skinner, Jeffrey S; Gardner, Kip G; Francia, Enrico; Pecchioni, Nicola

    2007-07-01

    Genetic analyses have identified two loci in wheat and barley that mediate the capacity to overwinter in temperate climates. One locus co-segregates with VRN-1, which affects the vernalization requirement. This locus is known as Frost resistance-1 (Fr-1). The second locus, Fr-2, is coincident with a cluster of more than 12 Cbf genes. Cbf homologs in Arabidopsis thaliana play a key regulatory role in cold acclimatization and the acquisition of freezing tolerance. Here we report that the Hordeum vulgare (barley) locus VRN-H1/Fr-H1 affects expression of multiple barley Cbf genes at Fr-H2. RNA blot analyses, conducted on a 'Nure'x'Tremois' barley mapping population segregating for VRN-H1/Fr-H1 and Fr-H2, revealed that transcript levels of all cold-induced Cbf genes at Fr-H2 were significantly higher in recombinants harboring the vrn-H1 winter allele than in recombinants harboring the Vrn-H1 spring allele. Steady-state Cbf2 and Cbf4 levels were also significantly higher in recombinants harboring the Nure allele at Fr-H2. Additional experiments indicated that, in vrn-H1 genotypes requiring vernalization, Cbf expression levels were dampened after plants were vernalized, and dampened Cbf expression was accompanied by robust expression of Vrn-1. Cbf levels were also significantly higher in plants grown under short days than under long days. Experiments in wheat and rye indicated that similar regulatory mechanisms occurred in these plants. These results suggest that VRN-H1/Fr-H1 acts in part to repress or attenuate expression of the Cbf at Fr-H2; and that the greater level of low temperature tolerance attributable to the Nure Fr-H2 allele may be due to the greater accumulation of Cbf2 and Cbf4 transcripts during normal growth and development.

  17. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Zhang, H; Rasmussen, T H;

    2001-01-01

    The peroxisome proliferator-activated receptor gamma (PPARgamma) is a key regulator of terminal adipocyte differentiation. PPARdelta is expressed in preadipocytes, but the importance of this PPAR subtype in adipogenesis has been a matter of debate. Here we present a critical evaluation of the role...... of PPARdelta in adipocyte differentiation. We demonstrate that treatment of NIH-3T3 fibroblasts overexpressing PPARdelta with standard adipogenic inducers led to induction of PPARgamma2 expression and terminal adipocyte differentiation in a manner that was strictly dependent on simultaneous administration...... expression of PPARgamma and ALBP/aP2, but only modestly promoted terminal differentiation as determined by lipid accumulation. Finally, we provide evidence that synergistic activation of PPARdelta promotes mitotic clonal expansion in 3T3-L1 cells with or without forced expression of PPARdelta. In conclusion...

  18. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  19. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    Science.gov (United States)

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  20. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Teramoto, Haruhiko; Nakamori, Akira; Minagawa, Jun; Ono, Taka-aki

    2002-09-01

    Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO(2) concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 and Lhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of these Lhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO(2) assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of the Lhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.

  1. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes.

    Science.gov (United States)

    Altamirano, Francisco; López, Jose R; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D; Jaimovich, Enrique

    2012-06-15

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca(2+)](rest)) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca(2+)](rest) was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca(2+) entry (low Ca(2+) solution, Ca(2+)-free solution, and Gd(3+)) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca(2+)](rest). Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca(2+)](rest) was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca(2+)](rest) using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca(2+)](rest), is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells.

  2. Alterations of glucose-dependent insulinotropic polypeptide and expression of genes involved in mammary gland and adipose tissue lipid metabolism during pregnancy and lactation.

    Directory of Open Access Journals (Sweden)

    R Charlotte Moffett

    Full Text Available Gastric inhibitory polypeptide (GIP is a gut derived peptide with multiple emerging physiological actions. Effects of pregnancy and lactation on GIP secretion and related gene expression were studied in Wistar rats. Pregnancy moderately increased feeding (p<0.05, whilst lactation substantially increased food intake (p<0.01 to p<0.001. Circulating GIP was unchanged during pregnancy, but non-fasting plasma glucose was significantly (p<0.01 decreased and insulin increased (p<0.05. Lactation was associated with elevated circulating GIP concentrations (p<0.001 without change of glucose or insulin. Oral glucose resulted in a significantly (p<0.001 decreased glycaemic excursion despite similar glucose-induced GIP and insulin concentrations in lactating rats. Pregnant rats had a similar glycaemic excursion but exhibited significantly lowered (p<0.05 GIP accompanied by elevated (p<0.001 insulin levels. Pregnant rats exhibited increased (p<0.001 islet numbers and individual islet areas were enlarged (p<0.05. There were no significant differences in islet alpha-cell areas, but all groups of rats displayed co-expression of glucagon and GIP in alpha-cells. Lactating rats exhibited significantly (p<0.01 increased intestinal weight, whereas intestinal GIP stores were significantly (p<0.01 elevated only in pregnant rats. Gene expression studies in lactating rats revealed prominent (p<0.01 to p<0.001 increases in mammary gland expression of genes involved in energy turnover, including GIP-R. GIP was present in intestines and plasma of 17 day old foetal rats, with substantially raised circulating concentrations in neonates throughout the period of lactation/suckling. These data indicate that changes in the secretion and action of GIP play an important role in metabolic adaptations during pregnancy and especially lactation.

  3. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  4. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  5. NADPH-dependent reductive biotransformation with Escherichia coli and its pfkA deletion mutant: influence on global gene expression and role of oxygen supply.

    Science.gov (United States)

    Siedler, Solvej; Bringer, Stephanie; Polen, Tino; Bott, Michael

    2014-10-01

    An Escherichia coli ΔpfkA mutant lacking the major phosphofructokinase possesses a partially cyclized pentose phosphate pathway leading to an increased NADPH per glucose ratio. This effect decreases the amount of glucose required for NADPH regeneration in reductive biotransformations, such as the conversion of methyl acetoacetate (MAA) to (R)-methyl 3-hydroxybutyrate (MHB) by an alcohol dehydrogenase from Lactobacillus brevis. Here, global transcriptional analyses were performed to study regulatory responses during reductive biotransformation. DNA microarray analysis revealed amongst other things increased expression of soxS, supporting previous results indicating that a high NADPH demand contributes to the activation of SoxR, the transcriptional activator of soxS. Furthermore, several target genes of the ArcAB two-component system showed a lower mRNA level in the reference strain than in the ΔpfkA mutant, pointing to an increased QH2 /Q ratio in the reference strain. This prompted us to analyze yields and productivities of MAA reduction to MHB under different oxygen regimes in a bioreactor. Under anaerobic conditions, the specific MHB production rates of both strains were comparable (7.4 ± 0.2 mmolMHB  h(-1)  gcdw (-1) ) and lower than under conditions of 15% dissolved oxygen, where those of the reference strain (12.8 mmol h(-1)  gcdw (-1) ) and of the ΔpfkA mutant (11.0 mmol h(-1)  gcdw (-1) ) were 73% and 49% higher. While the oxygen transfer rate (OTR) of the reference strain increased after the addition of MAA, presumably due to the oxidation of the acetate accumulated before MAA addition, the OTR of the ΔpfkA strain strongly decreased, indicating a very low respiration rate despite sufficient oxygen supply. The latter effect can likely be attributed to a restricted conversion of NADPH into NADH via the soluble transhydrogenase SthA, as the enzyme is outcompeted in the presence of MAA by the recombinant NADPH-dependent alcohol

  6. SHP-2 tyrosine phosphatase inhibits p73-dependent apoptosis and expression of a subset of p53 target genes induced by EGCG

    OpenAIRE

    2007-01-01

    Green tea polyphenol, epigallocatechin-3-gallate (EGCG) differentially regulates the cellular growth of cancer cells in a p53-dependent manner through apoptosis and/or cell cycle arrest. In an effort to further elucidate the mechanism of differential growth regulation by EGCG, we have investigated the role of the tyrosine phosphatase, SHP-2. Comparing the responses of mouse embryonic fibroblasts (MEFs), expressing either WT or functionally inactive/truncated SHP-2, we find that inactivation o...

  7. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2.

    Science.gov (United States)

    Afzal, Muhammad; Shafeeq, Sulman; Kuipers, Oscar P

    2015-01-01

    In this study, we have explored the impact of ascorbic acid on the transcriptome of Streptococcus pneumoniae D39. The expression of several genes and operons, including the ula operon (which has been previously shown to be involved in ascorbic acid utilization), the AdcR regulon (which has been previously shown to be involved in zinc transport and virulence) and a PTS operon (which we denote here as ula2 operon) were altered in the presence of ascorbic acid. The ula2 operon consists of five genes, including the transcriptional activator ulaR2. Our β-galactosidase assay data and transcriptome comparison of the ulaR2 mutant with the wild-type demonstrated that the transcriptional activator UlaR2 in the presence of ascorbic acid activates the expression of the ula2 operon. We further predict a 16-bp regulatory site (5'-ATATTGTGCTCAAATA-3') for UlaR2 in the Pula2. Furthermore, we have explored the effect of ascorbic acid on the expression of the AdcR regulon. Our ICP-MS analysis showed that addition of ascorbic acid to the medium causes zinc starvation in the cell which leads to the activation of the AdcR regulon.

  8. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  9. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  10. Cocaine induces a differential dose-dependent alteration in the expression profile of immediate early genes, transcription factors, and caspases in PC12 cells: a possible mechanism of neurotoxic damage in cocaine addiction.

