Energy Technology Data Exchange (ETDEWEB)
Vinod, K., E-mail: vinod@igcar.gov.in; Sharma, Shilpam; Sundar, C. S.; Bharathi, A. [Low Temperature Studies Section, Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102 (India)
2015-06-24
Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.
Spin- and Pair-Density-Wave Glasses
Directory of Open Access Journals (Sweden)
David F. Mross
2015-07-01
Full Text Available Spontaneous breaking of translational symmetry, known as density-wave order, is common in nature. However, such states are strongly sensitive to impurities or other forms of frozen disorder leading to fascinating glassy phenomena. We analyze impurity effects on a particularly ubiquitous form of broken translation symmetry in solids: a spin-density wave (SDW with spatially modulated magnetic order. Related phenomena occur in pair-density-wave (PDW superconductors where the superconducting order is spatially modulated. For weak disorder, we find that the SDW or PDW order can generically give way to a SDW or PDW glass—new phases of matter with a number of striking properties, which we introduce and characterize here. In particular, they exhibit an interesting combination of conventional (symmetry-breaking and spin-glass (Edwards-Anderson order. This is reflected in the dynamic response of such a system, which—as expected for a glass—is extremely slow in certain variables, but, surprisingly, is fast in others. Our results apply to all uniaxial metallic SDW systems where the ordering vector is incommensurate with the crystalline lattice. In addition, the possibility of a PDW glass has important consequences for some recent theoretical and experimental work on La_{2−x}Ba_{x}Cu_{2}O_{4}.
Density waves in the organic metal α-(BEDT-TTF) 2KHg(SCN) 4
Kato, Masaru
2003-05-01
We have investigated possible spin and charge density waves in the organic metal α-(BEDT-TTF) 2KHg(SCN) 4. This system shows density wave like transition at T=8 K, and the nature of the density wave is not clarified up to now. Using a realistic tight binding model and an inhomogeneous mean-field theory, we obtained several stable density wave states. Especially, spin density wave states (SDW) are stable only for large on-site Coulomb interaction U⩾400 meV. Their spin moments are tiny and inhomogeneous even in the unit cell. Also charge density wave appears simultaneously with the SDW.
Large-scale simulations of spin-density-wave order in frustrated lattices
Barros, Kipton; Batista, Cristian; Chern, Gia-Wei
We investigate spin-density-wave (SDW) phases within a generalized mean-field approximation. This approach incorporates the thermal fluctuations of SDW order and the development of short-range order above magnetic ordering temperatures Tc. Using a new Langevin dynamics method, we study mesoscale structures associated with triple- Q SDW states that are induced by Fermi surface nesting in triangular and kagome lattice Hubbard models. The core of our linear-scaling Langevin dynamics simulations is an efficient stochastic kernel polynomial method for computing the electron density matrix. We also investigate exotic phases above Tc arising from preformed magnetic moments.
Spin density wave order, topological order, and Fermi surface reconstruction
Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni
2016-01-01
In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.
Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons
Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong; Zeng, Zhi
2016-04-01
The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electron interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.
Density waves in the organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}
Energy Technology Data Exchange (ETDEWEB)
Kato, Masaru
2003-05-01
We have investigated possible spin and charge density waves in the organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}. This system shows density wave like transition at T=8 K, and the nature of the density wave is not clarified up to now. Using a realistic tight binding model and an inhomogeneous mean-field theory, we obtained several stable density wave states. Especially, spin density wave states (SDW) are stable only for large on-site Coulomb interaction U{>=}400 meV. Their spin moments are tiny and inhomogeneous even in the unit cell. Also charge density wave appears simultaneously with the SDW.
Energy Technology Data Exchange (ETDEWEB)
Embaid, B.P., E-mail: pembaid@fisica.ciens.ucv.ve [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of); Gonzalez-Jimenez, F. [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of)
2013-03-15
Iron-vanadium sulfides of the monoclinic system Fe{sub x}V{sub 3-x}S{sub 4} (1.0{<=}x{<=}2.0) have been investigated by {sup 57}Fe Moessbauer Spectroscopy in the temperature range 30-300 K. Incommensurate spin density waves (SDW) have been found in this system. An alternative treatment of the spectra allows a direct measurement of the temperature evolution of condensate density of the SDW state which follows the Maki-Virosztek formula. For composition (x=1.0) the SDW condensate is unpinned while for compositions (x>1.0) the SDW condensate is pinned. Possible causes of the pinning-unpinning SDW will be discussed. - Highlights: Black-Right-Pointing-Pointer Fe{sub x}V{sub 3-x}S{sub 4}(1.0{<=}x{<=}2.0) system was investigated by {sup 57}Fe Moessbauer Spectroscopy. Black-Right-Pointing-Pointer Incommensurate spin density wave (SDW) has been found in this system. Black-Right-Pointing-Pointer We report the temperature evolution of the condensate density of SDW state. Black-Right-Pointing-Pointer For composition (x=1.0) the SDW is unpinned while for (x>1.0) is pinned.
Mixed density wave state in quasi-2D organic conductor
Energy Technology Data Exchange (ETDEWEB)
Katono, K., E-mail: k_katono@eng.hokudai.ac.jp [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Ichimura, K. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Center of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628 (Japan); Kawashima, Y.; Yamaya, K. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanda, S. [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Center of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628 (Japan)
2012-06-01
The density wave phase of {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} was investigated by transport properties and magnetic susceptibility. The density wave transition was observed as a broad increase at T{sub DW}=9 K by resistance measurement. Temperature dependence of the static magnetic susceptibility {chi} shows a large Curie tail below 100 K. By subtracting the Curie component, we found that the magnetic susceptibility increases like weak ferromagnetism with decreasing temperature below 7.4 K. The gradual increase of {chi} below T{sub DW} is not expected in simple CDW or SDW, where the magnetic susceptibility decreases with decreasing temperature due to the reduction of Pauli paramagnetic component. To explain the weak ferromagnetic behavior, we consider the coexistence of CDW and SDW. We propose a model of the mixed density wave, where CDW exists with antiferromagnetically coupled canting spins.
Mixed density wave state in quasi-2D organic conductor
Katono, K.; Ichimura, K.; Kawashima, Y.; Yamaya, K.; Tanda, S.
2012-06-01
The density wave phase of α-(BEDT-TTF)2KHg(SCN)4 was investigated by transport properties and magnetic susceptibility. The density wave transition was observed as a broad increase at TDW=9 K by resistance measurement. Temperature dependence of the static magnetic susceptibility χ shows a large Curie tail below 100 K. By subtracting the Curie component, we found that the magnetic susceptibility increases like weak ferromagnetism with decreasing temperature below 7.4 K. The gradual increase of χ below TDW is not expected in simple CDW or SDW, where the magnetic susceptibility decreases with decreasing temperature due to the reduction of Pauli paramagnetic component. To explain the weak ferromagnetic behavior, we consider the coexistence of CDW and SDW. We propose a model of the mixed density wave, where CDW exists with antiferromagnetically coupled canting spins.
Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors
Nickel, J. C.; Duprat, R.; Bourbonnais, C.; Dupuis, N.
2006-04-01
Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations, and both intrachain and interchain repulsive interactions. d -wave superconductivity, which dominates over the spin-density-wave (SDW) phase at large nesting deviations, becomes unstable to the benefit of a triplet f -wave phase for a weak repulsive interchain backscattering term g1⊥>0 , despite the persistence of dominant SDW correlations in the normal state. Antiferromagnetism becomes unstable against the formation of a charge-density-wave state when g1⊥ exceeds some critical value. While these features persist when both Umklapp processes and interchain forward scattering (g2⊥) are taken into account, the effect of g2⊥ alone is found to frustrate nearest-neighbor interchain d - and f -wave pairing and instead favor next-nearest-neighbor interchain singlet or triplet pairing. We argue that the close proximity of SDW and charge-density-wave phases, singlet d -wave, and triplet f -wave superconducting phases in the theoretical phase diagram provides a possible explanation for recent puzzling experimental findings in the Bechgaard salts, including the coexistence of SDW and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.
Switching dynamics of the spin density wave in superconducting CeCoIn5
Kim, Duk Y.; Lin, Shi-Zeng; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman
2017-06-01
The ordering wave vector Q of a spin density wave (SDW), stabilized within the superconducting state of CeCoIn5 in a high magnetic field, has been shown to be hypersensitive to the direction of the field. Q can be switched from a nodal direction of the d -wave superconducting order parameter to a perpendicular node by rotating the in-plane magnetic field through the antinodal direction within a fraction of a degree. Here, we address the dynamics of the switching of Q . We use a free-energy functional based on the magnetization density, which describes the condensation of magnetic fluctuations of nodal quasiparticles, and show that the switching process includes closing of the SDW gap at one Q and then reopening the SDW gap at another Q perpendicular to the first one. The magnetic field couples to Q through the spin-orbit interaction. Our calculations show that the width of the hysteretic region of switching depends linearly on the deviation of magnetic field from the critical field associated with the SDW transition, consistent with our thermal conductivity measurements. The agreement between theory and experiment supports our scenario of the hypersensitivity of the Q phase on the direction of magnetic field, as well as the magnon condensation as the origin of the SDW phase in CeCoIn5.
Ultrafast Spin Density Wave Transition in Chromium Governed by Thermalized Electron Gas
Nicholson, C. W.; Monney, C.; Carley, R.; Frietsch, B.; Bowlan, J.; Weinelt, M.; Wolf, M.
2016-09-01
The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter Δ through the ultrafast phase transition and show that Δ is governed by the transient temperature of the thermalized electron gas, in a mean field description. The complete destruction of SDW order on a sub-100 fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly nonadiabatic regime of ultrafast photoexcitation.
Mertelj, T.; Kusar, P.; Kabanov, V. V.; Stojchevska, L.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; J. Karpinski; Weyeneth, S.; Mihailovic, D.
2010-01-01
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO_{0.8}F_{0.2} single crystals - exhibiting spin-density wave (SDW) ordering and superconductivity respectively - using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature T_{SDW}\\simeq125{K}. In the sup...
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Energy Technology Data Exchange (ETDEWEB)
Werner, S.A. (Missouri Univ., Columbia, MO (United States). Dept. of Physics); Fawcett, E. (Toronto Univ., ON (Canada). Dept. of Physics); Elmiger, M.W.; Shirane, G. (Brookhaven National Lab., Upton, NY (United States))
1992-01-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Energy Technology Data Exchange (ETDEWEB)
Werner, S.A. [Missouri Univ., Columbia, MO (United States). Dept. of Physics; Fawcett, E. [Toronto Univ., ON (Canada). Dept. of Physics; Elmiger, M.W.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States)
1992-11-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S
2010-12-31
Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.
Energy Technology Data Exchange (ETDEWEB)
Takeda, Masayasu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: takeda.masayasu@jaea.go.jp; Nakamura, Mitsutaka [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kakurai, Kazuhisa [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Mibu, Ko [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 (Japan); Lelievre-Berna, Eddy [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156-38042 Grenoble Cedex 9 (France)
2007-07-15
In Cr/Sn(0 0 1) multilayers in which monatomic Sn nonmagnetic layers are periodically embedded, spin-density waves (SDWs) are formed below the Neel temperature like that in bulk Cr. They are, however, quite different to the SDW in bulk Cr. For instance the wavelength of the SDW is defined not simply by the nesting vector of Cr, but also by the artificial periodicity introduced by the Sn layers. We performed the spherical neutron-polarization analysis of these anomalous SDW structures by using CRYOPAD (CRYOgenic Polarization Analysis Device) as well as the one-dimensional polarization analysis in order to get more detailed magnetic structural information which could not be obtained with unpolarized neutron experiments.
Energy Technology Data Exchange (ETDEWEB)
Tropeano, M; Fanciulli, C; Ferdeghini, C; Marre, D; Siri, A S; Putti, M [CNR-INFM-LAMIA and Dipartimento di Fisica, Via Dodecaneso 33, I-16146 Genova (Italy); Martinelli, A; Ferretti, M; Palenzona, A [CNR-INFM-LAMIA and Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, I-16146 Genova (Italy); Cimberle, M R [CNR-IMEM, Dipartimento di Fisica, Via Dodecaneso 33, I-16146 Genova (Italy); Mirri, C; Lupi, S; Sopracase, R; Calvani, P [CNR-INFM ' Coherentia' and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, I-00185 Rome (Italy); Perucchi, A [Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Area Science Park, I-34012 Basovizza, Trieste (Italy)
2009-03-15
We report measurements of resistivity, magnetoresistivity, Hall effect, Seebeck coefficient and infrared reflectivity of undoped SmFeAsO and lightly doped SmFeAs(O{sub 0.93}F{sub 0.07}) oxypnictides. All the properties measured on SmFeAsO are characterized by clear signatures of the magnetic instability. A self-consistent picture emerges in which carrier condensation occurs below the magnetic transition, due to the opening of a spin density wave (SDW) gap. This is accompanied by the mobility increase of not-gapped carriers due to the suppression of electron-electron scattering. SmFeAs(O{sub 0.93}F{sub 0.07}) exhibits an increase of the metallic character on cooling consistent with electron doping, even though at room temperature values of all the properties nearly overlap with those of SmFeAsO. However, with a decrease in temperature all anomalies related to the SDW instability are missing and the superconducting transition occurs. This suggests that doping abruptly breaks the symmetries of the Fermi surface, inhibiting the SDW formation in favor of the superconducting transition, with no substantial changes in the density of states or in the effective mass.
Spin-density-wave magnetism in dilute copper-manganese alloys
Energy Technology Data Exchange (ETDEWEB)
Lamelas, F.J. [Marquette Univ., Milwaukee, WI (United States). Dept. of Physics; Werner, S.A. [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States); Mydosh, J.A. [Kammerlingh Onnes Lab., Leiden (Netherlands)
1995-02-01
Elastic neutron-scattering measurements on two samples of Cu alloyed with 1.3% Mn and 0.55% Mn show that the spin-density-wave (SDW) features found in more concentrated alloys persist in the limit of very dilute alloys. These features consist of temperature-dependent incommensurate peaks in magnetic neutron scattering, with positions and strengths which are fully consistent with those in the concentrated alloys. The implications of these measurements are twofold. First, it is clear from this data that SDW magnetic ordering occurs across the entire range of CuMn alloys which have typically been interpreted as spin glasses. Second, the more fundamental significance of this work is the suggestion via extrapolation that a peak in the magnetic susceptibility x(q) occurs in pure copper, at a value of q given by the Fermi-surface diameter 2k{sub F}.
Holographic Magnetisation Density Waves
Donos, Aristomenis
2016-01-01
We numerically construct asymptotically $AdS$ black brane solutions of $D=4$ Einstein theory coupled to a scalar and two $U(1)$ gauge fields. The solutions are holographically dual to $d=3$ CFTs in a constant external magnetic field along one of the $U(1)$'s. Below a critical temperature the system's magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
Holographic charge density waves
Donos, Aristomenis
2013-01-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with non-zero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Holographic charge density waves
Donos, Aristomenis; Gauntlett, Jerome P.
2013-06-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus
2007-11-01
We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)
Quantum critical properties of a metallic spin-density-wave transition
Gerlach, Max H.; Schattner, Yoni; Berg, Erez; Trebst, Simon
2017-01-01
We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z =2 , consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.
Collinear spin-density-wave ordering in Fe/Cr multilayers and wedges
Energy Technology Data Exchange (ETDEWEB)
Fishman, R.S. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032 (United States); Shi, Z. [Read-Rite Corporation, R D Division, 345 Los Coches Street, Milpitas, California 95035 (United States)
1999-06-01
Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number {ital N} of Cr monolayers, the SDW may be either commensurate ({ital C}) or incommensurate ({ital I}) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the {ital I} SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between {ital I} SDW phases with different numbers {ital n} of nodes. If the {ital I} SDW has n=m nodes at T=0, then {ital n} increases by one at each phase transition from {ital m} to m{minus}1 to m{minus}2 up to the {ital C} phase with n=0 above T{sub IC}(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever {ital n} changes by one. In the limit N{r_arrow}{infinity}, T{sub IC}(N) is independent of the Fe-Cr coupling strength. We find that T{sub IC}({infinity}) is always larger than the bulk N{acute e}el transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the {ital I} SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the {ital C} phase is never stable and the transition temperature T{sub N}(N) takes on a seesaw pattern as n{ge}2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the {ital I} phase to be unstable above the bulk N
Aspects of unconventional density waves
Maki, Kazumi; Dóra, Balázs; Virosztek, Attila
2003-12-01
Recently many people discuss unconventional density waves (i.e. unconventional charge density waves (UCDW) and unconventional spin density waves (USDW)). Unlike in conventional density waves, the quasiparticle spectrum in these systems is gapless. Also these systems remain metallic. Indeed it appears that there are many candidates for UDW. The low temperature phase of α-(BEDT-TTF)2KHg(SCN)4, the antiferromagnetic phase in URu2Si2, the CDW in transition metal dichalcogenite NbSe2, the pseudogap phase in high Tc cuprate superconductors, the glassy phase in organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. After a brief introduction on UCDW and USDW, we shall discuss some of the above systems, where we believe we have evidence for unconventional density waves.
Yi, M; Zhang, Y; Liu, Z-K; Ding, X; Chu, J-H; Kemper, A F; Plonka, N; Moritz, B; Hashimoto, M; Mo, S-K; Hussain, Z; Devereaux, T P; Fisher, I R; Wen, H H; Shen, Z-X; Lu, D H
2014-04-25
An intriguing aspect of unconventional superconductivity is that it always appears in the vicinity of other competing phases, whose suppression brings the full emergence of superconductivity. In the iron pnictides, these competing phases are marked by a tetragonal-to-orthorhombic structural transition and a collinear spin-density wave (SDW) transition. There has been macroscopic evidence for competition between these phases and superconductivity as the magnitude of both the orthorhombicity and magnetic moment are suppressed in the superconducting state. Here, using angle-resolved photoemission spectroscopy on detwinned underdoped Ba(1-x)K(x)Fe2As2, we observe a coexistence of both the SDW gap and superconducting gap in the same electronic structure. Furthermore, our data reveal that following the onset of superconductivity, the SDW gap decreases in magnitude and shifts in a direction consistent with a reduction of the orbital anisotropy. This observation provides direct spectroscopic evidence for the dynamic competition between superconductivity and both SDW and electronic nematic orders in these materials.
Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Kawaguchi, Genta; Maesato, Mitsuhiko; Komatsu, Tokutaro; Imakubo, Tatsuro; Kitagawa, Hiroshi
2016-02-01
We present the results of high-pressure transport measurements on the anion-mixed molecular conductors (DIETSe)2M Br2Cl2 [DIETSe = diiodo(ethylenedithio)tetraselenafulvalene; M =Fe , Ga]. They undergo a metal-insulator (M-I) transition below 9 K at ambient pressure, which is suppressed by applying pressure, indicating a spin-density-wave (SDW) transition caused by a nesting instability of the quasi-one-dimensional (Q1D) Fermi surface, as observed in the parent compounds (DIETSe)2M Cl4 (M =Fe , Ga). In the metallic state, the existence of the Q1D Fermi surface is confirmed by observing the Lebed resonance. The critical pressures of the SDW, Pc, of the M Br2Cl2 (M =Fe , Ga) salts are significantly lower than those of the the M Cl4 (M = Fe, Ga) salts, suggesting chemical pressure effects. Above Pc, field-induced SDW transitions appear, as evidenced by kink structures in the magnetoresistance (MR) in both salts. The FeBr2Cl2 salt also shows antiferromagnetic (AF) ordering of d spins at 4 K, below which significant spin-charge coupling is observed. A large positive MR change up to 150% appears above the spin-flop field at high pressure. At low pressure, in particular below Pc, a dip or kink structure appears in MR at the spin-flop field, which shows unconventionally large hysteresis at low temperature (T hysteresis region clearly decreases with increasing pressure towards Pc, strongly indicating that the coexisting SDW plays an important role in the enhancement of magnetic hysteresis besides the random exchange interaction.
Microscopic Charge Density Wave Transport
Slot, Erwin
2005-01-01
This thesis describes the work performed on crystals with a phase transition to a Charge-Density Wave (CDW). The electrical transport properties change when crystal sizes are smaller than characteristic length scales for CDWs, typically 1 micrometer. In contrast to metals, semiconductors and superco
Global coherence of dust density waves
Energy Technology Data Exchange (ETDEWEB)
Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Properties of superconductivity on a density wave background with small ungapped Fermi surface parts
Grigoriev, P. D.
2008-06-01
We investigate the properties and the microscopic structure of superconductivity (SC) coexisting and sharing the common conducting band with density wave (DW). Such coexistence may take place when the nesting of the Fermi surface (FS) is not perfect, and in the DW state some quasiparticle states remain on the Fermi level and lead to the Cooper instability. The dispersion of such quasiparticle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field Hc2 in such a SC state increases as the system approaches the critical pressure, where the ungapped quasiparticles and superconductivity just appear, and it may considerably exceed the usual Hc2 value without DW. The spin-density wave (SDW) background strongly suppresses the singlet SC pairing, while it does not affect so much the triplet SC transition temperature. The results obtained explain the experimental observations in layered organic metals (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4 , where SC appears in the DW states under pressure and shows many unusual properties.
Threshold electric field in unconventional density waves
Dóra, Balázs; Virosztek, Attila; Maki, Kazumi
2001-07-01
As it is well known most charge-density waves (CDW's) and spin-density waves exhibit nonlinear transport with well-defined threshold electric field ET. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behavior at Tc, unlike the one in conventional CDW. The present result in the three-dimensional weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
The spin density wave state in (TMTSF)2X under large electric and magnetic fields
Leone, Michael J.
We have developed a technique to study the conductivity of materials in the limit of large electric fields. The materials that this study focused on are susceptible to damage due to Joule heating in large DC currents. This technique allows the application of electric fields as large as several hundred volts/cm without sample destruction. The duration of the applied current pulses is user selectable and ranges from 10 mus to several hundred seconds. Measurements were conducted with square pulses of duration 300 mus. We have applied this technique to the study of the family of compounds known as the Bechgaard salts ((TMTSF)2X). The material (TMTSF)2PF6 at ambient pressure exhibits metallic behavior above 12 K. Below 12 K the material enters an insulating caused by the formation of a spin density wave (SDW). Below 12 K, it has been observed that the application of small electric fields causes an increase in the conductivity. We have observed that these materials exhibit negative differential resistance when subjected to large electric fields. We have shown that the observed effects are due to self heating of the sample.
Commensurate and incommensurate spin-density waves in heavy electron systems
Directory of Open Access Journals (Sweden)
P. Schlottmann
2016-05-01
Full Text Available The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point (QCP is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if Q is commensurate with the lattice, i.e. equal to G/2. If the vector Q is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |Q − G/2|.
Mertelj, T.; Kusar, P.; Kabanov, V. V.; Stojchevska, L.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Karpinski, J.; Weyeneth, S.; Mihailovic, D.
2010-06-01
We investigate the quasiparticle (QP) relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO0.8F0.2 single crystals-exhibiting spin-density wave (SDW) ordering and superconductivity, respectively-using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature TSDW≃125K . In the superconducting (SC) crystals multiple relaxation processes are present with distinct SC-state quasiparticle recombination dynamics exhibiting a BCS-like T -dependent superconducting gap, and a pseudogap (PG)-like feature with an onset above 180 K indicating the existence of a pseudogap of magnitude 2ΔPG≃120meV above Tc . From the pump-photon energy dependence we conclude that the SC state and PG relaxation channels are independent, implying the presence of two separate electronic subsystems. We discuss the data in terms of spatial inhomogeneity and multiband scenarios, finding that the latter is more consistent with the present data.
Fluxon density waves in long Josephson junctions
DEFF Research Database (Denmark)
Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig
1993-01-01
Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....
Wave Beam Propagation Through Density Fluctuations
Balakin, A. A.; Bertelli, N.; Westerhof, E.
2011-01-01
Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the wa
Oblique interactions of dust density waves
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhelchui [Los Alamos National Laboratory; Li, Yang - Fang [MAX-PLANCK INSTITUTE; Hou, Lujing [MAX-PLANCK INSTITUTE; Jiang, Ke [MAX-PLANCK INSTITUTE; Wu, De - Jin [CHINA; Thomas, Hubertus M [MAX-PLANCK INSTITUTE; Morfill, Gregor E [MAX-PLANCK INSTITUTE
2010-01-01
Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.
Obliquely propagating dust-density waves
Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.
2008-02-01
Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.
Superfluid density in the d-density-wave scenario.
Wang, Q H; Han, J H; Lee, D H
2001-08-13
Recently Chakravarty, Laughlin, Morr, and Nayak [Phys. Rev. B 62, 4880 (2000)] made an interesting proposal that the cuprate superconductors possess a hidden " d-density-wave" (DDW) order. We study the implication of this proposal for the superfluid density rho(s). We find that it predicts a temperature gradient [d rho(s)/dT](T = 0) that is strongly doping dependent near the critical doping at which the superconducting gap vanishes. This demonstrates that the DDW scenario is inconsistent with existing well-established experimental data.
Imperfect nesting in unconventional density waves
Dóra, Balázs; Virosztek, Attila; Maki, Kazumi
2002-03-01
Recently, we have shown that unconventional charge density wave (UCDW) is the most likely candidate for the unidentified low-temperature phase (LTP) in α-(ET)2 salts. In particular, UCDW describes reasonably well the temperature dependence of the threshold electric field of LTP in α-(ET)2KHg(SCN)4. Here, we shall show that the imperfect nesting in UCDW is crucial to further improve the theoretical description of the threshold electric field.
Fast magnetohydrodynamic density waves in spiral galaxies
Lou, Yu-Qing; Han, J. L.; Fan, Zuhui
1999-09-01
The newly observed large-scale structures of a southern grand-design spiral galaxy NGC 2997 in total and polarized radio-continuum emission together with their overall correlations with the known optical spiral structure are physically interpreted in terms of fast magnetohydrodynamic (MHD) density waves in contrast to slow MHD density waves in NGC 6946. The global spiral pattern of such fast MHD density waves extends from the very centre, where the disc rotates almost rigidly within ~0.5arcmin, all the way to the outer disc with a more or less flat rotation curve. To strengthen the case, several known features of spiral galaxies M51 and IC 342 are referred to and their pattern identifications discussed. It is emphasized that the nature of a magnetized spiral galaxy would be much better appreciated by examining large-scale structures in optical, atomic hydrogen Hi, total and polarized radio-continuum and infrared emission together. As various star-formation processes occur concurrently and/or sequentially in spiral arms of high gas concentration, relatively broad and fuzzy Hi arms, roughly coincident with optical arms in the inner disc, are expected to extend from the extremities of fading optical arms further into the outer gas disc. We predict that the south-east `magnetic arm', apparently isolated from any optical features, in total and polarized radio-continuum intensity maps of NGC 2997 should be associated with an Hi gas arm yet to be detected in 21-cm line emission.
Thermoelectric studies of charge density wave dynamics.
McDonald, Ross; Harrison, Neil; Singleton, John
2008-03-01
The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For charge density wave systems, this metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system towards thermal equilibrium, via a phason avalanche orthogonal to the sample surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B > 30 T) of the organic charge transfer salt α-(BEDT-TTF)2KHg(SCN)4, thus provides a measure of the phason thermopower.
Argument for charge density wave sub-phases in the ground state of α-(BEDT-TTF) 2KHg(SCN) 4
Biskup, N.; Perenboom, J. A. A. J.; Brooks, J. S.; Qualls, J. S.
1998-07-01
A resistive anomaly at temperature Tp in the title compound is associated with a Fermi surface reconstruction from a metallic to a (spin or charge) density wave state. At high magnetic fields a corresponding feature in the magnetoresistance above a field BK indicates the breaking of this state. We argue that TP indicates a second order phase line identical to that measured by specific heat methods and show that it decreases monotonically up to 30T. We find that Pauli (rather than orbital) effects, dominate the reduction in Tp. We further argue that BK is a first-order transition between two subphases below Tp. We compare the phase diagram with recent theoretical models for CDW and SDW ground states in high magnetic fields.
Karube, Kosuke; Hattori, Taisuke; Ishida, Kenji; Tamura, Nobuhiko; Deguchi, Kazuhiko; Sato, Noriaki K.
2013-08-01
The low-temperature magnetic properties of LaCoGe with the tetragonal CeFeSi-type structure were investigated by 59Co- and 139La-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The nuclear spin--lattice relaxation rate divided by the temperature, 1/(T1T), gradually increases with decreasing temperature and shows a kink at approximately 18 K, below which an inhomogeneous internal field appears at the Co nuclear site. These results indicate that antiferromagnetic ordering occurs below TN˜ 18 K. However, an internal field was not observed at the La nuclear site below TN. Taking all NMR results into account, we conclude that spin-density-wave (SDW)-type ordering occurs, where magnetic correlations are of the checkerboard type [\\mbi{Q}=(π,π)] in the ab-plane and have a long periodicity along the c-axis with inhomogeneous ordered moments pointing to the c-axis.
Six Decades of Spiral Density Wave Theory
Shu, Frank H.
2016-09-01
The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular
Observational Confirmations of Spiral Density Wave Theory
Kennefick, Julia D.; Kennefick, Daniel; Shameer Abdeen, Mohamed; Berrier, Joel; Davis, Benjamin; Fusco, Michael; Pour Imani, Hamed; Shields, Doug; DMS, SINGS
2017-01-01
Using two techniques to reliably and accurately measure the pitch angles of spiral arms in late-type galaxies, we have compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.We have further shown that density wave theory leads us to a three-way correlation between bulge mass, pitch angle, and disk gas density, and have used data from the Galaxy Disk Mass Survey to confirm this possible fundamental plane. Density wave theory also predicts that the pitch angle of spiral arms should change with observed waveband as each waveband is sampling a different stage in stellar population formation and evolution. We present evidence that this is indeed the case using a sample of galaxies from the Spitzer Infrared Nearby Galaxy Survey. Furthermore, the evolved spiral arms cross at the galaxy co-rotation radius. This gives a new method for determining the co-rotation radius of spiral galaxies that is found to agree with those found using previous methods.
Investigation of microalgae with photon density waves
Frankovitch, Christine; Reich, Oliver; Löhmannsröben, Hans-Gerd
2007-09-01
Phototropic microalgae have a large potential for producing valuable substances for the feed, food, cosmetics, pigment, bioremediation, and pharmacy industries as well as for biotechnological processes. Today it is estimated that the microalgal aquaculture worldwide production is 5000 tons of dry matter per year (not taking into account processed products) making it an approximately $1.25 billion U.S. per year industry. For effective observation of the photosynthetic growth processes, fast on-line sensor systems that analyze the relevant biological and technical process parameters are preferred. The optical properties of the microalgae culture influence the transport of light in the photobioreactor and can be used to extract relevant information for efficient cultivation practices. Microalgae cultivation media show a combination of light absorption and scattering, which are influenced by the concentrations and the physical and chemical properties of the different absorbing and scattering species (e.g. pigments, cell components, etc.). Investigations with frequency domain photon density waves (PDW) allow for the examination of absorption and scattering properties of turbid media, namely the absorption and reduced scattering coefficient. The reduced scattering coefficient can be used to characterize physical and morphological properties of the medium, including the cell concentration, whereas the absorption coefficient correlates with the pigment content. Nannochloropsis oculata, a single-cell species of microalgae, were examined in a nutrient solution with photon density waves. The absorption and reduced scattering coefficients were experimentally determined throughout the cultivation process, and applied to gain information about the cell concentration and average cell radius.
Scattering of ECRF waves by edge density fluctuations and blobs
Directory of Open Access Journals (Sweden)
Ram Abhay K.
2015-01-01
Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.
Diffuse Waves and Energy Densities Near Boundaries
Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.
2007-12-01
Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
Theoretical study of pair density wave superconductors
Zheng, Zhichao
In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Competition between superconductivity and charge density waves
Kim, Ki-Seok
2007-02-01
We derive an effective field theory for the competition between superconductivity (SC) and charge density waves (CDWs) by employing the SO(3) pseudospin representation of the SC and CDW order parameters. One important feature in the effective nonlinear σ model is the emergence of a Berry phase even at half filling, originating from the competition between SC and CDWs, i.e., the pseudospin symmetry. A-well known conflict between the previous studies of Oshikawa [Phys. Rev. Lett. 84, 1535 (2000)] and Lee and Shankar [Phys. Rev. Lett. 65, 1490 (1990)] is resolved by the appearance of the Berry phase. The Berry phase contribution allows a deconfined quantum critical point of fractionalized charge excitations with e instead of 2e in the SC-CDW quantum transition at half filling. Furthermore, we investigate the stability of the deconfined quantum criticality against quenched randomness by performing a renormalization group analysis of an effective vortex action. We argue that, although randomness results in a weak disorder fixed point differing from the original deconfined quantum critical point, deconfinement of the fractionalized charge excitations still survives at the disorder fixed point owing to a nonzero fixed point value of the vortex charge.
Spiral density wave generation by vortices in Keplerian flows
Bodo, G; Murante, G; Tevzadze, A; Rossi, P; Ferrari, A
2005-01-01
We perform a detailed analytical and numerical study of the dynamics of perturbations (vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks with a Keplerian law of rotation. We draw attention to the process of spiral-density wave generation from vortices, discussing, in particular, the initial, most peculiar stages of wave emission. We show that the linear phenomenon of wave generation by vortices in smooth (without inflection points) shear flows found by using the so-called non-modal approach, is directly applicable to the present case. After an analytical non-modal description of the physics and characteristics of the spiral-density wave generation/propagation in the local shearing-sheet model, we follow the process of wave generation by small amplitude coherent circular vortex structures, by direct global numerical simulation, describing the main features of the generated waves.
Freezing of low energy excitations in charge density wave glasses.
Staresinic, D; Zaitsev-Zotov, S V; Baklanov, N I; Biljaković, K
2008-03-07
Thermally stimulated discharge current measurements were performed to study slow relaxation processes in two canonical charge density wave systems K(0.3)MoO(3) and o-TaS(3). Two relaxation processes were observed and characterized in each system, corroborating the results of dielectric spectroscopy. Our results are consistent with the scenario of the glass transition on the charge density wave superstructure level. In particular, the results directly prove the previously proposed criterion of charge density wave freezing based on the interplay of charge density wave pinning by impurities and screening by free carriers. In addition, we obtained new information on distribution of relaxation parameters, as well as on nonlinear dielectric response both below and above the threshold field for charge density wave sliding.
Density functional calculations of spin-wave dispersion curves.
Kleinman, Leonard; Niu, Qian
1998-03-01
Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.
Density Waves in the Flows of Granular Media
1993-01-01
We study density waves in the flows of granular particles through vertical tubes and hoppers using both analytic methods and molecular dynamics (MD) simulations. We construct equations of motion for quasi one-dimensional systems. The equations, combined with the Bagnold's law for friction, are used to describe the time evolutions of the density and the velocity fields for narrow tubes and hoppers. The solutions of the equations can have two types of density waves, kinetic and dynamic. For tub...
Probing density waves in fluidized granular media with diffusing-wave spectroscopy
Born, Philip; Reinhold, Steffen; Sperl, Matthias
2016-09-01
Density waves are characteristic for fluidized beds and affect measurements on liquidlike dynamics in fluidized granular media. Here the intensity autocorrelation function as obtainable with diffusing-wave spectroscopy is derived in the presence of density waves. The predictions by the derived form of the intensity autocorrelation function match experimental observations from a gas-fluidized bed. The model suggests separability of the contribution from density waves from the contribution by microscopic scatterer displacement to the decay of correlation and thus paves the way for characterizing microscopic particle motions using diffusing-wave spectroscopy as well as heterogeneities in fluidized granular media.
3D High Density Wave Interconnects Project
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
Continuous Dependence on the Density for Stratified Steady Water Waves
Chen, Robin Ming; Walsh, Samuel
2016-02-01
There are two distinct regimes commonly used to model traveling waves in stratified water: continuous stratification, where the density is smooth throughout the fluid, and layer-wise continuous stratification, where the fluid consists of multiple immiscible strata. The former is the more physically accurate description, but the latter is frequently more amenable to analysis and computation. By the conservation of mass, the density is constant along the streamlines of the flow; the stratification can therefore be specified by prescribing the value of the density on each streamline. We call this the streamline density function. Our main result states that, for every smoothly stratified periodic traveling wave in a certain small-amplitude regime, there is an L ∞ neighborhood of its streamline density function such that, for any piecewise smooth streamline density function in that neighborhood, there is a corresponding traveling wave solution. Moreover, the mapping from streamline density function to wave is Lipschitz continuous in a certain function space framework. As this neighborhood includes piecewise smooth densities with arbitrarily many jump discontinues, this theorem provides a rigorous justification for the ubiquitous practice of approximating a smoothly stratified wave by a layered one. We also discuss some applications of this result to the study of the qualitative features of such waves.
Experimental Evidence for Static Charge Density Waves in Iron Oxypnictides
Martinelli, A.
2017-02-01
In this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.
Impact of density information on Rayleigh surface wave inversion results
Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai
2016-12-01
We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.
Enhancement of electric and magnetic wave fields at density gradients
Directory of Open Access Journals (Sweden)
A. Reiniusson
2006-03-01
Full Text Available We use Freja satellite data to investigate irregular small-scale density variations. The observations are made in the auroral region at about 1000-1700 km. The density variations are a few percent, and the structures are found to be spatial down to a scale length of a few ion gyroradii. Irregular density variations are often found in an environment of whistler mode/lower hybrid waves and we show that at the density gradients both the electric and magnetic wave fields are enhanced.
Cassini RSS occultation observations of density waves in Saturn's rings
McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.
2005-08-01
On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.
Merlon-type density waves in a compartmentalized conveyor system
Kanellopoulos, G.; van derWeele, K.
2016-09-01
Multi-particle flow through a cyclic array of K connected compartments with a preferential direction is known to be able to organize itself in the form of density waves [Kanellopoulos, Van der Meer, and Van der Weele, Phys. Rev. E 92, 022205 (2015)]. In this brief note we focus on the intriguing shape these waves take when K is even, in which case they travel through alternatingly dense and diluted compartments. We call them "merlon waves", since the sequence of high and low densities is reminiscent of the merlons and crenels on the battlements of medieval castles.