    Science.gov (United States)

    Imam, Syed Z; Duhart, Helen M; Skinner, John T; Ali, Syed F

    2005-08-01

    Cocaine is a widely used drug of abuse and psychostimulant that acts on the central nervous system by blocking the dopamine reuptake sites. PC12 cells, a rat pheochromocytoma clonal line, in the presence of nerve growth factor (NGF), multiply and differentiate into competent neurons that can synthesize, store, and secrete the neurotransmitter dopamine (DA). In the present study, we evaluated the effect of increasing doses of cocaine on the expression of immediate early genes (IEGs), c-fos and c-jun, and closely related transcription factors, SP-1 and NF-kbeta, at 24 h after the exposure to cocaine (50, 100, 200, 500, 1000, 2500 microM) in NGF-differentiated PC12 cells. Cocaine (50-500 microM) resulted in significant induction of the expression of c-fos, c-jun, SP-1, and NF-kbeta. However, higher concentrations of cocaine (1000 and 2500 microM) resulted in the downregulation of these expressions after 24 h. To further understand the role of dose-dependent changes in the mechanisms of cell death, we evaluated the protein expression of apoptotic markers. A concentration-dependent increase in the expression of caspase-9 and -3 was observed up to 500 microM cocaine. However, the higher dose did not show any expression. We also evaluated the effect of increasing doses of cocaine on DA concentration and the expression of dopamine transporter (DAT). A significant dose-dependent decrease in the concentration of DA as well as the expression of DAT was observed 24 h after the exposure of PC12 cells to cocaine. Therefore, in the present study, we reported that cocaine has both upstream and downstream regulatory actions on some IEGs and transcription factors that can regulate the mechanism of cell death, and these effects on gene expression are independent of its action on the dopaminergic system.

  11. Annotation of gene function in citrus using gene expression information and co-expression networks.

    Science.gov (United States)

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  12. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  13. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  14. Timing of cyclin E gene expression depends on the regulated association of a bipartite repressor element with a novel E2F complex.

    OpenAIRE

    Le Cam, L; Polanowska, J.; Fabbrizio, E; Olivier, M.; Philips, A.; Ng Eaton, E; Classon, M; Geng, Y; Sardet, C.

    1999-01-01

    Transient induction of the cyclin E gene in late G1 gates progression into S. We show that this event is controlled via a cyclin E repressor module (CERM), a novel bipartite repressor element located near the cyclin E transcription start site. CERM consists of a variant E2F-binding site and a contiguous upstream AT-rich sequence which cooperate during G0/G1 to delay cyclin E expression until late G1. CERM binds the protein complex CERC, which disappears upon progression through G0-G1 and reap...

  15. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  16. Use of 5-ethynyl-2'-deoxyuridine labelling and flow cytometry to study cell cycle-dependent regulation of human cytomegalovirus gene expression.

    Science.gov (United States)

    Wiebusch, Lüder; Hagemeier, Christian

    2014-01-01

    The cell cycle position at the time of infection has a profound influence on human cytomegalovirus (HCMV) gene expression and therefore needs consideration in the design and control of HCMV experiments. While G0/G1 cells support the immediate onset of viral transcription, cells progressing through the S and G2 cell cycle phases prevent HCMV from entering the lytic replication cycle. Here, we provide two fast and reliable protocols that allow one to determine the cell cycle distribution of the designated host cells and monitor viral protein expression as a function of the cell cycle state. Both protocols make use of the thymidine analogue 5-ethynyl-2'-deoxyuridine and "click" chemistry to label HCMV-non-permissive S phase cells in a gentle and sensitive way.

  17. Approximately 1 kilobase of sequence 5' to the two myosin light-chain 1/sub f/3/sub f/ gene cap sites is sufficient for differentiation-dependent expression

    Energy Technology Data Exchange (ETDEWEB)

    Billeter, R.; Quitscke, W.; Patterson, B.M.

    1988-03-01

    Approximately 1 kilobase of genomic DNA from the chicken fast myosin light-chain 1/sub f/3/sub f/ gene 5' to the transcriptional start sites for each light-chain mRNA was sufficient for differentiation-dependent, tissue-restricted expression. This was determined in primary chick myoblast cultures transfected with the chloroamphenicol acetyltransferase (CAT) expression vector p8CAT containing these 5'-flanking sequences. The expression of CAT activity from both light-chain promoters was 10- to 20-fold higher in differentiated myotubes than in fibroblasts or myoblasts grown in bromodeoxyuridine. In contrast, the ..beta..-actin and Rous sarcoma virus promoters joined to the CAT gene were expressed equally in all cell backgrounds tested. Even though the relative timing of light-chain 1/sub f/ and 3/sub f/ expression was altered, tissue-restricted, differentiation-dependent expression of the light-chain mRNAs was maintained with these 5' cis-acting sequence elements.

  18. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  19. Predicting metastasized seminoma using gene expression.

    Science.gov (United States)

    Ruf, Christian G; Linbecker, Michael; Port, Matthias; Riecke, Armin; Schmelz, Hans U; Wagner, Walter; Meineke, Victor; Abend, Michael

    2012-07-01

    Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue

  20. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  1. Expression of the Yersinia enterocolitica O:3 LPS O-antigen and outer core gene clusters is RfaH-dependent.

    Science.gov (United States)

    Leskinen, Katarzyna; Varjosalo, Markku; Li, Zhilin; Li, Chun-Mei; Skurnik, Mikael

    2015-06-01

    The antiterminator RfaH is required for the expression of LPS, capsule, haemolysin, exotoxin, haemin uptake receptor and F pilus. As these structures are critical for bacterial virulence, loss of RfaH usually leads to attenuation. Here, we inactivated the rfaH gene of Yersinia enterocolitica O:3 to study its role in this enteropathogen. RNA sequencing of the WT and ΔrfaH strain transcriptomes revealed that RfaH acted as a highly specific regulator that enhanced the transcription of the operons involved in biosynthesis of LPS O-antigen and outer core (OC), but did not affect the expression of enterobacterial common antigen. Interestingly, the transcriptome of the ΔrfaH strain was very similar to that of an O-antigen-negative mutant. This indicated that some of the changes seen in the ΔrfaH strain, such as the genes involved in outer membrane homeostasis or in the stress-response-associated Cpx pathway, were actually due to indirect responses via the loss of O-antigen. The decreased amount of LPS on the ΔrfaH strain cell surface resulted in an attenuated stress response, and lower resistance to compounds such as SDS and polymyxin B. However, the ΔrfaH strain was significantly more resistant to complement-mediated killing by normal human serum. Taken together, our results revealed a novel role of RfaH acting as a highly specific regulator of O-antigen and OC of LPS in Y. enterocolitica O:3. It may be speculated that RfaH might have an in vivo role in controlling tissue-specific expression of bacterial surface oligo/polysaccharides.

  2. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    Science.gov (United States)

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-01

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  3. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  4. Gene expression throughout a vertebrate's embryogenesis

    Directory of Open Access Journals (Sweden)

    Hinton David E

    2011-02-01

    Full Text Available Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases. Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development.

  5. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  6. Comparison of captive lifespan, age-associated liver neoplasias and age-dependent gene expression between two annual fish species: Nothobranchius furzeri and Nothobranchius korthause.

    Science.gov (United States)

    Baumgart, Mario; Di Cicco, Emiliano; Rossi, Giacomo; Cellerino, Alessandro; Tozzini, Eva Terzibasi

    2015-02-01

    Nothobranchius is a genus of annual fish broadly distributed in South-Eastern Africa and found into temporary ponds generated during the rain seasons and their lifespan is limited by the duration of their habitats. Here we compared two Nothobranchius species from radically different environments: N. furzeri and N. korthausae. We found a large difference in life expectancy (29- against 71-weeks of median life span, 40- against 80-weeks of maximum lifespan, respectively), which correlates with a diverse timing in the onset of several age dependent processes: our data show that N. korthause longer lifespan is associated to retarded onset of age-dependent liver-neoplasia and slower down-regulation of collagen 1 alpha 2 (COL1A2) expression in the skin. On the other hand, the expression of cyclin B1 (CCNB1) in the brain was strongly age-regulated, but with similar profiles in N. furzeri and N. korthausae. In conclusion, our data suggest that the different ageing rate of two species of the same genus could be used as novel tool to investigate and better understand the genetic bases of some general mechanism leading to the complex ageing process, providing a strategy to unravel some of the genetic mechanisms regulating longevity and age-associate pathologies including neoplasias.

  7. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala (Sweden); Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Kubota, Akira, E-mail: akubota@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Timme-Laragy, Alicia R., E-mail: atimmelaragy@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003 (United States); Woodin, Bruce, E-mail: bwoodin@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States)

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  8. Expression profiling of a novel calcium-dependent protein kinase gene, LeCPK2, from tomato (Solanum lycopersicum) under heat and pathogen-related hormones.

    Science.gov (United States)

    Chang, Wen-Jun; Su, Huo-Sheng; Li, Wei-Jing; Zhang, Zhi-Li

    2009-11-01

    A full-length cDNA LeCPK2 (GenBank GQ205414) from tomato (Solanum lycopersicum) encoding a calcium-dependent protein kinase (CDPK) was cloned by in silico cloning using NtCPK5 (AY971376) as a virtual probe. The deduced amino acid sequence of LeCPK2 contained the kinase, autoinhibitory, and calmodulin-like domains typical of CDPKs. Expression profiling indicated that LeCPK2 expressed predominantly in flowers and responded divergently to heat and cold stress, in which obvious mRNA accumulation was detected at 4 h under 42 degrees C stress, but no change in LeCPK2 mRNA levels was observed in 6 h at 4 degrees C. Mechanical wounding and phytohormones including ethylene, methyl jasmonate, and salicylic acid were also observed to arouse the expression of LeCPK2 in a similar pattern. mRNA accumulation was enhanced at 30 min and reached a maximum at 3 h, followed by a decrease to the normal level. All the results suggest that LeCPK2 is a novel versatile isoform of tomato CDPKs.

  9. Culture site dependence on pearl size realization in Pinctada margaritifera in relation to recipient oyster growth and mantle graft biomineralization gene expression using the same donor phenotype

    Science.gov (United States)

    Le Pabic, Lore; Parrad, Sophie; Sham Koua, Manaarii; Nakasai, Seiji; Saulnier, Denis; Devaux, Dominique; Ky, Chin-Long

    2016-12-01

    Size is the most important and valuable quality of the cultured black-lip pearl, Pinctada margaritifera. As this pearl aquaculture is carried out at numerous grow-out sites, this study analyzes the environmental influence on pearl size parameters (nacre weight and thickness) in relation to the recipient oyster biometric parameters (shell thickness, height, width, and oyster weight) at harvest time. Toward this end, an experimental graft was designed by using a homogeneous donor oyster phenotype. The recipient oysters were randomly and equally transferred and reared in five commercial and contrasting grow-out locations. Overall inter-site comparisons revealed that the cultured pearl size (N = 2168) and the biometric parameters of the recipient oysters were highest for sites with warmer temperatures with low seasonal variation in comparison to the southern latitude sites. These results were supported by positive correlations between pearl nacre thickness and recipient oyster shell thickness, height, and width. In parallel, the biomineralization potential of the mantle graft was screened through four genes encoding aragonite (Pif 177, MSI60) and calcite (shematrin 9, aspein). As the gene expression levels were the same among all the donor oysters, this finding demonstrates that: 1) the pearl sac that originated from the mantle graft was not isolated from environmental variations during the culture period and 2) the phenotypic expressions of the two biomineralizing tissues in the recipient oyster were consistent (shell and pearl). In the near future, this knowledge will be helpful at the production sites of genetically selected donor oyster lines for growth produced in hatchery systems.

  10. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-κB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Alison E Harvey

    Full Text Available Calorie restriction (CR prevents obesity and has potent anticancer effects that may be mediated through its ability to reduce serum growth and inflammatory factors, particularly insulin-like growth factor (IGF-1 and protumorigenic cytokines. IGF-1 is a nutrient-responsive growth factor that activates the inflammatory regulator nuclear factor (NF-κB, which is linked to many types of cancers, including pancreatic cancer. We hypothesized that CR would inhibit pancreatic tumor growth through modulation of IGF-1-stimulated NF-κB activation and protumorigenic gene expression. To test this, 30 male C57BL/6 mice were randomized to either a control diet consumed ad libitum or a 30% CR diet administered in daily aliquots for 21 weeks, then were subcutaneously injected with syngeneic mouse pancreatic cancer cells (Panc02 and tumor growth was monitored for 5 weeks. Relative to controls, CR mice weighed less and had decreased serum IGF-1 levels and smaller tumors. Also, CR tumors demonstrated a 70% decrease in the expression of genes encoding the pro-inflammatory factors S100a9 and F4/80, and a 56% decrease in the macrophage chemoattractant, Ccl2. Similar CR effects on tumor growth and NF-κB-related gene expression were observed in a separate study of transplanted MiaPaCa-2 human pancreatic tumor cell growth in nude mice. In vitro analyses in Panc02 cells showed that IGF-1 treatment promoted NF-κB nuclear localization, increased DNA-binding of p65 and transcriptional activation, and increased expression of NF-κB downstream genes. Finally, the IGF-1-induced increase in expression of genes downstream of NF-κB (Ccdn1, Vegf, Birc5, and Ptgs2 was decreased significantly in the context of silenced p65. These findings suggest that the inhibitory effects of CR on Panc02 pancreatic tumor growth are associated with reduced IGF-1-dependent NF-κB activation.

  11. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  12. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Directory of Open Access Journals (Sweden)

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  13. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  14. Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-01

    Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). After four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT{sup Thr308} protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures. - Highlights: • Acute DMBA exposures induce large primary and/or secondary follicle loss. • Acute DMBA exposure did not impact

  15. Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene.

    Science.gov (United States)

    Schmalbach, Barbara; Lepsveridze, Eka; Djogo, Nevena; Papashvili, Giorgi; Kuang, Fang; Leshchyns'ka, Iryna; Sytnyk, Vladimir; Nikonenko, Alexander G; Dityatev, Alexander; Jakovcevski, Igor; Schachner, Melitta

    2015-11-01

    In humans, deletions/mutations in the CHL1/CALL gene are associated with mental retardation and schizophrenia. Juvenile CHL1-deficient (CHL1(-/-) ) mice have been shown to display abnormally high numbers of parvalbumin-expressing (PV(+) ) hippocampal interneurons and, as adults, display behavioral traits observed in neuropsychiatric disorders. Here, we addressed the question whether inhibitory interneurons and synaptic plasticity in the CHL1(-/-) mouse are affected during brain maturation and in adulthood. We found that hippocampal, but not neocortical, PV(+) interneurons were reduced with age in CHL1(-/-) mice, from a surplus of +27% at 1 month to a deficit of -20% in adulthood compared with wild-type littermates. This loss occurred during brain maturation, correlating with microgliosis and enhanced interleukin-6 expression. In parallel with the loss of PV(+) interneurons, the inhibitory input to adult CA1 pyramidal cells was reduced and a deficit in short- and long-term potentiation developed at CA3-CA1 excitatory synapses between 2 and 9 months of age in CHL1(-/-) mice. This deficit could be abrogated by a GABAA receptor agonist. We propose that region-specific aberrant GABAergic synaptic connectivity resulting from the mutation and a subsequently enhanced synaptic elimination during brain maturation lead to microgliosis, increase in pro-inflammatory cytokine levels, loss of interneurons, and impaired synaptic plasticity. Close homolog of L1-deficient (CHL1(-/-) ) mice have abnormally high numbers of parvalbumin (PV)-expressing hippocampal interneurons in juvenile animals, but in adult animals a loss of these cells is observed. This loss correlates with an increased density of microglia (M), enhanced interleukin-6 (IL6) production and a deficit in short- and long-term potentiation at CA3-CA1 excitatory synapses. Furthermore, adult CHL1(-/-) mice display behavioral traits similar to those observed in neuropsychiatric disorders of humans.

  16. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    Directory of Open Access Journals (Sweden)

    Jasdeep S. Mutti

    2017-04-01

    Full Text Available Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14% in the anthers and the smallest (7% in the pistils. The highest number (1.72/3 of homeologs/gene expression was in the roots and the lowest (1.03/3 in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  17. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids.

    Science.gov (United States)

    Mutti, Jasdeep S; Bhullar, Ramanjot K; Gill, Kulvinder S

    2017-04-03

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76-87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  18. Selection and validation of reference genes for quantitative gene expression studies in Erythroxylum coca

    OpenAIRE

    2013-01-01

    Real-time quantitative PCR is a powerful technique for the investigation of comparative gene expression, but its accuracy and reliability depend on the reference genes used as internal standards. Only genes that show a high level of expression stability are suitable for use as reference genes, and these must be identified on a case-by-case basis. Erythroxylum coca produces and accumulates high amounts of the pharmacologically active tropane alkaloid cocaine (especially in the leaves), and is ...

  19. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  20. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  1. Common Hepatic Branch of Vagus Nerve-Dependent Expression of Immediate Early Genes in the Mouse Brain by Intraportal L-Arginine: Comparison with Cholecystokinin-8

    Directory of Open Access Journals (Sweden)

    Daisuke Yamada

    2017-06-01

    Full Text Available Information from the peripheral organs is thought to be transmitted to the brain by humoral factors and neurons such as afferent vagal or spinal nerves. The common hepatic branch of the vagus (CHBV is one of the main vagus nerve branches, and consists of heterogeneous neuronal fibers that innervate multiple peripheral organs such as the bile duct, portal vein, paraganglia, and gastroduodenal tract. Although, previous studies suggested that the CHBV has a pivotal role in transmitting information on the status of the liver to the brain, the details of its central projections remain unknown. The purpose of the present study was to investigate the brain regions activated by the CHBV. For this purpose, we injected L-arginine or anorexia-associated peptide cholecystokinin-8 (CCK, which are known to increase CHBV electrical activity, into the portal vein of transgenic Arc-dVenus mice expressing the fluorescent protein Venus under control of the activity-regulated cytoskeleton-associated protein (Arc promotor. The brain slices were prepared from these mice and the number of Venus positive cells in the slices was counted. After that, c-Fos expression in these slices was analyzed by immunohistochemistry using the avidin-biotin-peroxidase complex method. Intraportal administration of L-arginine increased the number of Venus positive or c-Fos positive cells in the insular cortex. This action of L-arginine was not observed in CHBV-vagotomized Arc-dVenus mice. In contrast, intraportal administration of CCK did not increase the number of c-Fos positive or Venus positive cells in the insular cortex. Intraportal CCK induced c-Fos expression in the dorsomedial hypothalamus, while intraportal L-arginine did not. This action of CCK was abolished by CHBV vagotomy. Intraportal L-arginine reduced, while intraportal CCK increased, the number of c-Fos positive cells in the nucleus tractus solitarii in a CHBV-dependent manner. The present results suggest that the CHBV

  2. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish.

    Science.gov (United States)

    Jönsson, Maria E; Kubota, Akira; Timme-Laragy, Alicia R; Woodin, Bruce; Stegeman, John J

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.

  3. Endoplasmic Reticulum Stress in Mice Increases Hepatic Expression of Genes Carrying a Premature Termination Codon via a Nutritional Status-Independent GRP78-Dependent Mechanism.