Analysis of the stability and density waves for traffic flow
Institute of Scientific and Technical Information of China (English)
薛郁
2002-01-01
In this paper, the optimal velocity model of traffic is extended to take into account the relative velocity. Thestability and density waves for traffic flow are investigated analytically with the perturbation method. The stabilitycriterion is derived by the linear stability analysis. It is shown that the triangular shock wave, soliton wave and kinkwave appear respectively in our model for density waves in the three regions: stable, metastable and unstable regions.These correspond to the solutions of the Burgers equation, Kortewegg-de Vries equation and modified Korteweg-de Vriesequation.The analytical results are confirmed to be in good agreement with those of numerical simulation. All theresults indicate that the interaction of a car with relative velocity can affect the stability of the traffic flow and raisecritical density.
Low temperature specific heat of the spin-density-wave compound (TMTSF)2PF6
DEFF Research Database (Denmark)
Odin, J.; Lasjaunias, J.C.; Biljakovic, K.;
1994-01-01
We report on specific heat measurements of the SDW compound (TMTSF)2PF6 between 2 and 25 K, performed by two different techniques. We discuss the two successive transitions which occur in this T-range : the SDW ordering transition at T = 12.1 K, and a glass transition around-3-3.5 K. The latter...
Spiral density waves in M81. I. Stellar spiral density waves
Energy Technology Data Exchange (ETDEWEB)
Feng, Chien-Chang; Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Taam, Ronald E., E-mail: hhwang@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C (China)
2014-04-20
Aside from the grand-design stellar spirals appearing in the disk of M81, a pair of stellar spiral arms situated well inside the bright bulge of M81 has been recently discovered by Kendall et al. The seemingly unrelated pairs of spirals pose a challenge to the theory of spiral density waves. To address this problem, we have constructed a three-component model for M81, including the contributions from a stellar disk, a bulge, and a dark matter halo subject to observational constraints. Given this basic state for M81, a modal approach is applied to search for the discrete unstable spiral modes that may provide an understanding for the existence of both spiral arms. It is found that the apparently separated inner and outer spirals can be interpreted as a single trailing spiral mode. In particular, these spirals share the same pattern speed 25.5 km s{sup –1} kpc{sup –1} with a corotation radius of 9.03 kpc. In addition to the good agreement between the calculated and the observed spiral pattern, the variation of the spiral amplitude can also be naturally reproduced.
Boundary-induced spin-density waves in linear Heisenberg antiferromagnetic spin chains with S ≥1
Dey, Dayasindhu; Kumar, Manoranjan; Soos, Zoltán G.
2016-10-01
Linear Heisenberg antiferromagnets (HAFs) are chains of spin-S sites with isotropic exchange J between neighbors. Open and periodic boundary conditions return the same ground-state energy per site in the thermodynamic limit, but not the same spin SG when S ≥1 . The ground state of open chains of N spins has SG=0 or S , respectively, for even or odd N . Density-matrix renormalization-group calculations with different algorithms for even and odd N are presented up to N =500 for the energy and spin densities ρ (r ,N ) of edge states in HAFs with S =1 , 3/2, and 2. The edge states are boundary-induced spin density waves (BI-SDWs) with ρ (r ,N ) ∝(-1) r -1 for r =1 ,2 ,...,N . The SDWs are in phase when N is odd, are out of phase when N is even, and have finite excitation energy Γ (N ) that decreases exponentially with N for integer S and faster than 1 /N for half integer S . The spin densities and excitation energy are quantitatively modeled for integer S chains longer than 5 ξ spins by two parameters, the correlation length ξ and the SDW amplitude, with ξ =6.048 for S =1 and 49.0 for S =2 . The BI-SDWs of S =3 /2 chains are not localized and are qualitatively different for even and odd N . Exchange between the ends for odd N is mediated by a delocalized effective spin in the middle that increases |Γ (N )| and weakens the size dependence. The nonlinear sigma model (NL σ M ) has been applied to the HAFs, primarily to S =1 with even N , to discuss spin densities and exchange between localized states at the ends as Γ (N ) ∝(-1) Nexp(-N /ξ ) . S =1 chains with odd N are fully consistent with the NL σ M ; S =2 chains have two gaps Γ (N ) with the same ξ as predicted whose ratio is 3.45 rather than 3; the NL σ M is more approximate for S =3 /2 chains with even N and is modified for exchange between ends for odd N .
Breathing Charge Density Waves in Intrinsic Josephson Junctions
Shukrinov, Yu M.; Abdelhafiz, H.
2013-01-01
We demonstrate the creation of a charge density wave (CDW) along a stack of coupled Josephson junctions in layered superconductors. Electric charge in each superconducting layer oscillates around some average value, forming a breathing CDW. We show the transformation of a longitudinal plasma wave to CDW in the state corresponding to the outermost branch. Transitions between different types of CDW's related to the inner branches of current voltage characteristics are demonstrated. The effect o...
Bölsterli Heinzle, Bigna K; Fattinger, Sara; Kurth, Salomé; Lebourgeois, Monique K; Ringli, Maya; Bast, Thomas; Critelli, Hanne; Schmitt, Bernhard; Huber, Reto
2014-04-01
In CSWS (continuous spike waves during sleep) activation of spike waves during slow wave sleep has been causally linked to neuropsychological deficits, but the pathophysiologic mechanisms are still unknown. In healthy subjects, the overnight decrease of the slope of slow waves in NREM (non-rapid eye movement) sleep has been linked to brain recovery to regain optimal cognitive performance. Here, we investigated whether the electrophysiologic hallmark of CSWS, the spike waves during sleep, is related to an alteration in the overnight decrease of the slope, and if this alteration is linked to location and density of spike waves. In a retrospective study, the slope of slow waves (0.5-2 Hz) in the first hour and last hour of sleep (19 electroencephalography [EEG] electrodes) of 14 patients with CSWS (3.1-13.5 years) was calculated. The spike wave "focus" was determined as the location of highest spike amplitude and the density of spike waves as spike wave index (SWI). There was no overnight change of the slope of slow waves in the "focus." Instead, in "nonfocal" regions, the slope decreased significantly. This difference in the overnight course resulted in a steeper slope in the "focus" compared to "nonfocal" electrodes during the last hour of sleep. Spike wave density was correlated with the impairment of the overnight slope decrease: The higher the SWI, the more hampered the slope decrease. Location and density of spike waves are related to an alteration of the physiologic overnight decrease of the slow wave slope. This overnight decrease of the slope was shown to be closely related to the recovery function of sleep. Such recovery is necessary for optimal cognitive performance during wakefulness. Therefore we propose the impairment of this process by spike waves as a potential mechanism leading to neuropsychological deficits in CSWS. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here. Wiley Periodicals
Selective substitution of Cr in CaFe{sub 4}As{sub 3} and its effect on the spin density wave.
Energy Technology Data Exchange (ETDEWEB)
Todorov, I.; Chung, D. Y.; Claus, H.; Gray, K. E.; Li, Q.; Schlueter, J.; Bakas, T.; Douvalis, A.; Gutmann, M.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.; Univ. of Ioannina; Rutherford Appleton Lab.
2010-08-11
Single crystals of CaCr{sub 0.84}Fe{sub 3.16}As{sub 3}, a Cr substituted analog of CaFe{sub 4}As{sub 3}, were grown from Sn flux and characterized with single crystal neutron diffraction. CaCr{sub 0.84}Fe{sub 3.16}As{sub 3} crystallizes in the orthorhombic space group Pnma with a three-dimensional framework, where Fe, Cr, and As form a covalent channel-like network with Ca{sup 2+} cations residing in the channels. CaCr{sub 0.84}Fe{sub 3.16}As{sub 3} has a unit cell of a = 12.057(4) {angstrom}, b = 3.7374(13) {angstrom}, and c = 11.694(3) {angstrom}, as determined by room temperature single crystal neutron diffraction (R{sub 1} = 0.0747, wR{sub 2} = 0.1825). Structural data was also collected at 10 K. The single crystal neutron data showed that Cr selectively occupies a particular metal site, Fe(4). The antiferromagnetic transition associated with spin density wave (SDW) in the parent compound is preserved and shifts from 96 to 103 K with the selective Cr doping. Moessbauer, magnetic, and electrical resistivity measurements are reported.
Unconventional Density Waves in Organic Conductors and in Superconductors
Maki, K.; Dóra, B.; Virosztek, A.
Unconventional density waves (UDW) are one of the ground states in metallic crystalline solids and have been speculated already in 1968. However, more focused studies on UDWstarted only recently, perhaps after the identification of the low temperature phase in α-(BEDT-TTF)2KHg(SCN)4 as unconventional charge density wave (UCDW) in 2002. More recently, the metallic phase of Bechgaard salts (TMTSF)2X with X=PF6 and ReO4 under both pressure and magnetic field appears to be unconventional spin density wave (USDW). The pseudogap regime of high T c superconductors LSCO, YBCO, Bi2212 and the one in CeCoIn5 belong to d-wave density waves (d-DW). In these identifications, the angular dependent magnetoresistance and the giant Nernst effect have played the crucial role. These are the simplest manifestations of the Landau quantization of quasiparticle energy in UDW in the presence of magnetic field (the Nersesyan effect). Also we speculate that UDW will be most likely found in α-(BEDT-TTF)2I3, α-(BEDT-TTF)2I2Br, κ-(BEDT-TTF)2Cu(NCS)2, κ-(BEDT-TTF)2Cu(CN)2Br, γ-(BEDT)2GaCl4 and in many other organic compounds.
Enhanced propagation of photon density waves in random amplifying media
Renthlei, Lalruatfela; Ramakrishna, S A
2013-01-01
We demonstrate enhanced wave-like character of diffuse photon density waves (DPDW) in an amplifying random medium. The amplifying nature makes it contingent to choose the wave solution that grows inside the amplifying medium, and has a propagation vector pointing opposite to the growth direction. This results in negative refraction of the DPDW at an absorbing-amplifying random medium interface as well as the possibility of supporting "anti"-surface-like modes at the interface. A slab of amplifying random medium sandwiched between two absorbing random media supports waveguide resonances that can be utilized to extend the imaging capabilities of DPDW.
Energy density and energy flow of magnetoplasmonic waves on graphene
Moradi, Afshin
2017-03-01
By means the linearized magnetohydrodynamic theory, expressions for energy density and energy flow are derived for the p-polarized surface magnetoplasmon polaritons on graphene in the Voigt configuration, where a static magnetic field is normal to the graphene surface. Numerical results show that the external magnetic field has significant impact on the energy density and energy transport velocity of magnetoplasmon waves in the long-wavelength region, while total power flow vary only weakly with magnetostatic field. The velocity of energy propagation is proved to be identical with group velocity of the surface waves.
Magnetothermopower and Nernst effect in unconventional charge density waves
Dóra, Balázs; Maki, Kazumi; Ványolos, András; Virosztek, Attila
2003-12-01
Recently we have shown that the striking angular dependent magnetoresistance in the low-temperature phase (LTP) of α-(BEDT-TTF)2KHg(SCN)4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in unconventional density wave (UDW). The present results account consistently for the recent data of magnetothermopower in α-(BEDT-TTF)2KHg(SCN)4 obtained by Choi et al. [Phys. Rev. B 65, 205119 (2002)]. This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.
Energy Technology Data Exchange (ETDEWEB)
Palistrant, M. E., E-mail: mepalistrant@yandex.com; Ursu, V. A. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)
2013-04-15
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M{sub Q}. The system of equations defining order parameters M{sub Q}{sup z}, M{sub Q}{sup {sigma}}, M{sub z}, and M{sup {sigma}} is constructed and transformed with allowance for the Umklapp processes. Special cases when H Double-Vertical-Line M{sub Q} and H Up-Tack M{sub Q} (H{sub Z}H{sup {sigma}} = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T{sub M} is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,{approx}x) is constructed. The effect of the magnetic field on magnetic transition temperature T{sub M} is analyzed for H{sub Z}H{sup {sigma}} = 0, and longitudinal magnetic susceptibility {chi} Double-Vertical-Line is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x{sub c} and to a gapless state for x > x{sub c}. In the immediate vicinity of the critical impurity concentration (x {approx} x{sub c}), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.
VARIOUS REGIMES OF CHARGE-DENSITY WAVES IN LAYERED COMPOUNDS
Bakel, G.P.E.M. van; Hosson, J.Th.M. De
1992-01-01
In this paper we have subjected different layered transition-metal dichalcogenides to scanning tunneling microscopy to reveal the electronic charge distribution associated with the charge-density-wave (CDW) part of the superstructure, in addition to the atomic corrugation. The observations presented
Application of singular perturbation method in analyzing traffic density waves
Institute of Scientific and Technical Information of China (English)
SHEN Fei-ying; GE Hong-xia; LEI Li
2009-01-01
Car following model is one of microscopic models for describing traffic flow. Through linear stability analysis, the neutral stability lines and the critical points are obtained for the different types of car following models and two modified models. The singular perturbation method has been used to derive various nonlinear wave equations, such as the Korteweg-de-Vries (KdV) equation and the modified Korteweg-de-Vries (mKdV) equation, which could describe different density waves occurring in traffic flows under certain conditions. These density waves are mainly employed to depict the formation of traffic jams in the congested traffic flow. The general soliton solutions are given for the different types of car following models, and the results have been used to the modified models efficiently.
Spiral Density Waves in a Young Protoplanetary Disk
Pérez, Laura M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G
2016-01-01
Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk.
Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity
Tlili, S; Li, B; Cardoso, O; Ladoux, B; Delanoë-Ayari, H; Graner, F
2016-01-01
Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. In the monolayer bulk, the cell velocity is a function of the cell density, namely it increases as a linear function of the cell radius. At least ten periods of propagating velocity waves are detected with a high signal-to-noise ratio, enabling for their quantitative spatio-temporal analysis. Cell density displays waves, in phase opposition with the velocity, as predicted by mass conservation; similarly, cell-substrate force appear to display small amplitude waves, in phase quadrature with respect to ve...
The density stratification and amplitude dispersion of internal waves
Makarenko, N.; Ulanova, E.
2012-04-01
We consider the theoretical model of large amplitude internal solitary waves propagating in a weakly stratified fluid under gravity. It is well known that steady 2D Euler equations of non-homogeneous fluid reduce in this case to the second-order quasi-linear equation for a stream function (the Dubreil-Jacotin-Long equation). Subsequently, the shape of traveling solitary wave can be determined in the long-wave scaling limit by solving the dispersive KdV-type model equation. The non-linear terms of this equation depend considerably on the instantaneous fine-scale density profile formed over background linear- or exponential stratification (Benney&Ko, 1978; Borisov&Derzho 1990; Derzho&Grimshaw 1997; Makarenko, 1999; Makarenko, Maltseva and Kazakov, 2009). Now we derive and analyze Fredholm-type integral equations coupling immediately the fluid density coefficient with the dispersion function for internal solitary waves. The inverse problem which means to find the fine-scale density by known curve of the amplitude dispersion is discussed in more details.
Density-Wave Spiral Theories in the 1960s. I
Pasha, I I
2004-01-01
With the arrival of computers, plasma physics and several fresh investigators by the early 1960s, understanding the spiral structure of galaxies entered a new stage of unusually vigorous activity broadly grouped under the umbrella marked "density-wave theory". Paper I starts with acknowledging B. Lindblad, rightly regarded the main father of this whole subject, and then describes the early contributions by Lynden-Bell, Toomre, Hunter and Kalnajs, who had formulated and applied such notions as the stability of flat galaxies, the regenerative spiral phenomenon, the shearing density waves and the global spiral modes. But the foremost enthusiast and proponent of the density-wave picture was undoubtedly C.C. Lin whose 1964 and 1966 papers with Shu, written in support of his working hypothesis of the quasi-stationary wave-mode spiral structure, had a big and immediate impact upon astronomers, at least as a welcome sign that genuine understanding of the spiral phenomenon seemed in some sense to be just around the co...
Observations of ULF wave related equatorial electrojet and density fluctuations
Yizengaw, E.; Zesta, E.; Biouele, C. M.; Moldwin, M. B.; Boudouridis, A.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.; Hartinger, M.
2013-10-01
We report on Pc5 wave related electric field and vertical drift velocity oscillations at the equator as observed by ground magnetometers for an extended period on 9 August 2008. We show that the magnetometer-estimated equatorial E×B drift oscillates with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. We also show ionospheric density fluctuations during the period when we observed ULF wave activity. At the same time, we detect the ULF activity on the ground using ground-based magnetometer data from the African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Upstream solar wind conditions are provided by the ACE spacecraft. We find that the wave power observed on the ground also occurs in the upstream solar wind and in the magnetosphere. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. While no direct drift measurements from equatorial radars exist for the 9 August 2008 event, we used JULIA 150 km radar drift velocities observed on 2 May 2010 and found similar fluctuations with the period of 5-8 min, as a means of an independent confirmation of our magnetometer derived drift dynamics.
The B-ring's surface mass density from hidden density waves: Less than meets the eye?
Hedman, M M
2016-01-01
Saturn's B ring is the most opaque ring in our solar system, but many of its fundamental parameters, including its total mass, are not well constrained. Spiral density waves generated by mean-motion resonances with Saturn's moons provide some of the best constraints on the rings' mass density, but detecting and quantifying such waves in the B ring has been challenging because of this ring's high opacity and abundant fine-scale structure. Using a wavelet-based analyses of 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft, we are able to examine five density waves in the B ring. Two of these waves are generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances at 96,427 km and 101,311 km from Saturn's center, respectively. Both of these waves can be detected in individual occultation profiles, but the multi-profile wavelet analysis reveals unexpected variations in the pattern speed of the Janus 2:1 wave that might arise...
Enhanced propagation of photon density waves in random amplifying media
Renthlei, Lalruatfela; Wanare, Harshawardhan; Ramakrishna, S. Anantha
2015-04-01
We demonstrate enhanced wavelike character of diffuse photon density waves (DPDW) in an amplifying random medium. The amplifying nature makes it necessary to choose the wave solution that grows inside the amplifying medium, and has a propagation vector pointing opposite to the growth direction. This results in negative refraction of the DPDW at an absorbing-amplifying random medium interface as well as the possibility of supporting "anti"-surface-like modes at the interface. A slab of an amplifying random medium sandwiched between two absorbing random media supports waveguide resonances that can be utilized to extend the imaging capabilities of DPDW.
A gravitational test of wave reinforcement versus fluid density models
Johnson, Jacqueline Umstead
1990-10-01
Spermatozoa, protozoa, and algae form macroscopic patterns somewhat analogous to thermally driven convection cells. These bioconvective patterns have attracted interest in the fluid dynamics community, but whether in all cases these waves were gravity driven was unknown. There are two conflicting theories, one gravity dependent (fluid density model), the other gravity independent (wave reinforcement theory). The primary objectives of the summer faculty fellows were to: (1) assist in sample collection (spermatozoa) and preparation for the KC-135 research airplane experiment; and (2) to collaborate on ground testing of bioconvective variables such as motility, concentration, morphology, etc., in relation to their macroscopic patterns. Results are very briefly given.
Frequency clusters in self-excited dust density waves
Menzel, Kristoffer O.; Arp, Oliver; Piel, Alexander
2010-11-01
Self-excited dust density waves were studied under microgravity conditions. Their non-sinusoidal shape and high degrees of modulation suggests that nonlinear effects play an important role in their spatio-temporal dynamics. The resulting complex wave pattern is analyzed in great detail by means of the Hilbert transform, which provides instantaneous wave attributes, such as the phase and the frequency. Our analysis showed that the spatial frequency distribution of the DDWs is usually not constant over the dust cloud. In contrast, the wave field is divided into regions of different but almost constant frequencies [1]. The boundaries of these so-called frequency clusters coincide with the locations of phase defects in the wave field. It is found that the size of the clusters depends on the strength of spatial gradients in the plasma parameters. We attribute the formation of frequency clusters to synchronization phenomena as a consequence of the nonlinear character of the wave.[1] K. O. Menzel, O. Arp, A.Piel, Phys. Rev. Lett. 104, 235002 (2010)
Wave induced density modification in RF sheaths and close to wave launchers
Energy Technology Data Exchange (ETDEWEB)
Van Eester, D., E-mail: d.van.eester@fz-juelich.de [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Crombé, K. [Laboratory for Plasma Physics, ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Department of Applied Physics, Ghent University, Ghent (Belgium); Lu, Ling-Feng [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)
2015-12-10
With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.
Wave induced density modification in RF sheaths and close to wave launchers
Van Eester, D.; Crombé, K.; Lu, Ling-Feng
2015-12-01
With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple 'derivative switch-on' procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.
Photoinduced Enhancement of the Charge Density Wave Amplitude
Singer, A.; Patel, S. K. K.; Kukreja, R.; Uhlíř, V.; Wingert, J.; Festersen, S.; Zhu, D.; Glownia, J. M.; Lemke, H. T.; Nelson, S.; Kozina, M.; Rossnagel, K.; Bauer, M.; Murphy, B. M.; Magnussen, O. M.; Fullerton, E. E.; Shpyrko, O. G.
2016-07-01
Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photoexcitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well-defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom.
Interrupted orbital motion in density-wave systems
Breitkreiz, Maxim; Brydon, P. M. R.; Timm, Carsten
2016-11-01
In conventional metals, electronic transport in a magnetic field is characterized by the motion of electrons along orbits on the Fermi surface, which usually causes an increase in the resistivity through averaging over velocities. Here, we show that large deviations from this behavior can arise in density-wave systems close to their ordering temperature. Specifically, enhanced scattering off collective fluctuations can lead to a change of direction of the orbital motion on reconstructed pockets. In weak magnetic fields, this leads to linear magnetoconductivity, the sign of which depends on the electric-field direction. At a critical magnetic field, the conductivity crosses zero for certain directions, signifying a thermodynamic instability of the density-wave state.
Linear density response function in the projector augmented wave method
DEFF Research Database (Denmark)
Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel;
2011-01-01
We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single......-particle eigenstates can be expanded on a real space grid or in atomic-orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...
Thermal Rounding of the Charge Density Wave Depinning Transition
Middleton, A. Alan
1992-01-01
The rounding of the charge density wave depinning transition by thermal noise is examined. Hops by localized modes over small barriers trigger ``avalanches'', resulting in a creep velocity much larger than that expected from comparing thermal energies with typical barriers. For a field equal to the $T=0$ depinning field, the creep velocity is predicted to have a {\\em power-law} dependence on the temperature $T$; numerical computations confirm this result. The predicted order of magnitude of t...
The density wave in a new anisotropic continuum model
Institute of Scientific and Technical Information of China (English)
Ge Hong-Xia; Dai Shi-Qiang; Dong Li-Yun
2008-01-01
In this paper the new continuum traffic flow model proposed by Jiang et al is developed based on an improved car-following model,in which the speed gradient term replaces the density gradient term in the equation of motion.It overcomes the wrong-way travel which exists in many high-order continuum models.Based on the continuum version of car-following model,the condition for stable traffic flow is derived.Nonlinear analysis shows that the density fluctuation in traffic flow induces a variety of density waves.Near the onset of instability,a small disturbance could lead to solitons determined by the Korteweg-de-Vries (KdV) equation,and the soliton solution is derived.
Supersonic Propagation of Heat Waves in Low Density Heavy Material
Institute of Scientific and Technical Information of China (English)
Jiang Shaoen; Zhang Wenhai; Yi Rongqing; Cui Yanli; Chen Jiusen; Xu Yan; Ding Yongkun; Lai Dongxian; Zheng Zhijian; Huang Yikiang; Li Jinghong; Sun Kexu; Hu Xin
2005-01-01
The propagation of a supersonic heat-wave through copper-doped foam with a density of 50 mg/cm3 was experimentally investigated. The wave is driven by 140 eV Holhraum radiations generated in a cylindrical gold cavity heated by a 2 k J, 1ns laser pulse (0.35 μm). The delayed breakout time of the radiation waves from the rear side of the foam is measured by a threechromatic streaked x-ray spectrometer (TCS) consisting of a set of three-imaging pinholes and an array of three transmission gratings coupled with an x-ray streak camera (XSC). With one shot,simultaneous measurements of the delays of the drive source and the radiation with two different energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. The radiation with an energy of 210 eV propagates at a lower velocity. The radiating heat wave propagates with a velocity that is larger than the sound speed. Using TGS, the transmitting spectrum was measured, and then lower limit of the optical depth which is more than 1, was obtained. The experimental data were in agreement with numerical simulations.
Imperfect nesting and transport properties in unconventional density waves
Dóra, Balázs; Maki, Kazumi; Virosztek, Attila
2002-10-01
We consider the effect of imperfect nesting in quasi-one-dimensional unconventional density waves (DW's). The phase diagram is very close to those in a conventional DW's. The linear and non-linear aspects of the electric conductivity are discussed. At T=0 the frequency dependent electric conductivity develops a small dip at low frequencies. The threshold electric field depends strongly on the imperfect nesting parameter, allowing us to describe very well the measured threshold electric field in the low temperature phase of the quasi-two-dimensional organic conductor, α-(BEDT-TTF)2KHg(SCN)4.
Wave Localization and Density Bunching in Pair Ion Plasmas
Mahajan, Swadesh M
2008-01-01
By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.
Photoemission spectra of charge density wave states in cuprates
Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo
Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.
Fast electronic resistance switching involving hidden charge density wave states
Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.
2016-05-01
The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.
Directory of Open Access Journals (Sweden)
Alexander I. Voitenko
2011-10-01
Full Text Available A review of the theory describing the coexistence between d-wave superconductivity and s-wave charge-density-waves (CDWs is presented. The CDW gapping is identified with pseudogapping observed in high-Tc oxides. According to the cuprate specificity, the analysis is carried out for the two-dimensional geometry of the Fermi surface (FS. Phase diagrams on the σ0 − α plane—here, σ0 is the ratio between the energy gaps in the parent pure CDW and superconducting states, and the quantity 2α is connected with the degree of dielectric (CDW FS gapping—were obtained for various possible configurations of the order parameters in the momentum space. Relevant tunnel and photoemission experimental data for high-Tc oxides are compared with theoretical predictions. A brief review of the results obtained earlier for the coexistence between s-wave superconductivity and CDWs is also given.
Emergent loop current order from pair density wave superconductivity
Kashyap, Manoj; Melchert, Drew; Agterberg, Daniel
2015-03-01
In addition to charge density wave (CDW) order, there is evidence that the pseudogap phase in the cuprates breaks time reversal symmetry. Here we show that pair density wave (PDW) states give rise to a translational invariant non-superconducting order parameter that breaks time reversal and parity symmetries, but preserves their product. This secondary order parameter has a different origin, but shares the same symmetry properties as a magnetoelectric loop current order that has been proposed earlier in the context of the cuprates to explain the appearance of intra-cell magnetic order. We further show that, due to fluctuations, this secondary loop current order, which represents the breaking of discrete symmetries, can preempt PDW order, which breaks both continuous and discrete symmetries. In such a phase, the emergent loop current order coexists with spatial short range CDW and short range superconducting order. Finally, we propose a PDW phase that accounts for intra-cell magnetic order and the Kerr effect, has CDW order consistent with x-ray scattering and nuclear magnetic resonance observations, and quasi-particle properties consistent with angle resolved photoemission scattering. We acknowledge support from NSF Grant No. DMR-1335215
Classification of charge density waves based on their nature.
Zhu, Xuetao; Cao, Yanwei; Zhang, Jiandi; Plummer, E W; Guo, Jiandong
2015-02-24
The concept of a charge density wave (CDW) permeates much of condensed matter physics and chemistry. CDWs have their origin rooted in the instability of a one-dimensional system described by Peierls. The extension of this concept to reduced dimensional systems has led to the concept of Fermi surface nesting (FSN), which dictates the wave vector [Formula: see text] of the CDW and the corresponding lattice distortion. The idea is that segments of the Fermi contours are connected by [Formula: see text], resulting in the effective screening of phonons inducing Kohn anomalies in their dispersion at [Formula: see text], driving a lattice restructuring at low temperatures. There is growing theoretical and experimental evidence that this picture fails in many real systems and in fact it is the momentum dependence of the electron-phonon coupling (EPC) matrix element that determines the characteristic of the CDW phase. Based on the published results for the prototypical CDW system 2H-NbSe2, we show how well the [Formula: see text]-dependent EPC matrix element, but not the FSN, can describe the origin of the CDW. We further demonstrate a procedure of combing electronic band and phonon measurements to extract the EPC matrix element, allowing the electronic states involved in the EPC to be identified. Thus, we show that a large EPC does not necessarily induce the CDW phase, with Bi2Sr2CaCu2O8+δ as the example, and the charge-ordered phenomena observed in various cuprates are not driven by FSN or EPC. To experimentally resolve the microscopic picture of EPC will lead to a fundamental change in the way we think about, write about, and classify charge density waves.
Straw Formation and Enhanced Damping of Strong Density Waves in Saturn’s Rings
Stewart, Glen R.
2017-06-01
High resolution Cassini images of strong density waves in Saturn’s rings often show kilometer-scale structures in the wave troughs that are sometimes described as straw-like structures. These structures are likely formed by transient gravitational instabilities within the density wave and have the potential to greatly enhance the local viscous angular momentum transport and thereby limit the maximum amplitude of the density wave. A Hamiltonian theory for density waves has been developed that can describe the rate of local gravitational instabilities in the wave train. The Hamiltonian for single particle motion in the vicinity of an inner Lindblad resonance with a Saturnian satellite can be formulated such that the angle variable conjugate to the radial action is the resonant argument for the resonance. The density wave can then be derived using Hamiltonian perturbation methods to remove the satellite perturbation such that the transformed radial action and conjugate angles include the usual solution for self-gravitating density waves. Local gravitational instabilities in the density wave can now be formulated using a linearized collisionless Boltzmann equation that is expressed in terms of the transformed action-angle variables that contain the density wave solution. The gravitational potential of the linearized perturbation is found to be enhanced by a factor of ten or more in strong density waves, which likely explains the observation of kilometer-scale structures in these waves. The Hamiltonian formalism can also be used to derive an enhanced effective viscosity that results from these straw-like structures.
Charge-density waves physics revealed by photoconduction
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, S.V., E-mail: serzz@cplire.ru [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Nasretdinova, V.F.; Minakova, V.E. [Kotel' nikov Institute of Radio-engineering and Electronics of the RAS, 125009 Moscow (Russian Federation)
2015-03-01
The results of photoconduction study of the Peierls conductors are reviewed. The studied materials are quasi-one-dimensional conductors with the charge-density wave: K{sub 0.3}MoO{sub 3}, both monoclinic and orthorhombic TaS{sub 3} and also a semiconducting phase of NbS{sub 3} (phase I). Experimental methods, relaxation times, effects of illumination on linear and nonlinear charge transport, the electric-field effect on photoconduction and results of the spectral studies are described. We demonstrate, in particular, that a simple model of modulated energy gap slightly smoothed by fluctuations fits the available spectral data fairly well. The level of the fluctuations is surprisingly small and does not exceed a few percent of the optical energy gap value.
Generation of ramp waves using variable areal density flyers
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2016-07-01
Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
Breathing charge density waves in intrinsic Josephson junctions
Shukrinov, Yu. M.; Abdelhafiz, H.
2014-01-01
We demonstrate the creation of a charge density wave (CDW) along a stack of coupled Josephson junctions (JJs) in layered superconductors. Electric charge in each superconducting layer oscillates around some average value, forming a breathing CDW. We show the transformation of a longitudinal plasma wave to CDW in the state corresponding to the outermost branch. Transition between different types of CDW's related to the inner branches of IV characteristic is demonstrated. The effect of the external electromagnetic radiation on the states corresponding to the inner branches differs crucially from the case of the single JJ. The Shapiro steps in the IV characteristics of the junctions in the stack do not correspond directly to the frequency of radiation ω. The system of JJs behaves like a single whole system: the Shapiro steps or their harmonics in the total IV characteristics appear at voltage , where V l is the voltage in the lth junction, N R is the number of JJs in the rotating state, and m and n are integers.
Shock wave velocity and shock pressure for low density powders : A novel approach
Dijken, D.K.; Hosson, J.Th.M. De
1994-01-01
A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod
SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH
DIJKEN, DK; DEHOSSON, JTM
1994-01-01
A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod
Pair density wave superconducting states and statistical mechanics of dimers
Soto Garrido, Rodrigo Andres
The following thesis is divided in two main parts. Chapters 2, 3 and 4 are devoted to the study of the so called pair-density-wave (PDW) superconducting state and some of its connections to electronic liquid crystal (ELC) phases, its topological aspects in a one dimensional model and its appearance in a quasi-one dimensional system. On the other hand, chapter 5 is focused on the investigation of the classical statistical mechanics properties of dimers, in particular, the dimer model on the Aztec diamond graph and its relation with the octahedron equation. In chapter 2 we present a theory of superconducting states where the Cooper pairs have a nonzero center-of-mass momentum, inhomogeneous superconducting states known as a pair-density-waves (PDWs) states. We show that in a system of spin-1/2 fermions in two dimensions in an electronic nematic spin-triplet phase where rotational symmetry is broken in both real and spin space PDW phases arise naturally in a theory that can be analysed using controlled approximations. We show that several superfluid phases that may arise in this phase can be treated within a controlled BCS mean field theory, with the strength of the spin-triplet nematic order parameter playing the role of the small parameter of this theory. We find that in a spin-triplet nematic phase, in addition to a triplet p-wave and spin-singlet d-wave (or s depending on the nematic phase) uniform superconducting states, it is also possible to have a d-wave (or s) PDW superconductor. The PDW phases found here can be either unidirectional, bidirectional, or tridirectional depending on the spin-triplet nematic phase and which superconducting channel is dominant. In addition, a triple-helix state is found in a particular channel. We show that these PDW phases are present in the weak-coupling limit, in contrast to the usual Fulde-Ferrell-Larkin-Ovchinnikov phases, which require strong coupling physics in addition to a large magnetic field (and often both). In chapter
Charge Order Induced in an Orbital Density-Wave State
Singh, Dheeraj Kumar; Takimoto, Tetsuya
2016-04-01
Motivated by recent angle resolved photoemission measurements [D. V. Evtushinsky et al., Phys. Rev. Lett. 105, 147201 (2010)] and evidence of the density-wave state for the charge and orbital ordering [J. García et al., Phys. Rev. Lett. 109, 107202 (2012)] in La0.5Sr1.5MnO4, the issue of charge and orbital ordering in a two-orbital tight-binding model for layered manganite near half doping is revisited. We find that the charge order with the ordering wavevector 2{Q} = (π ,π ) is induced by the orbital order of d-/d+-type having B1g representation with a different ordering wavevector Q, where the orbital order as the primary order results from the strong Fermi-surface nesting. It is shown that the induced charge order parameter develops according to TCO - T by decreasing the temperature below the orbital ordering temperature TCO, in addition to the usual mean-field behavior of the orbital order parameter. Moreover, the same orbital order is found to stabilize the CE-type spin arrangement observed experimentally below TCE < TCO.
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Dynamical charge density waves rule the phase diagram of cuprates
Caprara, S.; Di Castro, C.; Seibold, G.; Grilli, M.
2017-06-01
In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line TCDW0 of a strongly correlated Fermi liquid to the pseudogap T*(p ) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments.
Accretion Discs with an Inner Spiral Density Wave
Montgomery, M M
2010-01-01
In Montgomery (2009a), we show that accretion discs in binary systems could retrogradely precess by tidal torques like the Moon and the Sun on a tilted, spinning, non-spherical Earth. In addition, we show that the state of matter and the geometrical shape of the celestial object could significantly affect the precessional value. For example, a Cataclysmic Variable (CV) Dwarf Novae (DN) non-magnetic system that shows negative superhumps in its light curve can be described by a retrogradely precessing, differentially rotating, tilted disc. Because the disc is a fluid and because the gas stream overflows the tilted disc and particles can migrate into inner disc annuli, coupled to the disc could be a retrogradely precessing inner ring that is located near the innermost annuli of the disc. However, numerical simulations by Bisikalo et al. (2003, 2004) and this work show that an inner spiral density wave can be generated instead of an inner ring. Therefore, we show that retrograde precession in non-magnetic, spinni...
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
DEFF Research Database (Denmark)
Tanner, D. B.; Cummings, K. D.; Jacobsen, Claus Schelde
1981-01-01
Detailed far-infrared measurements at temperatures from 25 to 300 K provide strong support for a charge-density-wave mechanism for the dc conductivity and microwave dielectric constant of tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). At low temperatures the charge-density wave is pinned...
Energy Technology Data Exchange (ETDEWEB)
Arregui, I.; Asensio Ramos, A. [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Pascoe, D. J., E-mail: iarregui@iac.es [School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom)
2013-06-01
We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided that the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.
Determination of Transverse Density Structuring from Propagating MHD Waves in the Solar Atmosphere
Arregui, I; Pascoe, D J
2013-01-01
We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.
Geometrical optics response tensors and the transport of the wave energy density
Energy Technology Data Exchange (ETDEWEB)
Bornatici, M [INFM, Physics Department ' A. Volta' , University of Pavia, I-27100 Pavia (Italy); Maj, O [INFM, Physics Department, University of Milan, I-20133 Milan (Italy)
2003-08-01
Two forms of the transport equation for the wave energy density inherent in two (apparently diverse) formulations of geometrical optics (GO) are discussed on the basis of the relationships among the plane-wave dielectric tensor, the effective dielectric tensor and the effective conductivity tensor. For a generic space- and time-varying medium, a novel relationship between the dielectric tensor and the conductivity tensor is obtained whereupon the equivalence of the two GO formulations is established. The conditions for which either the wave action density or the wave energy density is conserved are discussed.
A perturbative analysis of Quasi-Radial density waves in galactic disks
Hernandez, X
2011-01-01
The theoretical understanding of density waves in disk galaxies starts from the classical WKB perturbative analysis of tight-winding perturbations, the key assumption being that the potential due to the density wave is approximately radial. The above has served as a valuable guide in aiding the understanding of both simulated and observed galaxies, in spite of a number of caveats being present. The observed spiral or bar patterns in real galaxies are frequently only marginally consistent with the tight-winding assumption, often in fact, outright inconsistent. Here we derive a complementary formulation to the problem, by treating quasi-radial density waves under simplified assumptions in the linear regime. We assume that the potential due to the density wave is approximately tangential, and derive the corresponding dispersion relation of the problem. We obtain an instability criterion for the onset of quasi-radial density waves, which allows a clear understanding of the increased stability of the higher order ...
Inferring Magnetospheric Heavy Ion Density using EMIC Waves
Energy Technology Data Exchange (ETDEWEB)
Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun
2014-05-01
We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Deformations of charge-density wave crystals under electric field
Energy Technology Data Exchange (ETDEWEB)
Pokrovskii, V.Ya. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)], E-mail: pok@cplire.ru; Zybtsev, S.G.; Loginov, V.B. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation); Timofeev, V.N. [Baikov Institute of Metallurgy of RAS, Leninsky prosp. 49, 119991 Moscow (Russian Federation); Kolesov, D.V.; Yaminsky, I.V. [Advanced Technologies Center, Department of Physics, Moscow State University, Leninskie Gori, 119991 Moscow (Russian Federation); Gorlova, I.G. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)
2009-03-01
We report the effects of electric field induced deformations of quasi one-dimensional conductors with charge-density wave (CDW). The most pronounced sort of deformation is torsional strain (TS). The TS is found to comprise two contributions. The features of the 1st-the larger one-are threshold hysteretic dependence on electric field and high relaxation time {tau}: For o-TaS{sub 3}{tau}{approx}10{sup -2} s at T=80 K and falls as exp(900 K/T) with increasing T. The 2nd contribution is linear in electric field and does not drop with frequency increase. The amplitude of this contribution falls abruptly with T approaching the Peierls transition temperature T{sub P} from below. Similar features of TS are demonstrated for other CDW compounds: (TaSe{sub 4}){sub 2}I, K{sub 0.3}MoO{sub 3} and NbS{sub 3} type II, for which T{sub P}{approx}360 K. We attribute the 1st and the 2nd contributions to large (hysteretic) and small (near-equilibrium) CDW deformations, respectively, likely-shear at the surface. The TS is observed also above T{sub P}: For TaS{sub 3} and (TaSe{sub 4}){sub 2}I typical torsional amplitude is 10{sup -1} deg./V in the resonance regimes, corresponding to the piezomodulus {approx}10{sup -9} m/V. A separate study of TS was performed at room temperature with AFM technique. Apart from this ('intrinsic') effect, we observe electrostatic contribution to the TS. In contrast to the intrinsic response, the electrostatic one is proportional to the potential either over the sample, or over an additional electrode ('gate') placed nearby, but not to the difference of potentials between the sample ends. It is typically 2 orders of magnitude less. The intrinsic TS reveals a new electromechanical effect at room temperature, presumably associated with the excitations of the pinned mode of the CDW fluctuations. Its observation opens prospects for application of quasi one-dimensional conductors as micro- and nano-actuators. Basing on the electrostatic
Fluctuations around Periodic BPS-Density Waves in the Calogero Model
Bardek, V; Meljanac, S
2010-01-01
The collective field formulation of the Calogero model supports periodic density waves. An important set of such density waves is a two-parameter family of BPS solutions of the equations of motion of the collective field theory. One of these parameters is essentially the average particle density, which determines the period, while the other parameter determines the amplitude. These BPS solutions are sometimes referred to as "small amplitude waves" since they undulate around their mean density, but never vanish. We present complete analysis of quadratic fluctuations around these BPS solutions. The corresponding fluctuation hamiltonian (i.e., the stability operator) is diagonalized in terms of bosonic creation and annihilation operators which correspond to the complete orthogonal set of Bloch-Floquet eigenstates of a related periodic Schr\\"odinger hamiltonian, which we derive explicitly. Remarkably, the fluctuation spectrum is independent of the parameter which determines the density wave's amplitude. As a cons...
3D High Density mmWave Interconnects Project
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds
Energy Technology Data Exchange (ETDEWEB)
Simmons, N A; Forte, A M; Boschi, L; Grand, S P
2010-03-30
GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are
Equivalence theorem for the spectral density of light waves on weak scattering.
Wang, Tao; Ji, Xiaoling; Zhao, Daomu
2014-07-01
The Equivalence theorem for the spectral density of light waves on weak scattering is discussed. It is shown that when a spatially coherent plane light wave is scattered from two entirely different media, the far-zone spectral density may have identical distribution provided the low-frequency antidiagonal spatial Fourier components of the correlation function of the media are the same. An example of light waves on scattering from a Gaussian Schell model medium is discussed, and the condition on which two different media may produce identical spectral densities is presented.
Optimization design of a Lamb wave device for density sensing of nonviscous liquid.
Chen, Zhijun; Li, Lianger; Shi, Wenkang; Guo, Huawei
2007-10-01
A Lamb wave device composed of a piezoelectric plate loaded with a nonviscous liquid layer is presented. The relation between the Lamb wave phase velocity and the liquid density can be used for liquid density sensing. In this paper, utilizing the partial wave theory, the concept of effective permittivity is introduced to analyze the Lamb wave's excitation and the phase velocity calculation under a certain liquid density. The interface between the Lamb wave device and the liquid layer is metallized to eliminate the influence of liquid electrical properties when sensing liquid density. Based on the theory model, the phase difference measurement method is adopted to study the device's sensitivity to liquid density. In order to achieve high sensitivity to liquid density with sufficient excitation efficiency of Lamb wave, the optimal parameters of the Lamb wave device including plate thickness and cut orientation are obtained by numerical calculation. The experimental results are found to be in agreement with the theoretical simulations, verifying the validity of the theory model and the practicability of the optimization design.
Drift waves in a high-density cylindrical helicon discharge
DEFF Research Database (Denmark)
Schröder, C.; Grulke, O.; Klinger, T.
2005-01-01
of the background plasma parameters. All experimentally observed features of the instability are found to be consistent with drift waves. A linear nonlocal numerical model for drift modes, based on the two-fluid description of a plasma, is used for comparison between the experimental observations and theory....... Comparing numerical and experimental frequencies, it is found that the experimentally observed frequencies are consistent with drift waves. The numerical results show that the high electron collision frequencies provide the strongest destabilization mechanism in the helicon plasma. (c) 2005 American...
Shock-associated MHD waves - A model for interstellar density fluctuations
Spangler, Steven R.
1988-01-01
The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.
Generation of localized magnetic moments in the charge-density-wave state
Akzyanov, R. S.; Rozhkov, A. V.
2014-01-01
We propose a mechanism explaining the generation of localized magnetic moments in charge-density-wave compounds. Our model Hamiltonian describes an Anderson impurity placed in a host material exhibiting the charge-density wave. There is a region of the model's parameter space, where even weak Coulomb repulsion on the impurity site is able to localize the magnetic moment on the impurity. The phase diagram of a single impurity at T=0 is mapped. To establish the connection with experiment thermo...
Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient
DEFF Research Database (Denmark)
D'Angelo, N.; Michelsen, Poul; Pécseli, Hans
1975-01-01
A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...
Unconventional Density Wave and Superfluidity in Cold Atom Systems
2014-06-01
fillings between quarter and half, with on-site and 16 30 nearest-neighbor repulsion [26]. Its application to the coupled quarter-filled ladders with...result that Majorana fermions can be generated as a zero-energy mode in the excitation spectrum of a half-quantum vortex in a (p + ip)-wave superconductor ...spin populations have been studied in electronic mate- rials, such as magnetic-field-induced organic superconductors [63, 64]. Mixtures of different
Energy Flux and Density of Nonuniform Electromagnetic Waves with Total Reflection
Petrov, N. S.
2014-07-01
Analytic expressions are obtained for the energy flux and density of refracted nonuniform waves produced during total reflection at the boundary between two isotropic media for the general case of elliptically polarized incident light. The average values are determined as functions of the parameters of the adjoining media and the angle of incidence. The cases of linearly and circularly polarized incident waves are examined in detail. An explicit general expression relating the energy fl ux and density of these waves for arbitrarily polarized incident light is obtained.
Orbital quantization in the high-magnetic-field state of a charge-density-wave system
Andres, D.; Kartsovnik, M. V.; Grigoriev, P. D.; Biberacher, W.; Müller, H.
2003-11-01
A superposition of the Pauli and orbital couplings of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wave vector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α-(BEDT-TTF)2KHg(SCN)4 under a strongly tilted magnetic field.
Probing the density of states in EuFe{sub 2-x}Ru{sub x}As{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Hemmida, Mamoun; Krug von Nidda, Hans-Albrecht; Guenther, Axel; Loidl, Alois [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg (Germany); Leithe-Jasper, Andreas; Schnelle, Walter; Rosner, Helge; Sichelschmidt, Joerg [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
2015-07-01
Electron spin resonance of Eu{sup 2+} (4f{sup 7}, S = 7/2) in europium-based iron pnictides successfully probes the local density of states of the conduction electrons. Starting from the mother compound EuFe{sub 2}As{sub 2}, the usual metallic phase is characterized by the linear increase of the linewidth on increasing temperature (Korringa slope b = 8 Oe K{sup -1}) due to the Korringa relaxation via the conduction electrons, while this Relaxation contribution is switched off in the spin-density wave phase (T < T{sub SDW}), where the linewidth is mainly determined by the crystal-electric field of the ligands [2]. Thus, we observe the same phenomenology like in insulators, despite of the high conductivity. Substitution of ruthenium for iron gradually suppresses the SDW phase up to x = 0.5 and reduces the Korringa slope down to about b = 0.3 Oe K{sup -1} for x = 2. This indicates a continuously decreasing conduction-electron density of states at the Fermi energy on increasing Ru Substitution in a good agreement with band-structure calculations.
Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering
Zastrau, U.; Gamboa, E. J.; Kraus, D.; Benage, J. F.; Drake, R. P.; Efthimion, P.; Falk, K.; Falcone, R. W.; Fletcher, L. B.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Heimann, P.; Hill, K.; Keiter, P. A.; Lu, J.; MacDonald, M. J.; Montgomery, D. S.; Nagler, B.; Pablant, N.; Schropp, A.; Tobias, B.; Gericke, D. O.; Glenzer, S. H.; Lee, H. J.
2016-07-01
We present results from time-resolved X-ray imaging and inelastic scattering on collective excitations. These data are then employed to infer the mass density evolution within laser-driven shock waves. In our experiments, thin carbon foils are first strongly compressed and then driven into a dense state by counter-propagating shock waves. The different measurements agree that the graphite sample is about twofold compressed when the shock waves collide, and a sharp increase in forward scattering indicates disassembly of the sample 1 ns thereafter. We can benchmark hydrodynamics simulations of colliding shock waves by the X-ray scattering methods employed.
Lauben, D.; Cohen, M.; Inan, U.
2012-12-01
We deduce the 3d intra-plasmaspheric distribution of VLF wave power between conjugate regions of strong VLF wave amplitudes as measured by DEMETER for high-power terrestrial VLF transmitters during its ~6-yr lifetime. We employ a mixed WKB/full-wave technique to solve for the primary and secondary electromagnetic and electrostatic waves which are transmitted and reflected from strong cold-plasma density gradients and posited irregularities, in order to match the respective end-point measured amplitude distributions. Energy arriving in the conjugate region and also escaping to other regions of the magnetosphere is note. The resulting 3d distribution allows improved estimates for the long-term average particle scattering induced by terrestrial VLF transmitters.
Electron density and gas density measurements in a millimeter-wave discharge
Energy Technology Data Exchange (ETDEWEB)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology 167 Albany St., Bldg. NW16, Cambridge, Massachusetts 02139 (United States)
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.
Spectral power density of the random excitation for the photoacoustic wave equation
Directory of Open Access Journals (Sweden)
Hakan Erkol
2014-09-01
Full Text Available The superposition of the Green's function and its time reversal can be extracted from the photoacoustic point sources applying the representation theorems of the convolution and correlation type. It is shown that photoacoustic pressure waves at locations of random point sources can be calculated with the solution of the photoacoustic wave equation and utilization of the continuity and the discontinuity conditions of the pressure waves in the frequency domain although the pressure waves cannot be measured at these locations directly. Therefore, with the calculated pressure waves at the positions of the sources, the spectral power density can be obtained for any system consisting of two random point sources. The methodology presented here can also be generalized to any finite number of point like sources. The physical application of this study includes the utilization of the cross-correlation of photoacoustic waves to extract functional information associated with the flow dynamics inside the tissue.
Internal wave pressure, velocity, and energy flux from density perturbations
Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L
2016-01-01
Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...
Density waves in traffic flow of two kinds of vehicles.
Liu, Z Z; Zhou, X J; Liu, X M; Luo, J
2003-01-01
Through the car-following model, the traffic flow of two types of vehicles (cars and trucks) on a single-lane flow is studied, in which drivers on different vehicles have different sensitivities and the safety distance is assumed to be the same for all vehicles. The linear analysis is carried out to determine the condition of critical stability. With the nonlinear analysis, it proves that the small fluctuation of the vehicle density near the critical stable state satisfies the Korteweg-deVries equation and different sensitivities affect only the soliton evolution. When the headway in the critical state is more than the safety distance, the density around the soliton peak exceeds the density of the critical stable state, which can be explained as the formation of traffic jam. Contrarily, when the headway state is less than the safety distance, drivers will increase the headway to avoid the jam. The direct approach of the soliton perturbation shows that drivers' sensitivity will increase the soliton's amplitude continuously. Moreover, the increase of the number of trucks in the traffic flow will slow down the evolution of the amplitude.
Correlation of densities with shear wave velocities and SPT N values
Anbazhagan, P.; Uday, Anjali; Moustafa, Sayed S. R.; Al-Arifi, Nassir S. N.
2016-06-01
Site effects primarily depend on the shear modulus of subsurface layers, and this is generally estimated from the measured shear wave velocity (V s) and assumed density. Very rarely, densities are measured for amplification estimation because drilling and sampling processes are time consuming and expensive. In this study, an attempt has been made to derive the correlation between the density (dry and wet density) and V s/SPT (standard penetration test) N values using measured data. A total of 354 measured V s and density data sets and 364 SPT N value and density data sets from 23 boreholes have been used in the study. Separate relations have been developed for all soil types as well as fine-grained and coarse-grained soil types. The correlations developed for bulk density were compared with the available data and it was found that the proposed relation matched well with the existing data. A graphical comparison and validation based on the consistency ratio and cumulative frequency curves was performed and the newly developed relations were found to demonstrate good prediction performance. An attempt has also been made to propose a relation between the bulk density and shear wave velocity applicable for a wide range of soil and rock by considering data from this study as well as that of previous studies. These correlations will be useful for predicting the density (bulk and dry) of sites having measured the shear wave velocity and SPT N values.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva
2017-02-01
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.
Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2
Dolui, Kapildeb; Sanvito, Stefano
2016-08-01
Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS2. Within the local density approximation the material is a semimetal both in the bulk and in the monolayer form. Most interestingly we observe a Kohn anomaly in the bulk phonon dispersion, which turns into a charge density wave instability when TiS2 is thinned to less than four monolayers. Such instability, however, disappears when one calculates the electronic structure with a functional, such as the LDA+U, which returns an insulating ground state. In this situation charge-doping or strain does not bring back the charge density wave instability, whereas the formation of the TiSSe alloy does.
DEFF Research Database (Denmark)
Bertelli, N.; Balakin, A.A.; Westerhof, E.
2010-01-01
A numerical analysis of the electron cyclotron (EC) wave beam propagation in the presence of edge density fluctuations by means of a quasi-optical code [Balakin A. A. et al, Nucl. Fusion 48 (2008) 065003] is presented. The effects of the density fluctuations on the wave beam propagation...... are estimated in a vacuum beam propagation between the edge density layer and the EC resonance absorption layer. Consequences on the EC beam propagation are investigated by using a simplified model in which the density fluctuations are described by a single harmonic oscillation. In addition, quasi......-optical calculations are shown by using edge density fluctuations as calculated by two-dimensional interchange turbulence simulations and validated with the experimental data [O. E. Garcia et al, Nucl. Fusion 47 (2007) 667]...
Density-Wave Spiral Theories in the 1960s. II
Pasha, I I
2004-01-01
By the 1970s the spiral subject was in considerable disarray. The semiempirical theory by Lin and Shu was confronted with serious problems. They were put on the defensive over their tightly wrapped steady modes on two principal fronts: from the radial propagation at the group velocity that would tend to wind them almost at the material rate, and from the tendencies of galaxy disks toward a strong global instability that appeared likely to overwhelm them. Of course, one might claim that such threats were imaginary and only of academic interest, on the ground that nature itself had overcome them. One might also be confident that the QSSS hypothesis must be correct as illuminated by the everlasting truth of Hubble's classification. One might even take pride in the fact that a very promising concept developed, although not connected to the wave steadiness, on spiral shocks in interstellar gas and their induced star formation. But such a heuristic approach did not stimulate very strong progress in understanding dy...
Estimation of Plasma Density by Surface Plasmons for Surface-Wave Plasmas
Institute of Scientific and Technical Information of China (English)
CHEN Zhao-Quan; LIU Ming-Hai; LAN Chao-Hui; CHEN Wei; LUO Zhi-Qing; HU Xi-Wei
2008-01-01
@@ An estimation method of plasma density based on surface plasmons theory for surface-wave plasmas is proposed. The number of standing-wave is obtained directly from the discharge image, and the propagation constant is calculated with the trim size of the apparatus in this method, then plasma density can be determined with the value of 9.1 × 1017 m-3. Plasma density is measured using a Langmuir probe, the value is 8.1 × 1017 m-3 which is very close to the predicted value of surface plasmons theory. Numerical simulation is used to check the number of standing-wave by the finite-difference time-domain (FDTD) method also. All results are compatible both of theoretical analysis and experimental measurement.
Energy flow, energy density of Timoshenko beam and wave mode incoherence
Zhou, Jun; Rao, Zhushi; Ta, Na
2015-10-01
Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.
A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles
Rappaport, N J; French, R G; Marouf, E A; McGhee, C A
2010-01-01
Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity ($K\\simeq 0.02$ cm$^2$/g) and velocity dispersion of ($c_o\\simeq 0.6$ cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Sa...
A Study of Saturn's Normal Mode Oscillations and Their Forcing of Density Waves in the Rings
Friedson, Andrew James; Cao, Lyra
2016-10-01
Analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) ring occultation profiles has revealed the presence of spiral density waves in Saturn's C ring that are consistent with being driven by gravitational perturbations associated with normal-mode oscillations of the planet [1]. These waves allow the C ring to serve as a sort of seismometer, since their pattern speeds (i.e., azimuthal phase speeds) can in principle be mapped onto the frequencies of the predominant normal oscillations of the planet. The resonant mode frequencies in turn are sensitive to Saturn's internal structure and rotational state. Characterization of the normal modes responsible for the forcing holds the potential to supply important new constraints on Saturn's internal structure and rotation. We perform numerical calculations to determine the resonant frequencies of the normal modes of a uniformly rotating planet for various assumptions regarding its internal stratification and compare the implied pattern speeds to those of density waves observed in the C ring. A question of particular interest that we address is whether quasi-toroidal modes are responsible for exciting a mysterious class of slowly propagating density waves in the ring. We also explore the implications of avoided crossings between modes for explaining observed fine splitting in the pattern speeds of spiral density waves having the same number of spiral arms, and weigh the role that convective overstability may play in exciting large-scale quasi-toroidal modes in Saturn. [1] Hedman, M.M. and Nicholson, P.D. 2014. MNRAS 444, 1369.
Constraining the gravitational wave energy density of the Universe using Earth's ring
Coughlin, Michael
2014-01-01
The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density o...
Brophy, Thomas G.; Rosen, Paul A.
1992-01-01
A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.
Freericks, J. K.; Matveev, O. P.; Shen, Wen; Shvaika, A. M.; Devereaux, T. P.
2017-03-01
In this review, we develop the formalism employed to describe charge-density-wave insulators in pump/probe experiments that use ultrashort driving pulses of light. The theory emphasizes exact results in the simplest model for a charge-density-wave insulator (given by a noninteracting system with two bands and a gap) and employs nonequilibrium dynamical mean-field theory to solve the Falicov-Kimball model in its ordered phase. We show how to develop the formalism and how the solutions behave. Care is taken to describe the details behind these calculations and to show how to verify their accuracy via sum-rule constraints.
Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Müller, Harald
2004-04-01
The interlayer magnetoresistance of the low-dimensional organic metal α-(BEDT-TTF) 2KHg(SCN) 4 under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.
Grigoriev, P. D.; Kostenko, S. S.
2015-03-01
Superconductivity or metallic state may coexist with density wave ordering at imperfect nesting of the Fermi surface. In addition to the macroscopic spatial phase separation, there are, at least, two possible microscopic structures of such coexistence: (i) the soliton-wall phase and (ii) the ungapped Fermi-surface pockets. We show that the conductivity anisotropy allows us to distinguish these two microscopic density-wave structures. The results obtained may help to analyze the experimental observations in layered organic metals (TMTSF)2PF6, (TMTSF)2ClO4, α-(BEDT-TTF)2KHg(SCN)4 and in other compounds.
Energy Technology Data Exchange (ETDEWEB)
Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Mueller, Harald
2004-04-30
The interlayer magnetoresistance of the low-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.
Energy Technology Data Exchange (ETDEWEB)
Grigoriev, P.D., E-mail: grigorev@itp.ac.ru [L.D. Landau Institute for Theoretical Physics, Chernogolovka 142432 (Russian Federation); Institut Laue-Langevin, Grenoble (France); Kostenko, S.S. [Institute of Problems of Chemical Physics, 142432 Chernogolovka (Russian Federation)
2015-03-01
Superconductivity or metallic state may coexist with density wave ordering at imperfect nesting of the Fermi surface. In addition to the macroscopic spatial phase separation, there are, at least, two possible microscopic structures of such coexistence: (i) the soliton-wall phase and (ii) the ungapped Fermi-surface pockets. We show that the conductivity anisotropy allows us to distinguish these two microscopic density-wave structures. The results obtained may help to analyze the experimental observations in layered organic metals (TMTSF){sub 2}PF{sub 6}, (TMTSF){sub 2}ClO{sub 4}, α-(BEDT-TTF){sub 2}KHg(SCN){sub 4} and in other compounds.
Peters, M. P.; Holbrook, W. S.; Flinchum, B. A.; Pasquet, S.
2016-12-01
Despite increasing scientific interest in the critical zone, the accurate determination of fracture density in the subsurface remains difficult as access and costs can prohibit ground-truthing through drilling. A more precise characterization of the fracturing process provides critical insight in to subsurface structures. This is particularly important in determining the point at which protolithic rock becomes fractured bedrock and then degrades to soil through the process of weathering. We studied outcrops in the Laramie Range of southeastern Wyoming were studied and fracture densities were correlated with seismic pressure (P) wave velocities. We used the Differential Effective Medium (DEM) rock physics model to validate our findings and provide a more robust characterization of the role of P-wave velocities acquired on outcrops play in critical zone science. This approach marks a significant departure from previous research, which has not applied P-wave fracture relationships in outcrops onto the critical zone for subsurface characterization. We compared our results with borehole data to establish a relationship between surface outcrops and subsurface rock structures. We found a clear, inverse relationship between a decrease in P-wave velocity and an increase in fracture density consistent with borehole data in the studied area. Our findings suggest that outcrops can be used to determine fracture density in the critical zone. We show that the use of seismic refraction surveys on outcrops provides a non-invasive, highly transferrable method through which we can predict fracturing densities in the subsurface.
Direct Observation of Spin- and Charge-Density Waves in a Luttinger Liquid
Cao, Chenglin; Marcum, Andrew; Mawardi Ismail, Arif; Fonta, Francisco; O'Hara, Kenneth
2016-05-01
At low energy, interacting fermions in one dimension (e.g. electrons in quantum wires or fermionic atoms in 1D waveguides) should behave as Luttinger liquids. In stark contrast to Fermi liquids, the low-energy elementary excitations in Luttinger liquids are collective sound-like modes that propagate independently as spin-density and/or charge-density (i.e. particle-density) waves with generally unequal, and interaction-dependent, velocities. Here we aim to unambiguously confirm this hallmark feature of the Luttinger liquid - the phenomenon of spin-charge separation - by directly observing in real space the dynamics of spin-density and ``charge''-density waves excited in an ultracold gas of spin-1/2 fermions confined in an array of 1D optical waveguides. Starting from a two-component mixture of 6 Li atoms harmonically confined along each of the 1D waveguides, we excite low lying normal modes of the trapped system - namely the spin dipole and density dipole and quadrupole modes - and measure their frequency as a function of interaction strength. Luttinger liquid theory predicts that the spin dipole frequency is strongly dependent on interaction strength whereas the density dipole and quadrupole mode frequencies are relatively insensitive. We will also discuss extending our approach to exciting localized spin density and particle density wavepackets which should propagate at different velocities. Supported by AFOSR and NSF.
GRB Afterglow Blast Wave Encountering Sudden Circumburst Density Change Produces No Flares
Gat, Ilana; MacFadyen, Andrew
2013-01-01
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called ram, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreadin...
No flares from GRB afterglow blast waves encountering sudden circumburst density change
Gat, Ilana; MacFadyen, Andrew
2013-01-01
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreadin...
Coexistence of superconductivity and density waves in quasi-two-dimensional metals
Energy Technology Data Exchange (ETDEWEB)
Ismer, Jan-Peter
2011-06-03
This dissertation deals with the high-temperature superconductivity in the hole- and electron-doped copper superconductors. In the first part, superconducting phases are investigated on a background of different types of density waves. Singlet superconductivity is studied with s- and d-wave symmetry on a background of spin, charge or D-density waves with respect to stability as well as phase structure and impulse dependence of the gap function. In the second part, the dynamic spin susceptibility for different phases is calculated and compared with experimental data extracted from results of inelastic neutron scattering experiments. The observed phases are d-wave superconductivity, D-density wave, and coexistence of the two. For d-wave superconductivity, the influence of a magnetic field parallel to the copper oxide layer and the temperature development of the susceptibility when for T >> T{sub c} a spin density wave phase is present are investigated. [German] Diese Dissertation beschaeftigt sich mit der Hochtemperatursupraleitung in den loch- und elektron-dotierten Kuprat-Supraleitern. Im ersten Teil der Arbeit werden supraleitende Phasen auf einem Hintergrund verschiedener Typen von Dichtewellen untersucht. Es wird Singlett-Supraleitung mit s- und d-Wellen-Symmetrie auf einem Hintergrund von Spin-, Ladungs- oder D-Dichtewelle hinsichtlich Stabilitaet sowie Phasenstruktur und Impulsabhaengigkeit der Gapfunktion untersucht. Im zweiten Teil wird die dynamische Spinsuszeptibilitaet fuer verschiedene Phasen berechnet und mit experimentellen Daten verglichen, die aus Ergebnissen von Inelastischen Neutronenstreuungsexperimenten extrahiert wurden. Die betrachteten Phasen sind d-Wellen-Supraleitung, D-Dichtewelle und Koexistenz der beiden. Fuer d-Wellen-Supraleitung werden der Einfluss eines Magnetfelds parallel zur Kupferoxidschicht und die Temperaturentwicklung der Suszeptibilitaet, wenn fuer T >> T{sub c} eine Spin-Dichtewelle-Phase vorliegt, untersucht.
Energy Technology Data Exchange (ETDEWEB)
Es’kin, V. A.; Zaboronkova, T. M.; Kudrin, A. V., E-mail: kud@rf.unn.ru; Ostafiychuk, O. M. [Lobachevskii State University of Nizhni Novgorod (Russian Federation)
2015-03-15
Guidance of azimuthally symmetric waves by cylindrical density ducts in magnetoplasma in the nonresonant region of the whistler frequency range is investigated. It is demonstrated that eigenmodes existing at the studied frequencies in ducts with enhanced plasma density allow simplified description that makes analysis of the features of their guided propagation much easier. The results of calculation of the dispersion characteristics and field structure of the whistler modes supported by such ducts are presented.
Magnetohydrodynamic Density Waves in a Galactic Disk System of Stars and Gas
Institute of Scientific and Technical Information of China (English)
YuqingLOU; ZuhuiFAN
1997-01-01
We study galactic magnetohydrodynamic(MHD) density waves in a composite system consisting of a stellar disk and a magnetized thermal gaseous disk.Perturbations in the two disks are conpled through gravitational interaction.In the tight-winding regime,Dispersion relations for MHD density wvaes are derived under two different approximations for the stellar disk.This investigation clarifies the interrelation between spiral structures in the stellar disk and spiral synchrotron radio structures in the magnetized thermal gaseous disk.
The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion
Rowland, David R.
2011-01-01
The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…
Coexistence of density wave and superfluid order in a dipolar Fermi gas
DEFF Research Database (Denmark)
Wu, Zhigang; Block, Jens Kusk; Bruun, Georg M.
2015-01-01
We analyse the coexistence of superfluid and density wave (stripe) order in a quasi-two-dimensional gas of dipolar fermions aligned by an external field. Remarkably, the anisotropic nature of the dipolar interaction allows for such a coexistence in a large region of the zero temperature phase dia...
Resonant soft x-ray scattering and charge density waves in correlated systems
Rusydi, Andrivo
2006-01-01
Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu a
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
Electrical transport through constrictions in the charge-density wave conductor NbSe3
O´Neill, K.; Slot, E.; Thorne, R.; Van der Zant, H.
2005-01-01
We have investigated the electrical transport properties of insulating and metallic constrictions of dimensions 100nm-10_m in the charge-density wave (CDW) conductor NbSe3. The constrictions are made in a variety of ways: focused ion beam, reactive ion etching through a resist mask, and in a mechani
Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves
DEFF Research Database (Denmark)
Wang, Z.Z.; Gorard, J.C.; Pasquier, C.
2003-01-01
Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...
Orthogonality of embedded wave functions for different states in frozen-density embedding theory
Energy Technology Data Exchange (ETDEWEB)
Zech, Alexander; Wesolowski, Tomasz A. [Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland); Aquilante, Francesco [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy)
2015-10-28
Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematical structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.
THEORY OF THE THRESHOLD FIELD FOR THE DEPINNING TRANSITION OF A CHARGE-DENSITY WAVE
PIETRONERO, L; VERSTEEG, M
1991-01-01
The Hamiltonian of an elastic string pinned by random potentials is often used to describe the depinning transition of a charge density wave in the presence of impurity pinning. The properties of the pinned states show close analogies to those of glassy systems, while the depinning transition resemb
Resonant soft x-ray scattering and charge density waves in correlated systems
Rusydi, Andrivo
2006-01-01
Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu
Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong
2016-08-01
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)
Probability Density Function for Waves Propagating in a Straight PEC Rough Wall Tunnel
Energy Technology Data Exchange (ETDEWEB)
Pao, H
2004-11-08
The probability density function for wave propagating in a straight perfect electrical conductor (PEC) rough wall tunnel is deduced from the mathematical models of the random electromagnetic fields. The field propagating in caves or tunnels is a complex-valued Gaussian random processing by the Central Limit Theorem. The probability density function for single modal field amplitude in such structure is Ricean. Since both expected value and standard deviation of this field depend only on radial position, the probability density function, which gives what is the power distribution, is a radially dependent function. The radio channel places fundamental limitations on the performance of wireless communication systems in tunnels and caves. The transmission path between the transmitter and receiver can vary from a simple direct line of sight to one that is severely obstructed by rough walls and corners. Unlike wired channels that are stationary and predictable, radio channels can be extremely random and difficult to analyze. In fact, modeling the radio channel has historically been one of the more challenging parts of any radio system design; this is often done using statistical methods. In this contribution, we present the most important statistic property, the field probability density function, of wave propagating in a straight PEC rough wall tunnel. This work only studies the simplest case--PEC boundary which is not the real world but the methods and conclusions developed herein are applicable to real world problems which the boundary is dielectric. The mechanisms behind electromagnetic wave propagation in caves or tunnels are diverse, but can generally be attributed to reflection, diffraction, and scattering. Because of the multiple reflections from rough walls, the electromagnetic waves travel along different paths of varying lengths. The interactions between these waves cause multipath fading at any location, and the strengths of the waves decrease as the distance
Step density waves on growing vicinal crystal surfaces - Theory and experiment
Ranguelov, Bogdan; Müller, Pierre; Metois, Jean-Jacques; Stoyanov, Stoyan
2017-01-01
The Burton, Cabrera and Frank (BCF) theory plays a key conceptual role in understanding and modeling the crystal growth of vicinal surfaces. In BCF theory the adatom concentration on a vicinal surface obeys to a diffusion equation, generally solved within quasi-static approximation where the adatom concentration at a given distance x from a step has a steady state value n (x) . Recently, we show that going beyond this approximation (Ranguelov and Stoyanov, 2007) [6], for fast surface diffusion and slow attachment/detachment kinetics of adatoms at the steps, a train of fast-moving steps is unstable against the formation of steps density waves. More precisely, the step density waves are generated if the step velocity exceeds a critical value related to the strength of the step-step repulsion. This theoretical treatment corresponds to the case when the time to reach a steady state concentration of adatoms on a given terrace is comparable to the time for a non-negligible change of the step configuration leading to a terrace adatom concentration n (x , t) that depends not only on the terrace width, but also on its "past width". This formation of step density waves originates from the high velocity of step motion and has nothing to do with usual kinetic instabilities of step bunching induced by Ehrlich-Schwoebel effect, surface electromigration and/or the impact of impurities on the step rate. The so-predicted formation of step density waves is illustrated by numerical integration of the equations for step motion. In order to complete our previous theoretical treatment of the non-stationary BCF problem, we perform an in-situ reflection electron microscopy experiment at specific temperature interval and direction of the heating current, in which, for the first time, the step density waves instability is evidenced on Si(111) surface during highest possible Si adatoms deposition rates.
The imprint of crustal density heterogeneities on regional seismic wave propagation
Płonka, Agnieszka; Blom, Nienke; Fichtner, Andreas
2016-11-01
Density heterogeneities are the source of mass transport in the Earth. However, the 3-D density structure remains poorly constrained because travel times of seismic waves are only weakly sensitive to density. Inspired by recent developments in seismic waveform tomography, we investigate whether the visibility of 3-D density heterogeneities may be improved by inverting not only travel times of specific seismic phases but complete seismograms.As a first step in this direction, we perform numerical experiments to estimate the effect of 3-D crustal density heterogeneities on regional seismic wave propagation. While a finite number of numerical experiments may not capture the full range of possible scenarios, our results still indicate that realistic crustal density variations may lead to travel-time shifts of up to ˜ 1 s and amplitude variations of several tens of percent over propagation distances of ˜ 1000 km. Both amplitude and travel-time variations increase with increasing epicentral distance and increasing medium complexity, i.e. decreasing correlation length of the heterogeneities. They are practically negligible when the correlation length of the heterogeneities is much larger than the wavelength. However, when the correlation length approaches the wavelength, density-induced waveform perturbations become prominent. Recent regional-scale full-waveform inversions that resolve structure at the scale of a wavelength already reach this regime.Our numerical experiments suggest that waveform perturbations induced by realistic crustal density variations can be observed in high-quality regional seismic data. While density-induced travel-time differences will often be small, amplitude variations exceeding ±10 % are comparable to those induced by 3-D velocity structure and attenuation. While these results certainly encourage more research on the development of 3-D density tomography, they also suggest that current full-waveform inversions that use amplitude
Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas
Xianlong, Gao; Rizzi, M.; Polini, Marco; Fazio, Rosario; Tosi, M. P.; Campo, V. L., Jr.; Capelle, K.
2007-01-01
The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.
Energy Technology Data Exchange (ETDEWEB)
Carvalho, Vanuildo S de [Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia-GO (Brazil); Freire, Hermann, E-mail: hfreire@mit.edu [Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia-GO (Brazil); Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 2139 (United States)
2014-09-15
The two-loop renormalization group (RG) calculation is considerably extended here for the two-dimensional (2D) fermionic effective field theory model, which includes only the so-called “hot spots” that are connected by the spin-density-wave (SDW) ordering wavevector on a Fermi surface generated by the 2D t−t{sup ′} Hubbard model at low hole doping. We compute the Callan–Symanzik RG equation up to two loops describing the flow of the single-particle Green’s function, the corresponding spectral function, the Fermi velocity, and some of the most important order-parameter susceptibilities in the model at lower energies. As a result, we establish that–in addition to clearly dominant SDW correlations–an approximate (pseudospin) symmetry relating a short-range incommensurated-wave charge order to the d-wave superconducting order indeed emerges at lower energy scales, which is in agreement with recent works available in the literature addressing the 2D spin-fermion model. We derive implications of this possible electronic phase in the ongoing attempt to describe the phenomenology of the pseudogap regime in underdoped cuprates.
Density bump formation in a collisionless electrostatic shock wave in a laser-ablated plasma
Garasev, M A; Kocharovsky, V V; Malkov, Yu A; Murzanev, A A; Nechaev, A A; Stepanov, A N
2016-01-01
The emergence of a density bump at the front of a collisionless electrostatic shock wave have been observed experimentally during the ablation of an aluminium foil by a femtosecond laser pulse. We have performed numerical simulations of the dynamics of this phenomena developing alongside the generation of a package of ion-acoustic waves, exposed to a continual flow of energetic electrons, in a collisionless plasma. We present the physical interpretation of the observed effects and show that the bump consists of transit particles, namely, the accelerated ions from the dense plasma layer, and the ions from the diluted background plasma, formed by a nanosecond laser prepulse during the ablation.