    Science.gov (United States)

    Harada, Nagakatsu; Okuyama, Maiko; Yoshikatsu, Aya; Yamamoto, Hironori; Ishiwata, Saori; Hamada, Chikako; Hirose, Tomoyo; Shono, Masayuki; Kuroda, Masashi; Tsutsumi, Rie; Takeo, Jiro; Taketani, Yutaka; Nakaya, Yutaka; Sakaue, Hiroshi

    2017-11-01

    Nonsense-mediated mRNA decay (NMD) degrades mRNAs carrying a premature termination codon (PTC) in eukaryotes. Cellular stresses, including endoplasmic reticulum (ER) stress, inhibit NMD, and up-regulate PTC-containing mRNA (PTC-mRNA) levels in several cell lines. However, whether similar effects exist under in vivo conditions that involve systemic nutritional status is unclear. Here, we compared the effects of pharmacological induction of ER stress with those of nutritional interventions on hepatic PTC-mRNA levels in mice. In mouse livers, the ER stress inducer tunicamycin increased PTC-mRNA levels of endogenous marker genes. Tunicamycin decreased body weight and perturbed nutrient metabolism in mice. Food restriction or deprivation mimicked the effect of tunicamycin on weight loss and metabolism, but did not increase PTC-mRNA levels. Hyperphagia-induced obesity also had little effect on hepatic PTC-mRNA levels. Meanwhile, in mouse liver phosphorylation of eIF2α, a factor that regulates NMD, was increased by both tunicamycin and nutritional interventions. Hepatic expression of GRP78, a central chaperone in ER stress responses, was increased by tunicamycin but not by the nutritional interventions. In cultured liver cells (Hepa), exogenous overexpression of a phosphomimetic eIF2α failed to increase PTC-mRNA levels. However, GRP78 overexpression in Hepa cells increased PTC-mRNA and PTC-mRNA-derived protein levels. ER stress promoted localization of GRP78 to mitochondria, and exogenous expression of a GRP78 fusion protein targeted to mitochondria mimicked the effect of wild type GRP78. These results indicate that GRP78, but not nutritional status, is a potent up-regulator of hepatic PTC-mRNA levels during induction of ER stress in vivo. J. Cell. Biochem. 118: 3810-3824, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  5. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  6. Molecular characterization, gene expression and dependence on thyroid hormones of two type I keratin genes (sseKer1 and sseKer2 in the flatfish Senegalese sole (Solea senegalensis Kaup

    Directory of Open Access Journals (Sweden)

    Cañavate José

    2007-10-01

    Full Text Available Abstract Background Keratins make up the largest subgroup of intermediate filaments, and, in chordates, represent the most abundant proteins in epithelial cells. They have been associated with a wide range of functions in the cell, but little information is still available about their expression profile and regulation during flatfish metamorphosis. Senegalese sole (Solea senegalensis is a commercially important flatfish in which no keratin gene has been described yet. Results The development of large-scale genomics of Senegalese sole has facilitated the identification of two different type I keratin genes referred to as sseKer1 and sseKer2. Main characteristics and sequence identities with other fish and mammal keratins are described. Phylogenetic analyses grouped sseKer1 and sseKer2 in a significant clade with other teleost epidermal type I keratins, and have allowed for the identification of sseKer2 as a novel keratin. The expression profile of both genes was studied during larval development and in tissues using a real-time approach. sseKer1 and sseKer2 mRNA levels were significantly higher in skin than in other tissues examined. During metamorphosis, sseKer1 transcripts increased significantly at first stages, and reduced thereafter. In contrast, sseKer2 mRNA levels did not change during early metamorphosis although a significant drop at metamorphosis climax and late metamorphosis was also detected. To study the possible regulation of sseKer gene expressions by thyroid hormones (THs, larvae were exposed to the goitrogen thiourea (TU. TU-treated larvae exhibited higher sseKer1 and sseKer2 mRNA levels than untreated control at both 11 and 15 days after treatment. Moreover, addition of exogenous T4 hormone to TU-treated larvae restored or even reduced the steady-state levels with respect to the untreated control, demonstrating that expression of both genes is negatively regulated by THs. Conclusion We have identified two keratin genes, referred

  7. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: purification, characterization, gene cloning, and expression.

    Science.gov (United States)

    Mitsukura, Koichi; Kuramoto, Tatsuya; Yoshida, Toyokazu; Kimoto, Norihiro; Yamamoto, Hiroaki; Nagasawa, Toru

    2013-09-01

    A NADPH-dependent (S)-imine reductase (SIR) was purified to be homogeneous from the cell-free extract of Streptomyces sp. GF3546. SIR appeared to be a homodimer protein with subunits of 30.5 kDa based on SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It also catalyzed the (S)-enantioselective reduction of not only 2-methyl-1-pyrroline (2-MPN) but also 1-methyl-3,4-dihydroisoquinoline and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline. Specific activities for their imines were 130, 44, and 2.6 nmol min(-1) mg(-1), and their optical purities were 92.7 % ee, 96.4 % ee, and >99 % ee, respectively. Using a NADPH-regenerating system, 10 mM 2-MPN was converted to amine with 100 % conversion and 92 % ee after 24 h. The amino acid sequence analysis revealed that SIR showed about 60 % identity to 6-phosphogluconate dehydrogenase. However, it showed only 37 % identity with Streptomyces sp. GF3587 (R)-imine reductase. Expression of SIR in Escherichia coli was achieved, and specific activity of the cell-free extract was about two times higher than that of the cell-free extract of Streptomyces sp. GF3546.

  8. Decreasing the stochasticity of mammalian gene expression by a synthetic gene circuit

    Science.gov (United States)

    Nevozhay, Dmitry; Zal, Tomasz; Balazsi, Gabor

    2012-02-01

    Gene therapy and functional genetic studies usually require precisely controlled and uniform gene expression in a population of cells for reliable level of protein production. Due to this requirement, stochastic gene expression is perceived as undesirable in these fields and ideally has to be minimized. The number of approaches for decreasing gene expression stochasticity in mammalian cells is limited. This creates an unmet need to develop new gene expression systems for this purpose. Based on earlier synthetic constructs in yeast, we developed and assessed a negative feedback-based mammalian gene circuit, with uniform and low level of stochasticity in gene expression at different levels of induction. In addition, this new synthetic construct enables highly precise gene expression control in mammalian cells, due to the linear dependence of gene expression on the inducer concentration applied to the system. This mammalian gene expression circuit has potential applicability for the development of new treatment modalities in gene therapy and research tools in functional genetics. In addition, this work creates a roadmap for moving synthetic gene circuits from microbes into mammalian cells.

  9. Expressed genes in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  10. Fundamental principles of energy consumption for gene expression

    Science.gov (United States)

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  11. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  16. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    Science.gov (United States)

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  17. Amplification of kinetic oscillations in gene expression

    Science.gov (United States)

    Zhdanov, V. P.

    2008-10-01

    Because of the feedbacks between the DNA transcription and mRNA translation, the gene expression in cells may exhibit bistability and oscillations. The deterministic and stochastic calculations presented illustrate how the bistable kinetics of expression of one gene in a cell can be influenced by the kinetic oscillations in the expression of another gene. Due to stability of the states of the bistable kinetics of gene 1 and the relatively small difference between the maximum and minimum protein amounts during the oscillations of gene 2, the induced oscillations of gene 1 are found to typically be related either to the low-or high-reactive state of this gene. The quality of the induced oscillations may be appreciably better than that of the inducing oscillations. This means that gene 1 can serve as an amplifier of the kinetic oscillations of gene 2.

  18. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  19. Evidence of calcium-dependent pathway in the regulation of human beta1,3-glucuronosyltransferase-1 (GlcAT-I) gene expression: a key enzyme in proteoglycan synthesis.

    Science.gov (United States)

    Barré, Lydia; Venkatesan, Narayanan; Magdalou, Jacques; Netter, Patrick; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2006-08-01

    The importance of heparan- and chondroitin-sulfate proteoglycans in physiological and pathological processes led to the investigation of the regulation of beta1,3-glucuronosyltransferase I (GlcAT-I), responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide, a key step prior to polymerization of chondroitin- and heparan-sulfate chains. We have cloned and functionally characterized GlcAT-I 5'-flanking regulatory region. Mutation analysis and electrophoretic mobility shift assays demonstrated the importance of Sp1 motif located at -65/-56 position in promoter activity. Furthermore, we found that elevation of intracellular calcium concentration by the calcium ionophore ionomycin stimulated GlcAT-I gene expression as well as glycosaminoglycan chain synthesis in HeLa cells. Bisanthracycline, an anti-Sp1 compound, inhibited GlcAT-I basal promoter activity and suppressed ionomycin induction, suggesting the importance of Sp1 in calcium induction of GlcAT-I gene expression. Nuclear protein extracts from ionomycin-induced cells exhibited an increased DNA binding of Sp1 factor to the consensus sequence at position -65/-56. Signaling pathway analysis and MEK inhibition studies revealed the important role of p42/p44 MAPK in the stimulation of GlcAT-I promoter activity by ionomycin. The present study identifies, for the first time, GlcAT-I as a target of calcium-dependent signaling pathway and evidences the critical role of Sp1 transcription factor in the activation of GlcAT-I expression.

  20. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    Directory of Open Access Journals (Sweden)

    Na You

    2012-01-01

    Full Text Available Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.

  1. Effects of environmental enrichment on gene expression in the brain

    OpenAIRE

    Rampon, Claire; Jiang, Cecilia H.; Dong, Helin; Tang, Ya-Ping; Lockhart, David J; Schultz, Peter G.; Joe Z Tsien; Hu, Yinghe

    2000-01-01

    An enriched environment is known to promote structural changes in the brain and to enhance learning and memory performance in rodents [Hebb, D. O. (1947) Am. Psychol. 2, 306–307]. To better understand the molecular mechanisms underlying these experience-dependent cognitive changes, we have used high-density oligonucleotide microarrays to analyze gene expression in the brain. Expression of a large number of genes changes in response to enrichment training, many of w...

  2. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  3. Brain-derived neurotrophic factor activation of NFAT (nuclear factor of activated T-cells)-dependent transcription: a role for the transcription factor NFATc4 in neurotrophin-mediated gene expression.