Howard, John; Oliver, David
2006-12-01
We report the development and initial implementation of what we believe to be a new rapid- spatial-scan millimeter-wave interferometer for plasma density measurements. The fast scan is effected by electronic frequency sweeping of a wideband (180-280 GHz) backward-wave oscillator whose output is focused onto a fixed blazed diffraction grating. The system, which augments the rotating-grating scanned multiview H-1 heliac interferometer, can sweep the plasma cross section in a period of less than 1 ms with a beam diameter in the plasma of 20 mm and phase noise of the order of 0.01 rad.
Magnetic field dependence of the threshold electric field in unconventional charge density waves
Dóra, Balázs; Virosztek, Attila; Maki, Kazumi
2002-04-01
Many experiments suggest that the unidentified low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4 is most likely unconventional charge density wave (UCDW). To further extend this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. The optical conductivity shows clear features characteristic to both UDW and magnetic field. We find a rather strong field dependence of the threshold electric field, which shows qualitatively good agreement with the experimental data.
Solitary Density Waves for Improved Traffic Flow Model with Variable Brake Distances
Institute of Scientific and Technical Information of China (English)
朱文兴; 丁瑞玲
2012-01-01
Traffic flow model is improved by introducing variable brake distances with varying slopes. Stability of the traffic flow on a gradient is analyzed and the neutral stability condition is obtained. The KdV （Korteweg-de Vries） equation is derived the use of nonlinear analysis and soliton solution is obtained in the meta-stable region. Solitary density waves are reproduced in the numerical simulations. It is found that as uniform headway is less than the safety distance solitary wave exhibits upward form, otherwise it exhibits downward form. In general the numerical results are in good agreement with the analytical results.
Kronoseismology: Using density waves in Saturn's C ring to probe the planet's interior
Hedman, M M
2013-01-01
Saturn's C ring contains multiple spiral patterns that appear to be density waves driven by periodic gravitational perturbations. In other parts of Saturn's rings, such waves are generated by Lindblad resonances with Saturn's various moons, but most of the wave-like C-ring features are not situated near any strong resonance with any known moon. Using stellar occultation data obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft, we investigate the origin of six unidentified C-ring waves located between 80,900 and 87,200 km from Saturn's center. By measuring differences in the waves' phases among the different occultations, we are able to determine both the number of arms in each spiral pattern and the speeds at which these patterns rotate around the planet. We find that all six of these waves have between 2 and 4 arms and pattern speeds between 1660 degrees/day and 1861 degrees/day. These speeds are too large to be attributed to any satellite resonance. Instead they ar...
Density dependence of the /s-wave repulsion in pionic atoms
Friedman, E.
2002-11-01
Several mechanisms of density dependence of the s-wave repulsion in pionic atoms, beyond the conventional model, are tested by parameter fits to a large (106 points) set of data from 16O to 238U, including 'deeply bound' states in 205Pb. Special attention is paid to the proper choice of nuclear density distributions. A density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant is introduced and found to account for most of the so-called anomalous repulsion. The presence of such an effect might indicate partial chiral symmetry restoration in dense matter. The anomalous repulsion is fully accounted for when an additional relativistic impulse approximation term is included in the potential.
Millimeter-Wave Line Ratios and Sub-beam Volume Density Distributions
Leroy, Adam K; Schruba, Andreas; Bigiel, Frank; Kruijssen, J M Diederik; Kepley, Amanda; Blanc, Guillermo A; Bolatto, Alberto D; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jimenez-Donaire, Maria J; Rosolowsky, Erik; Schinnerer, Eva
2016-01-01
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson (2007), we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas producing emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations, because these do not require knowing the absolute abundance of our tracers. Patterns of line ratio variations have the prospect to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high density power law tail differ appreciably; we highlight better knowledge of the PDF shape as an important area. We also show th...
Incommensurate spin density wave in metallic V2-yO3
Bao, Wei; Broholm, C.; Carter, S. A.; Rosenbaum, T. F.; Aeppli, G.; Trevino, S. F.; Metcalf, P.; Honig, J. M.; Spalek, J.
1993-08-01
We show by neutron diffraction that metallic V2-7O3 develops a spin density wave below TN~=9 K with incommensurate wave vector q~=1.7c* and an ordered moment of 0.15μB. The weak ordering phenomenon is accompanied by strong, nonresonant spin fluctuations with a velocity c=67(4) meV Å. The spin correlations of the metal are very different from those of the insulator and place V2-yO3 in a distinct class of Motte-Hubbard systems where the wave vector for magnetic order in the metal is far from a high symmetry commensurate reciprocal lattice point.
Testing Density Wave Theory with Resolved Stellar Populations around Spiral Arms in M81
Choi, Yumi; Williams, Benjamin F; Weisz, Daniel R; Skillman, Evan D; Fouesneau, Morgan; Dolphin, Andrew E
2015-01-01
Stationary density waves rotating at a constant pattern speed $\\Omega_{\\rm P}$ would produce age gradients across spiral arms. We test whether such age gradients are present in M81 by deriving the recent star formation histories (SFHs) of 20 regions around one of M81's grand-design spiral arms. For each region, we use resolved stellar populations to determine the SFH by modeling the observed color-magnitude diagram (CMD) constructed from archival Hubble Space Telescope (HST) F435W and F606W imaging. Although we should be able to detect systematic time delays in our spatially-resolved SFHs, we find no evidence of star formation propagation across the spiral arm. Our data therefore provide no convincing evidence for a stationary density wave with a single pattern speed in M81, and instead favor the scenario of kinematic spiral patterns that are likely driven by tidal interactions with the companion galaxies M82 and NGC 3077.
Field-induced spin-density wave beyond hidden order in URu2Si2
Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.
2016-10-01
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.
Universal Field-Induced Charge-Density-Wave Phase Diagram: Theory versus Experiment
Lebed, A. G.
2009-07-01
We suggest a theory of field-induced charge-density-wave phases, generated by high magnetic fields in quasi-low-dimensional conductors. We demonstrate that, in layered quasi-one-dimensional conductors, the corresponding critical magnetic field ratios are universal and do not depend on any fitting parameter. In particular, we find that H1/H0=0.73, H2/H0=0.59, H3/H0=0.49, and H4/H0=0.42, where Hn is a critical field of a phase transition between the field-induced charge-density-wave phases with numbers n and n+1. The suggested theory is in very good qualitative and quantitative agreement with the existing experimental data in α-(ET)2KHg(SCN)4 material.
Protoplanetary Disk Heating and Evolution Driven by the Spiral Density Waves
Rafikov, Roman R
2016-01-01
High-resolution imaging of some protoplanetary disks in scattered light reveals presence of the global spiral arms of significant amplitude, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by the disk shocks of arbitrary strength. We find these processes to be very sensitive to the shock amplitude. Focusing on the waves of moderate strength (density jump at the shock $\\Delta\\Sigma/\\Sigma\\sim 1$) we show the associated disk heating to be negligible (contributing at $\\sim 1\\%$ level to the energy budget) in passive, irradiated protoplanetary disks on $\\sim 100$ AU scales, but becoming important within several AU from the star. At the same time, shock heating can be a significant (or even dominant) energy source ...
Linear-scaling density functional theory using the projector augmented wave method
Hine, Nicholas D. M.
2017-01-01
Quantum mechanical simulation of realistic models of nanostructured systems, such as nanocrystals and crystalline interfaces, demands computational methods combining high-accuracy with low-order scaling with system size. Blöchl’s projector augmented wave (PAW) approach enables all-electron (AE) calculations with the efficiency and systematic accuracy of plane-wave pseudopotential calculations. Meanwhile, linear-scaling (LS) approaches to density functional theory (DFT) allow for simulation of thousands of atoms in feasible computational effort. This article describes an adaptation of PAW for use in the LS-DFT framework provided by the ONETEP LS-DFT package. ONETEP uses optimisation of the density matrix through in situ-optimised local orbitals rather than the direct calculation of eigenstates as in traditional PAW approaches. The method is shown to be comparably accurate to both PAW and AE approaches and to exhibit improved convergence properties compared to norm-conserving pseudopotential methods.
Generation of localized magnetic moments in the charge-density-wave state
Akzyanov, Ramil S.; Rozhkov, Alexander V.
2015-08-01
We propose a mechanism explaining the generation of localized magnetic moments in charge-density-wave compounds. Our model Hamiltonian describes an Anderson impurity placed in a host material exhibiting the charge-density wave. There is a region of the model's parameter space, where even weak Coulomb repulsion on the impurity site is able to localize the magnetic moment on the impurity. The phase diagram of a single impurity at T = 0 is mapped. To establish the connection with experiment, the thermodynamic properties of a random impurity ensemble is studied. Magnetic susceptibility of the ensemble diverges at low temperature; heat capacity as a function of the magnetic field demonstrates pronounced low field peak. Both features are consistent with experiments on orthorhombic TaS3 and blue bronze.
Chiral density wave versus pion condensation in the 1+1 dimensional NJL model
Adhikari, Prabal
2016-01-01
In this paper, we study the possibility of an inhomogeneous quark condensate in the 1+1 dimensional Nambu-Jona-Lasinio model in the large-$N_c$ limit at finite temperature $T$ and quark chemical potential $\\mu$ using dimensional regularization. The phase diagram in the $\\mu$--$T$ plane is mapped out. At zero temperature, an inhomogeneous phase with a chiral-density wave exists for all values of $\\mu>\\mu_c$. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the critical point and the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant pion condensate at finite isospin chemical potential $\\mu_I$. The phase diagram in the $\\mu_I$--$\\mu$ plane is mapped out and shows a rich phase structure.
Spiral density wave triggering of star formation in SA and SAB galaxies
Martínez-García, Eric E; Bruzual-A, Gustavo
2008-01-01
Azimuthal color (age) gradients across spiral arms are one of the main predictions of density wave theory; gradients are the result of star formation triggering by the spiral waves. In a sample of 13 spiral galaxies of types A and AB, we find that 10 of them present regions that match the theoretical predictions. By comparing the observed gradients with stellar population synthesis models, the pattern speed and the location of major resonances have been determined. The resonance positions inferred from this analysis indicate that 9 of the objects have spiral arms that extend to the outer Lindblad resonance (OLR); for one of the galaxies, the spiral arms reach the corotation radius. The effects of dust, and of stellar densities, velocities, and metallicities on the color gradients are also discussed.
Charge density waves in the graphene sheets of the superconductor CaC(6).
Rahnejat, K C; Howard, C A; Shuttleworth, N E; Schofield, S R; Iwaya, K; Hirjibehedin, C F; Renner, Ch; Aeppli, G; Ellerby, M
2011-11-29
Graphitic systems have an electronic structure that can be readily manipulated through electrostatic or chemical doping, resulting in a rich variety of electronic ground states. Here we report the first observation and characterization of electronic stripes in the highly electron-doped graphitic superconductor, CaC(6), by scanning tunnelling microscopy and spectroscopy. The stripes correspond to a charge density wave with a period three times that of the Ca superlattice. Although the positions of the Ca intercalants are modulated, no displacements of the carbon lattice are detected, indicating that the graphene sheets host the ideal charge density wave. This provides an exceptionally simple material-graphene-as a starting point for understanding the relation between stripes and superconductivity. Furthermore, our experiments suggest a strategy to search for superconductivity in graphene, namely in the vicinity of striped 'Wigner crystal' phases, where some of the electrons crystallize to form a superlattice.
Wave-function and density functional theory studies of dihydrogen complexes
Fabiano, E; Della Sala, F
2014-01-01
We performed a benchmark study on a series of dihydrogen bond complexes and constructed a set of reference bond distances and interaction energies. The test set was employed to assess the performance of several wave-function correlated and density functional theory methods. We found that second-order correlation methods describe relatively well the dihydrogen complexes. However, for high accuracy inclusion of triple contributions is important. On the other hand, none of the considered density functional methods can simultaneously yield accurate bond lengths and interaction energies. However, we found that improved results can be obtained by the inclusion of non-local exchange contributions.
Extended phonon collapse in the charge-density-wave compound NbSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Weber, Frank [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Rosenkranz, Stephan; Castellan, John-Paul; Osborn, Raymond [Materials Science Division, Argonne National Laboratory, Argonne, Illinois (United States); Hott, Roland; Heid, Rolf; Bohnen, Klaus-Peter [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Egami, Takeshi [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee (United States); Said, Ayman [Advanced Photon Source, Argonne National Laboratory, Illinois (United States); Reznik, Dmitry [Karlsruhe Institute of Technology, Institute of Solid State Physics, Karlsruhe (Germany); Department of Physics, University of Colorado at Boulder, Boulder, Colorado (United States)
2011-07-01
We investigated the phonon softening in the charge density wave compound NbSe{sub 2} using the high-resolution hard inelastic X-ray scattering beamline 30-ID-C at the Advanced Photon Source, Argonne National Laboratory. The acoustic {sigma}{sub 1} phonon branch was measured from the zone center {gamma} to the M point at temperatures between 250 K and 8 K across the CDW transition at T{sub CDW}=33 K. Density functional theory calculations for the lattice dynamical properties which predict an extended phonon breakdown are used to analyze the detailed nature of the softening phonon branch.
Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring
Nakatsugawa, K.; Fujii, T.; Tanda, S.
2017-09-01
We show that time translation symmetry of a ring system with a macroscopic quantum ground state is broken by decoherence. In particular, we consider a ring-shaped incommensurate charge density wave (ICDW ring) threaded by a fluctuating magnetic flux: the Caldeira-Leggett model is used to model the fluctuating flux as a bath of harmonic oscillators. We show that the charge density expectation value of a quantized ICDW ring coupled to its environment oscillates periodically. The Hamiltonians considered in this model are time independent unlike "Floquet time crystals" considered recently. Our model forms a metastable quantum time crystal with a finite length in space and in time.
Tuning the charge density wave and superconductivity in CuxTaS2
Wagner, K.E.; Morosan, E.; Hor, Y.S.; Tao, J.; Zhu, Y.; Sanders, T.; McQueen, T.M.; Zandbergen, H.W.; Williams, A.J.; West, D.V.; Cava, R.J.
2008-01-01
We report the characterization of layered 2H-type CuxTaS2 for 0≤x≤0.12. The charge density wave (CDW), at 70 K for TaS2, is destabilized with Cu doping. The sub-1 K superconducting transition in undoped 2H-TaS2 jumps quickly to 2.5 K at low x, increases to 4.5 K at the optimal composition Cu0.04TaS2
Field-Induced Dynamic Diamagnetism in a Charge-Density-Wave System
Harrison, N.; Mielke, C. H.; Christianson, A. D.; Brooks, J. S.; Tokumoto, M.
2001-02-01
ac susceptibility measurements of the charge-density-wave (CDW) compound α-\\(BEDT-TTF\\)2-KHg\\(SCN\\)4 at magnetic fields, μ0H>23 T, above its Pauli paramagnetic limit, reveal unambiguously that the magnetic hysteresis observed previously within this CDW phase is diamagnetic and can only be explained by induced currents. It is argued that the ensemble of experimental techniques amounts to a strong case for dissipationless conductivity within this phase.
Density of states of s+d-wave superconductor with Anderson impurities
Energy Technology Data Exchange (ETDEWEB)
Borkowski, L S, E-mail: lsb@man.poznan.p [Quantum Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)
2009-03-01
We present results for the density of states of a s+d-wave superconductor containing finite concentration of Anderson impurities within the self-consistent slave boson approximation. There may be zero, one or two peaks in the energy gap at low energies. The height of the peaks is controlled by the impurity concentration whereas their position depends on the strength of interaction between impurities and the conduction band. Experimental consequences are briefly discussed.
Interaction between electromagnetic waves and energetic particles by a realistic density model
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Using a realistic density model,we present a first study on the interactions between electromagnetic waves and energetic particles in the inner magnetosphere.Numerical calculations show that as the latitude λ increases,the number density ne increases,and resonant frequency range moves to lower pitch angles.During L-mode/electron and L-mode/proton interactions,the pitch angle diffusion dominates over the momentum diffusion.This indicates that L-mode waves are primarily responsible for pitch angle scattering.For R-mode/electron interaction,the momentum diffusion is found to be comparable to the pitch angle diffusion,implying that R-mode waves can play an important role in both pitch angle scattering and stochastic acceleration of electrons.For R-mode/proton interaction,diffusion coefficients locate primarily below pitch angle 60° and increase as kinetic energy increases,suggesting that R-mode waves have potential for pitch angle scattering of highly energetic (~1 MeV) protons but cannot efficiently accelerate protons.
Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer
Energy Technology Data Exchange (ETDEWEB)
Peysson, Y., E-mail: yves.peysson@cea.fr [CEA, IRFM, 13108 Saint Paul-lez-Durance (France); Madi, M.; Kabalan, K. [AUB, Bliss Street (Lebanon); Decker, J. [EPFL, CRPP (Switzerland)
2015-12-10
In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.
Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity
Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.
2017-01-01
Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455
Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity
Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.
2017-02-01
Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light-matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light-matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities.
Time-domain pumping a quantum-critical charge density wave ordered material
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-09-01
We determine the exact time-resolved photoemission spectroscopy for a nesting driven charge density wave (described by the spinless Falicov-Kimball model within dynamical mean-field theory). The pump-probe experiment involves two light pulses: the first is an ultrashort intense pump pulse that excites the system into nonequilibrium, and the second is a lower amplitude, higher frequency probe pulse that photoexcites electrons. We examine three different cases: the strongly correlated metal, the quantum-critical charge density wave, and the critical Mott insulator. Our results show that the quantum critical charge density wave has an ultraefficient relaxation channel that allows electrons to be de-excited during the pump pulse, resulting in little net excitation. In contrast, the metal and the Mott insulator show excitations that are closer to what one expects from these systems. In addition, the pump field produces spectral band narrowing, peak sharpening, and a spectral gap reduction, all of which rapidly return to their field free values after the pump is over.
Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies
Pour-Imani, Hamed; Kennefick, Julia; Davis, Benjamin L; Shields, Douglas W; Abdeen, Mohamed Shameer
2016-01-01
The density-wave theory of galactic spiral-arm structure makes a striking prediction that the pitch angle of spiral arms should vary with the wavelength of the galaxy's image. The reason is that stars are born in the density wave but move out of it as they age. They move ahead of the density wave inside the co-rotation radius, and fall behind outside of it, resulting in a tighter pitch angle at wavelengths that image stars (optical and near-infrared) than those that are associated with star formation (far-infrared and ultraviolet). In this study we combined large sample size with wide range of wavelengths, from the ultraviolet to the infrared to investigate this issue. For each galaxy we used an optical wavelength image (B-band: 445 nm) and images from the Spitzer Space Telescope at two infrared wavelengths (infrared: 3.6 and 8.0 {\\mu}m) and we measured the pitch angle with the 2DFFT and Spirality codes. We find that the B-band and 3.6 {\\mu}m images have smaller pitch angles than the infrared 8.0 {\\mu}m image...
The Impact of Bars and Spiral Density Waves on the Relative Frequencies of Supernovae
Aramyan, L. S.; Hakobyan, A. A.; Petrosian, A. R.; Barkhudaryan, L. V.; Karapetyan, A. G.; Adibekyan, V.; Turatto, M.
2017-07-01
We present the results of the analysis of the impact of bars and spiral density waves on the relative frequencies of supernovae (SNe). We find that for early -type Grand-Design (GD) and non-Grand-Design (NGD) galaxies, the NIa/NCC ratios, i.e., one of the tracers of specific star formation rate (sSFR), are not significantly different between barred and unbarred hosts. At the same time, for both barred and unbarred early-type galaxies, the NIa /NCC ratio in NGD hosts is significantly higher than that in GD, and for late-type galaxies no any significant difference exists between the N Ia/NCC ratios. Thus, in contrast to bars, the spiral density waves significantly enhance the relative frequencies of SNe in early-type GD galaxies, while not in late-type hosts. This result is actual also for galaxies when barred and unbarred categories are separated. Hence, the sSFR might be enhanced by density waves in early-type galaxies only.
Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
Institute of Scientific and Technical Information of China (English)
Robert A. Van Gorder
2012-01-01
We consider the density dependent diffusion Nagumo equation, where the diffusion coefficient is a simple power function. This equation is used in modelling electrical pulse propagation in nerve axons and in population genetics （amongst other areas）. In the present paper, the δ-expansion method is applied to a travelling wave reduction of the problem, so that we may obtain globally valid perturbation solutions （in the sense that the perturbation solutions are valid over the entire infinite domain, not just locally; hence the results are a generalization of the local solutions considered recently in the literature）. The resulting boundary value problem is solved on the real line subject to conditions at z →±∞. Whenever a perturbative method is applied, it is important to discuss the accuracy and convergence properties of the resulting perturbation expansions. We compare our results with those of two different numerical methods （designed for initial and boundary value problems, respectively） and deduce that the perturbation expansions agree with the numerical results after a reasonable number of iterations. Finally, we are able to discuss the influence of the wave speed c and the asymptotic concentration value α on the obtained solutions. Upon recasting the density dependent diffusion Nagumo equation as a two-dimensional dynamical system, we are also able to discuss the influence of the nonlinear density dependence （which is governed by a power-law parameter m） on oscillations of the travelling wave solutions.
Institute of Scientific and Technical Information of China (English)
WANG Hong-tu; JIA Jian-qing; LI Xiao-hong; XIAN Xue-fu; HU Guo-zhong
2006-01-01
According to the characteristic of elastic waves propagation in medium and the application of elastic waves method in rock mass engineering, the cranny mass with random crannies was regarded as quasi-isotropic cranny mass. In accordance with the rock rupture mechanics, principle of energy balance and Castiglano's theorem, the relationship of effective dynamic parameters of elasticity ((E),(v),(G)) and cranny density parameters or porosity was put forward. On this basis, through the theory of elastic waves propagation in isotropic medium, the relationship between the elastic wave velocity and cranny density parameters and porosity was set up. The theoretical research results show that, in this kind of cranny rock masses, there is nonlinear relationships between the effective dynamic parameters of elasticity and wave velocities and the cranny density parameter or porosity; and with the increase of cranny density parameter or porosity of cranny rock masses, the effective dynamic modulus and the elastic wave velocities of cranny rock masses will decrease; and at the same time, when the cranny density parameter or porosity is very small, the effective dynamic modulus of elasticity and the elastic wave velocities change with the cranny density parameter, which can explain the sensitivity of effective elastic parameters and elastic wave velocities to cranny rock masses.
Collisional damping of helicon waves in a high density hydrogen linear plasma device
Caneses, Juan F.; Blackwell, Boyd D.
2016-10-01
In this paper, we investigate the propagation and damping of helicon waves along the length (50 cm) of a helicon-produced 20 kW hydrogen plasma ({{n}\\text{e}}∼ 1–2 × 1019 m‑3, {{T}\\text{e}}∼ 1–6 eV, H2 8 mTorr) operated in a magnetic mirror configuration (antenna region: 50–200 G and mirror region: 800 G). Experimental results show the presence of traveling helicon waves (4–8 G and {λz}∼ 10–15 cm) propagating away from the antenna region which become collisionally absorbed within 40–50 cm. We describe the use of the WKB method to calculate wave damping and provide an expression to assess its validity based on experimental measurements. Theoretical calculations are consistent with experiment and indicate that for conditions where Coulomb collisions are dominant classical collisionality is sufficient to explain the observed wave damping along the length of the plasma column. Based on these results, we provide an expression for the scaling of helicon wave damping relevant to high density discharges and discuss the location of surfaces for plasma-material interaction studies in helicon based linear plasma devices.
Institute of Scientific and Technical Information of China (English)
Chen Xiao-Gang; Guo Zhi-Ping; Song Jin-Bao
2008-01-01
In the present paper,the random interfacial waves in N-layer density-stratified fluids moving at different steady uniform speeds are researched by using an expansion technique,and the second-order asymptotic solutions of the random displacements of the density interfaces and the associated velocity potentials in N-layer fluid are presented based on the small amplitude wave theory.The obtained results indicate that the wave-wave second-order nonlinear interactions of the wave components and the second-order nonlinear interactions between the waves and currents are described.As expected,the solutions include those derived by Chen(2006)as a special case where the steady uniform currents of the N-layer fluids are taken as zero,and the solutions also reduce to those obtained by Song(2005)for second-order solutions for random interracial waves with steady uniform currents if N=2.
Sikdar, Shirsendu; Banerjee, Sauvik
2016-09-01
A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density.
Superconductivity in the charge-density-wave state of the organic metal α- (BEDT-TTF)2 KHg (SCN)4
Andres, D.; Kartsovnik, M. V.; Biberacher, W.; Neumaier, K.; Schuberth, E.; Müller, H.
2005-11-01
The superconducting transition in the layered organic compound α-(BEDT-TTF)2KHg(SCN)4 has been studied in the two hydrostatic pressure regimes where a charge-density wave is either present or completely suppressed. Within the charge-density-wave state the experimental results reveal a network of weakly coupled superconducting regions. This is especially seen in a strong enhancement of the measured critical field and the corresponding positive curvature of its temperature dependence. Further, it is shown that on lowering the pressure into the density-wave state traces of a superconducting phase already start to appear at a much higher temperature.
Greenwood, Margaret S; Adamson, Justus D; Bond, Leonard J
2006-12-22
We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank.
Quantum Monte Carlo studies of a metallic spin-density wave transition
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Max Henner
2017-01-20
Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.
Mean field theory of charge-density wave state in magnetic field
Grigoriev, Pavel; Lyubshin, Dmitrij
2005-03-01
We develop a mean field theory of charge-density wave (CDW) state in magnetic field and study properties of this state below the transition temperature. We show that the CDW state with shifted wave vector in high magnetic field (CDWx phase) has a double harmonic modulation on the most part of the phase diagram. At perfect nesting the single harmonic CDW state with shifted wave vector exists only in a very narrow region near the triple point. We show that the transition from CDW0 to CDWx state below the critical temperature is accompanied by a jump of the CDW order parameter and of the CDW wave vector rather than by their continuous increase. This implies a first order transition between these CDW states and explains a strong hysteresis accompanying this transition. The similarities between CDW in high magnetic field and nonuniform LOFF superconducting phase are pointed out. Our investigation provides a theoretical description for recent experiments on organic metal α-(BEDT-TTF)2KHg(SCN)4 and other compounds. In particular, we explain the higher value of the kink transition field and provide the calculation of the phase diagram in the case of perfect nesting.
Multiple charge density wave states at the surface of TbT e3
Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; Singh, Manoj; Walmsley, Philip; Fisher, Ian R.; Boyer, Michael C.
2016-11-01
We studied TbT e3 using scanning tunneling microscopy (STM) in the temperature range of 298-355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk qCDW=0.30 ±0.01 c* . However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW states coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbT e3 . Finally, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature TCDW.
Investigation of the density wave activity in the thermosphere above 220 KM
Illés-Almár, E.; Almár, I.; Bencze, P.
Based on CACTUS (Capteur Accélérométrique Capacitif Triaxial Ultra Sensible) microaccelerometer measurements it has been demonstrated that - after taking into account all effects included in the MSIS'86=CIRA'86 (COSPAR, 1988) model - there are residual fluctuations in the density of the upper atmosphere much larger than that the accuracy of the measurements can account for. These fluctuations are attributed to some kind of wave activity (Illés-Almár, 1993, Illés-Almár et al. 1996a). The average deviations from a model are considered as a measure of the amplitude of the waves in the atmosphere and are analysed as a function of geomagnetic coordinates, altitude and local solar time, in order to identify possible wave sources either in the lower lying atmosphere or in the thermosphere/ionosphere system. As a first step, the present investigation intends to make a map of the wave pattern by this method.
Self-gravity density waves in Saturn's rings A, B, and C
Griv, Evgeny
The presence of fine-scale of the order of 100 m density structure in Saturn's brightest rings A and B with the appearance of record-grooves has been revealed by Voyager PPS stellar occultation, and Cassini scince images, UVIS and radio occultations. Both spacecraft missions have shown that these relatively large "irregular variations" in optical depth are not associated with any resonances with known or embedded satellites. This microstructure explains an azimuthal brightness assymetry in Saturn's A ring observed first by Camichel in 1958. We examine the problem of the linear stability of the Saturnian ring system of mutually gravitating particles with special emphasis on its fine-scale density wave structure (almost regularly spaced, aligned cylindric density enhancements and rarefications). In our theory, the density pattern is the manifestation of a compression (longitudinal) density wave propagating around the ring disk at a fixed angular phase velocity despite the general differential rotation of a system; the density enhancements consist of different material at different times. Jeans' gravitational instabilities of small-amolitude gravity perturbations (e.g., those produced by a spontaneous disturbance) are analysed through the use of hydrodynamic equations. An essential feature of this study is that the theory is not restricted by any assumptions regarding the thickness of the system. The ring disk is considered to be thin and its vertical structure is considered in a horizontally local approximation. In the dynamically equilibrium state, the density is regarded as nonuniform between two sharp surfaces, with a vacuum exterior. A plasma physics analytical method is given for the solution of the self-consistent system of the gasdynamical equations and the Poisson equation describing the stability of Saturn's rings when the system is perturbed in an arbitrary manner. That is, when a gravity perturbation does not distort the rings' plane (modes of even
Capillary waves and the decay of density correlations at liquid surfaces
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves
Energy Technology Data Exchange (ETDEWEB)
Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Mayoral, M.L.; Mailloux, J. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX (United Kingdom); Noterdaeme, J.M. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany)]|[Gent University, EESA Dept. (Belgium); Tuccillo, A.A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy)
2003-07-01
Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k{sub /} spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)
Application of Kernel Density Estimation in Lamb Wave-Based Damage Detection
Directory of Open Access Journals (Sweden)
Long Yu
2012-01-01
Full Text Available The present work concerns the estimation of the probability density function (p.d.f. of measured data in the Lamb wave-based damage detection. Although there was a number of research work which focused on the consensus algorithm of combining all the results of individual sensors, the p.d.f. of measured data, which was the fundamental part of the probability-based method, was still given by experience in existing work. Based on the analysis about the noise-induced errors in measured data, it was learned that the type of distribution was related with the level of noise. In the case of weak noise, the p.d.f. of measured data could be considered as the normal distribution. The empirical methods could give satisfied estimating results. However, in the case of strong noise, the p.d.f. was complex and did not belong to any type of common distribution function. Nonparametric methods, therefore, were needed. As the most popular nonparametric method, kernel density estimation was introduced. In order to demonstrate the performance of the kernel density estimation methods, a numerical model was built to generate the signals of Lamb waves. Three levels of white Gaussian noise were intentionally added into the simulated signals. The estimation results showed that the nonparametric methods outperformed the empirical methods in terms of accuracy.
Dey, Santanu; Sensarma, Rajdeep
2016-12-01
We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cux TiSe2
Kogar, A.; de la Pena, G. A.; Lee, Sangjun; Fang, Y.; Sun, S. X.-L.; Lioi, D. B.; Karapetrov, G.; Finkelstein, K. D.; Ruff, J. P. C.; Abbamonte, P.; Rosenkranz, S.
2017-01-01
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cux TiSe2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x =0.055 (5 ) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x =0.091 (6 ), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.
Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.
2016-09-01
The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
Pasmanik, Dmitry; Demekhov, Andrei
We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.
Zhang, Y; Huang, S L; Wang, S; Zhao, W
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of wave detection signals.
Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.
2016-05-01
The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.
Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family
Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.
1994-10-01
We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.
Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect
Institute of Scientific and Technical Information of China (English)
Zhao Min; Sun Di-Hua; Tian Chuan
2012-01-01
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model,we present a new anticipation effect lattice hydrodynamic (AELH) model,and obtain the linear stability condition of the model by applying the linear stability theory.Through nonlinear analysis,we derive the Burgers equation and Korteweg-de Vries (KdV) equation,to describe the propagating behaviour of traffic density waves in the stable and the metastable regions,respectively.The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered.
Frequency-dependent response of a pinned charge-density wave
Vinokur, Valerii; Fogler, Michael
2003-03-01
Recent theoretical advances in the theory of collective pinning [M. M. Fogler, Phys. Rev. Lett. 88, 186402 (2002)] enable us to go beyond the usual phenomenology in the theory of a finite-frequency response of a pinned charge-density wave (CDW) and to calculate ω and T dependences of the complex dielectric function without additional assumptions. According to our estimates, in typical electrical experiments on CDW, the dominant process is a thermal activation over atypically shallow barriers. It gives rise to a novel T^3/4-dependence of the linear response, in agreement with the experiment. A close analogy with acoustic attenuation in glassy dielectrics is noted.
Density profile in shock wave fronts of partially ionized xenon plasmas
Reinholz, H; Morozov, I; Mintsev, V; Zaparoghets, Y; Fortov, V; Wierling, A
2003-01-01
Results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.6-20 GPa and temperatures around 30 000 K are interpreted. In addition to former experiments using laser beams with lambda = 1.06 mu m, measurements at lambda = 0.694 mu m have been performed recently. Reflectivities typical for metallic systems are found at high densities. Besides free carriers, the theoretical description also takes into account the influence of the neutral component of the plasma on the reflectivity. A consistent description of the measured reflectivities is achieved only if a finite width of the shock wave front is considered.
Metal-charge density wave coexistence in TTF[Ni(dmit){sub 2}]{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Kaddour, W. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Laboratoire de Physique de la Matière Condensée, Campus Universitaire, Université de Tunis El-Manar, Tunis 2092 (Tunisia); Auban-Senzier, P.; Raffy, H.; Monteverde, M.; Pouget, J.-P. [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Pasquier, C.R., E-mail: pasquier@lps.u-psud.fr [Laboratoire de Physique des Solides, UMR 8502-CNRS, Univ. Paris-Sud, Orsay F-91405 (France); Alemany, P. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Canadell, E. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra (Spain); Valade, L. [Laboratoire de Chimie de Coordination, Route de Narbonne F-31077 Toulouse (France)
2015-03-01
We have established a new pressure–temperature phase diagram of TTF[Ni(dmit){sub 2}]{sub 2} based on longitudinal and transverse resistivity measurements under pressure up to 30 kbar. We were able to identify three different charge density wave (CDW) states which all coexist with a metallic state in a wide temperature range and superconductivity at the lowest temperatures. At low pressure, two successive CDW transitions have been clearly identified. These two transitions merge into a single one at 12 kbar. A maximum of this unique CDW transition temperature is observed at 19 kbar.
Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides
Energy Technology Data Exchange (ETDEWEB)
Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH
2009-12-14
We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.
Density wave like transport anomalies in surface doped Na2IrO3
Directory of Open Access Journals (Sweden)
Kavita Mehlawat
2017-05-01
Full Text Available We report that the surface conductivity of Na2IrO3 crystal is extremely tunable by high energy Ar plasma etching and can be tuned from insulating to metallic with increasing etching time. Temperature dependent electrical transport for the metallic samples show signatures of first order phase transitions which are consistent with charge or spin density wave like phase transitions predicted recently. Additionally, grazing-incidence small-angle x-ray scattering (GISAXS reveal that the room temperature surface structure of Na2IrO3 does not change after plasma etching.
Mode conversion of large-amplitude electromagnetic waves in relativistic critical density plasmas
Energy Technology Data Exchange (ETDEWEB)
Pesch, T.C.; Kull, H.J. [Aachen Univ., Institute of Theoretical Physics A, RWTH (Germany)
2009-01-15
The propagation of linearly polarized large-amplitude electromagnetic waves in critical density plasmas is studied in the framework of the Akiezer-Polovin model. A new mechanism of mode conversion is presented. The well-known periodic solutions are generalized to quasiperiodic solutions taking into account additional electrostatic oscillations. Nearly periodic circle-like solutions are found to be stabilized by intrinsic mode coupling whereas for nearly periodic eight-like solutions an effective mode conversion mechanism is discovered. Finally, the modulation timescales are considered. (authors)
Optical properties of the Ce and La ditelluride charge density wave compounds
Energy Technology Data Exchange (ETDEWEB)
Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.
2010-02-15
The La and Ce di-tellurides LaTe{sub 2} and CeTe{sub 2} are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.
Origin of the charge density wave in 1T-TiSe2
Zhu, Zhiyong
2012-06-27
All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.
Energy Technology Data Exchange (ETDEWEB)
Eriksson, A.I.; Bostroem, R.
1995-04-01
Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.
Damping of flexural vibration using low-density, low-wave-speed media
Varanasi, Kripa K.; Nayfeh, Samir A.
2006-04-01
Significant damping of structural vibration can be attained by coupling to the structure a low-density medium (such as a powder or foam) in which the speed of sound propagation is relatively low. We describe a set of experiments in which flexural vibration of aluminum beams over a broad frequency range is damped by introduction of a layer of lossy low-wave-speed foam. At frequencies high enough to set up standing waves through the thickness of the foam, loss factors as high as 0.05 can be obtained with a foam layer whose mass is 3.9% of that of the beam. We model the foam as a continuum in which waves of dilatation and distortion can propagate, obtain approximate solutions for the frequency response of the system by means of a modal expansion, and find that the predictions are in close agreement with the measured responses. Finally, we develop a simple approximation for the system loss factor based on the complex wavenumber associated with flexural vibration in an infinite beam.
The role of the wave function in the GRW matter density theory
Energy Technology Data Exchange (ETDEWEB)
Egg, Matthias [University of Lausanne (Switzerland)
2014-07-01
Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.
Long-range charge-density-wave proximity effect at cuprate/manganate interfaces
Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.
2016-08-01
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.
A Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the FQHE
Murthy, Ganpathy
2000-03-01
It is well known that the 2/5 FQH state can have two translationally invariant ground states, one of which is a singlet and the other fully polarized. A quantum phase transition occurs between these two as a function of the Zeeman field. This can be simply explained in terms of the crossing of Composite Fermion Landau levels. However, recently Kukushkin et al (PRL 82, 3665 (99)) have seen plateaus of half the maximal polarization in the 2/5 fraction at intermediate Zeeman fields. Similar plateaus, which are not allowed for translationally invariant CF states, are seen in other fractions as well. I propose a class of novel partially polarized spin/charge density wave states which display the co-existence of density wave and quantum Hall order (the Hall crystal state). The physical properties of the states, including gaps and collective excitations are computed using the formalism for the FQHE developed recently by Shankar and myself (for details see Murthy and Shankar in "Composite Fermions", Olle Heinonen, Editor).
Long-range charge-density-wave proximity effect at cuprate/manganate interfaces.
Frano, A; Blanco-Canosa, S; Schierle, E; Lu, Y; Wu, M; Bluschke, M; Minola, M; Christiani, G; Habermeier, H U; Logvenov, G; Wang, Y; van Aken, P A; Benckiser, E; Weschke, E; Le Tacon, M; Keimer, B
2016-08-01
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ∼ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.
d-Density Wave Scenario Description of the New Hidden Charge Order in Cuprates
Makhfudz, Imam
2016-06-01
In this paper, we show that the theory of high Tc superconductivity based on a microscopic model with d-density wave (DDW) scenario in the pseudogap phase is able to reproduce some of the most important features of the recent experimentally discovered hidden charge order in several families of Cuprates. In particular, by computing and comparing energies of charge orders of different modulation directions derived from a full microscopic theory with d-density wave scenario, the axial charge order ϕX(Y) with wavevector Q = (Q0,0)((0,Q0)) is shown to be unambiguously energetically more favorable over the diagonal charge order ϕX±Y with wavevector Q = (Q0, ± Q0) at least in commensurate limit, to be expected also to hold even to more general incommensurate case, in agreement with experiment. The two types of axial charge order ϕX and ϕY are degenerate by symmetry. We find that within the superconducting background, biaxial (checkerboard) charge order is energetically more favorable than uniaxial (stripe) charge order, and therefore checkerboard axial charge order should be the one observed in experiments, assuming a single domain of charge ordered state on each CuO2 plane.
Tetrahedral shape and surface density wave of $^{16}$O caused by $\\alpha$-cluster correlations
Kanada-En'yo, Yoshiko
2016-01-01
$\\alpha$-cluster correlations in the $0^+_1$ and $3^-_1$ states of $^{12}$C and $^{16}$O are studied using the method of antisymmetrized molecular dynamics, with which nuclear structures are described from nucleon degrees of freedom without assuming existence of clusters. The intrinsic states of $^{12}$C and $^{16}$O have triangle and tetrahedral shapes, respectively, because of the $\\alpha$-cluster correlations. These shapes can be understood as spontaneous symmetry breaking of rotational invariance, and the resultant surface density oscillation is associated with density wave (DW) caused by the instability of Fermi surface with respect to particle-hole correlations with the wave number $\\lambda=3$. $^{16}$O($0^+_1$) and $^{16}$O($3^-_1$) are regarded as a set of parity partners constructed from the rigid tetrahedral intrinsic state, whereas $^{12}$C($0^+_1$) and $^{12}$C($3^-_1$) are not good parity partners as they have triangle intrinsic states of different sizes with significant shape fluctuation because...
Exact density functional and wave function embedding schemes based on orbital localization
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.
Allen, Stewart J; Ross, James A
2007-01-01
The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.
Kiełczyński, P.; Szalewski, M.; Balcerzak, A.
2014-07-01
Simultaneous determination of the viscosity and density of liquids is of great importance in the monitoring of technological processes in the chemical, petroleum, and pharmaceutical industry, as well as in geophysics. In this paper, the authors present the application of Love waves for simultaneous inverse determination of the viscosity and density of liquids. The inversion procedure is based on measurements of the dispersion curves of phase velocity and attenuation of ultrasonic Love waves. The direct problem of the Love wave propagation in a layered waveguide covered by a viscous liquid was formulated and solved. Love waves propagate in an elastic layered waveguide covered on its surface with a viscous (Newtonian) liquid. The inverse problem is formulated as an optimization problem with appropriately constructed objective function that depends on the material properties of an elastic waveguide of the Love wave, material parameters of a liquid (i.e., viscosity and density), and the experimental data. The results of numerical calculations show that Love waves can be efficiently applied to determine simultaneously the physical properties of liquids (i.e., viscosity and density). Sensors based on this method can be very attractive for industrial applications to monitor on-line the parameters (density and viscosity) of process liquid during the course of technological processes, e.g., in polymer industry.
Energy Technology Data Exchange (ETDEWEB)
Gabovich, Alexander M., E-mail: gabovich@iop.kiev.ua; Voitenko, Alexander I., E-mail: voitenko@iop.kiev.ua
2014-08-15
Highlights: • d-Wave superconductivity and charge-density waves compete for the Fermi surface. • Charge-density waves induce pseudogaps and peak-dip-hump structures in cuprates. • Tunnel spectra are non-symmetric due to the dielectric order-parameter phase fixation. • Scatter of the dielectric order parameter smears the tunnel spectra peculiarities. - Abstract: Quasiparticle differential current–voltage characteristics (CVCs) G(V) of non-symmetric tunnel junctions between d-wave superconductors with charge-density waves (CDWs) and normal metals were calculated. The dependences G(V) were shown to have a V-like form at small voltages V and low temperatures, and to be asymmetric at larger V owing to the presence of CDW peak in either of the V-branches. The spatial scatter of the dielectric (CDW) order parameter smears the CDW peak into a hump and induces a peak-dip-hump structure (PDHS) typical of CVCs observed for such junctions. At temperatures larger than the superconducting critical one, the PDHS evolves into a pseudogap depression. The results agree well with the scanning tunneling microscopy data for Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} and YBa{sub 2}Cu{sub 3}O{sub 7−δ}. The results differ substantially from those obtained earlier for CDW s-wave superconductors.
Ojambati, Oluwafemi S; Vellekoop, Ivo M; Lagendijk, Ad; Vos, Willem L
2016-01-01
We show that the spatial distribution of the energy density of optimally shaped waves inside a scattering medium can be described by considering only a few of the lowest eigenfunctions of the diffusion equation. Taking into account only the fundamental eigenfunction, the total internal energy inside the sample is underestimated by only 2%. The spatial distribution of the shaped energy density is very similar to the fundamental eigenfunction, up to a cosine distance of about 0.01. We obtained the energy density inside a quasi-1D disordered waveguide by numerical calculation of the joined scattering matrix. Computing the transmission-averaged energy density over all transmission channels yields the ensemble averaged energy density of shaped waves. From the averaged energy density obtained, we reconstruct its spatial distribution using the eigenfunctions of the diffusion equation. The results from our study have exciting applications in controlled biomedical imaging, efficient light harvesting in solar cells, en...
Keith, Todd A; Frisch, Michael J
2011-11-17
Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
de Lira, Cesar Huete Ruiz
2010-01-01
When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role at the early stages of the mixing process in the compressed fluid. This situation emerges naturally in shock interaction with weakly inhomogeneous deuterium-wicked foam targets in Inertial Confinement Fusion (ICF) and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in 2D results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity, and sonic energy flux radiated downstream. These explicit formulas are further simpl...
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
Huete Ruiz de Lira, C.
2010-12-01
When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role in the early stages of the mixing process in a compressed fluid. This situation emerges naturally in a shock interaction with weakly inhomogeneous deuterium-wicked foam targets in inertial confinement fusion and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such an interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in two dimensions results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity and sonic energy flux radiated downstream. These explicit formulae are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.
Near Gap Excitation of Collective Modes in a Charge Density Wave
Leuenberger, Dominik; Sobota, Jonathan; Yang, Shuolong; Kemper, Alexander; Giraldo, Paula; Moore, Rob; Fisher, Ian; Kirchmann, Patrick; Devereaux, Thomas; Shen, Zhi-Xun
2015-03-01
We present time- and angle-resolved photoemission spectroscopy (trARPES) measurements on the charge density wave system's (CDW) CeTe3. Optical excitation transiently populates the unoccupied band structure and reveals a CDW gap size of 2 Δ = 0 . 59 eV. In addition, the occupied Te- 5 p band dispersion is coherently modified by three collective modes. First, the spatial polarization of the modes is analyzed by fits of a transient model dispersion and DFT frozen phonon calculations. We thereby demonstrate how the rich information from trARPES allows identification of collective modes and their spatial polarization, which explains the mode-dependent coupling to charge order. Second, the exciting photon energy hν was gradually lowered towards 2 Δ , at constant optical excitation density. The coherent response of the amplitude mode deviates from the optical conductivity, which is dominated by direct interband transitions between the lower and upper CDW bands. The measured hν -dependence can be reproduced by a calculated joint density of states for optical transition between bands with different orbital character. This finding suggests, that the coherent response of the CDW amplitude mode is dominated by photo-doping of the charge ordering located in the Te-planes.
Thermodynamic and critical properties of the charge density wave system ErTe3
Saint-Paul, M.; Remenyi, G.; Guttin, C.; Lejay, P.; Monceau, P.
2017-01-01
We present specific heat and ultrasonic measurements on the rare earth tritelluride ErTe3 compound. Thermodynamic anomalies are observed at the upper charge density wave (CDW) phase transition TCDW1=265 K and the second one at TCDW2=155 K. Similar critical behaviors are found at both CDW phase transitions and that we tentatively described in terms of the 3D XY model. Different anisotropic stress dependences ∂TCDW1 / ∂σii and ∂TCDW2 / ∂σii are found at the two successive CDW phase transitions. Magnitude of the elastic constant anomalies at TCDW2 is ten times smaller than that at TCDW1. Anomalies in the elastic constants at the upper CDW TCDW1 exhibit two dimensional features in the layer planes while in contrast a three dimensional behavior is observed at TCDW2.
Liquid Density Sensing Using Resonant Flexural Plate Wave Device with Sol-Gel PZT Thin Films
Yu, Jyh-Cheng
2008-01-01
This paper presents the design, fabrication and preliminary experimental results of a flexure plate wave (FPW) resonator using sol-gel derived lead zirconate titanates (PZT) thin films. The resonator adopts a two-port structure with reflecting grates on the composite membrane of PZT and SiNx. The design of the reflecting grate is derived from a SAW resonator model using COM theory to produce a sharp resonant peak. The comparison between the mass and the viscosity effects from the theoretical expression illustrates the applications and the constraints of the proposed device in liquid sensing. Multiple coatings of sol-gel derived PZT films are adopted because of the cost advantage and the high electromechanical coupling effect over other piezoelectric films. The fabrication issues of the proposed material structure are addressed. Theoretical estimations of the mass and the viscosity effects are compared with the experimental results. The resonant frequency has a good linear correlation with the density of low v...
Kink antikink density wave of an extended car-following model in a cooperative driving system
Yu, Lei; Shi, Zhongke; Zhou, Bingchang
2008-12-01
We propose an extended optimal velocity model applicable to cooperative driving control system by considering the headway of arbitrary number of cars that precede and the relative velocity. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point by applying the nonlinear analysis. Thus the traffic jams can be described by the kink-antikink density wave which is the solution of the mKdV equation. The simulation results confirm the analytical results and show that the traffic jams are suppressed more efficiently with considering not only the headway of more vehicles ahead but also the relative velocity.
Superconductivity on the density-wave background with soliton-wall structure
Grigoriev, P. D.
2009-03-01
Superconductivity (SC) may microscopically coexist with density wave (DW) when the nesting of the Fermi surface (FS) is not perfect. There are, at least, two possible microscopic structures of a DW state with quasi-particle states remaining on the Fermi level and leading to the Cooper instability: (i) the soliton-wall phase and (ii) the small ungapped FS pockets. The dispersion of such quasi-particle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field H in such an SC state strongly increases as the system approaches the critical pressure, where SC first appears. H may considerably exceed its typical value without DW and has unusual upward curvature as function of temperature. The results obtained explain the experimental observations in layered organic superconductors (TMTSF)2PF6 and α-(BEDT-TTF)2KHg(SCN)4.
Finite-size effects in quasi-one-dimensional conductors with a charge-density wave
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, Sergei V [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation)
2004-06-30
Recent studies of finite-size effects in charge-density wave conductors are reviewed. Various manifestations of finite-size effects, including the transverse-size dependence of the nonlinear-conduction threshold field, the Peierls transition temperature, high-frequency conduction, and the relaxation rates of metastable states, are discussed. Resistivity jumps in thin samples, the smeared threshold field for nonlinear conduction, and threshold conduction above the Peierls transition temperature are considered, as are mesoscopic oscillations of the threshold field, one-dimensional conduction in thin crystals, absolute negative conductivity of quasi-one-dimensional conductors, the length dependence of the phase-slip voltage, and the Aharonov-Bohm oscillations in sliding CDWs. Problems yet to be solved are discussed. (reviews of topical problems)
Possibility of charge density wave transition in a SrPt2Sb2 superconductor.
Ibuka, Soshi; Imai, Motoharu
2016-04-27
The first-order transition at T(0) = 270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T(0), the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T(0). SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2. It is unique that the average structure of the low-temperature phase has higher symmetry than that of the high-temperature phase.
Bayesian semiparametric power spectral density estimation in gravitational wave data analysis
Edwards, Matthew C; Christensen, Nelson
2015-01-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.
Non-thermal separation of electronic and structural orders in a persisting charge density wave
Porer, M; Ménard, J -M; Dachraoui, H; Mouchliadis, L; Perakis, I E; Heinzmann, U; Demsar, J; Rossnagel, K; Huber, R
2016-01-01
The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, x-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge-density-wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter - excitonic correlations and a periodic lattice distortion (PLD) - respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PL...
Papazoglou, Elisabeth S.; Neidrauer, Michael; Zubkov, Leonid; Weingarten, Michael S.; Pourrezaei, Kambiz
2009-11-01
A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (pdiabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.
Quantum oscillations in the anomalous spin density wave state of FeAs
Campbell, Daniel J.; Eckberg, Chris; Wang, Kefeng; Wang, Limin; Hodovanets, Halyna; Graf, Dave; Parker, David; Paglione, Johnpierre
2017-08-01
Quantum oscillations in the binary antiferromagnetic metal FeAs are presented and compared to theoretical predictions for the electronic band structure in the anomalous spin density wave state of this material. Demonstrating a method for growing single crystals out of Bi flux, we utilize the highest quality FeAs to perform torque magnetometry experiments up to 35 T, using rotations of field angle in two planes to provide evidence for one electron and one hole band in the magnetically ordered state. The resulting picture agrees with previous experimental evidence for multiple carriers at low temperatures, but the exact Fermi surface shape differs from predictions, suggesting that correlations play a role in deviation from ab initio theory and cause up to a fourfold enhancement in the effective carrier mass.
Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3
Energy Technology Data Exchange (ETDEWEB)
Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.
2010-02-15
The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.
Decay of density waves in coupled one-dimensional many-body-localized systems
Prelovšek, Peter
2016-10-01
This work analyzes the behavior of coupled disordered one-dimensional systems as modelled by identical fermionic Hubbard chains with the on-site potential disorder and coupling emerging through the interchain hopping t'. The study is motivated by the experiment on fermionic cold atoms on a disordered lattice, where a decay rate of the quenched density wave was measured. We present a derivation of the decay rate Γ within perturbation theory and show that, even at large disorder along the chains, the interaction leads to finite Γ >0 , the mechanism being the interaction-induced coupling of in-chain localized and interchain extended single-fermion states. Explicit expressions for Γ are presented for a weak interaction U U >t' . It is shown that, in both regimes, Γ increases with the interchain hopping t', as well as decreases with increasing disorder.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
The amplitudes and the structure of the charge density wave in YBCO
Kharkov, Y. A.; Sushkov, O. P.
2016-10-01
We find unknown s- and d-wave amplitudes of the recently discovered charge density wave (CDW) in underdoped cuprates. To do so we perform a combined analysis of experimental data for ortho-II YBa2Cu3Oy. The analysis includes data on nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray diffraction. The amplitude of doping modulation found in our analysis is 3.5 · 10‑3 in a low magnetic field and T = 60 K, the amplitude is 6.5 · 10‑3 in a magnetic field of 30T and T = 1.3 K. The values are in units of elementary charge per unit cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and we also show that the data might rule out mechanisms of the CDW which do not include phonons.
Toolan, Daniel T W; Barker, Robert; Gough, Tim; Topham, Paul D; Howse, Jonathan R; Glidle, Andrew
2017-02-01
A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Himpel, Michael, E-mail: himpel@physik.uni-greifswald.de; Killer, Carsten; Melzer, André [Institute of Physics, Ernst-Moritz-Arndt-University, 17489 Greifswald (Germany); Bockwoldt, Tim; Piel, Alexander [IEAP, Christian-Albrechts-Universität Kiel, D-24098 Kiel (Germany); Ole Menzel, Kristoffer [ABB Switzerland Ltd, Corporate Research Center, 5405 Dättwil (Switzerland)
2014-03-15
Experiments on dust-density waves have been performed in dusty plasmas under the microgravity conditions of parabolic flights. Three-dimensional measurements of a dust density wave on a single particle level are presented. The dust particles have been tracked for many oscillation periods. A Hilbert analysis is applied to obtain trajectory parameters such as oscillation amplitude and three-dimensional velocity amplitude. While the transverse motion is found to be thermal, the velocity distribution in wave propagation direction can be explained by harmonic oscillations with added Gaussian (thermal) noise. Additionally, it is shown that the wave properties can be reconstructed by means of a pseudo-stroboscopic approach. Finally, the energy dissipation mechanism from the kinetic oscillation energy to thermal motion is discussed and presented using phase-resolved analysis.
Bisikalo, D. V.; Kurbatov, E. P.; Kaygorodov, P. V.
2015-10-01
3D numerical simulations demonstrate the formation of precessional spiral density waves in accretion disks of close binary stars. The precesional wave occurs in the Keplerian disk as a result of gravitational action of the donor-star. The wave causes the appearance of strong density and velocity gradients in the disk. Linear stability analysis shows that the presence of a radial velocity gradient leads to the instability of radial modes. The perturbation becomes unstable if the radial velocity variations are of the same order or greater than the sound speed on the characteristic wave scale of the perturbations. The unstable perturbations rapidly grow with time and give rise to the emergence and growth of turbulence in the accretion disk. The obtained viscosity (0.01 in terms of Shakura-Sunyaev parameter) is in agreement with observations.
Clincke, Marie-Françoise; Mölleryd, Carin; Zhang, Ye; Lindskog, Eva; Walsh, Kieron; Chotteau, Véronique
2013-01-01
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor™ using external hollow fiber filter as cell separation device. Both "classical" tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF- and ATF-based cultures was shown at 20-35 × 10(6) cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by-product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9-1.3 × 10(8) cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 10(8) cells/mL, achieved for the first time in a wave-induced bioreactor, and 1.32 × 10(8) cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 10(8) cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers.
Superlattice origin of incommensurable density waves in $La__{2-x}Ae_xCuO4$ (Ae = Ba, Sr)
Bucher, Manfred
2013-01-01
In line with the Coulomb-oscillator model of superconductivity, loop currents of excited 3s electrons from O^2- ions, passing in the CuO2 plane through nuclei of nearest-neighbor oxygen quartets, create the antiferromagnetic phase of undoped copper oxides. Holes, introduced by alkaline-earth doping of La2CuO4, destroy the loop currents, thereby weakening antiferromagnetism until it disappears at doping x = 0.02. Further doping of La_2-xAe_xCuO4 gives rise to incommensurate free-hole density waves whose wavelength is determined by the spacing of a doping superlattice. Modulating the ordering of the ions' magnetic moments, the charge-density wave, of incommensurability 2 delta, causes a magnetic density wave of incommensurability delta. The formula derived for delta(x) is in excellent agreement with data from X-ray diffraction and neutron scattering.
Hannah, I G; Reid, H A S
2012-01-01
To demonstrate the effect of turbulent background density fluctuations on flare accelerated electron transport in the solar corona. Using the quasi-linear approximation, we numerically simulate the propagation of a beam of accelerated electrons from the solar corona to chromosphere, including the self-consistent response of the inhomogeneous background plasma in the form of Langmuir waves. We calculate the X-ray spectrum from these simulations using the bremsstrahlung cross-section and fit the footpoint spectrum using the collisional "thick-target" model, a standard approach adopted in observational studies. We find that the interaction of the Langmuir waves with the background electron density gradient shifts the waves to higher phase velocity where they then resonate with higher velocity electrons. The consequence is that some of the electrons are shifted to higher energies, producing more high energy X-rays than expected in the cases where the density inhomogeneity is not considered. We find that the level...
On d+id Density Wave and Superconducting Orderings in Hole-Doped Cuprates
Goswami, Partha; Gahlot, Ajay Pratap Singh; Singh, Pankaj
2013-05-01
The d+id-density wave (chiral DDW) order, at the anti-ferromagnetic wave vector Q = (π, π), is assumed to represent the pseudo-gap (PG) state of a hole-doped cuprate superconductor. The pairing interaction U(k, k‧) required for d+id ordering comprises of (Ux2-y2(k, k‧), Uxy(k, k‧)), where Ux2-y2(k, k') = U1(cos kxa-cos kya)(cos k'xa- cos k'ya) and Uxy(k, k') = U2sin(kxa)sin(kya) sin(k'xa) sin(k'ya) with U1 > U2. The d-wave superconductivity (DSC), driven by an assumed attractive interaction of the form V(k, k') = -ěrt V1ěrt(cos kxa-cos kya)(cos k'xa- cos k'ya) where V1 is a model parameter, is discussed within the mean-field framework together with the d+id ordering. The single-particle excitation spectrum in the CDDW + DSC state is characterized by the Bogoluibov quasi-particle bands — a characteristic feature of SC state. The coupled gap equations are solved self-consistently together with the equation to determine the chemical potential (μ). With the pinning of the van Hove-singularities close to μ, one is able to calculate the thermodynamic and transport properties of the under-doped cuprates in a consistent manner. The electron specific heat displays non-Fermi liquid feature in the CDDW state. The CDDW and DSC are found to represent two competing orders as the former brings about a depletion of the spectral weight (and Raman response function density) available for pairing in the anti-nodal region of momentum space. It is also shown that the depletion of the spectral weight below Tc at energies larger than the gap amplitude occurs. This is an indication of the strong-coupling superconductivity in cuprates. The calculation of the ratio of the quasi-particle thermal conductivity αxx and temperature in the superconducting phase is found to be constant in the limit of near-zero quasi-particle scattering rate.
Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J
2016-02-01
Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sun, Xu; Yao, Tao; Hu, Zhenpeng; Guo, Yuqiao; Liu, Qinghua; Wei, Shiqiang; Wu, Changzheng
2015-05-28
A deep understanding of the relationship between electronic and structure ordering across the charge-density-wave (CDW) transition is crucial for both fundamental study and technological applications. Herein, using in situ X-ray absorption fine structure (XAFS) spectroscopy coupled with high-resolution transmission electron microscopy (HRTEM), we have illustrated the atomic-level information on the local structural evolution across the CDW transition and its influence on the intrinsic electrical properties in VS2 system. The structure transformation, which is highlighted by the formation of vanadium trimers with derivation of V-V bond length (ΔR = 0.10 Å), was clearly observed across the CDW process. Moreover, the corresponding influence of lattice variation on the electronic behavior was clearly characterized by experimental results as well as theoretical analysis, which demonstrated that vanadium trimers drive the deformation of space charge density distribution into √3 ×√3 periodicity, with the conductivity of a1g band reducing by half. These observations directly unveiled the close connection between lattice evolution and electronic property variation, paving a new avenue for understanding the intrinsic nature of electron-lattice interactions in the VS2 system and other isostructural transition metal dichalcogenides across the CDW transition process.
Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT
Gunceler, Deniz; Arias, T. A.
2017-01-01
Implicit electron-density solvation models offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models in the plane-wave context to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents a simple approach to quickly find approximations to the non-electrostatic contributions to the solvation energy, allowing for development of new iso-density models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. Finally, to illustrate the capabilities of the resulting theory, we also calculate the surface solvation energies of crystalline LiF in various different non-aqueous solvents, and discuss the observed trends and their relevance to lithium battery technology.
Superconductivity and Charge Density Wave in ZrTe3-xSex.
Zhu, Xiangde; Ning, Wei; Li, Lijun; Ling, Langsheng; Zhang, Ranran; Zhang, Jinglei; Wang, Kefeng; Liu, Yu; Pi, Li; Ma, Yongchang; Du, Haifeng; Tian, Minglian; Sun, Yuping; Petrovic, Cedomir; Zhang, Yuheng
2016-06-02
Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing order, features a Fermi surface gap that results in infinite conductivity. Here we report that superconductivity emerges upon Se doping in CDW conductor ZrTe3 when the long range CDW order is gradually suppressed. Superconducting critical temperature Tc(x) in ZrTe3-xSex (0 ≤ x ≤ 0.1) increases up to 4 K plateau for 0.04 ≤ x ≤ 0.07. Further increase in Se content results in diminishing Tc and filametary superconductivity. The CDW modes from Raman spectra are observed in x = 0.04 and 0.1 crystals, where signature of ZrTe3 CDW order in resistivity vanishes. The electronic-scattering for high Tc crystals is dominated by local CDW fluctuations at high temperatures, the resistivity is linear up to highest measured T = 300 K and contributes to substantial in-plane anisotropy.
Dóra, B.; Maki, K.; Virosztek, A.; Ványolos, A.
2004-04-01
We have investigated theoretically the thermoelectric power and the Nernst effect in unconventional density waves (UDW). Due to the presence of magnetic field, Landau levels are formed, and the low energy excitations change from gapless to gapped. The present results account consistently for the recent data of magnetothermopower in α-(BEDT-TTF)2KHg(SCN)4 obtained by Choi et al. (Phys. Rev. B, 65, 205119 (2002)). This confirms further our identification of low temperature phase (LTP) in this salt as UCDW. Key words. density waves, α-(BEDT-TTF)2KHg(SCN)4, thermoelectric power.
Strain Tuning of the Charge Density Wave in Monolayer and Bilayer 1T-TaS2
Gan, Liyong
2015-12-07
By first-principles calculations, we investigate the strain effects on the charge density wave states of monolayer and bilayer 1T-TaS2. The modified stability of the charge density wave in the monolayer is understood in terms of the strain dependent electron localization, which determines the distortion amplitude. On the other hand, in the bilayer the effect of strain on the interlayer interaction is also crucial. The rich phase diagram under strain opens new venues for applications of 1T-TaS2. We interpret the experimentally observed insulating state of bulk 1T-TaS2 as inherited from the monolayer by effective interlayer decoupling.
Superconductivity enhanced by d-density wave: A weak-coupling theory
Ha, Kim; Subok, Ri; Ilmyong, Ri; Cheongsong, Kim; Yuling, Feng
2011-04-01
Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/ t=3.4, since the antiferromagnetic instability occurs for higher values of U/ t.
Xiong, Xiao-Gen; Yanai, Takeshi
2017-07-11
The Projector Augmented Wave (PAW) method developed by Blöchl is well recognized as an efficient, accurate pseudopotential approach in solid-state density functional theory (DFT) calculations with the plane-wave basis. Here we present an approach to incorporate the PAW method into the Gauss-type function (GTF) based DFT implementation, which is widely used for molecular quantum chemistry calculations. The nodal and high-exponent GTF components of valence molecular orbitals (MOs) are removed or pseudized by the ultrasoft PAW treatment, while there is elaborate transparency to construct an accurate and well-controlled pseudopotential from all-electron atomic description and to reconstruct an all-electron form of valence MOs from the pseudo MOs. The smoothness of the pseudo MOs should benefit the efficiency of GTF-based DFT calculations in terms of elimination of high-exponent primitive GTFs and reduction of grid points in the numerical quadrature. The processes of the PAW method are divided into basis-independent and -dependent parts. The former is carried out using the previously developed PAW libraries libpaw and atompaw. The present scheme is implemented by incorporating libpaw into the conventional GTF-based DFT solver. The details of the formulations and implementations of GTF-related PAW procedures are presented. The test calculations are shown for illustrating the performance. With the near-complete GTF basis at the cc-pVQZ level, the total energies obtained using our PAW method with suited frozen core treatments converge to those with the conventional all-electron GTF-based method with a rather small absolute error.
DEFF Research Database (Denmark)
Barkmann, Reinhard; Dencks, Stefanie; Bremer, Alexander
2008-01-01
Bone mineral density (BMD) of the proximal femur is a predictor of hip fracture risk. We developed a Quantitative Ultrasound (QUS) scanner for measurements at this site with similar performance (FemUS). In this study we tested if ultrasound velocities of direct waves through trabecular bone...... echoes reflected from the skin of the leg to yield speed-of-sound (SOS) of different wave components. Data were cross-calibrated and pooled (62 women). Bivariate correlations and a multivariate model were calculated for the estimation of femur BMD. BMD correlated both with trabecular and cortical SOS...
Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen
2016-08-01
We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere
Poccia, Nicola; Ricci, Alessandro; Campi, Gaetano; Bianconi, Antonio
2017-03-01
Multiple functional ionic and electronic orders are observed in high temperature superconducting cuprates. The charge density wave order is one of them and it is spatially localized in different regions of the material. It is also known that the oxygen interstitials introduced by chemical intercalation self-organize in different oxygen rich regions corresponding with hole rich regions in the CuO2 layers left empty by the charge density wave order domains. However, what happens in between these two orders is not known, and neither there is a method to control this spatial separation. Here we demonstrate by using scanning nano x-ray diffraction, that dislocations or grain boundaries in the material can act as boundary between charge density wave and oxygen rich phases in a optimally doped {{La}}2{{CuO}}4+y high temperature superconductor. Dislocations can be used therefore to control the anti-correlation of the charge density wave order with the oxygen interstitials in specific portion of the material.
Gokov, A. M.; Martynenko, S. I.; Misiura, V. A.; Piven, L. A.; Somov, V. G.; Fedorenko, Iu. P.; Chernogor, L. F.; Shemet, A. S.
1982-10-01
The method of partial reflections detected increases of electron temperature to 50% at heights of 67-71 km. The electron density decreased under the effect of high-power radio waves (9 MW effective pulse power) by 30-40% at 68-72 km, while it increased by several tens of percent at 76-85 km.
VANSMAALEN, S; DEBOER, JL; COPPENS, P
1993-01-01
Synchrotron radiation X-ray diffraction has been performed on niobium triselenide at 20K. The modulation parameters belonging to both Charge-Density-Waves (CDW's) have been determined. The high-temperature CDW is found to comprise of displacements on all atoms of column III, as well as on Se atoms o
Glucose detection in a highly scattering medium with diffuse photon-pair density wave
Directory of Open Access Journals (Sweden)
Li-Ping Yu
2017-01-01
Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.
Phase transitions to dipolar clusters and charge density waves in high T{sub c} superconductors
Energy Technology Data Exchange (ETDEWEB)
Saarela, M., E-mail: Mikko.Saarela@oulu.fi [Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 (Finland); Kusmartsev, F.V. [Department of Physics, Loughborough University, LE11 3TU (United Kingdom)
2017-02-15
We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.
First-principles studies on the charge density wave in uranium
Qiu, Ruizhi; Lu, Haiyan; Ao, Bingyun; Tang, Tao; Chen, Piheng
2016-06-01
The charge density wave (CDW) state of α-U (called {α1} -U) was studied through a first-principles total-energy minimization using the conjugate gradient algorithm. The optimized crystal structure of {α1} -U was found to have the space group Pbnm, which was proposed in the earlier Landau-type theory and is isostructural with the α-Np structure. In particular, the changes in the lattice parameters of Pbnm-U with respect to α-U are consistent with the experimental observations. In addition, the energetic stability of Pbnm-U with respect to α-U was confirmed by enthalpy calculations, and the value of the critical pressure in the pressure-induced quantum transition from Pbnm-U to α-U is in good agreement with the experimental result. Moreover, the phonon calculation verified the dynamical instability of α-U and the stability of Pbnm-U. Finally, the calculated electronic structures exhibit features of the CDW state.
Novel charge density wave transition in crystals of R5Ir4Si10
Indian Academy of Sciences (India)
S Ramakrishnan
2002-05-01
We review the observation of novel charge density wave (CDW) transitions in ternary R5Ir4Si10 compounds. A high quality single crystal of Lu5Ir4Si10 shows the formation of a commensurate CDW along -axis below 80 K in the (ℎ, 0, ) plane that coexists with BCS type superconductivity below 3.9 K. However, in a single crystal of Er5Ir4Si10, one observes the development of a 1D-incommensurate CDW at 155 K, which then locks into a purely commensurate state below 55 K. The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity anomalies in these compounds makes this CDW transition an interesting one.
Hollow radial electron density profiles in surface wave discharges. An inside job?
Jimenez-Diaz, Manuel; Rahimi, Sara; Carbone, Emile A. D.; Dijk, Jan Van
2013-09-01
In many microwave excited plasmas, there is a part of the discharge (tube) hidden from optical access e.g. because of the metal parts that cover it; it is the region where the transformation occurs between the EM modes found in the (metal) waveguide to modes in the plasma (waveguide). Because in most of cases optical access is not an option here, studies of this region remain scarce. Regardless of this, it is a well-known fact that the discharge tube can easily break due to the high temperatures inside the launcher of surfaguide discharges, which means the temperature is higher there than in other regions of the plasma. In this work, we use a 2D model to show how the inner region changes for increasing power absorbed and electromagnetic wave frequency. The shaping of the EM coupling into the plasma region by the cavity is explored as well. We discuss when the hollow radial profiles for the electron density appear in a surfaguide plasma, and how they are related to the radial inhomogeneity of the EM fields and the plasma properties (e.g. gas temperature). All these results were obtained using the modeling platform Plasimo. Supported by the Dutch Technology Foundation (STW Project Nos. 10497 and 10744) and by the Energy Research Center of the Netherlands (ECN).
Superconductivity on the density-wave background with soliton-wall structure
Energy Technology Data Exchange (ETDEWEB)
Grigoriev, P.D. [L. D. Landau Institute for Theoretical Physics, Chernogolovka 142432 (Russian Federation)], E-mail: grigorev@itp.ac.ru
2009-03-01
Superconductivity (SC) may microscopically coexist with density wave (DW) when the nesting of the Fermi surface (FS) is not perfect. There are, at least, two possible microscopic structures of a DW state with quasi-particle states remaining on the Fermi level and leading to the Cooper instability: (i) the soliton-wall phase and (ii) the small ungapped FS pockets. The dispersion of such quasi-particle states strongly differs from that without DW, and so do the properties of SC on the DW background. The upper critical field H{sub c2} in such an SC state strongly increases as the system approaches the critical pressure, where SC first appears. H{sub c2} may considerably exceed its typical value without DW and has unusual upward curvature as function of temperature. The results obtained explain the experimental observations in layered organic superconductors (TMTSF){sub 2}PF{sub 6} and {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}.
Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides
Energy Technology Data Exchange (ETDEWEB)
Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.
2012-05-15
We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.
Phase transitions to dipolar clusters and charge density waves in high Tc superconductors
Saarela, M.; Kusmartsev, F. V.
2017-02-01
We show that doping of hole charge carriers leads to formation of electric dipolar clusters in cuprates. They are created by many-body interactions between the dopant ion outside and holes inside the CuO planes. Because of the two-fold degeneracy holes in the CuO plane cluster into four-particles resonance valence bond plaquettes bound with dopant ions. Such dipoles may order into charge-density waves (CDW) or stripes or form a disordered state depending on doping and temperature. The lowest energy of the ordered system corresponds to a local anti-ferroelectric ordering. The mobility of individual disordered dipoles is very low at low temperatures and they prefer first to bind into dipole-dipole pairs. Electromagnetic radiation interacts strongly with electric dipoles and when the sample is subjected to it the mobility changes significantly. This leads to a fractal growth of dipolar clusters. The existence of electric dipoles and CDW induce two phase transitions with increasing temperature, melting of the ordered state and disappearance of the dipolar state. Ferroelectricity at low doping is a natural consequence of such dipole moments. We develop a theory based on two-level systems and dipole-dipole interaction to explain the behavior of the polarization as a function of temperature and electric field.
Struzhkin, Viktor V.; Chen, Xiao-Jia
2016-10-01
The mechanism of high-temperature superconductivity of copper oxides (cuprates) remains unsolved puzzle in condensed matter physics. The cuprates represent extremely complicated system, showing fascinating variety of quantum phenomena and rich phase diagram as a function of doping. In the suggested "superconducting glue" mechanisms, phonon and spin excitations are invoked most frequently, and it appears that only spin excitations cover the energy scale required to justify very high transition temperature Tc ˜ 165 K (as in mercury-based triple layer cuprates compressed to 30 GPa). It appears that pressure is quite important variable helping to boost the Tc record by almost 30°. Pressure may be also considered as a clean tuning parameter, helping to understand the underlying balance of various energy scales and ordered states in cuprates. In this paper, a review of mostly our work on cuprates under pressure will be given, with the emphasis on the interactions between phonon and spin excitations. It appears that there is a strong coupling between superexchange interaction and stretching in-plane oxygen vibrations, which may give rise to a variety of complex phenomena, including the charge-density wave state intertwined with superconductivity and attracting a lot of interest recently.
Magnetic fields in the absence of spiral density waves - NGC 4414
Soida, M; Urbanik, M; Braine, J
2002-01-01
We present three-frequency VLA observations of the flocculent spiral galaxy NGC 4414 made in order to study the magnetic field structure in absence of strong density wave flows. NGC 4414 shows a regular spiral pattern of observed polarization B-vectors with a radial component comparable in strength to the azimuthal one. The average pitch angle of the magnetic field is about 20$\\degr$, similar to galaxies with a well-defined spiral pattern. This provides support for field generation by a turbulent dynamo without significant ``contamination'' from streaming motions in spiral arms. While the stellar light is very axisymmetric, the magnetic field structure shows a clear asymmetry with a stronger regular field and a smaller magnetic pitch angle in the northern disk. Extremely strong Faraday rotation is measured in the southern part of the disk, becoming Faraday thick at 6cm. The distribution of Faraday rotation suggests a mixture of axisymmetric and higher-mode magnetic fields. The strong Faraday effects in the so...