    Science.gov (United States)

    Groth, Rachel D; Mermelstein, Paul G

    2003-09-03

    A member of the neurotrophin family, brain-derived neurotrophic factor (BDNF) regulates neuronal survival and differentiation during development. Within the adult brain, BDNF is also important in neuronal adaptive processes, such as the activity-dependent plasticity that underlies learning and memory. These long-term changes in synaptic strength are mediated through alterations in gene expression. However, many of the mechanisms by which BDNF is linked to transcriptional and translational regulation remain unknown. Recently, the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4) was discovered in neurons, where it is believed to play an important role in long-term changes in neuronal function. Interestingly, NFATc4 is particularly sensitive to the second messenger systems activated by BDNF. Thus, we hypothesized that NFAT-dependent transcription may be an important mediator of BDNF-induced plasticity. In cultured rat CA3-CA1 hippocampal neurons, BDNF activated NFAT-dependent transcription via TrkB receptors. Inhibition of calcineurin blocked BDNF-induced nuclear translocation of NFATc4, thus preventing transcription. Further, phospholipase C was a critical signaling intermediate between BDNF activation of TrkB and the initiation of NFAT-dependent transcription. Both inositol 1,4,5-triphosphate (IP3)-mediated release of calcium from intracellular stores and activation of protein kinase C were required for BDNF-induced NFAT-dependent transcription. Finally, increased expression of IP3 receptor 1 and BDNF after neuronal exposure to BDNF was linked to NFAT-dependent transcription. These results suggest that NFATc4 plays a crucial role in neurotrophin-mediated synaptic plasticity.

  4. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  5. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  6. Targeted adenovirus mediated inhibition of NF-kappa B-dependent inflammatory gene expression in endothelial cells in vitro and in vivo

    NARCIS (Netherlands)

    Kuldo, J. M.; Asgeirsdottir, S. A.; Zwiers, P. J.; Bellu, A. R.; Rots, M. G.; Schalk, J. A. C.; Ogawara, K. I.; Trautwein, C.; Banas, B.; Haisma, H. J.; Molema, G.; Kamps, J. A. A. M.

    2013-01-01

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor kappa B signal transduction could silence the proinflammatory activation status of en

  7. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  8. Gene Expression Patterns in Ovarian Carcinomas

    Science.gov (United States)

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  9. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  10. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  11. Anti-Inflammatory Cytokine Interleukin-4 Inhibits Inducible Nitric Oxide Synthase Gene Expression in the Mouse Macrophage Cell Line RAW264.7 through the Repression of Octamer-Dependent Transcription

    Directory of Open Access Journals (Sweden)

    Miki Hiroi

    2013-01-01

    Full Text Available Inducible nitric oxide synthase (iNOS is a signature molecule involved in the classical activation of M1 macrophages and is induced by the Nos2 gene upon stimulation with Th1-cell derived interferon-gamma (IFNγ and bacterial lipopolysaccharide (LPS. Although the anti-inflammatory cytokine IL-4 is known to inhibit Nos2 gene expression, the molecular mechanism involved in the negative regulation of Nos2 by IL-4 remains to be fully elucidated. In the present study, we investigated the mechanism of IL-4-mediated Nos2 transcriptional repression in the mouse macrophage-like cell line RAW264.7. Signal transducer and activator of transcription 6 (Stat6 knockdown by siRNA abolished the IL-4-mediated inhibition of Nos2 induced by IFNγ/LPS. Transient transfection of a luciferase reporter gene containing the 5′-flanking region of the Nos2 gene demonstrated that an octamer transcription factor (OCT binding site in the promoter region is required for both positive regulation by IFNγ/LPS and negative regulation by IL-4. Although IL-4 had no inhibitory effect on the DNA-binding activity of constitutively expressed Oct-1, IL-4-induced Nos2-reporter transcriptional repression was partially attenuated by overexpression of the coactivator CREB-binding protein (CBP. These results suggest that a coactivator/cofactor that functionally interacts with Oct-1 is a molecular target for the IL-4-mediated inhibition of Nos2 and that IL-4-activated Stat6 represses Oct-1-dependent transcription by competing with this coactivator/cofactor.

  12. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  13. Expression of Sox genes in tooth development

    Science.gov (United States)

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  14. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  15. Isomer-specific effects of CLA on gene expression in human adipose tissue depending on PPARγ2 P12A polymorphism: a double blind, randomized, controlled cross-over study

    Directory of Open Access Journals (Sweden)

    Winkler P

    2009-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor (PPARγ is a key regulator in adipose tissue. The rare variant Pro12Ala of PPARγ2 is associated with a decreased risk of insulin resistance. Being dietary PPARγ ligands, conjugated linoleic acids (CLAs received considerable attention because of their effects on body composition, cancer, atherosclerosis, diabetes, obesity and inflammation, although some effects were only demonstrated in animal trials and the results in human studies were not always consistent. In the present study effects of CLA supplementation on genome wide gene expression in adipose tissue biopsies from 11 Ala12Ala and 23 Pro12Pro men were investigated. Subjects underwent four intervention periods (4 wk in a randomized double blind cross-over design receiving 4.25 g/d of either cis-9, trans-11 CLA, trans-10,cis-12 CLA, 1:1 mixture of both isomers or a reference linoleic acid oil preparation. After each intervention biopsies were taken, whole genome expression microarrays were applied, and genes of interest were verified by realtime PCR. Results The following genes of lipid metabolism were regulated by CLA: LDLR, FASN, SCD, FADS1 and UCP2 were induced, while ABCA1, CD36 and CA3 were repressed. Transcription factors PPARγ, NFAT5, CREB5 and EBF1, the adipokine NAMPT, members of the insulin signaling cascade SORBS1 and IGF1 and IL6ST were repressed, while the adipokine THBS1 and GLUT4 involved in insulin signaling were induced. Compared to trans-10,cis-12 CLA and the CLA mixture the cis-9, trans-11 CLA isomer exerted weaker effects. Only CD36 (-1.2 fold and THBS1 (1.5 fold were regulated. The CLA effect on expression of PPARγ and leptin genes depends on the PPARγ2 genotype. Conclusion The data suggest that the isomer specific influence of CLA on glucose and lipid metabolism is genotype dependent and at least in part mediated by PPARγ. Trial registration http://www.controlled-trials.com: ISRCTN91188075

  16. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...

  17. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  18. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  19. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  20. A copula method for modeling directional dependence of genes

    Directory of Open Access Journals (Sweden)

    Park Changyi

    2008-05-01

    Full Text Available Abstract Background Genes interact with each other as basic building blocks of life, forming a complicated network. The relationship between groups of genes with different functions can be represented as gene networks. With the deposition of huge microarray data sets in public domains, study on gene networking is now possible. In recent years, there has been an increasing interest in the reconstruction of gene networks from gene expression data. Recent work includes linear models, Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the most effective in constructing gene networks. A major problem with the Bayesian network approach is the excessive computational time. This problem is due to the interactive feature of the method that requires large search space. Since fitting a model by using the copulas does not require iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need for reference to extensive search spaces can be eliminated leading to manageable computational affords. Bayesian network approach produces a discretely expression of conditional probabilities. Discreteness of the characteristics is not required in the copula approach which involves use of uniform representation of the continuous random variables. Our method is able to overcome the limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary transformation. Results We analyzed the gene interactions for two gene data sets (one group is eight histone genes and the other group is 19 genes which include DNA polymerases, DNA helicase, type B cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a subunit of the cohesin complex by adopting a measure of directional dependence based on a copula function. We have compared

  1. Novel redox nanomedicine improves gene expression of polyion complex vector

    Science.gov (United States)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  2. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  3. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  4. Dose-Dependent Pattern of Inducible mRNA Expression of PIG3 Gene in Normal Human Lymphoblastoid Cells by Thermal Neutron

    Institute of Scientific and Technical Information of China (English)

    MA; Nan-ru; SUI; Li; WANG; Xiao; KONG; Fu-quan; LIU; Xiao-dan; ZHOU; Ping-kun

    2012-01-01

    <正>Using the thermal neutron produced by the hospital neutron irradiator, AHH-1 cell was irradiated at the various dose, 0, 0.5, 2, 4, 6 and 8 Gy, respectively. After irradiation, cells were collected at 2, 6, 12, 24 and 48 h post-irradiation, and then cell cycle distribution was tested using flow cytometry, as well as PIG3 mRNA expression level was detected using real-time fluorescent quantitative PCR detection.

  5. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  6. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  7. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  8. Light-dependent changes in the chick pineal temperature and the expression of cHsp90 alpha gene: a potential contribution of in vivo temperature change to the photic-entrainment of the chick pineal circadian clock.

    Science.gov (United States)

    Doi, Masao; Nakajima, Yoshito; Okano, Toshiyuki; Fukada, Yoshitaka

    2002-06-01

    The circadian clock is entrained to the diurnal alteration of environmental conditions such as light and temperature, but the molecular mechanism underlying the entrainment is not fully understood. In the present study, we employed a differential display-based screening for a set of genes that are induced by light in the chick pineal gland, a structure of the central clock entrainable to both light and temperature changes. We found that the level of the mRNA encoding chicken heat shock protein 90 alpha (cHSP90 alpha) was rapidly elevated in the pineal gland within a 5-min exposure of chicks to light. Furthermore, the pineal cHsp90 alpha mRNA was expressed rhythmically under both 12-hr light/12-hr dark (LD) cycles and constant dark (DD) conditions. The total amount of the pineal cHSP90 alpha protein was, however, kept at nearly constant levels under LD cycles, and immunohistochemical analyses of the pineal cHSP90 alpha showed invariable localization at the cytoplasm throughout the day. In vivo measurement of the chick pineal temperature demonstrated its light-dependent and time-of-day-dependent change, and the profile was very similar to that of the pineal cHSP90 alpha mRNA level. These observations suggest that the in vivo temperature change regulates the expression of temperature-responsive genes including cHSP 90 alpha in the pineal gland. The temperature change may induce a phase-shift of the pineal clock, thereby facilitating its efficient entrainment to environmental LD cycles.

  9. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  10. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions.

    Science.gov (United States)

    Boscia, Francesca; Gala, Rosaria; Pignataro, Giuseppe; de Bartolomeis, Andrea; Cicale, Maria; Ambesi-Impiombato, Alberto; Di Renzo, Gianfranco; Annunziato, Lucio

    2006-04-01

    Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium-calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective distribution in the rat brain. To determine whether NCX gene expression can be regulated after cerebral ischemia, we used NCX isoform-specific antisense radiolabeled probes to analyze, by radioactive in situ hybridization histochemistry, the pattern of NCX1, NCX2, and NCX3 transcripts in the ischemic core, periinfarct area, as well as in nonischemic brain regions, after 6 and 24 h of permanent middle cerebral artery occlusion (pMCAO) in rats. We found that in the focal region, comprising divisions of the prefrontal, somatosensory, and insular cortices, all three NCX transcripts were downregulated. In the periinfarct area, comprising part of the motor cortex and the lateral compartments of the caudate-putamen, NCX2 messenger ribonucleic acid (mRNA) was downregulated, whereas NCX3 mRNA was significantly upregulated. In remote nonischemic brain regions such as the prelimbic and infralimbic cortices, and tenia tecta, both NCX1 and NCX3 transcripts were upregulated, whereas in the medial caudate-putamen only NCX3 transcripts increased. In all these intact regions, NCX2 signal strongly decreased. These results indicate that NCX gene expression is regulated after pMCAO in a differential manner, depending on the exchanger isoform and region involved in the insult. These data may provide a better understanding of each NCX subtype's pathophysiologic role and may allow researchers to design appropriate pharmacological strategies to treat brain ischemia.

  11. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...

  12. Prediction of highly expressed genes in microbes based on chromatin accessibility

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2007-01-01

    BACKGROUND: It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed...... and ribosomal RNA are encoded by DNA having significantly lower position preference values than other genes in fast-replicating microbes. CONCLUSION: This insight into DNA structure-dependent gene expression in microbes may be exploited for predicting the expression of non-translated genes such as non...

  13. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  14. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  15. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  16. Digital gene expression signatures for maize development.

    Science.gov (United States)

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  17. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  18. mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells.

    Science.gov (United States)

    Komatsu, N; Fujita, Y; Matsuda, M; Aoki, K

    2015-11-05

    Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are sensitive to MEK inhibitors (MEKi). The mechanism underlying the intrinsic resistance to MEKi in KRas-mutant cells is under intensive investigation. Here, we pursued this mechanism by live imaging of extracellular signal-regulated kinases (ERK) and mammalian target of rapamycin complex 1 (mTORC1) activities in oncogenic KRas or BRaf-mutant cancer cells. We established eight cancer cell lines expressing Förster resonance energy transfer (FRET) biosensors for ERK activity and S6K activity, which was used as a surrogate marker for mTORC1 activity. Under increasing concentrations of MEKi, ERK activity correlated linearly with the cell growth rate in BRaf-mutant cancer cells, but not KRas-mutant cancer cells. The administration of PI3K inhibitors resulted in a linear correlation between ERK activity and cell growth rate in KRas-mutant cancer cells. Intriguingly, mTORC1 activity was correlated linearly with the cell growth rate in both BRaf-mutant cancer cells and KRas-mutant cancer cells. These observations suggested that mTORC1 activity had a pivotal role in cell growth and that the mTORC1 activity was maintained primarily by the ERK pathway in BRaf-mutant cancer cells and by both the ERK and PI3K pathways in KRas-mutant cancer cells. FRET imaging revealed that MEKi inhibited mTORC1 activity with slow kinetics, implying transcriptional control of mTORC1 activity by ERK. In agreement with this observation, MEKi induced the expression of negative regulators of mTORC1, including TSC1, TSC2 and Deptor, which occurred more significantly in BRaf-mutant cells than in KRas-mutant cells. These findings suggested that the suppression of mTORC1 activity and induction of negative regulators of mTORC1 in cancer cells treated for at least 1 day could be used as surrogate markers for the MEKi sensitivity of cancer cells.

  19. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O. [Univ. of Florida, Gainesville, FL (United States); Hespell, R.B. [USDA Agricultural Research Service, Peoria, IL (United States)

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB). Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.

  20. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  1. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  2. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  3. Analysis of Gene Expression Responses to a Infection in Rugao Chicken Intestine Using GeneChips

    Directory of Open Access Journals (Sweden)

    D. Q. Luan

    2012-02-01

    Full Text Available Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to infection. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens of 2 wk old, a cDNA Microarray containing 13,319 probes was performed to compare gene expression profiles between two chicken groups under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is one of the important barriers the bacteria encounter after oral inoculation, intestine gene expression was investigated at 2 wk old. There were 588 differentially expressed genes detected, of which 276 were known genes, and of the total number 266 were up-regulated and 322 were down-regulated. Differences in gene expression between the two chicken groups were found in control as well as Salmonella infected conditions indicating a difference in the intestine development between the two chicken groups which might be linked to the difference in Salmonella susceptibility. The differential expressions of 4 genes were confirmed by quantitative real-time PCR and the results indicated that the expression changes of these genes were generally consistent with the results of GeneChips. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.

  4. Gene expression profiling of soft and firm Atlantic salmon fillet.

    Directory of Open Access Journals (Sweden)

    Thomas Larsson

    Full Text Available Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes and mitochondrial proteins (129 genes, proteins involved in stress responses (12 genes, and lipid metabolism (30 genes. Coefficients of determination (R(2 were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2 = 0.66 and myofiber proteins (42 genes, R(2 = 0.54. Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation, immune genes, and intracellular proteases (positive correlation. Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15 though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.

  5. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  6. Selection and validation of reference genes for quantitative gene expression studies in Erythroxylum coca.

    Science.gov (United States)

    Docimo, Teresa; Schmidt, Gregor W; Luck, Katrin; Delaney, Sven K; D'Auria, John C

    2013-01-01

    Real-time quantitative PCR is a powerful technique for the investigation of comparative gene expression, but its accuracy and reliability depend on the reference genes used as internal standards. Only genes that show a high level of expression stability are suitable for use as reference genes, and these must be identified on a case-by-case basis. Erythroxylum coca produces and accumulates high amounts of the pharmacologically active tropane alkaloid cocaine (especially in the leaves), and is an emerging model for the investigation of tropane alkaloid biosynthesis. The identification of stable internal reference genes for this species is important for its development as a model species, and would enable comparative analysis of candidate biosynthetic genes in the different tissues of the coca plant. In this study, we evaluated the expression stability of nine candidate reference genes in E. coca ( Ec6409, Ec10131, Ec11142, Actin, APT2, EF1α, TPB1, Pex4, Pp2aa3). The expression of these genes was measured in seven tissues (flowers, stems, roots and four developmental leaf stages) and the stability of expression was assessed using three algorithms (geNorm, NormFinder and BestKeeper). From our results we conclude that Ec10131 and TPB1 are the most appropriate internal reference genes in leaves (where the majority of cocaine is produced), while Ec10131 and Ec6409 are the most suitable internal reference genes across all of the tissues tested.

  7. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  8. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  9. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  10. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  11. Translational control of gene expression and disease

    NARCIS (Netherlands)

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  12. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  13. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette

    2001-01-01

    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  14. Paternal irradiation perturbs the expression of circadian genes in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Andre M.G.F.; Barber, Ruth C.; Dubrova, Yuri E., E-mail: yed2@le.ac.uk

    2015-05-15

    Highlights: • We have analysed gene expression in the offspring of irradiated male mice. • CBA/Ca and BALB/c male mice were used in our study. • The pattern of gene expression was established in four tissues. • Expression of genes in involved in rhythmic process/circadian rhythm is compromised. • Our data may explain the phenomenon of transgenerational genomic instability. - Abstract: The circadian system represents a complex network which influences the timing of many biological processes. Recent studies have established that circadian alterations play an important role in the susceptibility to many human diseases, including cancer. Here we report that paternal irradiation in mice significantly affects the expression of genes involved in rhythmic processes in their first-generation offspring. Using microarrays, the patterns of gene expression were established for brain, kidney, liver and spleen samples from the non-exposed offspring of irradiated CBA/Ca and BALB/c male mice. The most over-represented categories among the genes differentially expressed in the offspring of control and irradiated males were those involved in rhythmic process, circadian rhythm and DNA-dependent regulation of transcription. The results of our study therefore provide a plausible explanation for the transgenerational effects of paternal irradiation, including increased transgenerational carcinogenesis described in other studies.

  15. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  16. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  17. A weakened transcriptional enhancer yields variegated gene expression.

    Directory of Open Access Journals (Sweden)

    Cathy Collins

    Full Text Available Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, approximately 1.4 kb 3' of the promoter, but inactive approximately 6 kb 3', indicating that the activity of the core enhancer was distance-dependent. A longer segment--the core enhancer plus approximately 1 kb of 3' flanking material, including the 3' matrix attachment region--was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3' flank includes binding sites for at least two activators.

  18. Plant microRNAs: master regulator of gene expression mechanism.

    Science.gov (United States)

    Datta, Riddhi; Paul, Soumitra

    2015-11-01

    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long, are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.

  19. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  20. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  1. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  2. Vitamin D-mediated gene expression.

    Science.gov (United States)

    Lowe, K E; Maiyar, A C; Norman, A W

    1992-01-01

    The steroid hormone 1,25(OH)2D3 modulates the expression of a wide variety of genes in a tissue- and developmentally specific manner. It is well established that 1,25(OH)2D3 can up- or downregulate the expression of genes involved in cell proliferation, differentiation, and mineral homeostasis. The hormone exerts its genomic effects via interactions with the vitamin D receptor or VDR, a member of the superfamily of hormone-activated nuclear receptors which can regulate eukaryotic gene expression. The ligand-bound receptor acts as a transcription factor that binds to specific DNA sequences, HREs, in target gene promoters. The DNA-binding domains of the steroid hormone receptors are highly conserved and contain two zinc-finger motifs that recognize the HREs. The spacing and orientation of the HRE half-sites, as well as the HRE sequence, are critical for proper discrimination by the various receptors. Other nuclear factors such as fos and jun can influence vitamin D-mediated gene expression. A wide range of experimental techniques has been used to increase our understanding of how 1,25(OH)2D3 and its receptor play a central role in gene expression.