Incommensurate atomic density waves in the high-pressure IVb phase of barium
Directory of Open Access Journals (Sweden)
Alla Arakcheeva
2017-03-01
Full Text Available The host–guest structures of elements at high pressure discovered a decade ago still leave many open questions due to the lack of precise models based on full exploitation of the diffraction data. This concerns in particular Ba IV, which is stable in the range 12–45 GPa. With the example of phase Ba IVb, which is characterized here for the first time, a systematic analysis is presented of possible host–guest structure models based on high-quality single-crystal diffraction data obtained with synchrotron radiation at six different pressures between 16.5 and 19.6 GPa. It is shown that a new incommensurately modulated (IM structure model better fits the experimental data. Unlike the composite models which are commonly reported for the Ba IV phases, the IM model reveals a density wave and its pressure-dependent evolution. The crucial role played by the selected model in the interpretation of structure evolution under pressure is discussed. The findings give a new experimental basis for a better understanding of the nature of host–guest structures.
Competition between itinerant ferromagnetism and spin-density wave antiferromagnetism in FeGa
Wu, Yan; Cao, Huibo; McCandles, Gregory; Chan, Julia; Karki, Amar; Jin, Rongying; Ditusa, John
2015-03-01
The metallic magnetFeGadisplays a rich magnetic behavior that includes transitions between a FM ground state to a AFM intermediate state at 68 K and back to a FM state at 360 K. The phase transition at 360 K is accompanied by a discontinuous hysteretic change in the electrical resistivity. In addition, the application of moderate magnetic fields cause a sharp transformation from the AFM to FM state with a critical Hthat grows dramatically with T.To explore the cause of this unusual competition of magnetic states, we investigated the magnetic structure of FeGavia extensive single crystal neutron diffraction measurements. These measurements revealed a FM ordering with magnetic moments lying along the crystallographic c-axis both below 68 K and above 360 K as well as incommensurate spin density wave order between these temperatures. Our refinement of the diffraction data has uncovered the existence of a small non-coplanar moment which may be the origin of our previously discovered topological Hall Effect.
Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x
Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. V.; Forgan, E. M.; Hayden, S. M.
2016-05-01
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ~0.123, we find that a field (B~10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B~15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.
Ideal charge-density-wave order in the high-field state of superconducting YBCO
Jang, H.; Lee, W.-S.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Nie, L.; Maharaj, A. V.; Gerber, S.; Liu, Y.-J.; Mehta, A.; Bonn, D. A.; Liang, R.; Hardy, W. N.; Burns, C. A.; Islam, Z.; Song, S.; Hastings, J.; Devereaux, T. P.; Shen, Z.-X.; Kivelson, S. A.; Kao, C.-C.; Zhu, D.; Lee, J.-S.
2016-12-01
The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa2Cu3O2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field (Hc2Hc2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlation length as well as significant correlations between neighboring CuO2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to Hc2Hc2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. This is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.
Orbital-free density functional theory implementation with the projector augmented-wave method
Energy Technology Data Exchange (ETDEWEB)
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari; Lopez-Acevedo, Olga, E-mail: olga.lopez.acevedo@aalto.fi [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Caro, Miguel A. [COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto (Finland); Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)
2014-12-21
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.
Orbital-Free Density Functional Theory Implementation with the Projector Augmented-Wave Method
Lehtomäki, J; Caro, M A; Lopez-Acevedo, O
2014-01-01
We present a novel orbital-free density functional theory (OFDFT) implementation using the projector augmented-wave method (PAW) that simultaneously preserves the linear scaling characteristic of OFDFT and provides access to all-electron values. The advantages of using the PAW method are two fold. First, PAW offers freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in other OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and grid methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10~meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. Because computed bulk modulus and lattice constant are extremely different from reported pseudopotential values, we conclude that in order to assess the performance of OFDFT functionals it is necessary to use al...
Papazoglou, Elisabeth S; Neidrauer, Michael; Zubkov, Leonid; Weingarten, Michael S; Pourrezaei, Kambiz
2009-01-01
A pilot human study is conducted to evaluate the potential of using diffuse photon density wave (DPDW) methodology at near-infrared (NIR) wavelengths (685 to 830 nm) to monitor changes in tissue hemoglobin concentration in diabetic foot ulcers. Hemoglobin concentration is measured by DPDW in 12 human wounds for a period ranging from 10 to 61 weeks. In all wounds that healed completely, gradual decreases in optical absorption coefficient, oxygenated hemoglobin concentration, and total hemoglobin concentration are observed between the first and last measurements. In nonhealing wounds, the rates of change of these properties are nearly zero or slightly positive, and a statistically significant difference (p<0.05) is observed in the rates of change between healing and nonhealing wounds. Differences in the variability of DPDW measurements over time are observed between healing and nonhealing wounds, and this variance may also be a useful indicator of nonhealing wounds. Our results demonstrate that DPDW methodology with a frequency domain NIR device can differentiate healing from nonhealing diabetic foot ulcers, and indicate that it may have clinical utility in the evaluation of wound healing potential.
Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Wanger, Tim; Guokas, Jeff J; Tononi, Giulio; Benca, Ruth M
2012-03-31
Hypersomnolence in major depressive disorder (MDD) plays an important role in the natural history of the disorder, but the basis of hypersomnia in MDD is poorly understood. Slow wave activity (SWA) has been associated with sleep homeostasis, as well as sleep restoration and maintenance, and may be altered in MDD. Therefore, we conducted a post-hoc study that utilized high density electroencephalography (hdEEG) to test the hypothesis that MDD subjects with hypersomnia (HYS+) would have decreased SWA relative to age- and sex-matched MDD subjects without hypersomnia (HYS-) and healthy controls (n=7 for each group). After correction for multiple comparisons using statistical non-parametric mapping, HYS+ subjects demonstrated significantly reduced parieto-occipital all-night SWA relative to HYS- subjects. Our results suggest hypersomnolence may be associated with topographic reductions in SWA in MDD. Further research using an adequately powered prospective design is indicated to confirm these findings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kudrin, Alexander V.; Shkokova, Natalya M. [Department of Radiophysics, University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation); Ferencz, Orsolya E. [MTA Research Centre for Astronomy and Earth Sciences, Csatkai E. u. 6–8, Sopron H-9400 (Hungary); Zaboronkova, Tatyana M. [Department of Radiophysics, University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation); Department of Nuclear Physics, R. E. Alekseev State Technical University of Nizhny Novgorod, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation)
2014-11-15
Pulsed radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is studied. The radiated energy and its distribution over the spatial and frequency spectra of the excited waves are derived and analyzed as functions of the antenna and duct parameters. Numerical results referring to the case where the frequency spectrum of the antenna current is concentrated in the whistler range are reported. It is shown that under ionospheric conditions, the presence of an artificial duct with enhanced density can lead to a significant increase in the energy radiated from a pulsed loop antenna compared with the case where the same source is immersed in the surrounding uniform magnetoplasma. The results obtained can be useful in planning active ionospheric experiments with pulsed electromagnetic sources operated in the presence of artificial field-aligned plasma density irregularities that are capable of guiding whistler waves.
Institute of Scientific and Technical Information of China (English)
王舸; 曹金祥; 宋法伦
2003-01-01
Based on the Born approximation, we reduce the approximate analysis solution to the normal and oblique incident electromagnetic wave scattering from the weakly ionized plasma layer shielded by a conducting surface. The solution is closely related to the density profile of the plasma layer. Employing the self-consistent base function, we yield the optimal density profile for the nonuniform plasma layer with the frequencies of incident electromagnetic waves ranging from 4-10 GHz. Numerical studies illustrate the optimal density profile can "survive" wide ranges of the plasma parameters. Different from the validity condition for the Wenzell-Kramers-Brillouin-Jeffreys (WKBJ) approximation, the Born approximation is feasible even if the scale length is smaller than the wavelength.Therefore, the Born approximation is universal against the scattering problem from the weakly ionized plasma.
Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbT e3
Maschek, M.; Rosenkranz, S.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.; Weber, F.
2015-06-01
We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbT e3 . We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector qCDW=(0 ,0 ,0.3 ) . Further, qCDW is clearly offset from the wave vector of (weak) Fermi surface nesting qFS=(0 ,0 ,0.25 ) , and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbT e3 , which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling.
Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2
Barja, Sara; Wickenburg, Sebastian; Liu, Zhen-Fei; Zhang, Yi; Ryu, Hyejin; Ugeda, Miguel M.; Hussain, Zahid; Shen, Zhi-Xun; Mo, Sung-Kwan; Wong, Ed; Salmeron, Miquel B.; Wang, Feng; Crommie, Michael F.; Ogletree, D. Frank; Neaton, Jeffrey B.; Weber-Bargioni, Alexander
2016-08-01
We provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries (MTBs) of single-layer semiconducting MoSe2. Such MTBs have been previously observed by transmission electron microscopy and have been predicted to be metallic in MoSe2 and MoS2. Our low-temperature scanning tunnelling microscopy/spectroscopy measurements revealed a substantial bandgap of 100 meV opening at the Fermi energy in the otherwise metallic one-dimensional structures. We found a periodic modulation in the density of states along the MTB, with a wavelength of approximately three lattice constants. In addition to mapping the energy-dependent density of states, we determined the atomic structure and bonding of the MTB through simultaneous high-resolution non-contact atomic force microscopy. Density functional theory calculations based on the observed structure reproduced both the gap opening and the spatially resolved density of states.
Schafer, Julia; Lyons, Wendy; Tong, WIlliam G.; Danehy, Paul M.
2008-01-01
Laser wave mixing is presented as an effective technique for spatially resolved kinetic temperature measurements in an atmospheric-pressure radio-frequency inductively-coupled plasma. Measurements are performed in a 1 kW, 27 MHz RF plasma using a continuous-wave, tunable 811.5-nm diode laser to excite the 4s(sup 3)P2 approaches 4p(sup 3)D3 argon transition. Kinetic temperature measurements are made at five radial steps from the center of the torch and at four different torch heights. The kinetic temperature is determined by measuring simultaneously the line shape of the sub-Doppler backward phase-conjugate degenerate four-wave mixing and the Doppler-broadened forward-scattering degenerate four-wave mixing. The temperature measurements result in a range of 3,500 to 14,000 K+/-150 K. Electron densities measured range from 6.1 (+/-0.3) x 10(exp 15)/cu cm to 10.1 (+/-0.3) x 10(exp 15)/cu cm. The experimental spectra are analyzed using a perturbative treatment of the backward phase-conjugate and forward-geometry wave-mixing theory. Stark width is determined from the collisional broadening measured in the phase-conjugate geometry. Electron density measurements are made based on the Stark width. The kinetic temperature of the plasma was found to be more than halved by adding deionized water through the nebulizer.
Kawashima, Yukio; Hirao, Kimihiko
2017-02-24
We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for
KRONOSEISMOLOGY: USING DENSITY WAVES IN SATURN'S C RING TO PROBE THE PLANET'S INTERIOR
Energy Technology Data Exchange (ETDEWEB)
Hedman, M. M.; Nicholson, P. D., E-mail: mmhedman@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14850 (United States)
2013-07-01
Saturn's C ring contains multiple spiral patterns that appear to be density waves driven by periodic gravitational perturbations. In other parts of Saturn's rings, such waves are generated by Lindblad resonances with Saturn's various moons, but most of the wave-like C-ring features are not situated near any strong resonance with any known moon. Using stellar occultation data obtained by the Visual and Infrared Mapping Spectrometer on board the Cassini spacecraft, we investigate the origin of six unidentified C-ring waves located between 80,900 and 87,200 km from Saturn's center. By measuring differences in the waves' phases among the different occultations, we are able to determine both the number of arms in each spiral pattern and the speeds at which these patterns rotate around the planet. We find that all six of these waves have between two and four arms and pattern speeds between 1660 Degree-Sign day{sup -1} and 1861 Degree-Sign day{sup -1}. These speeds are too large to be attributed to any satellite resonance. Instead, they are comparable to the predicted pattern speeds of waves generated by low-order normal-mode oscillations within the planet. The precise pattern speeds associated with these waves should therefore provide strong constraints on Saturn's internal structure. Furthermore, we identify multiple waves with the same number of arms and very similar pattern speeds, indicating that multiple m = 3 and m = 2 sectoral (l = m) modes may exist within the planet.
Pressure-induced quenching of the charge-density-wave state observed by x-ray diffraction
Energy Technology Data Exchange (ETDEWEB)
Sacchetti, A.
2010-05-03
We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe{sub 3} and CeTe{sub 3} compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced quenching of the CDW phase. We observe subtle differences between the chemical and mechanical compression of the lattice. We account for these with a scenario where the effective dimensionality in these CDW systems is dependent on the type of lattice compression and has a direct impact on the degree of Fermi surface nesting and on the strength of fluctuation effects.
Energy Technology Data Exchange (ETDEWEB)
McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
Multiple charge density wave transitions in the antiferromagnets R NiC2 (R =Gd ,Tb)
Shimomura, S.; Hayashi, C.; Hanasaki, N.; Ohnuma, K.; Kobayashi, Y.; Nakao, H.; Mizumaki, M.; Onodera, H.
2016-04-01
X-ray scattering and electrical resistivity measurements were performed on GdNiC2 and TbNiC2. We found a set of satellite peaks characterized by q1=(0.5 ,η ,0 ) below T1, at which the resistivity shows a sharp inflection, suggesting the charge density wave (CDW) formation. The value of η decreases with decreasing temperature below T1, and then a transition to a commensurate phase with q1 C=(0.5 ,0.5 ,0 ) takes place. The diffuse scattering observed above T1 indicates the presence of soft phonon modes associated with CDW instabilities at q1 and q2=(0.5 ,0.5 ,0.5 ) . The long-range order given by q2 is developed in addition to that given by q1 C in TbNiC2, while the short-range correlation with q2 persists even at 6 K in GdNiC2. The amplitude of the q1 C lattice modulation is anomalously reduced below an antiferromagnetic transition temperature TN in GdNiC2. In contrast, the q2 order vanishes below TN in TbNiC2. We demonstrate that R NiC2 (R = rare earth) compounds exhibit similarities with respect to their CDW phenomena, and discuss the effects of magnetic transitions on CDWs. We offer a possible displacement pattern of the modulated structure characterized by q1 C and q2 in terms of frustration.
Feinberg, I; Thode, H C; Chugani, H T; March, J D
1990-01-23
We analyzed the available ontogenetic data (birth to 30 years of age) for: amplitude of delta EEG (DA) waves during sleep; cortical metabolic rate (CMR) measured with positron emission tomography; and synaptic density (SD) in frontal cortex. Each is at the adult level at birth, increases to about twice this level by 3 years of age, and then gradually falls back to the adult level over the next two decades. Statistical analyses revealed that individual gamma distribution models fit each data set as well as did the best ad hoc polynomial. A test of whether a single gamma distribution model could describe all three data sets gave good results for DA and CMR but the fit was unsatisfactory for SD. However, because so few data were available for SD, this test was not conclusive. We proposed the following model to account for these changes. First, cortical neurons are stimulated by birth to enter a proliferative state (PS) that creates many connections. Next, as a result of interactions in the PS, neurons are triggered into a transient organizational state (OS) in which they make enduring connections. The OS has a finite duration (minutes to years), and is characterized by high rates of information-processing and metabolism. Levels of CMR, SD and DA, therefore, are proportional to the number of neurons in the OS at any time. Thus, the cortex after birth duplicates, over a vastly greater time scale, the overproduction and regression of neural elements that occurs repeatedly in embryonic development. Finally, we discussed the implications of post-natal brain changes for normal and abnormal brain function. Mental disorders that have their onset after puberty (notably schizophrenia and manic-depressive psychoses) might be caused by errors in these late maturational processes. In addition to age of onset, this neurodevelopmental hypothesis might explain several other puzzling features of these subtle disorders.
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-01
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
A theory for scattering by density fluctuations based on three-wave interaction
Harker, K. J.; Crawford, F. W.
1973-01-01
The theory of scattering by charged particle fluctuations of a plasma is developed for the case of zero magnetic field. The source current is derived on the basis of: (1) a three wave interaction between the incident and scattered electromagnetic waves and one electrostatic plasma wave (either Langmuir or ion acoustic), and (2) a synchronous interaction between the same two electromagnetic waves and the discrete components of the charged particle fluctuations. Previous work is generalized by no longer making the assumption that the frequency of the electromagnetic waves in large compared to the plasma frequency. The general result is then applied to incoherent scatter, and to scatter by strongly driven plasma waves. An expansion is carried out for each of those cases to determine the lower order corrections to the usual high frequency scattering formulas.
Institute of Scientific and Technical Information of China (English)
LU Dong-qiang; SUN Cui-zhi
2013-01-01
Generation of the transient flexural-and capillary-gravity waves by impulsive disturbances in a two-layer fluid is investigated analytically.The upper fluid is covered by a thin elastic plate or by an inertial surface with the capillary effect.The density of each of the two immiscible layers is constant.The fluids are assumed to be inviscid and incompressible and the motion be irrotational.A point force on the surface and simple mass sources in the upper and lower fluid layers are considered.A linear system is established within the framework of potential theory.The integral solutions for the surface and interfacial waves are obtained by means of the Laplace-Fourier transform.A new representation for the dispersion relation of flexural-and capillary-gravity waves in a two-layer fluid is derived.The asymptotic representations of the wave motions are derived for large time with a fixed distance-to-time ratio with the Stokes and Scorer methods of stationary phase.It is shown that there are two different modes,namely the surface and interfacial wave modes.The wave systems observed depend on the relation between the observer's moving speed and the intrinsic minimal and maximal group velocities.
Remarkable Stability of Charge Density Wave Order in La1.875 Ba0.125 CuO4
Chen, X. M.; Thampy, V.; Mazzoli, C.; Barbour, A. M.; Miao, H.; Gu, G. D.; Cao, Y.; Tranquada, J. M.; Dean, M. P. M.; Wilkins, S. B.
2016-10-01
The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially modulated superconducting wave function. We test the dynamics of CDW order in La1.825 Ba0.125 CuO4 by using x-ray photon correlation spectroscopy at the CDW wave vector, detected resonantly at the Cu L3 edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2 ¾ h . We discuss the implications of these results for some of the competing theories.
Remarkable Stability of Charge Density Wave Order in La_{1.875}Ba_{0.125}CuO_{4}.
Chen, X M; Thampy, V; Mazzoli, C; Barbour, A M; Miao, H; Gu, G D; Cao, Y; Tranquada, J M; Dean, M P M; Wilkins, S B
2016-10-14
The occurrence of charge-density-wave (CDW) order in underdoped cuprates is now well established, although the precise nature of the CDW and its relationship with superconductivity is not. Theoretical proposals include contrasting ideas such as that pairing may be driven by CDW fluctuations or that static CDWs may intertwine with a spatially modulated superconducting wave function. We test the dynamics of CDW order in La_{1.825}Ba_{0.125}CuO_{4} by using x-ray photon correlation spectroscopy at the CDW wave vector, detected resonantly at the Cu L_{3} edge. We find that the CDW domains are strikingly static, with no evidence of significant fluctuations up to 2 ¾ h. We discuss the implications of these results for some of the competing theories.
Extended phonon collapse and the origin of the charge-density-wave in NbSe{sub 2}.
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K.-P.; Egami, T.; Said, A. H.; Reznik, D. (X-Ray Science Division); ( MSD); (Karlsruhe Inst. of Tech.); (Univ. of Tennessee); (Univ. of Colorado at Boulder)
2011-01-01
We report inelastic x-ray scattering measurements of the temperature dependence of phonon dispersion in the prototypical charge-density-wave (CDW) compound 2H-NbSe{sub 2}. Surprisingly, acoustic phonons soften to zero frequency and become overdamped over an extended region around the CDW wave vector. This extended phonon collapse is dramatically different from the sharp cusp in the phonon dispersion expected from Fermi surface nesting. Instead, our experiments, combined with ab initio calculations, show that it is the wave vector dependence of the electron-phonon coupling that drives the CDW formation in 2H-NbSe{sub 2} and determines its periodicity. This mechanism explains the so far enigmatic behavior of CDW in 2H-NbSe{sub 2} and may provide a new approach to other strongly correlated systems where electron-phonon coupling is important.
DEFF Research Database (Denmark)
Chang, J.; Blackburn, E.; Holmes, A. T.
2012-01-01
Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...
Energy Technology Data Exchange (ETDEWEB)
Yi, M.
2010-06-02
Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
Nath, G.; Sinha, A. K.
2017-01-01
The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.
Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets
Miceli, Giacomo; Pasquarello, Alfredo
2016-01-01
We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Spin polarization driven by a charge-density wave in monolayer 1T−TaS2
Zhang, Qingyun
2014-08-06
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.
Binder, Philippe; Cunnyngham, Ian
2012-01-01
In a recent note in this journal, Gluck presents a beautiful demonstration of the standing wave generated by a strip of material with linearly varying width (a trapezoid). As expected, the resulting wave envelope (and its shadow) showed a varying wavelength--smaller as the strip width gets larger.
Charge-density-wave formation in Ta2NiSe7 studied by scanning tunneling microscopy
Dai, Zhenxi; Slough, C. G.; McNairy, W. W.; Coleman, R. V.
1992-09-01
Scanning tunneling microscope images of Ta2NiSe7 taken at 77 and 4.2 K show a complex electronic rearrangment occurring below the charge-density-wave (CDW) onset temperature of 52.5 K. A large energy gap of 41.0+/-3.0 meV is observed and a CDW amplitude modulation of wavelength ~2b0 is detected. The electronic transfer between chains appears to drive the CDW formation.
Giant Nernst effect in the incommensurate charge density wave state of P4W12O44
Kolincio, Kamil K.; Daou, Ramzy; Pérez, Olivier; Guérin, Laurent; Fertey, Pierre; Pautrat, Alain
2016-12-01
We report the study of Nernst effect in quasi-low-dimensional tungsten bronze P4W12O44 showing a sequence of Peierls instabilities. We demonstrate that both condensation of the electronic carriers in the charge density wave state and the existence of high-mobility electrons and holes originating from the small pockets remaining in the incompletely nested Fermi surface give rise to a Nernst effect of a magnitude similar to that observed in heavy fermion compounds.
Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed
2013-11-01
Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.
Unconventional charge density wave in the organic conductor alpha-(BEDT-TTF)_2KHg(SCN)_4
Maki, Kazumi; Dóra, Balázs; Kartsovnik, Mark; Virosztek, Attila; Korin-Hamzic, Bojana; Basletic, Mario
2002-01-01
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyse theoretically ADMR in unconventional (or nodal) charge density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many st...
De Haas-van Alphen oscillations in the charge-density wave compound lanthanum tritelluride (LaTe3)
Energy Technology Data Exchange (ETDEWEB)
Ru, N.; /Stanford U., Geballe Lab.; Borzi, R.A.; Rost, A.; Mackenzie, A.P.; /St. Andrews U., Phys. Astron.; Laverock, J.; Dugdale, S.B.; /Bristol U.; Fisher, I.R.; /Stanford U., Geballe Lab.
2009-12-14
De Haas-van Alphen oscillations were measured in lanthanum tritelluride (LaTe{sub 3}) to probe the partially gapped Fermi surface resulting from charge density wave (CDW) formation. Three distinct frequencies were observed, one of which can be correlated with a FS sheet that is unaltered by CDW formation. The other two frequencies arise from FS sheets that have been reconstructed in the CDW state.
Nath, G.
2011-05-01
The propagation of a strong cylindrical shock wave in an ideal gas with azimuthal magnetic field, and with or without axisymmetric rotational effects, is investigated. The shock wave is driven out by a piston moving with time according to power law. The ambient medium is assumed to have radial, axial and azimuthal component of fluid velocities. The fluid velocities, the initial density and the initial magnetic field of the ambient medium are assumed to be varying and obey power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The shock wave moves with variable velocity and the total energy of the wave is non-constant. The effects of variation of the initial density and the Alfven-Mach number on the flow-field are obtained. A comparison is also made between rotating and non-rotating cases.
Kudrin, Alexander V.; Ostafiychuk, Oleg M.; Zaboronkova, Tatyana M.
2017-08-01
Whistler wave radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is considered in the case where the wave frequency is less than the lower hybrid frequency. Using the full-wave formulation, the total radiation resistance and the partial radiation resistances corresponding to guided eigenmodes of such a duct and unguided waves radiating to the background magnetoplasma are calculated and analyzed as functions of the plasma and source parameters. The emphasis is placed on the radiation characteristics of the considered source in the presence of an artificial near-antenna duct that can be created during active experiments in the ionosphere. Conditions are revealed under which the total radiation resistance is predominantly determined by the excitation of the eigenmodes of the duct. It is shown that the presence of an enhanced density duct can lead to a notable increase in the radiation resistance of a loop antenna in the discussed frequency range even if the duct is rather narrow and capable of guiding only a single low-order eigenmode. The results obtained can be helpful in understanding the basic features of excitation of the ducted whistlers and planning the related ionospheric and laboratory experiments.
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid.
Mansart, Barbara; Cottet, Mathieu J G; Penfold, Thomas J; Dugdale, Stephen B; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-04-10
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.
Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.
2016-11-01
The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance G(V)=\\text{d}J/\\text{d}V were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.
Directory of Open Access Journals (Sweden)
H. Mori
2005-10-01
Full Text Available The SEEK-2 campaign was carried out over Kyushu Island in Japan on 3 August 2002, by using the two sounding rockets of S310-31 and S310-32. This campaign was planned to elucidate generation mechanisms of Quasi-Periodic Echoes (QPEs associated with mid-latitude sporadic-E (Es layers. Electron number densities were successfully measured in the Es layers by using the impedance probe on board two rockets. The plasma waves in the VLF and ELF ranges were also observed on board the S310-32 rocket. Results of electron density measurement showed that there were one or two major peaks in the Es layers along the rockets' trajectories near the altitude of about 10km. There were some smaller peaks associated with the main Es layers in the altitude range from 90 to 120 km. These density peaks were distributed in a very large extent during the SEEK-2 campaign. The Es layer structure is also measured by using the Fixed Bias Probe (FBP, which has a high spatial resolution of several meters (the impedance probe has an altitude resolution of about 400 m. The comparison with the total electron content (TEC measured by the Dual Band Beacon revealed that the Es layer was also modulated in the horizontal direction with the scale size of 30–40 km. It was shown that the QP echoes observed by the ground-based coherent radar come from the major density peak of the Es layer. The plasma wave instrument detected the enhancement of VLF and ELF plasma waves associated with the operation of the TMA release, and also with the passage of the Es layers. Keywords. Ionosphere (Ionospheric irregularities; Midlatitude ionosphere; Plasma temeperature and density
Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner
Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.
1991-01-01
Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.
Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)
Energy Technology Data Exchange (ETDEWEB)
Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)
2011-01-03
We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.
1987-06-04
Testud , J. (1970) Gravity waves generated diring magnetic substorms, .1. Atmos. Terr. Phys., 32:1793. .6 t9, "-€ according to their horizontal...auroral oval during polar substorms, J. Geophys. Res., 74:5721. 7. Testud , J. P., Amayenc, P., and Blanc, M. (1975) Middle and low latitude effects of...1730. 13. Bertin, F.J., Testud , J., Kersley, L., and Rees, P. R. (1978) The meteorological jet stream as a source of medium scale gravity waves in
Properties and stability of freely propagating nonlinear density waves in accretion disks
Fromang, S
2007-01-01
In this paper, we study the propagation and stability of nonlinear sound waves in accretion disks. Using the shearing box approximation, we derive the form of these waves using a semi-analytic approach and go on to study their stability. The results are compared to those of numerical simulations performed using finite difference approaches such as employed by ZEUS as well as Godunov methods. When the wave frequency is between Omega and two Omega (where Omega is the disk orbital angular velocity), it can couple resonantly with a pair of linear inertial waves and thus undergo a parametric instability. Neglecting the disk vertical stratification, we derive an expression for the growth rate when the amplitude of the background wave is small. Good agreement is found with the results of numerical simulations performed both with finite difference and Godunov codes. During the nonlinear phase of the instability, the flow remains well organised if the amplitude of the background wave is small. However, strongly nonlin...
Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x
Hamidian, M. H.; Edkins, S. D.; Joo, Sang Hyun; Kostin, A.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E.-A.; MacKenzie, A. P.; Fujita, K.; Lee, Jinho; Davis, J. C. Séamus
2016-04-01
The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density. Such a state has been created in ultracold 6Li gas but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase of the copper oxide superconductors contains such a ‘pair density wave’ state. Here we report the use of nanometre-resolution scanned Josephson tunnelling microscopy to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms and at the Bi2Sr2CaCu2O8+x crystal supermodulation. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors QP ≈ (0.25, 0)2π/a0 and (0, 0.25)2π/a0 in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s‧ symmetry. This phenomenology is consistent with Ginzburg-Landau theory when a charge density wave with d-symmetry form factor and wavevector QC = QP coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase.
Griv, Evgeny; Hou, Li-Gang; Jiang, Ing-Guey; Ngeow, Chow-Choong
2017-02-01
The data of 223 stars within 4 kpc from the Sun and 400 pc from the plane are collected from Melnik et al., who listed photometric distances and velocities of 674 long-period Cepheids in the disc of our Galaxy. Both line-of-sight and transverse along the Galactic longitude velocities of the selected stars are analysed on the assumption that the system is the subject to Lin-Shu-type moderately unstable, low-amplitude, tightly wound and rigidly rotating density waves. Minimization of the least-squares estimator S of measured and modelled velocities of stars was performed in the geometrical parameters of waves. The wave structures defined from the two independent samples of velocities are nearly similar. Different radial scales (wavelengths) of velocity inhomogeneity of about 1, 2 and 4 kpc, which do not depend on the number of spiral arms m, were found. But for now it is unclear if one can identify these scales as fully independent global modes of collective oscillations or they are Fourier harmonics of a single wave, or they just reveal the segments of large-scale Orion, Sagittarius and Perseus arms. The dominant mode is the one-armed wave for the main minimum of all S considered. However, because the S values for fits with m = 1-4 are almost equal the latter conclusion must be regarded as tentative until more extensive data are available. High-precision Gaia observations could reveal in the near future whether the wave-like velocity fluctuations near the Sun reported here do indeed exist.
Institute of Scientific and Technical Information of China (English)
Gorakh Nath
2010-01-01
Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational axisymmetric dusty gas,which has a variable azimuthal and axial fluid velocity.The dusty gas is assumed to be a mixture of small solid particles and perfect gas.The equilibrium flow conditions are assumed to be maintained,and the density of the mixture is assumed to be varying and obeying an exponential law.The fluid velocities in the ambient medium are assumed to obey exponential laws.The shock wave moves with variable velocity.The effects of variation of the mass concentration of solid particles in the mixture,and the ratio of the density of solid particles to the initial density of the gas on the flow variables in the region behind the shock are investigated at given times.Also,a comparison between the solutions in the cases of isothermal and adiabatic flows is made.
Magnetic-field-tuned charge density wave in SmNiC2 and NdNiC2
Lei, Hechang; Wang, Kefeng; Petrovic, C.
2017-02-01
We report magnetic field tuned competition between magnetic order and charge density wave (CDW) states in SmNiC2 and NdNiC2 polycrystals. The destruction of CDW can be observed not only in SmNiC2 below ferromagnetic (FM) but also in NdNiC2 below antiferromagnetic (AFM) transition temperature. Moreover, the CDW states near magnetic transition temperatures can be tuned by the magnetic field for both compounds. Magnetic-field induced FM state in NdNiC2 is more effective in weakening the CDW than the AFM state at temperatures near Neel temperature T N but both ordering states have the same effect on CDW below T N. The interplay between magnetic and CDW states in SmNiC2 and NdNiC2 may be different, suggesting that these materials are good models to study correlations between magnetic and CDW wave order.
James, H. G.
2006-09-01
The small-scale and two-point nature of the Observations of Electric-field Distributions in the Ionospheric Plasma—A Unique Strategy C (OEDIPUS-C, OC) dual-payload propagation experiment in the auroral ionosphere in 1995 has permitted improved measurements of the parameters of magnetic field-aligned density irregularities. Comparatively strong and dispersed pulses were observed at frequencies f just above the electron plasma frequency fp when the electron gyrofrequency fc was less than fp. The waves are interpreted as quasielectrostatic Z-mode propagation with dispersion surfaces close to those of the Langmuir solutions in wave vector space, albeit at somewhat lower refractive indices of about 50. If mission length surveys of the Z-wave intensities are aligned with histories of fp at the payload and of the strength of X- and fast Z-mode ionospheric reflection echoes, a strong positive correlation is found at momentary relative depletions of the ambient density. These observations are taken as evidence of ducting in the field-aligned depletions. The spectra of these strong Z-mode transmissions are similar to those of slow Z ducted spectra observed at similar f, fp, and fc values in the OEDIPUS-A experiment in 1989. The magnitudes of the density depletions are found to lie in the range 7-21% and to have cross-field dimensions of a few kilometers. The present duct dimensions are of the same order as the previous findings from ionospheric X-mode electromagnetic echoes on OC, but the depletions are up to 10 times deeper. Measurements of ducting irregularities can lead to insights into their formation. This will be important for our understanding of the interfaces of the ionospheric or magnetospheric topologies where irregularity formation is an important link in the large-scale flow of energy.
Unconventional Charge-Density Wave in the Organic Conductor α-(BEDT-TTF)2KHg(SCN)4
Maki, Kazumi; Dóra, Balázs; Kartsovnik, Mark; Virosztek, Attila; Korin-Hamzić, Bojana; Basletić, Mario
2003-06-01
The low temperature phase (LTP) of α-(BEDT-TTF)2KHg(SCN)4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyze theoretically ADMR in unconventional (or nodal) charge-density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in α-(BEDT-TTF)2KHg(SCN)4.
Optical Properties of the Charge-Density-Wave Polychalcogenide Compounds R2Te5 (R=Nd, Sm and Gd)
Energy Technology Data Exchange (ETDEWEB)
Pfuner, F.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.
2010-02-15
We investigate the rare-earth polychalcogenide R{sub 2}Te{sub 5} (R = Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RTe{sub n} (n = 2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice.
The 181Ta Nuclear Quadrupole Interaction in the Charge Density Wave Phases of 1T-TaS2
Ganal, P.; Butz, T.; Lerf, A.; Naito, M.; Nishihara, H.
1990-04-01
With a high resolution time differential perturbed angular correlation spectrometer we investigated the nuclear quadrupole interaction of Ta in 1T-TaS2 . The results obtained for the commensurate charge density wave phase lead to a revised assignment of the previously observed 181Ta NQR resonances. Differences in the intracluster architecture of the 13-atom Star of David cluster between 1T-TaS2 and 1T-TaSe2 could be responsible for the metal to semiconductor transition which occurs in lT-TaS2 but not in lT-TaSe2 .
Farrell, Aaron; Wu, P.-K.; Kao, Y.-J.; Pereg-Barnea, T.
2016-12-01
On a square lattice, the Hubbard model at half filling reduces to the Heisenberg model and exhibits antiferromagnetism. When doped away from half filling this model gives rise to d -wave superconductivity. This behavior is reminiscent of the phenomenology of the cuprate family with their high Tcd -wave superconductivity and their antiferromagnetic parent compound. It is therefore interesting to study an extension of the Hubbard model which includes spin orbit coupling. We have previously studied this model away from half filling [see, for example, Farrell and Pereg-Barnea, Phys. Rev. B 89, 035112 (2014), 10.1103/PhysRevB.89.035112] and found that the addition of spin-orbit coupling and Zeeman field leads to topological superconductivity with d +i d pairing function. In this paper we are interested in the `parent compound' of this state. Namely, we study the half filling, strong coupling limit of the square lattice Hubbard model with spin orbit coupling and Zeeman field. The strong coupling expansion of the model is a spin model which contains compass anisotropy and Dzyaloshinsky-Moriya interaction on top of the usual Heisenberg term. We analyze this spin model classically and find an incommensurate spin density wave (ISDW) for low Zeeman fields. This ISDW has a wave vector Q ⃗ which deviates from (π ,π ) by an amount which is proportional to the spin-orbit coupling and can therefore serve as a signature. We study the stability of the ISDW phase using spin wave theory and find a stable and an unstable region. At higher but moderate Zeeman fields we find a tilted antiferromagnet and a ferromagnet at high Zeeman fields.
Stripe and Short Range Order in the Charge Density Wave of 1 T -CuxTiSe2
Novello, A. M.; Spera, M.; Scarfato, A.; Ubaldini, A.; Giannini, E.; Bowler, D. R.; Renner, Ch.
2017-01-01
We study the impact of Cu intercalation on the charge density wave (CDW) in 1 T -CuxTiSe2 by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate randomly on the octahedral site in the van der Waals gap and to dope delocalized electrons near the Fermi level. While the CDW modulation period does not depend on Cu content, we observe the formation of charge stripe domains at low Cu content (x domains at higher Cu content. The latter shrink with increasing Cu concentration and tend to be phase shifted. These findings invalidate a proposed excitonic pairing as the primary CDW formation mechanism in this material.
Mitri, F G
2016-09-01
Energy and angular momentum flux density characteristics of an optical nondiffracting nonparaxial vector Bessel vortex beam of fractional order are examined based on the dual-field method for the generation of symmetric electric and magnetic fields. Should some conditions determined by the polarization state, the half-cone angle as well as the beam-order (or topological charge) be met, the axial energy and angular momentum flux densities vanish (representing Poynting singularities), before they become negative. These negative counterintuitive properties suggest retrograde (negative) propagation as well as a rotation reversal of the angular momentum with respect to the beam handedness. These characteristics of nondiffracting nonparaxial Bessel fractional vortex beams of progressive waves open new capabilities in optical tractor beam tweezers, optical spanners, invisibility cloaks, optically engineered metamaterials, and other applications.
Tokuzawa, T.; Kisaki, M.; Nagaoka, K.; Tsumori, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Osakabe, M.; Takeiri, Y.; Kaneko, O.
2016-11-01
The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.
Energy Technology Data Exchange (ETDEWEB)
Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland
2004-02-24
In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.
Bogdan, T. J.