  3. Modulation of imprinted gene expression following superovulation.

    Science.gov (United States)

    Fortier, Amanda L; McGraw, Serge; Lopes, Flavia L; Niles, Kirsten M; Landry, Mylène; Trasler, Jacquetta M

    2014-05-05

    Although assisted reproductive technologies increase the risk of low birth weight and genomic imprinting disorders, the precise underlying causes remain unclear. Using a mouse model, we previously showed that superovulation alters the expression of imprinted genes in the placenta at 9.5days (E9.5) of gestation. Here, we investigate whether effects of superovulation on genomic imprinting persisted at later stages of development and assess the surviving fetuses for growth and morphological abnormalities. Superovulation, followed by embryo transfer at E3.5, as compared to spontaneous ovulation (controls), resulted in embryos of normal size and weight at 14.5 and 18.5days of gestation. The normal monoallelic expression of the imprinted genes H19, Snrpn and Kcnq1ot1 was unaffected in either the placentae or the embryos from the superovulated females at E14.5 or E18.5. However, for the paternally expressed imprinted gene Igf2, superovulation generated placentae with reduced production of the mature protein at E9.5 and significantly more variable mRNA levels at E14.5. We propose that superovulation results in the ovulation of abnormal oocytes with altered expression of imprinted genes, but that the coregulated genes of the imprinted gene network result in modulated expression. Copyright © 2014. Published by Elsevier Ireland Ltd.

  4. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  5. Gene expression of the endolymphatic sac.

    Science.gov (United States)

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart; Winther, Ole; Henao, Ricardo; Sørensen, Mads Sølvsten; Qvortrup, Klaus

    2011-12-01

    The endolymphatic sac is part of the membranous inner ear and is thought to play a role in the fluid homeostasis and immune defense of the inner ear; however, the exact function of the endolymphatic sac is not fully known. Many of the detected mRNAs in this study suggest that the endolymphatic sac has multiple and diverse functions in the inner ear. The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Microarray technology was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation clustering revealed 29 functional clusters.

  6. Strategic Applications of Gene Expression: From Drug Discovery/Development to Bedside

    OpenAIRE

    Bai, Jane P. F.; Alekseyenko, Alexander V.; Statnikov, Alexander; Wang, I-Ming; Wong, Peggy H.

    2013-01-01

    Gene expression is useful for identifying the molecular signature of a disease and for correlating a pharmacodynamic marker with the dose-dependent cellular responses to exposure of a drug. Gene expression offers utility to guide drug discovery by illustrating engagement of the desired cellular pathways/networks, as well as avoidance of acting on the toxicological pathways. Successful employment of gene-expression signatures in the later stages of drug development depends on their linkage to ...

  7. The Changes of Gene Expression in Honeybee (Apis mellifera) Brains Associated with Ages(Behavior Biology)

    OpenAIRE

    Mayumi, Tsuchimoto; Makoto, AOKI; Mamoru, Takada; Yoshinori, Kanou; Hiromi, Sasagawa; Yasuo, Kitagawa; Tatsuhiko, Kadowaki; Department of Applied Biological Sciences School of Agricultural Sciences, Nagoya University Chikusa; Tokyo Metropolitan Institute for Neuroscience; Graduate Program for Regulation of Biological Signals Graduate School of Bioagricultural Sciences, Nagoya University Chikusa

    2004-01-01

    Honeybee (Apis mellifera) worker bees (workers) are known to perform wide variety of tasks depending on their ages. The worker's brains also show the activity and behavior-dependent chemical and structural plasticity. To test if there are any changes of gene expression associated with different ages in the worker brains, we compared the gene expression patterns between the brains of newly emerged bees and old foraging workers (foragers) by macroarray analysis. The expression of genes encoding...

  8. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  9. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  10. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  11. Paternally expressed genes predominate in the placenta.

    Science.gov (United States)

    Wang, Xu; Miller, Donald C; Harman, Rebecca; Antczak, Douglas F; Clark, Andrew G

    2013-06-25

    The discovery of genomic imprinting through studies of manipulated mouse embryos indicated that the paternal genome has a major influence on placental development. However, previous research has not demonstrated paternal bias in imprinted genes. We applied RNA sequencing to trophoblast tissue from reciprocal hybrids of horse and donkey, where genotypic differences allowed parent-of-origin identification of most expressed genes. Using this approach, we identified a core group of 15 ancient imprinted genes, of which 10 were paternally expressed. An additional 78 candidate imprinted genes identified by RNA sequencing also showed paternal bias. Pyrosequencing was used to confirm the imprinting status of six of the genes, including the insulin receptor (INSR), which may play a role in growth regulation with its reciprocally imprinted ligand, histone acetyltransferase-1 (HAT1), a gene involved in chromatin modification, and lymphocyte antigen 6 complex, locus G6C, a newly identified imprinted gene in the major histocompatibility complex. The 78 candidate imprinted genes displayed parent-of-origin expression bias in placenta but not fetus, and most showed less than 100% silencing of the imprinted allele. Some displayed variability in imprinting status among individuals. This variability results in a unique epigenetic signature for each placenta that contributes to variation in the intrauterine environment and thus presents the opportunity for natural selection to operate on parent-of-origin differential regulation. Taken together, these features highlight the plasticity of imprinting in mammals and the central importance of the placenta as a target tissue for genomic imprinting.

  12. Gene expression profiling of solitary fibrous tumors.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Solitary fibrous tumors (SFTs are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. METHODS: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs. Immunohistochemistry was applied to validate the expression of some discriminating genes. RESULTS: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (∼30% of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2, histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. CONCLUSION: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1, prognostic (AURKA and/or therapeutic targets.

  13. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  14. Early gene expression changes with rush immunotherapy

    Directory of Open Access Journals (Sweden)

    Barnett Sherry

    2011-09-01

    Full Text Available Abstract Background To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC from allergic patients undergoing rush immunotherapy (RIT that might be manifest within the first few months of treatment. Methods For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI expression and T-regulatory cell frequency as detected by expression of CD3+CD4+CD25bright cells at each timepoint using flow cytometry. Results In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ≥1.5-fold expression change (p less than or equal to 0.05, BH-FDR, we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR, we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1β, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints. Conclusions We observed significant changes in gene expression early in peripheral

  15. Salmonella induces prominent gene expression in the rat colon

    Directory of Open Access Journals (Sweden)

    Roosing Susanne

    2007-09-01

    Full Text Available Abstract Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point. As fructo-oligosaccharides (FOS affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase, antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2, inflammation (e.g. calprotectin, oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2 and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9. Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap, showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in

  16. Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos.

    Science.gov (United States)

    Handley-Goldstone, Heather M; Grow, Matthew W; Stegeman, John J

    2005-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that causes altered heart morphology, circulatory impairment, edema, hemorrhage, and early life stage mortality in fish. TCDD toxicity is dependent, in large part, on the aryl hydrocarbon receptor (AHR), but understanding of the molecular mechanism of cardiovascular embryotoxicity remains incomplete. To identify genes potentially involved in cardiovascular effects, we constructed custom cDNA microarrays consisting of 4896 zebrafish adult heart cDNA clones and over 200 genes with known developmental, toxicological and housekeeping roles. Gene expression profiles were obtained for 3-day-old zebrafish after early embryonic exposure to either 0.5 or 5.0 nM TCDD. In all, 516 clones were significantly differentially expressed (p < 0.005) under at least one treatment condition; 123 high-priority clones were selected for further investigation. Cytochromes P450 1A and 1B1, and other members of the AHR gene battery, were strongly and dose-dependently induced by TCDD. Importantly, altered expression of cardiac sarcomere components, including cardiac troponin T2 and multiple myosin isoforms, was consistent with the hypothesis that TCDD causes dilated cardiomyopathy. Observed increases in expression levels of mitochondrial energy transfer genes also may be related to cardiomyopathy. Other TCDD-responsive genes included fatty acid and steroid metabolism enzymes, ribosomal and signal-transduction proteins, and 18 expressed sequence tags (ESTs) with no known protein homologs. As the first broad-scale study of TCDD-modulated gene expression in a non-mammalian system, this work provides an important perspective on mechanisms of TCDD toxicity.

  17. Suitability of commonly used housekeeping genes in gene expression studies for space radiation research

    Science.gov (United States)

    Arenz, A.; Stojicic, N.; Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.

    Research on the effects of ionizing radiation exposure involves the use of real-time reverse transcription polymerase chain reaction (qRT-PCR) for measuring changes in gene expression. Several variables need to be controlled for gene expression analysis, such as different amounts of starting material between the samples, variations in enzymatic efficiencies of the reverse transcription step, and differences in RNA integrity. Normalization of the obtained data to an invariant endogenous control gene (reference gene) is the elementary step in relative quantification strategy. There is a strong correlation between the quality of the normalized data and the stability of the reference gene itself. This is especially relevant when the samples have been obtained after exposure to radiation qualities inducing different amounts and kinds of damage, leading to effects on cell cycle delays or even on cell cycle blocks. In order to determine suitable reference genes as internal controls in qRT-PCR assays after exposure to ionizing radiation, we studied the gene expression levels of nine commonly used reference genes which are constitutively expressed in A549 lung cancer cells. Expression levels obtained for ACTB, B2M, GAPDH, PBGD, 18S rRNA, G6PDH, HPRT, UBC, TFRC and SDHA were determined after exposure to 2 and 6 Gy X-radiation. Gene expression data for Growth arrest and damage-inducible gene 45 (GADD45α) and Cyclin-dependent kinase inhibitor 1A (CDKN1A/p21CIP1) were selected to elucidate the influence of normalization by using appropriate and inappropriate internal control genes. According to these results, we strongly recommend the use of a panel of reference genes instead of only one.

  18. Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato.

    Science.gov (United States)

    Pham, Gina M; Newton, Linsey; Wiegert-Rininger, Krystle; Vaillancourt, Brieanne; Douches, David S; Buell, C Robin

    2017-09-04

    Relative to homozygous diploids, the presence of multiple homologs or homeologs in polyploids affords greater tolerance to mutations that can impact genome evolution. In this study, we describe sequence and structural variation in the genomes of six accessions of cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, and their impact on the transcriptome. Sequence diversity was high with a mean SNP rate of approximately 1 per 50 bases suggestive of high levels of allelic diversity. Additive gene expression was observed in leaves (3,605 genes) and tubers (6,156 genes) that contrasted the preferential allele expression of between 2,180 and 3,502 and 3,367 and 5,270 genes in the leaf and tuber transcriptome, respectively. Preferential allele expression was significantly associated with evolutionarily conserved genes suggesting selection of specific alleles of genes responsible for biological processes common to angiosperms during the breeding selection process. Copy number variation was rampant with between 16,098 and 18,921 genes in each cultivar exhibiting duplication or deletion. Copy number variable genes tended to be evolutionarily recent, lowly expressed, and enriched in genes that show increased expression in response to biotic and abiotic stress treatments suggestive of a role in adaptation. Gene copy number impacts on gene expression were detected with 528 genes having correlations between copy number and gene expression. Collectively, these data suggest that in addition to allelic variation of coding sequence, the heterogenous nature of the tetraploid potato genome contributes to a highly dynamic transcriptome impacted by allele preferential and copy number-dependent expression effects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  20. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  1. Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes

    KAUST Repository

    Abusamra, Heba

    2016-07-20

    The native nature of high dimension low sample size of gene expression data make the classification task more challenging. Therefore, feature (gene) selection become an apparent need. Selecting a meaningful and relevant genes for classifier not only decrease the computational time and cost, but also improve the classification performance. Among different approaches of feature selection methods, however most of them suffer from several problems such as lack of robustness, validation issues etc. Here, we present a new feature selection technique that takes advantage of clustering both samples and genes. Materials and methods We used leukemia gene expression dataset [1]. The effectiveness of the selected features were evaluated by four different classification methods; support vector machines, k-nearest neighbor, random forest, and linear discriminate analysis. The method evaluate the importance and relevance of each gene cluster by summing the expression level for each gene belongs to this cluster. The gene cluster consider important, if it satisfies conditions depend on thresholds and percentage otherwise eliminated. Results Initial analysis identified 7120 differentially expressed genes of leukemia (Fig. 15a), after applying our feature selection methodology we end up with specific 1117 genes discriminating two classes of leukemia (Fig. 15b). Further applying the same method with more stringent higher positive and lower negative threshold condition, number reduced to 58 genes have be tested to evaluate the effectiveness of the method (Fig. 15c). The results of the four classification methods are summarized in Table 11. Conclusions The feature selection method gave good results with minimum classification error. Our heat-map result shows distinct pattern of refines genes discriminating between two classes of leukemia.

  2. Interplay between polymerase II- and polymerase III-assisted expression of overlapping genes.

    Science.gov (United States)

    Lukoszek, Radoslaw; Mueller-Roeber, Bernd; Ignatova, Zoya

    2013-11-15

    Up to 15% of the genes in different genomes overlap. This architecture, although beneficial for the genome size, represents an obstacle for simultaneous transcription of both genes. Here we analyze the interference between RNA-polymerase II (Pol II) and RNA-polymerase III (Pol III) when transcribing their target genes encoded on opposing strands within the same DNA fragment in Arabidopsis thaliana. The expression of a Pol II-dependent protein-coding gene negatively correlated with the transcription of a Pol III-dependent, tRNA-coding gene set. We suggest that the architecture of the overlapping genes introduces an additional layer of control of gene expression.

  3. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  4. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  5. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  6. Polyandry and sex-specific gene expression.

    Science.gov (United States)

    Mank, Judith E; Wedell, Nina; Hosken, David J

    2013-03-05

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype-phenotype chain, and although in its early stages, understanding the sexual selection-transcription relationship will provide significant insights into this critical association.

  7. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner

    DEFF Research Database (Denmark)

    Brøns, Charlotte; Jacobsen, Stine; Nilsson, Emma

    2010-01-01

    Context: Low birth weight (LBW) and unhealthy diets are risk factors of metabolic disease including type 2 diabetes (T2D). Genetic, nongenetic, and epigenetic data propose a role of the key metabolic regulator peroxisome proliferator-activated receptor gamma, coactivator 1alpha (PPARGC1A......) in the development of T2D. Objective: Our objective was to investigate gene expression and DNA methylation of PPARGC1A and coregulated oxidative phosphorylation (OXPHOS) genes in LBW and normal birth weight (NBW) subjects during control and high-fat diets. Design, Subjects, and Main Outcome Measures: Twenty young.......0002) during the control diet. However, PPARGC1A methylation increased in only NBW subjects after overfeeding in a reversible manner. DNA methylation of PPARGC1A did not correlate with mRNA expression. Conclusions: LBW subjects developed peripheral insulin resistance and decreased gene expression of PPARGC1A...

  8. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  9. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  10. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  11. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  12. Study of human dopamine sulfotransferases based on gene expression programming.

    Science.gov (United States)

    Si, Hongzong; Zhao, Jiangang; Cui, Lianhua; Lian, Ning; Feng, Hanlin; Duan, Yun-Bo; Hu, Zhide

    2011-09-01

    A quantitative model is developed to predict the Km of 47 human dopamine sulfotransferases by gene expression programming. Each kind of compound is represented by several calculated structural descriptors of moment of inertia A, average electrophilic reactivity index for a C atom, relative number of triple bonds, RNCG relative negative charge, HA-dependent HDSA-1, and HBCA H-bonding charged surface area. Eight fitness functions of the gene expression programming method are used to find the best nonlinear model. The best quantitative model with squared standard error and square of correlation coefficient are 0.096 and 0.91 for training data set, and 0.102 and 0.88 for test set, respectively. It is shown that the gene expression programming-predicted results with fitness function are in good agreement with experimental ones.

  13. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  14. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  15. Regulating gene-expression by mechanical force

    Science.gov (United States)

    Visscher, Koen

    2008-10-01

    Initiation of transcription is an attractive target for controlling gene expression. Initiation typically involves binding of RNA polymerase to the DNA, followed by a rapid transition into a ``closed'' complex, and a subsequent transition into the ``open'' complex in which the DNA is locally melted. Nature makes good use of this target, for example in the form of repressor proteins that bind DNA and inhibit transcription. Here we will show that initiation of transcription is also dependent upon DNA tension and thus may be controlled by force alone, without the need for any accessory proteins. Using a three-bead assay in conjunction with optical tweezers we have shown that transient interactions of T7 RNA polymerase with the DNA promoter site shorten significantly, by up to a factor of ˜20, when DNA tension is increased. Experiments in the presence and absence of nucleotides have allowed us to conclude that force is likely to affect the rate constants into and/or out of the open complex, rather than the off-rate from the closed complex.

  16. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  17. Homology-dependent gene silencing and host defense in plants.

    Science.gov (United States)

    Matzke, Marjori A; Aufsatz, Werner; Kanno, Tatsuo; Mette, M Florian; Matzke, Antonius J M

    2002-01-01

    Analyses of transgene silencing phenomena in plants and other organisms have revealed the existence of epigenetic silencing mechanisms that are based on recognition of nucleic acid sequence homology at either the DNA or RNA level. Common triggers of homology-dependent gene silencing include inverted DNA repeats and double-stranded RNA, a versatile silencing molecule that can induce both degradation of homologous RNA in the cytoplasm and methylation of homologous DNA sequences in the nucleus. Inverted repeats might be frequently associated with silencing because they can potentially interact in cis and in trans to trigger DNA methylation via homologous DNA pairing, or they can be transcribed to produce double-stranded RNA. Homology-dependent gene silencing mechanisms are ideally suited for countering natural parasitic sequences such as transposable elements and viruses, which are usually present in multiple copies and/or produce double-stranded RNA during replication. These silencing mechanisms can thus be regarded as host defense strategies to foreign or invasive nucleic acids. The high content of transposable elements and, in some cases, endogenous viruses in many plant genomes suggests that host defenses do not always prevail over invasive sequences. During evolution, slightly faulty genome defense responses probably allowed transposable elements and viral sequences to accumulate gradually in host chromosomes and to invade host genes. Possible beneficial consequences of this "foreign" DNA buildup include the establishment of genome defense-derived epigenetic control mechanisms for regulating host gene expression and acquired hereditary immunity to some viruses.

  18. Mechanical Feedback and Arrest in Gene Expression

    Science.gov (United States)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  19. Argudas: arguing with gene expression information

    CERN Document Server

    McLeod, Kenneth; Burger, Albert

    2010-01-01

    In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information are often both incomplete and inconsistent. This paper examines a system, Argudas, designed to help tackle these issues. Argudas is an evolution of an existing system, and so that system is reviewed as a means of both explaining and justifying the behaviour of Argudas. Throughout the discussion of Argudas a number of issues will be raised including the appropriateness of argumentation in biology and the challenges faced when integrating apparently similar online biological databases.

  20. Optogenetics for gene expression in mammalian cells.

    Science.gov (United States)

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  1. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Neutelings Godfrey

    2010-04-01

    Full Text Available Abstract Background Quantitative real-time PCR (qRT-PCR is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs. Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L. Results Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups. qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59. LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both ge

  2. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; V