1983-01-01
The problem of one-dimensional gas flow through a sinusoidal gravitational potential with a series of equally spaced shock fronts is considered. For time-independent and spatially periodic flows, an integral equation relates the flow velocity to the gravitational potential and source functions of energy and momentum densities. It is suggested that this problem simulates some of the dynamical effects of the azimuthal flow on a parcel of gas at a fixed radius in a galactic disk that supports a spiral density wave structure. It omits the radial motions. In this context, a typical azimuthal velocity across a spiral arm is specified and the resultant source functions are obtained. The implications of this calculation suggest heating of the gaseous disk by O and B stars behind the shock front, and subsequent interarm cooling is a plausible mechanism for maintaining the periodic cycling of the gaseous component of the galactic disk.
Nath, G.; Vishwakarma, J. P.
2016-06-01
The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for
Polarization dependence of the spin-density-wave excitations in single-domain chromium
Energy Technology Data Exchange (ETDEWEB)
Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)
1997-09-01
A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.
Henrot-Versillé, Sophie; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu
2014-01-01
The production of a primordial stochastic gravitational-wave background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the Cosmic Microwave Background (CMB) or the Baryon Acoustic Oscillations (BAO) can be used to set upper limits on the stochastic gravitational-wave background energy density $\\Omega_{GW}$ for frequencies above $10^{-15}$ Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-$\\ell$ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that $\\Omega_{GW}h_{0}^{2} < 3.8 \\times 10^{-6}$ at 95\\% confidence level for adiabatic initial conditions which improves over the previous limit by a factor 2.3. Assuming that the primordial gravitational waves have been produced by a network of cosmic strings, we have derived exclusion limits in th...
Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng
2016-11-01
This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.
Weber, Hannes; Maj, Omar; Poli, Emanuele
2015-03-01
The physics and first results of the new WKBeam code for electron cyclotron beams in tokamak plasmas are presented. This code is developed on the basis of a kinetic radiative transfer model which is general enough to account for the effects of diffraction and density fluctuations on the beam. Our preliminary numerical results show a significant broadening of the power deposition profile in ITER due to scattering from random density fluctuations at the plasma edge, while such scattering effects are found to be negligible in medium-size tokamaks like ASDEX upgrade.
Blanc, E.
1982-04-01
It is noted that an acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave produced by the acoustic wave motion depends on the properties of the atmosphere and ionosphere. It is shown that this permits a determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages offered by this method are discussed, and some experimental results are compared with those of other measurement techniques.
Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Bloem, Gerda M.; Hoofdakker, Rutger H. van den
1987-01-01
The relation between EEG power density during slow wave sleep (SWS) deprivation and power density during subsequent sleep was investigated. Nine young male adults slept in the laboratory for 3 consecutive nights. Spectral analysis of the EEG on the 2nd (baseline) night revealed an exponential
Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements
Kirsch, Andreas
2011-01-01
In this paper we propose an approach for \\emph{simultaneous} identification of the \\emph{absorption density} and the \\emph{speed of sound} by photoacoustic measurements. Experimentally our approach can be realized with sliced photoacoustic experiments. The mathematical model for such an experiment is developed and exact reconstruction formulas for both parameters are presented.
On the Energy-Momentum Densities of the Cylindrically Symmetric Gravitational Waves
Havare, A; Yetkin, T; Havare, Ali; Salti, Mustafa; Yetkin, Taylan
2005-01-01
In this study, using Moller and Tolman prescriptions we calculate energy and momentum densities for the general cylindrically symmetric spacetime metric. We find that results are finite and well defined in these complexes. We also give the results for some cylindrically symmetric spacetime models.
Nath, G.
2014-06-01
The propagation of spherical (or cylindrical) shock wave in an ideal gas with or without gravitational effects in the presence of a constant azimuthal magnetic field is investigated. Non-similarity solutions are obtained for isothermal flow between the shock and the piston. The numerical solutions are obtained using the Runge-Kutta method of the fourth order. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of variation of the Alfven-Mach number, gravitational parameter and time are obtained. It is investigated that the presence of gravitational field reduces the effect of the magnetic field. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. The shock waves in conducting perfect gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating medium with or without magnetic field. The obtained solutions are applicable for arbitrary values of time.
Li, Xiao; Roy, Bitan; Das Sarma, S.
2016-11-01
We theoretically address the effects of strong magnetic fields in three-dimensional Weyl semimetals (WSMs) built out of Weyl nodes with a monopole charge n . For n =1 , 2, and 3 we realize single, double, and triple WSM, respectively, and the monopole charge n determines the integer topological invariant of the WSM. Within the linearized continuum description, the quasiparticle spectrum is then composed of Landau levels (LLs), containing exactly n number of chiral zeroth Landau levels (ZLLs), irrespective of the orientation of the magnetic field. In the presence of strong backscattering, for example (due to quenched disorder associated with random impurities), these systems generically give rise to longitudinal magnetotransport. Restricting ourselves to the quantum limit (and assuming only the subspace of the ZLLs to be partially filled) and mainly accounting for Gaussian impurities, we show that the longitudinal magnetoconductivity (LMC) in all members of the Weyl family displays a positive linear-B scaling when the field is applied along the axis that separates the Weyl nodes. But, in double and triple WSM, LMC displays a smooth crossover to a nonlinear B dependence as the field is tilted away from such a high-symmetry direction. In addition, due to the enhanced density of states, the LL quantization can trigger instabilities toward the formation of translational symmetry-breaking density-wave orderings for sufficiently weak interaction (BCS instability), which gaps out the ZLLs. Concomitantly as the temperature (magnetic field) is gradually decreased (increased) the LMC becomes negative. Thus WSMs with arbitrary monopole charge (n ) can host an intriguing interplay of LL quantization, longitudinal magnetotransport (a possible manifestation of one-dimensional chiral or axial anomaly), and density-wave ordering, when placed in a strong magnetic field.
Modal density and modal distribution of bending wave vibration fields in ribbed plates
DEFF Research Database (Denmark)
Dickow, Kristoffer Ahrens; Brunskog, Jonas; Ohlrich, Mogens
2013-01-01
Plates reinforced by ribs or joists are common elements in lightweight building structures, as well as in other engineering structures such as vehicles, ships, and aircraft. These structures, however, are often not well suited for simple structural acoustic prediction models such as statistical...... energy analysis. One reason is that the modal density is not uniformly distributed due to the spatial periodicity introduced by the ribs. This phenomenon is investigated in the present paper, using a modal model of a ribbed plate. The modal model uses the Fourier sine modes, and the coupling between...... the plate and ribs is incorporated using Hamilton's principle. This model is then used to investigate the modal density of the considered spatially periodic structure, and a grouping of the modes in different dominating directions is proposed. Suggestions are also given regarding how to proceed towards...
Steady-state probability density function in wave turbulence under large volume limit
Institute of Scientific and Technical Information of China (English)
Yeontaek Choia; Sang Gyu Job
2011-01-01
We investigate the possibility for two-mode probability density function (PDF) to have a non-zero flux steady state solution. We take the large volume limit so that the space of modes becomes continuous. It is shown that in this limit all the steady-state two- or higher-mode PDFs are the product of one-mode PDFs. The flux of this steady-state solution turns out to be zero for any finite mode PDF.
Energy Technology Data Exchange (ETDEWEB)
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
On a novel graded areal density solution to facilitate ramp wave generation in plate-impact studies
Painter, J. D.; Fitzmaurice, B. C.; Goff, M.; Appleby-Thomas, G. J.; Wood, D. C.; Pinto, T.
2017-01-01
Building on a substantial body of work on functionally graded materials in the literature, it has been previously shown that the use of graded areal density impactors, in conjunction with buffer materials, allows generation of ramp-wave loading profiles in impacted targets. Such off-principle-Hugoniot loading paths are of particular interest where control of one or more state variables (e.g. temperature) is desirable during the loading event. Previous attempts to produce suitable graded areal density impactors have focused on rapid prototyping techniques such as 3D printing. While suitable for small-scale production of impactors, such technologies are relatively immature. Instead, here a novel approach to creating graded areal density structures - TWI Ltd.'s novel surface modification process, Surfi-Sculpt®, with a nominal surface spike distribution of 1.5 per mm2, has been employed to produce the required impactors. Initial experimental results are presented highlighting the potential of this experimental approach; further, these results -combined with basic hydrocode simulations - are used to postulate idealised structures which would allow useful loading paths such as the Adiabat to be readily accessed.
Wang, H.-T.; Srivastava, M. K.; Wu, C.-C.; Hsieh, S.-H.; Wang, Y.-F.; Shao, Y.-C.; Liang, Y.-H.; Du, C.-H.; Chiou, J.-W.; Cheng, C.-M.; Chen, J.-L.; Pao, C.-W.; Lee, J.-F.; Kuo, C. N.; Lue, C. S.; Wu, M.-K.; Pong, W.-F.
2017-01-01
X-ray scattering (XRS), x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopic techniques were used to study the electronic and atomic structures of the high-quality Sr3Ir4Sn13 (SIS) single crystal below and above the transition temperature (T* ≈ 147 K). The evolution of a series of modulated satellite peaks below the transition temperature in the XRS experiment indicated the formation of a possible charge density wave (CDW) in the (110) plane. The EXAFS phase derivative analysis supports the CDW-like formation by revealing different bond distances [Sn1(2)-Sn2] below and above T* in the (110) plane. XANES spectra at the Ir L3-edge and Sn K-edge demonstrated an increase (decrease) in the unoccupied (occupied) density of Ir 5d-derived states and a nearly constant density of Sn 5p-derived states at temperatures T atomic structures and the CDW-like phase in the SIS single crystal. PMID:28106144
Nakai, Kenji; Takahashi, Shin; Suzuki, Atsushi; Hagiwara, Nobuhisa; Futagawa, Keisuke; Shoda, Morio; Shiga, Tsuyoshi; Takahashi, Ken; Okabayashi, Hitoshi; Itoh, Manabu; Kasanuki, Hiroshi
2011-03-01
The noninvasive evaluation of ventricular T-wave alternans (TWA) in patients with lethal ventricular arrhythmias is an important issue. In this study, we propose a novel algorithm to identify T-wave current density alternans (TWCA) using synthesized 187-channel vector-projected body surface mapping (187-ch SAVP-ECG). We recorded 10 min of 187-ch SAVP-ECG using a Mason-Likar lead system in the supine position. A recovery time (RT) dispersion map was obtained by averaging the 187-ch SAVP-ECG. The TWCA value was determined from the relative changes in the averaged current density in the T-wave zone (Tpeak ± 50 ms) for two T-wave types. We registered 20 ECG recordings from normal controls and 11 ECG recordings from nine subjects with long QT syndrome (LQT). We divided LQT syndrome subjects into two groups: group 1 provided 9 ECG recordings without visually apparent TWAs, and group 2 provided 2 ECG recordings with visually apparent TWAs. The QTc interval values in the LQT groups were higher than those in the control (515 ± 60 ms in LQT G-1, 600 ± 27 ms in LQT G-2 vs. 415 ± 19 ms in control, P < 0.001). The RTendc dispersion values among the LQT subjects were higher than those of the control subjects (48 ± 19 ms in LQT G-1, 65 ± 30 ms in LQT G-2 vs. 24 ± 10 ms in control, P < 0.01). The mean TWCA value was significantly higher in the LQT G-2 group with visually apparent TWCAs (0.5 ± 0.2% in control, 2.1 ± 1.2% in LQT G-1, and 32.3 ± 6.9% in LQT G-2). Interestingly, the two-dimensional distribution of TWCA in LQT was inhomogeneous and correlated with the distribution of increased RT dispersion. We conclude that a novel algorithm using 187-ch SAVP-ECG might provide new insights into body surface TWCA.
Institute of Scientific and Technical Information of China (English)
崔珊; 何兰坡; 洪晓晨; 朱相德; Cedomir Petrovic; 李世燕
2016-01-01
It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk supercon-ductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3−x Sex near x≈0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3−x Sex single crystals (x=0.044 and 0.051) down to 80 mK. For both samples, the residual linear termκ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence ofκ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3−x Sex , which indicates conventional superconductivity despite of the existence of a CDW QCP.
Murthy, Ganpathy
2000-01-01
It is well known that the ν = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for ν = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.
Murthy
2000-01-10
It is well known that the nu = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for nu = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.
Das, Tanmoy
2016-07-01
We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.
Magnetic field-induced charge-density-wave transitions: The role of the orbital and Pauli effects
Kartsovnik, M. V.; Andres, D.; Biberacher, W.; Müller, H.
2009-03-01
Due to a low transition temperature and, correspondingly, a small energy gap, the charge-density-wave (CDW) state of the layered organic metal α-(BEDT-TTF)2KHg(SCN)4 is very sensitive to pressure and magnetic field. The latter couples to the CDW via two competing mechanisms: Pauli paramagnetism and orbital motion of charge carriers in a magnetic field. We study the interplay between the Pauli and orbital effects under a pressure of 2.8 kbar, in the region of the field-induced CDW (FICDW) instability. We find that, in agreement with theoretical predictions, the FICDW state is enhanced when the Zeeman splitting becomes commensurate with the orbital quantization.
Magnetic field-induced charge-density-wave transitions: The role of the orbital and Pauli effects
Energy Technology Data Exchange (ETDEWEB)
Kartsovnik, M.V. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)], E-mail: mark.kartsovnik@wmi.badw.de; Andres, D.; Biberacher, W. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Mueller, H. [European Synchrotron Radiation Facility, F-38043 Grenoble (France)
2009-03-01
Due to a low transition temperature and, correspondingly, a small energy gap, the charge-density-wave (CDW) state of the layered organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} is very sensitive to pressure and magnetic field. The latter couples to the CDW via two competing mechanisms: Pauli paramagnetism and orbital motion of charge carriers in a magnetic field. We study the interplay between the Pauli and orbital effects under a pressure of 2.8 kbar, in the region of the field-induced CDW (FICDW) instability. We find that, in agreement with theoretical predictions, the FICDW state is enhanced when the Zeeman splitting becomes commensurate with the orbital quantization.
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Masahiko, E-mail: m-hayashi@ed.akita-u.ac.jp [Faculty of Education and Human Studies, Akita University, Akita 010-8502 (Japan); Takane, Yositake [Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Ebisawa, Hiromichi [Institute of Liberal Arts and Sciences, Tohoku University, Sendai 980-8576 (Japan)
2015-03-01
Time-dependent Ginzburg–Landau equation (TDGL) for charge-density-wave (CDW) conductors is discussed. At first, we study a purely one-dimensional case, where the current electrodes are attached from the sides. One of the characteristics of our TDGL is that the non-equilibrium chemical potential for right-moving and left-moving electrons are taken into account as dynamical variables. Then the dynamical interaction between the condensate and the quasiparticles is demonstrated in an apparent form. We present some results of the numerical simulation of the sliding of CDW based on our TDGL. Possible extension to quasi-one dimensional (three-dimensional) systems is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Yi, Y.; Bishop, A.R. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1998-08-01
We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave (CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiments. We identify a phase transition from a Peierls insulator to metal, which is induced by spin-dependent phase interference effects. Mesoscopic CDW materials and spin-dependent geometric phase effects, and their interplay, are becoming attractive opportunities for exploitation with the rapid development of modern fabrication technology. {copyright} {ital 1998} {ital The American Physical Society}
Three-Dimensional Charge Density Wave Order in YBa2Cu3O6.67 at High Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Gerber, S.; Jang, H.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Bonn, D. A.; Liang, R.; Hardy, W.; Islam, Z.; Lee, W. -S.; Zhu, D.; Lee, J. -S.
2015-11-20
Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate inplane ordering vector is field-independent. This implies that the two forms of CDW and hightemperature superconductivity are intimately linked.
Latyshev, Y I; Sinchenko, A A; Bulaevskii, L N; Monceau, P
2002-01-01
The peculiarities of the cross-sectional transport in the direction of the crystallographic axis alpha * in the conductor with the NbSe sub 3 wave charge density (WCD) are studied. The strong peak of dynamic conductivity is observed on the WCD of the layered structures and the NbSe sub 3 -NbSe sub 3 point contacts at low temperatures by the zero voltage shift. The identified behavior reminds in many respects the interlayer tunnel conductivity in the Bi-2212-type high-temperature layered conductors. The conductivity peak by the zero shift is explained in the model of the almost coherent interlayer tunneling of the carriers, noncondensed in the WCD
Bashinov, A V; Kim, A V
2016-01-01
We present a comprehensive analysis of longitudinal particle drifting in a standing circularly polarized wave at extreme intensities when quantum radiation reaction (RR) effects should be accounted for. To get an insight into the physics of this phenomenon we made a comparative study considering the RR force in the Landau-Lifshitz or quantum-corrected form, including the case of photon emission stochasticity. It is shown that the cases of circular and linear polarization are qualitatively different. Moreover, specific features of particle dynamics have a strong impact on spatial structures of the electron-positron ($e^-e^+$) density created in vacuum through quantum electrodynamic (QED) cascades in counter-propagating laser pulses. 3D PIC modeling accounting for QED effects confirms realization of different pair plasma structures.
Zhou, Faran; Golubev, Timofey; Hwang, Bin; Ruan, Chong-Yu; Duxbury, Phil; Malliakas, Christos; Kanatzidis, Mercouri
2015-03-01
Electron-phonon interactions can give rise to various charge-ordered states, especially at low dimensions, where Fermi surface is more prone to form nesting. Rare earth tritellurides compound ErTe3 develops charge density waves (CDW) along two perpendicular directions at different temperatures. By directly probing the order parameters of the two CDWs using femtosecond electron crystallography under different temperatures and driving photonic energy, we investigated the emergences of competing CDW orders in a dynamical phase diagram. The anisotropic symmetry breaking and the role of electron-phonon coupling, and photo-doping effect are discussed in reference to other CDW systems. Our work is supported by Department of Energy under Grant No. DE-FG02-06ER46309.
Strong anharmonicity induces quantum melting of charge density wave in 2 H -NbSe2 under pressure
Leroux, Maxime; Errea, Ion; Le Tacon, Mathieu; Souliou, Sofia-Michaela; Garbarino, Gaston; Cario, Laurent; Bosak, Alexey; Mauri, Francesco; Calandra, Matteo; Rodière, Pierre
2015-10-01
The pressure and temperature dependence of the phonon dispersion of 2 H -NbSe2 is measured by inelastic x-ray scattering. A strong temperature dependent soft phonon mode, reminiscent of the charge density wave (CDW), is found to persist up to a pressure as high as 16 GPa, far above the critical pressure at which the CDW disappears at 0 K. By using ab initio calculations beyond the harmonic approximation, we obtain an accurate, quantitative description of the (P ,T ) dependence of the phonon spectrum. Our results show that the rapid destruction of the CDW under pressure is related to the zero mode vibrations—or quantum fluctuations—of the lattice renormalized by the anharmonic part of the lattice potential. The calculations also show that the low-energy longitudinal acoustic mode that drives the CDW transition barely contributes to superconductivity, explaining the insensitivity of the superconducting critical temperature to the CDW transition.
Zhang, Xiao-Tian; Shindou, Ryuichi
2017-05-01
Three-dimensional (3D) metals/semimetals under magnetic field have an instability toward a density wave (DW) ordering which breaks a translational symmetry along the field direction. Effective boson models for the DW phases take forms of X Y models with/without Potts terms. Longitudinal conductivity along the field direction is calculated in the DW phases with inclusion of effects of low-energy charge fluctuation (phason) and disorder. A single-particle imaginary-time Green function is identified with a partition function of 3D X Y models in the presence of pairs of magnetic monopoles. In terms of the celebrated electromagnetic duality, electronic spectral function is calculated near the DW phase transition. The calculated result shows that the single-particle spectral function acquires an additional low-energy feature due to the strong phason fluctuation. Relevance to an in-plane conductance due to surface chiral Fermi arc states is also discussed.
Manning, Robert M.
2015-01-01
A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2
Universal bulk charge-density-wave (CDW) correlations in the cuprate superconductors
Tabis, Wojciech
2014-03-01
The recent observation of bulk CDW order in YBa2Cu3O8+δ(YBCO) in competition with superconductivity is a significant development. Using Cu L-edge resonant X-ray scattering, we also observe bulk CDW order in HgBa2CuO4+δ(Hg1201 Tc = 72K). The correlations appear below TCDW ~ 200K, well below the pseudogap temperature T* ~ 320K associated with unusual magnetism, but coincident with the onset of Fermi-liquid-like charge transport. In contrast to YBCO, we observe no decrease of the CDW amplitude below Tc, and the correlation length is short and temperature independent. CDW correlations therefore are a universal property of underdoped cuprates, enhanced by low structural symmetry and a magnetic field, but fundamentally not in significant competition with superconductivity. We also discuss the relationship between the CDW modulation wave vector and the Fermi surface area extracted from QO experiments. Work supported by DOE-BES. In collaboration with Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. Veit, A. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M.K. Chan, C. Dorow, G. Yu, X. Zhao, B. Keimer, M. Greven.
Vadas, Sharon L.; Crowley, Geoff
2017-06-01
In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.
P-wave velocity and density structure beneath Mt. Vesuvius: a magma body in the upper edifice?
Directory of Open Access Journals (Sweden)
Paolo Capuano
2013-11-01
Full Text Available A high-resolution image of the compressional wave velocity and density structure in the shallow edifice of Mount Vesuvius has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes and from gravity inversion. The robustness of the tomography solution has been improved by adding to the earthquake data a set of land based shots, used for constraining the travel time residuals. The results give a high resolution image of the P-wave velocity structure with details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km depth below the central crater, distributed into two clusters, and separated by an anomalously high Vp region positioned at around 1 km depth. A zone with high Vp/Vs ratio in the upper layers is interpreted as produced by the presence of intense fluid circulation alternatively to the interpretation in terms of a small magma chamber inferred by petrologic studies. In this shallower zone the seismicity has the minimum energy, whilst most of the high-energy quakes (up to Magnitude 3.6 occur in the cluster located at greater depth. The seismicity appears to be located along almost vertical cracks, delimited by a high velocity body located along past intrusive body, corresponding to remnants of Mt. Somma. In this framework a gravity data inversion has been performed to study the shallower part of the volcano. Gravity data have been inverted using a method suitable for the application to scattered data in presence of relevant topography based on a discretization of the investigated medium performed by establishing an approximation of the topography by a triangular mesh. The tomography results, the retrieved density distribution, and the pattern of relocated seismicity exclude the presence of significant shallow magma reservoirs close to the central conduit. These should be located at depth higher than that of the base of the hypocenter volume, as evidenced by
Torrent, Marc; Jollet, Francois; Audouze, Christophe; Gonze, Xavier
2009-03-01
The density-functional perturbation theory expressions have been derived within the projector augmented-wave formalism (PAW) and compared to those found in the ultrasoft pseudopotential framework [1]. They have been recently implemented in the abinit package [2] in the case of perturbations of the atomic-displacement type. We summarize the key points of this implementation: The variational and non-variational forms of the 2nd-order total energy changes are detailed. The resolution of the variational principle by a generalized Sternheimer equation is explained (the 1st-order wave-function change is found with a band-by-band conjugate gradient algorithm). We focus on some difficulties: metallic electronic occupations, response to incommensurate perturbations of periodic systems Results on pure compounds are presented; a comparison with results from pseudopotentials approach is performed in order to highlight the effect of the PAW methodology and its accuracy. [1] Audouze, Jollet, Torrent and Gonze. Phys. Rev. B 73, 235101 (2006); 78, 035105 (2008) [2] http://www.abinit.org.
Patwardhan, Ajay; Kumar, M S R
2008-01-01
The second order perturbation calculations for gravity wave and Einstein equation for space time and matter are presented for the FRW metric cosmological model. While exact equations are found, suitable approximations are made to obtain definite results. In the gravity wave case the small wavelength case allows nearly locally flat background for obtaining a fit to the WMAP data. In the density and curvature case the FRW background is retained for the length scale of WMAP. Clustering and inhomogeneity are understood. The gravity wave ripples from Big Bang couple nonlinearly and redistribute the modes to higher values of 'l' giving consistency with the WMAP results. The order by order consistency of Einstein equations relate the second order perturbations in the curvature and density and the wrinkles in spacetime caused by the gravity wave modes reorganize these distributions. The radiation data of WMAP gives the picture of a FRW spacetime deformed and wrinkled consistent with matter distribution to one hundred...
Wave-function inspired density functional applied to the H$_2$/H$_2^+$ challenge
Zhang, Igor Ying; Scheffler, Matthias
2016-01-01
We start from the Bethe-Goldstone equation (BGE) to derive a simple orbital-dependent correlation functional -- BGE2 -- which terminates the BGE expansion at the second-order, but retains the self-consistent coupling of electron-pair orrelations. We demonstrate that BGE2 is size consistent and one-electron "self-correlation" free. The electron-pair correlation coupling ensures the correct H$_2$ dissociation limit and gives a finite correlation energy for any system even if it has a no energy gap. BGE2 provides a good description of both H$_2$ and H$_2^+$ dissociation, which is regarded as a great challenge in density functional theory (DFT). We illustrate the behavior of BGE2 analytically by considering H$_2$ in a minimal basis. Our analysis shows that BGE2 captures essential features of the adiabatic connection path that current state-of-the-art DFT approximations do not.
Interaction of electromagnetic and plasma waves in warm motional plasma: Density and thermal effects
Rashed-Mohassel, P.; Hasanbeigi, A.; Hajisharifi, K.
2017-08-01
In this paper, the electromagnetic-electrostatic coupling instability excited in the two-dimensional planar-layered plasma medium with median temperature (warm motional plasma beam) is investigated by applying the initial fluctuation propagating along the planar surfaces. The dielectric tensor, obtained by the Maxwell-fluid model, is used to find the dispersion relation (DR) and different excited modes in the system. Interacting modes are investigated, in detail, by focusing on the effect of temperature on the plasma beam instability aroused by coupling the thermal excited modes (thermal-extraordinary and electron plasma modes) in the systems with various amounts of beam density. The numerical analysis of the obtained DR shows that even though the temperature effect of the plasma beam has an important role on the suppression of streaming instabilities, it does not have a considerable effect on the behavior of the coupling instability in the fluid limitation.
(2 kF , 2 kF) density-wave orders of interacting p-orbital fermions in square optical lattice
Zhang, Zixu; Liu, W. Vincent
2011-03-01
We study instabilities of spinless fermionic atoms in the p- orbital bands in two dimensional optical lattices at non- integer filling against interactions. Stripe charge-density- wave or orbital-density-wave orders are found for attractive and repulsive interactions, respectively. A surprising result is that the superfluid phase, usually expected of attractively interacting fermions, is less energetically favored. Nesting quasi-one-dimensional Fermi surfaces in such systems are independent of filling, which ensures that the stripe density- wave orders occur in a large parameter regime. This work is supported by ARO (W911NF-07-1-0293) and ARO-DARPA-OLE (W911NF-07-1-0464). We also thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.
Fujita, Toshiyuki; Sasaki, Takahiko; Yoneyama, Naoki; Kobayashi, Norio
2004-06-01
Current-voltage characteristics are measured in the quasi-two dimensional organic conductor α-(BEDT-TTF)2KHg(SCN)4 at temperatures down to 0.5 K and in the magnetic field up to 25 T. The non-linear conduction with a threshold electric field is found in the density wave state. The features of threshold electric field obtained in the low magnetic field region are explained by the unconventional charge density wave model. In the high magnetic field region, where the Shubnikov-de Haas oscillations appear, the current-voltage characteristics reveal that the density wave state synchronizes with the filling of the electron on the Landau level and continues even above a kink field 23 T.
Andres, D.; Kartsovnik, M. V.; Biberacher, W.; Neumaier, K.; Sheikin, I.; Müller, H.; Kushch, N. D.
2011-10-01
Successive magnetic-field-induced charge-density-wave transitions in the layered molecular conductor α-(BEDT-TTF)2KHg(SCN)4 are studied in a hydrostatic pressure regime in which the zero field charge-density- wave (CDW) state is completely suppressed. It is shown that the orbital effect of the magnetic field restores the density wave, while orbital quantization induces transitions between different CDW states as the field strength is varied. The latter show up as distinct anomalies in the magnetoresistance as a function of field. The interplay between the orbital and Pauli paramagnetic effects, which act, respectively, to enhance and to suppress the CDW instability, is particularly manifest in the angular dependence of the field-induced anomalies.
Foury-Leylekian, Pascale; Pouget, Jean-Paul; Lee, Young-Joo; Nieminen, Risto M.; Ordejón, Pablo; Canadell, Enric
2010-10-01
α-(BEDT-TTF)2KHg(SCN)4 develops a density wave ground state below 8 K whose origin is still debated. Here we report a combined x-ray diffuse scattering and first-principles density functional theory study supporting the charge density wave (CDW) scenario. In particular, we observe a triply incommensurate anharmonic lattice modulation with intralayer wave vector components which coincide within experimental errors to the maximum of the calculated Lindhard response function. A detailed study of the structural aspects of the modulation shows that the CDW instability in α-(BEDT-TTF)2KHg(SCN)4 is considerably more involved than those following a standard Peierls mechanism. We thus propose a microscopic mechanism where the CDW instability of the BEDT-TTF layer is triggered by the anion sublattice. Our mechanism also emphasizes the key role of the coupling of the BEDT-TTF and anion layers via the hydrogen bond network to set the global modulation.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Impact of quenched oxygen disorder on charge density wave order in YBa2Cu3O6+x.
Achkar, A J; Mao, X; McMahon, Christopher; Sutarto, R; He, F; Liang, Ruixing; Bonn, D A; Hardy, W N; Hawthorn, D G
2014-09-05
The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long-range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa2Cu3O6+x (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO6.67 (YBCO6.75) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.
Energy Technology Data Exchange (ETDEWEB)
Khan, Shehryar, E-mail: sherkhan@fysik.su.se; Odelius, Michael, E-mail: odelius@fysik.su.se [Department of Physics, Stockholm University, AlbaNova University Center, S-106 91 Stockholm (Sweden); Kubica-Misztal, Aleksandra [Institute of Physics, Jagiellonian University, ul. Reymonta 4, PL-30-059 Krakow (Poland); Kruk, Danuta [Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Sloneczna 54, Olsztyn PL-10710 (Poland); Kowalewski, Jozef [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)
2015-01-21
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H{sub 2}O){sup −}, Gd(III)DTPA(H{sub 2}O){sup 2−}, and Gd(III)(H{sub 2}O){sub 8}{sup 3+} in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
Splitting of the Ti-3d bands of TiSe2 in the charge-density wave phase
Ghafari, A.; Petaccia, L.; Janowitz, C.
2017-02-01
Very high resolution angular resolved photoemission (ARPES) spectra on TiSe2 in two distinct polarization geometries (vertical and horizontal) at temperatures between 300 K and 22 K enabled the observation of details of bands near the Fermi level not reported so far. Calculations of the electronic band structure based on density functional theory (DFT) using B3LYP hybrid functional and MBJ potential (with and without spin-orbit coupling) were performed to obtain the orbital symmetry and dispersion. Two degenerate conduction bands (CB's) were observed at the Γ-point, a weak CB- emission at the A-point, and two non degenerate CB's (i.e. splitting of CB) at the M/L-point of the Brillouin Zone (BZ). The splitting was detected at L for both polarizations, while at M remarkably only for horizontal polarization. These results cannot be fully accounted for by current theories for the charge density wave (CDW) and point to a reduced symmetry of the electronic states, possibly due to the chiral CDW.
Directory of Open Access Journals (Sweden)
Damien H. Chua
2009-01-01
Full Text Available We investigate the spatial variability of electron densities in the nightside ionosphere and its effects on very-low frequency (VLF wave propagation using a suite of instruments from the FORMOSAT-3/Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC spacecraft.We use observations from the Tiny Ionospheric Photometer (TIP instruments to infer the horizontal electron density gradients along each satellite track. We demonstrate that the OI 1356 _ radiance measured by the TIP instruments tracks the horizontal electron density structure well with high spatial resolution and unprecedented sensitivity. Accurate measurements of the horizontal electron density gradients are important for improving retrieved electron density profiles from GPS occultation and other tomographic remote sensing techniques. The processes underlying the variability in the large-scale, nightside electron density gradients are the main drivers of ionospheric weather. TIP observations reveal significant variability in both the small and large scale structure of the nightside ionosphere. The relative intensities, relative widths, and latitudinal separation of the northern and southern ionization crests of the Appleton anomalies show a high degree of longitudinal variation.We demonstrate how the TIP observations can be used to measure the horizontal gradient of the refractive index of whistler-mode VLF waves propagating in a cold, collisionless plasma. These measurements are critical for understanding how gradients in electron density associated with ionospheric structure such as depletions and the Appleton anomalies affect VLF wave propagation through the equatorial and mid-latitude ionosphere.
Medeiros, Paulo V. C.; Tsirkin, Stepan S.; Stafström, Sven; Björk, Jonas
2015-01-01
We show that the spectral weights Wm K ⃗(k ⃗) used for the unfolding of two-component spinor eigenstates | ψmK ⃗ SC>=|α >| ψmK ⃗ SC,α >+|β >| ψmK ⃗ SC,β > can be decomposed as the sum of the partial spectral weights WmK ⃗ μ(k ⃗) calculated for each component μ =α ,β independently, effortlessly turning a possibly complicated problem involving two coupled quantities into two independent problems of easy solution. Furthermore, we define the unfolding-density operator ρ̂K ⃗(k ⃗;ɛ ) , which unfolds the primitive cell expectation values φpc(k ⃗;ɛ ) of any arbitrary operator φ ̂ according to φpc(k ⃗;ɛ ) =Tr( ρ̂K ⃗(k ⃗;ɛ ) φ ̂) . As a proof of concept, we apply the method to obtain the unfolded band structures, as well as the expectation values of the Pauli spin matrices, for prototypical physical systems described by two-component spinor eigenfunctions.
Charge density wave and excitonic magnetic polarons in CeTe sub 2
Kasuya, T; Takabatake, T
2000-01-01
Mechanisms of anomalous magnetic and transport properties in CeTe sub 2 observed recently on single-crystal samples are studied by comparing with the nonmagnetic reference material LaTe sub 2 , as well as other typical low carrier-density systems such as Ce monopnictides, doped Eu chalcogenides and Yb sub 4 As sub 3. The present system is unique on the point of low-carrier semimetal due to CDW of near perfect nesting, which is shown to be nearly independent of the spin-orbit splitting. The large residual resistivity indicates the giant molecular scattering due to excitonic states forming the distorted Wigner crystal, similar to Yb sub 4 As sub 3. At low temperatures, induced magnetic polarons cause unusual novel transport properties with a sharp peak of resistivity without any anomaly on other physical properties. This is attributed to a sharp glassy transition from an antiferromagnetic short-range ordering to the ferromagnetic ordering of the magnetic polarons within each CeTe double layer sandwiching the mo...
Fujita, Toshiyuki; Sasaki, Takahiko; Yoneyama, Naoki; Kobayashi, Norio
2004-04-01
We report on the low-frequency AC higher harmonic response measurements in the density wave state of the layered organic conductor α-(BEDT-TTF) 2KHg(SCN) 4. The non-linear conduction in the longitudinal magnetoresistance is detected as the enhancement of the higher harmonic response. The magnitude of the non-linearity oscillates in the high magnetic field with the same frequency of the Shubnikov-de Haas oscillations. The observation is suggestive of the presence of the successive field-induced transition of the density wave state synchronized with the quantum oscillation in high magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Fujita, Toshiyuki; Sasaki, Takahiko; Yoneyama, Naoki; Kobayashi, Norio
2004-04-30
We report on the low-frequency AC higher harmonic response measurements in the density wave state of the layered organic conductor {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}. The non-linear conduction in the longitudinal magnetoresistance is detected as the enhancement of the higher harmonic response. The magnitude of the non-linearity oscillates in the high magnetic field with the same frequency of the Shubnikov-de Haas oscillations. The observation is suggestive of the presence of the successive field-induced transition of the density wave state synchronized with the quantum oscillation in high magnetic fields.
Nogueira, P. A.; Abdu, M. A.; Souza, J. R.; Bailey, G. J.; Shume, E. B.; Denardini, C. M.
2012-12-01
Recent observations of the low-latitude ionospheric electron density have revealed a longitudinal structure in the Equatorial Ionization Anomaly (EIA) intensity, which is characterized by a wave number-four pattern when plotted at a constant-local-time frame. It has been proposed that neutral wind driven dynamo electric fields from the E-region due to non migrating tidal modes are responsible for this pattern. In the present work we have used measurements from the Defense Meteorological Satellite Program (DMSP) to investigate the four peaks structure in the topside electron density of the low latitude ionosphere. We also compare the climatology of the Total Electron Content (TEC) as observed by GPS receivers in two equatorial stations over South America, São Luís (2.33 S, 315.8E, declination = -19 degree) in Brazil and Arequipa (16.5S, 288.5E, declination = 0.5 degree) in Peru. TEC variations for three solar activity levels (high, moderate and low) have been analyzed. TEC values over São Luís are found to be larger than that ones over Arequipa independent of the season, local time and solar cycle conditions. We estimated the vertical plasma drifts over these stations using magnetometer data during daytime and using ionosonde data for evening hours. We fed the Sheffield University Plasmasphere Ionosphere Model (SUPIM) with this drifts in an attempt to partially explain the differences in the TEC over these stations. The SUPIM was also used to evaluate the effect of thermospheric wind to cause the four peaks structure in the plasma density. Therefore, we analyze the equatorial ionospheric response to combined effects of thermospheric neutral winds and zonal electric field causing the longitudinal variation in TEC observed in the South American longitude sector.
Directory of Open Access Journals (Sweden)
M. I. Baranov
2016-11-01
Full Text Available Purpose. Calculation and experimental determination of average geometrical features of distributing of macroscopic electron wave packages (EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Methodology. Theoretical bases of the electrical engineering, bases of atomic and quantum physics, electrophysics bases of technique of high voltage and high pulsed currents. Results. The results of the conducted calculation and experimental researches are resulted on close determination of average geometrical features of distribution of longitudinal and radial EWP of macroscopic sizes in the indicated conductors. These descriptions are included by the average widths of «hot» and «cold» longitudinal and radial areas of conductor, and also average steps of division into the periods of similar areas. Results of the executed calculations and high temperature experiments for average geometrical features of longitudinal EWP in the zincked steel wire of diameter of 1.6 mm and length of 320 mm with the aperiodic impulse of current of temporal form 9 ms/160 ms and by amplitude 745 A coincide within the limits of 19 %. Originality. First with the use of methods of atomic and quantum physics the features of the stochastic distributing and mean values of basic geometrical sizes are analysed macroscopic longitudinal and radial EWP in round cylindrical metallic conductors with the pulsed axial current of high density. Practical value. Drawing on the got results in practice will allow more reliably to forecast geometrical sizes and places of localization of arising up in the probed metallic conductors with pulsed axial current of high density longitudinal and radial EWP.
Ribstein, Bruno; Achatz, Ulrich; Senf, Fabian
2014-05-01
abstract Gravity waves (GWs) and solar tides (STs) are main constituents of the dynamical coupling between troposphere and mesosphere-lower-thermosphere (MLT). Via momentum deposition, GWs control to a large extent the mesospheric mean circulation. STs are large scale waves, mostly due to tropospheric and stratospheric diurnal heating processes, that modulate all dynamical fields in the mesosphere. GWs ant STs also interact strongly with each other. Conventional GW parameterizations used to describe this interaction (e.g. [1]) neglect the time-dependence and horizontal gradients of the background flow, with fatal effects (e.g. [2]). We study here the propagation of GWs in a time-dependent middle-atmosphere background flow, using a new (caustics free) WKB GW model (ray tracer). The background flow is composed by a climatological mean and tidal fields extracted from a general circulation model (HAMMONIA, see [3]). In order to avoid caustics, inevitable in classic ray-tracer implementations, we implemented a new wave-action phase-space density conservation scheme [4, 5]. The scheme attaches to each ray a finite volume in the location & wavenumber phase-space. The location-wavenumber volume is conserved during the propagation, responding in shape to the local stretching and squeezing in wave-number space. From the propagation of GWs we evaluate the deposition of momentum and buoyancy. Rayleigh-friction and temperature-relaxation coefficients are also evaluated. In this extension of the study by [2] it is shown, with an amplitude scheme more stable against numerical instabilities, due to the avoidance of caustics, that STs (and so the time dependence of the background flow) modulate the propagation of GWs. Via Rayleigh-friction and temperature-relaxation coefficients, we also quantify how the pseudo-momentum-, momentum-, and enthalpy-deposition of GWs can influence the amplitude and the phase structure of STs. Finally, we compare momentum and buoyancy fluxes from the
Energy Technology Data Exchange (ETDEWEB)
Creager, W.N.
1991-09-01
The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.
Energy Technology Data Exchange (ETDEWEB)
Kirchmann, P.S. [Department of Applied Physics, Stanford University, Stanford, CA (United States); Fachbereich Physik, Freie Universitaet Berlin (Germany); Schmitt, F.T.; Moore, R.G.; Chu, J.H.; Ru, N.; Fisher, I.R.; Shen, Z.X. [Department of Applied Physics, Stanford University, Stanford, CA (United States); Bovensiepen, U. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Universitaet Duisburg-Essen, Institut fuer Experimentelle Physik, Duisburg (Germany); Rettig, L.; Krenz, M. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Perfetti, L. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Ecole Polytechnique, Palaiseau (France); Wolf, M. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)
2010-07-01
Charge density wave (CDW) systems such as TbTe{sub 3} offer fascinating options for studying the correlation of electrons and the lattice. We investigate the ultrafast response of the charge density wave (CDW) phase in TbTe{sub 3} after femtosecond IR excitation using time- and angle-resolved photoemission. The time-dependent photoemission intensity at the Fermi level yields a characteristic time for the closing of the CDW bandgap. With increasing laser fluence the bandgap closes faster, pointing to an increasing slope of the excited potential energy surface. As function of electron momentum the amplitude of the response increases strongly at the position of the Fermi wave vector k{sub F}. These results vividly demonstrate that the CDW system is most susceptible to electronic excitations near k{sub F} and that these electronic perturbations drive collective excitations of the coupled electron-lattice system.
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Charge density wave and superconductivity in 2H- and 4H-NbSe2: A revisit
Indian Academy of Sciences (India)
I Naik; A K Rastogi
2011-06-01
Good-quality hexagonal NbSe2 single crystals were prepared. In 2H-NbSe2, superconducting and charge density wave (CDW) transitions were found at = 7.4 K and = 35 K respectively as reported previously. We have noticed that these two transitions are changed to = 42 K and = 6.5 K, in 4H-NbSe2. Thermopower has shown clear anomaly at CDW transitions. The anisotropic upper critical ﬁeld was calculated as ∼ 3 and 6.3 for 2H- and 4H-single crystals around = 0.81, where = /, from resistivity and explained in terms of coherence length. From the relation, $H_{c2}() = H_{c2}(0)[1 − ^2]$, $H^l_{c2}(0)$ was calculated as ∼ 8.15 T and 16.98 T at = 0.84 in 2H-NbSe2 and 4H-NbSe2 respectively. However, $H^_{c2}(0) = 2.68$ T for both single crystals.
Pressure dependence of the optical properties of the charge-density-wave compound LaTe2
Energy Technology Data Exchange (ETDEWEB)
Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Perucchi, A.; /INFM, Trieste; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.
2009-12-14
We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.
Origin of the Galactic Center S-Stars: Gravitational Torques from Lin-Shu-Type Spiral Density Waves
Griv, Evgeny
2010-02-01
The supermassive ~4 × 106 M sun black hole at the Galactic center is surrounded by a parsec-scale star disk, with several thousands of dynamically relaxed, evolved, late-type CO absorption line stars and a small ~100 population of luminous O and Wolf-Rayet stars which move in approximately circular Keplerian orbits. These bluish in color massive O and Wolf-Rayet stars are very young with an estimated age of 6 ± 2 Myr. Another small group of roughly 20 young (blue B stars with the orbital periods as short as 15 years ("S-stars") follow eccentric, randomly oriented orbits well inside the disk stars. A model is proposed to explain the S-stars. Accordingly, the stars formed originally in the parsec-scale disk through Jeans' gravitational fragmentation of gas. The newly formed S-stars then migrated inward to the Galactic center via the torques exerted by Lin-Shu-type spiral density waves on the stars at an inner Lindblad resonance. The model explains both the number of observed S-stars orbiting the Galactic black hole within the nuclear (<0.05 pc) star cluster and the key property of the S-star orbits, namely, their high eccentricities.
Emergence of coherence in the charge-density wave state of 2H-NbSe2
Chatterjee, U.; Zhao, J.; Iavarone, M.; Di Capua, R.; Castellan, J. P.; Karapetrov, G.; Malliakas, C. D.; Kanatzidis, M. G.; Claus, H.; Ruff, J. P. C.; Weber, F.; van Wezel, J.; Campuzano, J. C.; Osborn, R.; Randeria, M.; Trivedi, N.; Norman, M. R.; Rosenkranz, S.
2015-01-01
A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set in simultaneously at the CDW transition temperature Tcdw. Here we investigate, using photoemission, X-ray scattering and scanning tunnelling microscopy, the canonical CDW compound 2H-NbSe2 intercalated with Mn and Co, and show that the conventional view is untenable. We find that, either at high temperature or at large intercalation, CDW order becomes short-ranged with a well-defined amplitude, which has impacts on the electronic dispersion, giving rise to an energy gap. The phase transition at Tcdw marks the onset of long-range order with global phase coherence, leading to sharp electronic excitations. Our observations emphasize the importance of phase fluctuations in strongly coupled CDW systems and provide insights into the significance of phase incoherence in ‘pseudogap’ states. PMID:25687135
Chaves, C. A. M.; Ussami, N.; Ritsema, J.
2014-12-01
The Parana Magmatic Province (PMP) is one of the largest continental igneous provinces (LIP) on Earth. It is well dated at 133 Ma preceding the opening of the South Atlantic Ocean, but the causative geodynamic processes are still poorly understood. Although a low-velocity anomaly has been imaged by seismic tomography in the northeast region of the PMP and interpreted as a fossil conduct of a mantle plume that is related to the flood basalt eruptions, geochemical data indicate that such magmatism is caused by the melting of a heterogeneous and enriched lithospheric mantle with no deep plume participation. Models of density perturbations in the upper mantle estimated from joint inversion of geoid anomalies and P-wave delay times will offer important constraints on mantle dynamics. A new generation of accurate global geopotential models derived from satellite-missions (e.g. GRACE, GOCE) allows us to estimate density distribution within the Earth from geoid inversion. In order to obtain the residual geoid anomaly related to the density structure of the mantle, we use the EGM2008 model removing estimated geoid perturbations owing to variations in crustal structure (i.e., topographical masses, Moho depth, thickness of sediments and basalts). Using a spherical-Earth approximation, the density model space is represented by a set of tesseroids and the velocity model is parameterized in nodes of a spherical grid where cubic B-splines are utilized as an interpolation function. To constrain the density inversion, we add more than 10,000 manually picked teleseismic P-wave delay times. During the inversion procedure, density and P-wave velocity are linked through the optimization of a constant linear factor correlating density and velocity perturbation. Such optimization will be performed using a probability density function (PDF) [Tarantola, 2005]. We will present the preliminary results of this joint inversion scheme and hypothesize on the geodynamic processes responsible for
DEFF Research Database (Denmark)
Blackburn, E.; Chang, J.; Hücker, M.;
2013-01-01
X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane compone...
Suppression and inducement of the charge-density-wave state in Cr x TiSe2.
Selezneva, N V; Sherokalova, E M; Pleshchev, V G; Kazantsev, V A; Baranov, N V
2016-08-10
The x-ray diffraction, electrical resistivity and thermal expansion measurements have been employed to study how the intercalation of Cr atoms into TiSe2 matrix affects the crystal structure, formation of the charge density wave (CDW) and electrical properties. The intercalation of a small amount of Cr atoms (up to x ~ 0.03) is observed to suppress the CDW formation. The electrical resistivity of Cr x TiSe2 compounds with the Cr concentrations 0.03 ⩽ x ⩽ 0.20 shows a metallic-type behavior; while in the concentration range 0.25 ⩽ x ⩽ 0.5, the resistivity shows an anomalous behavior indicating the reappearance of the transition to a CDW-like state; further growth of the Cr content up to x = 0.6 again leads to the metallic-type resistivity. For the compound Cr0.25TiSe2, the phase transition below 160 K together with abnormal change in the electrical resistivity is found to be accompanied by anomalies in the lattice parameters and thermal expansion behavior; this transition is classified as first-order type. It has been found that despite the intercalation of Cr atoms some Ti-Se bonds in the Se-Ti-Se tri-layers of Cr x TiSe2 with x ⩽ 0.5 have nearly the same lengths as in the host lattice TiSe2, which apparently allows the transition to be returned to the CDW-like state.
Zimik, Soling
2016-01-01
Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re- entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the- art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral or scroll-wave frequency {\\omega}, induced by the GFD. We examine the effects of the resting membrane pote...
Waldron, Wayne L.; Klein, Larry; Altner, Bruce
1994-01-01
We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.
Mamun, A A; Shukla, P K
2009-09-01
Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.
Gnanalingam, S.; Kane, J. A.
1975-01-01
The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.
Directory of Open Access Journals (Sweden)
G. Nath
2011-01-01
Full Text Available The propagation of a cylindrical (or spherical shock wave in an ideal gas with azimuthal magnetic field and with or without self-gravitational effects is investigated. The shock wave is driven out by a piston moving with time according to power law. The initial density and the initial magnetic field of the ambient medium are assumed to be varying and obeying power laws. Solutions are obtained, when the flow between the shock and the piston is isothermal. The gas is assumed to have infinite electrical conductivity. The shock wave moves with variable velocity, and the total energy of the wave is nonconstant. The effects of variation of the piston velocity exponent (i.e., variation of the initial density exponent, the initial magnetic field exponent, the gravitational parameter, and the Alfven-Mach number on the flow field are obtained. It is investigated that the self-gravitation reduces the effects of the magnetic field. A comparison is also made between gravitating and nongravitating cases.
Perry, G. W.; James, H. G.; Gillies, R.; McWilliams, K. A.; St-Maurice, J. P.; Yau, A. W.
2015-12-01
One of the scientific objectives of the enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) is to study ionospheric density structure and its impact on High Frequency (HF) radio wave propagation. We present a survey of several ePOP RRI transits through isolated beams of the Super Dual Auroral Radar Network (SuperDARN) Saskatoon and Rankin Inlet radars. It reveals that the spreading of a SuperDARN beam beyond its nominal azimuthal beam width of 3.24° is a common occurrence at auroral and polar latitudes. Furthermore, on multiple occasions, lateral deviations of a beam's power peak by several beam widths was measured, indicating the presence of significant plasma density gradients along the ray path. The e-POP RRI measurements illustrate that our understanding and recognition of plasma density gradients and their influence on HF radio wave propagation is limited. We report on the results of employing HF ray tracing techniques to quantify the impact of ionospheric structuring on HF radio wave propagation, and consider the source of the gradients contributing to the spreading of the SuperDARN beams.
Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.
2012-12-01
Electric field and plasma density observations gathered on the C/NOFS satellite are presented in cases where the ionosphere F-peak has been elevated above the satellite perigee of 400 km in the evening. During these passes, data from the electric field and plasma density probes on the satellite frequently show evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. We present statistics of numerous examples of these large scale waves detected by instruments on the C/NOFS satellite.
Huete Ruiz de Lira, C; Velikovich, A L; Wouchuk, J G
2011-05-01
We present an analytical linear model describing the interaction of a planar shock wave with an isotropic random pattern of density nonuniformities. This kind of interaction is important in inertial confinement fusion where shocks travel into weakly inhomogeneous cryogenic deuterium-wicked foams, and also in astrophysics, where shocks interact with interstellar density clumps. The model presented here is based on the exact theory of space and time evolution of the perturbed quantities generated by a corrugated shock wave traveling into a small-amplitude single-mode density field. Corresponding averages in both two and three dimensions are obtained as closed analytical expressions for the turbulent kinetic energy, acoustic energy flux, density amplification, and vorticity generation downstream. They are given as explicit functions of the two parameters (adiabatic exponent γ and shock strength M(1)) that govern the dynamics of the problem. In addition, these explicit formulas are simplified in the important asymptotic limits of weak and strong shocks and highly compressible fluids. © 2011 American Physical Society
Huete Ruiz de Lira, C.; Velikovich, A. L.; Wouchuk, J. G.
2011-05-01
We present an analytical linear model describing the interaction of a planar shock wave with an isotropic random pattern of density nonuniformities. This kind of interaction is important in inertial confinement fusion where shocks travel into weakly inhomogeneous cryogenic deuterium-wicked foams, and also in astrophysics, where shocks interact with interstellar density clumps. The model presented here is based on the exact theory of space and time evolution of the perturbed quantities generated by a corrugated shock wave traveling into a small-amplitude single-mode density field. Corresponding averages in both two and three dimensions are obtained as closed analytical expressions for the turbulent kinetic energy, acoustic energy flux, density amplification, and vorticity generation downstream. They are given as explicit functions of the two parameters (adiabatic exponent γ and shock strength M1) that govern the dynamics of the problem. In addition, these explicit formulas are simplified in the important asymptotic limits of weak and strong shocks and highly compressible fluids.
Energy densities of Alfven waves between 0.7 and 1.6 AU. [in interplanetary medium
Belcher, J. W.; Burchsted, R.
1974-01-01
Plasma and field data from Mariner 4 and 5 between 0.7 and 1.6 AU are used to study the radial dependence of the levels of microscale fluctuation associated with interplanetary Alfven waves. The observed decrease of these levels with increasing distance from the sun is consistent with little or no local generation or damping of the ambient Alfven waves over this range of radial distance.
Relationship between hole density and charge-ordering wave vector in Sr14-xCaxCu24O41
Rusydi, A.; Berciu, M.; Abbamonte, P.; Smadici, S.; Eisaki, H.; Fujimaki, Y.; Uchida, S.; Ruebhausen, M.; Sawatzky, G. A.
2007-01-01
The distribution of holes in Sr14-xCaxCu24O41 is revisited with semiempirical reanalysis of the x-ray absorption data and exact diagonalization cluster calculations. Another interpretation of the XAS data leads to much larger ladder hole densities than previously suggested. These new hole densities
U.S. Geological Survey, Department of the Interior — This part of the data release includes Multi-Sensor Core Logger (MSCL) P-wave velocity, gamma-ray density, and magnetic susceptibility whole-core logs of sediment...
Engelen, AH; Aberg, P; Olsen, JL; Stam, WT; Breeman, AM
2005-01-01
Sargassum polyceratium is widely distributed around the island of Curacao ( Netherlands Antilles) where it inhabits strongly contrasting habitats. Changes in population structure have been followed in three bays with increasing levels of wave exposure at two depths: shallow ( 0 m) and deep ( 18 m).
DEFF Research Database (Denmark)
Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.
2011-01-01
We describe the implementation of K-shell core level spectroscopies (X-ray absorption (XAS), X-ray emission (XES), and X-ray photoemission (XPS)) in the real-space-grid-based Projector Augmented Wave (PAW) GPAW code. The implementation for XAS is based on the Haydock recursion method avoiding com...
Engelen, AH; Aberg, P; Olsen, JL; Stam, WT; Breeman, AM
Sargassum polyceratium is widely distributed around the island of Curacao ( Netherlands Antilles) where it inhabits strongly contrasting habitats. Changes in population structure have been followed in three bays with increasing levels of wave exposure at two depths: shallow ( 0 m) and deep ( 18 m).
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1
Devolder, Thibaut
2017-09-01
We study how the shape of the spin-wave resonance lines in rf voltage induced FMR can be used to extract the spin-wave density of states and the Gilbert damping within the precessing layer in nanoscale magnetic tunnel junctions that possess perpendicular magnetic anisotropy. We work with a field applied along the easy axis to preserve the cylindrical symmetry of the uniaxial perpendicularly magnetized systems. We first describe the experimental setup to study the susceptibility contributions of the spin waves in the field-frequency space. We then identify experimentally the maximum device size above which the spin waves confined in the free layer can no longer be studied in isolation as the linewidths of their discrete responses make them overlap into a continuous density of states. The rf voltage induced signal is the sum of two voltages that have comparable magnitudes: a first voltage that originates from the linear transverse susceptibility and rectification by magnetoresistance and a second voltage that arises from the nonlinear longitudinal susceptibility and the resultant time-averaged change of the exact micromagnetic configuration of the precessing layer. The transverse and longitudinal susceptibility signals have different dc bias dependencies such that they can be separated by measuring how the device rectifies the rf voltage at different dc bias voltages. The transverse and longitudinal susceptibility signals have different line shapes; their joint studies in both fixed field-variable frequency, or fixed frequency-variable field configurations can yield the Gilbert damping of the free layer of the device with a degree of confidence that compares well with standard ferromagnetic resonance. Our method is illustrated on FeCoB-based free layers in which the individual spin waves can be sufficiently resolved only for disk diameters below 200 nm. The resonance line shapes on devices with 90-nm diameters are consistent with a Gilbert damping of 0.011 . A single
Mello, Pier A.; Shi, Zhou; Genack, Azriel Z.
2016-08-01
We study the average energy - or particle - density of waves inside disordered 1D multiply-scattering media. We extend the transfer-matrix technique that was used in the past for the calculation of the intensity beyond the sample to study the intensity in the interior of the sample by considering the transfer matrices of the two segments that form the entire waveguide. The statistical properties of the two disordered segments are found using a maximum-entropy ansatz subject to appropriate constraints. The theoretical expressions are shown to be in excellent agreement with 1D transfer-matrix simulations.
Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Vidal, F.
2007-03-01
The fluctuation-diamagnetism (FD) above the superconducting transition was measured in 2H-NbSe2 single crystals. The moderate uniaxial anisotropy of this compound, and some experimental improvements, allowed us to measure the superconducting fluctuation effects in the two main crystallographic directions. These results reveal that the nonlocal electrodynamic effects on the FD are highly anisotropic, and they also discard a possible contribution to the FD coming from the charge-density waves (CDWs) appearing below TCDW>TC in 2H-NbSe2 , in agreement with a phenomenological estimate.
Energy Technology Data Exchange (ETDEWEB)
Frolov, A. A., E-mail: frolov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-12-15
A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable with the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.
Fritts, David
1987-02-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying
2017-07-01
Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.
Kolincio, Kamil; Pérez, Olivier; Hébert, Sylvie; Fertey, Pierre; Pautrat, Alain
2016-06-01
Detailed structural and magnetotransport properties of monophosphate tungsten bronze Kx(PO2)4(WO3)8 single crystals are reported. Both galvanomagnetic and thermal properties are shown to be consistent with a charge density wave electronic transition due to hidden nesting of the quasi-1D portion of the Fermi surface. We also observe the enhancement of electronic anisotropy due to reconstruction of the Fermi surface at the Peierls transition. The resistivity presents a thermal hysteresis suggesting a first-order nature characteristic of a strong-coupling scenario. However, other measurements such as the change of carrier density demonstrate a second-order Peierls scenario with weak-coupling features. We suggest that the structural transition driven by the residual strain in the K-P-O environment is responsible for the resistivity hysteresis and modifies the Fermi surface which then helps the rise to the second-order Peierls instability.
X-ray study of femtosecond structural dynamics in the 2D charge density wave compound 1T-TaS{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Laulhé, C., E-mail: laulhe@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France); Université Paris-Sud, F-91405 Orsay Cedex (France); Cario, L.; Corraze, B.; Janod, E. [Institut des Matériaux Jean Rouxel - UMR 6502, Université de Nantes, 2 rue de la Houssinière, F-44322 Nantes (France); Huber, T. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Lantz, G. [Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, UMR 8502, F-91405 Orsay (France); Boulfaat, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France); Ferrer, A.; Mariager, S.O.; Johnson, J.A.; Grübel, S.; Lübcke, A.; Ingold, G.; Beaud, P. [Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen (Switzerland); Johnson, S.L. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Ravy, S. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin - BP 48, F-91192 Gif-sur-Yvette (France)
2015-03-01
1T-TaS{sub 2} is a 2D metallic compound which undergoes a series of electronically driven phase transitions toward charge density wave and Mott phases. Its intricate electron–phonon interactions and electron–electron correlations have been promising peculiar out-of-equilibrium dynamics. In this paper, we provide the first direct information on the atomic structure response to an ultra-fast infrared laser pulse in the commensurate phase of 1T-TaS{sub 2}, by using femtosecond time-resolved X-ray diffraction. We show that ultra-fast excitation with near-infrared photons drives a displacive excitation of the amplitude mode of the commensurate charge density wave. About 3 ps after laser excitation, the system reaches a new, photo-induced state that is maintained for at least 10 ps. We give evidence that this long-lived state exhibits the same structural modulation as in the thermodynamically stable commensurate phase, with a large correlation length. Only the average amplitude of the modulation is found to decrease. We propose that the long-lived state is formed from the commensurate phase by reducing the modulation amplitude on few superlattice nodes. The underlying mechanism proposed is the annihilation of self-trapped polarons.
Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.
2015-12-01
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.
Kuhns, P. L.; Brooks, J. S.; Caldwell, T.; Moulton, W. G.; Reyes, A. P.; Biskup, N.; Kini, A. M.; Schlueter, J. A.; Wang, H. H.; Geiser, U.; Williams, J. M.
1999-02-01
We present NMR measurements on α-(BEDT-TTF) 2KHg(SCN) 4, in which the six inner carbon sites of BEDT-TTF are labeled with the 13C isotope, at low temperatures and in magnetic fields up to 28.8 T. We find, based on microscopic measurements which probe the center of the primary molecular orbital, that the density wave ground state of this system persists up to fields well above the so-called "kink field", a hysteretic transition observed in transport near 23 T below 6 K. The main implication of this result is that in the low temperature limit, the ground state of this material is not fully metallic, but still partially gapped, even to 28.8 T. We obtain a BCS-like relationship between the transition temperature and the energy gap, as derived from the spin relaxation measurements using a simple model. Further, the 13C NMR spectrum is relatively insensitive to crossing the phase boundary, a result that does not support the notion that the ground state is a conventional spin density wave ground state.
Forgan, E M; Blackburn, E; Holmes, A T; Briffa, A K R; Chang, J; Bouchenoire, L; Brown, S D; Liang, Ruixing; Bonn, D; Hardy, W N; Christensen, N B; Zimmermann, M V; Hücker, M; Hayden, S M
2015-12-09
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼ 60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.
Directory of Open Access Journals (Sweden)
P. A. Bespalov
2006-09-01
Full Text Available We consider the field-aligned acceleration of energetic ions and electrons which takes place on auroral field lines due to their interaction with time-varying density cavities stimulated by the strong oscillating field-aligned currents of kinetic Alfvén waves. It is shown that when the field-aligned current density of these waves increases, such that the electron drift speed exceeds the electron thermal speed, ion acoustic perturbations cease to propagate along the field lines and instead form purely-growing density perturbations. The rarefactions in these perturbations are found to grow rapidly to form density cavities, limited by the pressure of the bipolar electric fields which occur within them. The time scale for growth and decay of the cavities is much shorter than the period of the kinetic Alfvén waves. Energetic particles traversing these growing and decaying cavities will be accelerated by their time-varying field-aligned electric fields in a process that is modelled as a series of discrete random perturbations. The evolution of the particle distribution function is thus determined by the Fokker-Planck equation, with an energy diffusion coefficient that is proportional to the square of the particle charge, but is independent of the mass and energy. Steady-state solutions for the distribution functions of the accelerated particles are obtained for the case of an arbitrary energetic particle population incident on a scattering layer of finite length along the field lines, showing how the reflected and transmitted distributions depend on the typical "random walk" energy change of the particles within the layer compared to their initial energy. When this typical energy change is large compared to the initial energy, the reflected population is broadly spread in energy about a mean which is comparable with the initial energy, while the transmitted population has the form of a strongly accelerated field-aligned beam. We suggest that these
Phase-separated charge-density-wave phase in the two-species extended Bose-Hubbard model
Mishra, Tapan; Sahoo, B. K.; Pai, Ramesh V.
We study the quantum phase transitions in a two component Bose mixture in a one-dimensional optical lattice. The calculations have been performed in the framework of the extended Bose-Hubbard model using the finite size density matrix renormalization group method. We obtain different phase
2005-03-22
Refraction Since sin 2 Ogm < sin 2 0r, < 1, the separating curve crosses [12] The standard wave coefficients [Stix, 1962] for a cold zero at w, with...o/ slwa ,tehg-est 00 "q *Mk= *peak=*okK 6.37x10 6.37x10 7.08x 10-’ 0 Qgm Q./2 1)..0 ogm fne/2 Q.. 0 ogm 0.2. Figure 4. The function A11(w) (dashed
Li, Fubing; He, Qiong; Huang, Chengwu; Liu, Ke; Shao, Jinhua; Luo, Jianwen
2016-04-01
Pulse wave imaging (PWI) is an ultrasound-based method to visualize the propagation of pulse wave and to quantitatively estimate regional pulse wave velocity (PWV) of the arteries within the imaging field of view (FOV). To guarantee the reliability of PWV measurement, high frame rate imaging is required, which can be achieved by reducing the line density of ultrasound imaging or transmitting plane wave at the expense of spatial resolution and/or signal-to-noise ratio (SNR). In this study, a composite, full-view imaging method using motion matching was proposed with both high temporal and spatial resolution. Ultrasound radiofrequency (RF) data of 4 sub-sectors, each with 34 beams, including a common beam, were acquired successively to achieve a frame rate of ∼507 Hz at an imaging depth of 35 mm. The acceleration profiles of the vessel wall estimated from the common beam were used to reconstruct the full-view (38-mm width, 128-beam) image sequence. The feasibility of mapping local PWV variation along the artery using PWI technique was preliminarily validated on both homogeneous and inhomogeneous polyvinyl alcohol (PVA) cryogel vessel phantoms. Regional PWVs for the three homogeneous phantoms measured by the proposed method were in accordance with the sparse imaging method (38-mm width, 32-beam) and plane wave imaging method. Local PWV was estimated using the above-mentioned three methods on 3 inhomogeneous phantoms, and good agreement was obtained in both the softer (1.91±0.24 m/s, 1.97±0.27 m/s and 1.78±0.28 m/s) and the stiffer region (4.17±0.46 m/s, 3.99±0.53 m/s and 4.27±0.49 m/s) of the phantoms. In addition to the improved spatial resolution, higher precision of local PWV estimation in low SNR circumstances was also obtained by the proposed method as compared with the sparse imaging method. The proposed method might be helpful in disease detections through mapping the local PWV of the vascular wall.
Kashkarov, AO; Ershov, AP; Pruuel, ER
2016-10-01
The features of near-threshold mode of initiating by gas-tight piston and high- enthalpy gas flow was evaluated for a powder density explosive PETN. Both methods lead to the development of detonation in about 10 μs time. The synchrotron radiation diagnostics have shown that the initial stages of the process were significantly different, that diversity being caused by the influence of the gas flow in the pores of the charge. In this work, the effect of the gas flow on the mode of initiation was studied experimentally.
Chen, Runze; Gao, Chaojun; Bu, Kun; Hao, Xiaoyu; Wang, Zichen; Wen, Lianjun; Guo, Juan; Chao, Mingju; Liang, Erjun; Yang, Lihong; Dong, Cheng
2017-02-01
Potassium tungsten bronzes KxWO3 (x=0.20 and 0.22) with the coexistence of charge density wave (CDW) and superconductivity (SC) were prepared from K2WO4, WO3 and W powders using a hybrid microwave method. The structure refinement confirmed that all samples had a pure hexagonal phase with the space group of P63 /mcm. The distortion degree of W-O octahedron declines with x and is independent of synthesis condition for the same x (=0.20). The CDW transition is studied as a function of residual resistivity ratio. By increasing the crystallinity of sample, this transition can be suppressed, which is probably attributed to the interaction between CDW and defects in crystallites. The CDW transition temperature increases with x, which may be related to the decline of the distortion degree of W-O octahedron. The competition between CDW and SC is observed according to the resistivity and magnetization measurements.
Stojchevska, L.; Borovšak, M.; Foury-Leylekian, P.; Pouget, J.-P.; Mertelj, T.; Mihailovic, D.
2017-07-01
All-optical femtosecond relaxation dynamics in a single crystal of monophosphate tungsten bronze (PO2)4(WO3)2m with alternate stacking m =6 of WO3 layers was studied through the three consequent charge-density-wave (CDW) transitions. Several transient coherent collective modes associated with the different CDW transitions were observed and analyzed in the framework of the time-dependent Ginzburg-Landau theory. Remarkably, the interference of the modes leads to an apparent rectification effect in the transient reflectivity response. A saturation of the coherent-mode amplitudes with increasing pump fluence well below the CDWs destruction threshold fluence indicates a decoupling of the electronic and lattice parts of the order parameter on the femtosecond timescale.
DEFF Research Database (Denmark)
Forgan, E.M.; Blackburn, E.; Holmes, A.T.;
2015-01-01
Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6...... with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements........54 at its superconducting transition temperature ∼60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar...
Energy Technology Data Exchange (ETDEWEB)
Kartsovnik, M.V., E-mail: mark.kartsovnik@wmi.badw.de [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Biberacher, W.; Andres, D.; Jakob, S.; Kunz, M.; Neumaier, K. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Mueller, H. [European Synchrotron Radiation Facility, 38043 Grenoble (France); Kushch, N.D. [Institute of Problems of Chemical Physics, 142432 Chernogolovka (Russian Federation)
2012-06-01
Coupling of a magnetic field to the orbital and spin degrees of freedom of charge carriers is well known to cause suppression of superconductivity. While the orbital pair-breaking generally dominates in conventional superconductors, the Pauli paramagnetic effect may become important in some heavy fermion compounds or strongly anisotropic materials such as high-T{sub c} or organic superconductors. The same two mechanisms are predicted to be operative also in the case of charge-density-wave (CDW) ordering. However, now they lead to opposite effects: the paramagnetic coupling weakens the CDW interaction whereas the orbital coupling enhances it in a system with an imperfectly nested Fermi surface. Here we report on the experimental evidence of both kinds of magnetic field effects on the CDW and superconducting instabilities in the layered organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under quasihydrostatic pressure.
Kartsovnik, M. V.; Biberacher, W.; Andres, D.; Jakob, S.; Kunz, M.; Neumaier, K.; Müller, H.; Kushch, N. D.
2012-06-01
Coupling of a magnetic field to the orbital and spin degrees of freedom of charge carriers is well known to cause suppression of superconductivity. While the orbital pair-breaking generally dominates in conventional superconductors, the Pauli paramagnetic effect may become important in some heavy fermion compounds or strongly anisotropic materials such as high-Tc or organic superconductors. The same two mechanisms are predicted to be operative also in the case of charge-density-wave (CDW) ordering. However, now they lead to opposite effects: the paramagnetic coupling weakens the CDW interaction whereas the orbital coupling enhances it in a system with an imperfectly nested Fermi surface. Here we report on the experimental evidence of both kinds of magnetic field effects on the CDW and superconducting instabilities in the layered organic metal α-(BEDT-TTF)2KHg(SCN)4 under quasihydrostatic pressure.
Incommensurate spin-density wave and magnetic lock-in transition in CaFe{sub 4}As{sub 3}.
Energy Technology Data Exchange (ETDEWEB)
Manuel, P.; Chapon, L. C.; Todorov, I. S.; Chung, D. Y.; Castellan, J.-P.; Rosenkranz, S.; Osborn, R.; Toledano, P.; Kanatzidis, M. G.; Materials Science Division; Rutherford Appleton Lab.; Univ. of Picardie; Northwestern Univ.
2010-05-01
The magnetic structure for the recently synthesized iron-arsenide compound CaFe4As3 has been studied by neutron-powder diffraction. Long-range magnetic order is detected below 85 K, with an incommensurate modulation described by the propagation vector k=(0,?,0), ??0.39. Below ?25 K, our measurements detect a first-order phase transition where ? locks into the commensurate value 3/8. A model of the magnetic structure is proposed for both temperature regimes, based on Rietveld refinements of the powder data and symmetry considerations. The structures correspond to longitudinal spin-density waves with magnetic moments directed along the b axis. A Landau analysis captures the change in thermodynamic quantities observed at the two magnetic transitions, in particular, the drop in resistivity at the lock-in transition.
The Second Threshold Field of Charge-Density-Wave Conductor Rb0.3MoO3 in High Temperature Range
Institute of Scientific and Technical Information of China (English)
LI Da-Hua; XIONG Rui; WANG Jun-Feng; LI Chang-Zhen; YIN Di; YI Fan; TANG Wu-Feng; SHI Jing
2005-01-01
@@ The switching and threshold properties of quasi-one-dimensional charge-density-wave conductor rubidium blue bronze Rb0.3MoO3 single crystals are investigated in a comparative high and large temperature range. Beyond the limit temperature 50 K of Littlewood's theory, even up to about 100K, typical sharp switching to negative or zero differential resistance is observed in E-I characteristic curves. Correspondingly, an obvious switching between two conducting states, from a lowly conducting state to a highly conducting state, is observed in the I-E characteristic curves in the same temperature range. Temperature dependence of the second threshold field ET2 accompanied by this kind of high field switching behaviour is firstly obtained. These new observations are discussed in the mechanism of the current inhomogeneity and redistribution due to the existence of transverse energy barriers suggested by Zhang et al. [Solid State Commun. 85 (1993) 121
Energy Technology Data Exchange (ETDEWEB)
Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Moore, R.G.; He, R.; Lu, D.H.; Shen, Z.X.; Laverock, J.; Dugdale, S.; Ru, N.; Fisher, I.R.
2010-02-15
We present a detailed ARPES investigation of the RTe{sub 3} family, which sets this system as an ideal 'textbook' example for the formation of a nesting driven Charge Density Wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi Surface (FS) (up to 0.4eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k-space. An additional advantage of RTe{sub 3} is that the band structure can be very accurately described by a simple 2D tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure, by comparing our ARPES measurements with Linear Muffin-Tin Orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and, for the first time, of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k-space, the evolution of the CDW wave vector with R and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(Ef), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.
Gabovich, Alexander M.; Voitenko, Alexander I.
2016-10-01
The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.
Wiktor, Julia; Jomard, Gérald; Torrent, Marc
2015-09-01
Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.
Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing
2015-02-01
The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.
Blackburn, E; Chang, J; Hücker, M; Holmes, A T; Christensen, N B; Liang, Ruixing; Bonn, D A; Hardy, W N; Rütt, U; Gutowski, O; von Zimmermann, M; Forgan, E M; Hayden, S M
2013-03-29
X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is q(CDW)=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wave vector along the a axis. We discuss the relationship between spin and charge correlations in YBa2Cu3O(y) and recent high-field quantum oscillation, NMR, and ultrasound experiments.
Blackburn, E.; Chang, J.; Hücker, M.; Holmes, A. T.; Christensen, N. B.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Gutowski, O.; Zimmermann, M. v.; Forgan, E. M.; Hayden, S. M.
2013-03-01
X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wave vector along the a axis. We discuss the relationship between spin and charge correlations in YBa2Cu3Oy and recent high-field quantum oscillation, NMR, and ultrasound experiments.
Abram, M; Zegrodnik, M; Spałek, J
2017-09-13
In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.
Abram, M.; Zegrodnik, M.; Spałek, J.
2017-09-01
In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.
一种新型高功率密度的正弦波永磁电机%A Novel Sinusoidal-Wave Permanent Magnetic Motor with High Power Density
Institute of Scientific and Technical Information of China (English)
崔巍; 江建中; 汪信尧
2004-01-01
A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex mathematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed.
Rabanal-León, Walter A; Murillo-López, Juliana A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro
2015-09-24
The high interest in lanthanide chemistry, and particularly in their luminescence, has been encouraged by the need of understanding the lanthanide chemical coordination and how the design of new luminescent materials can be affected by this. This work is focused on the understanding of the electronic structure, bonding nature, and optical properties of a set of lanthanide hexaaza macrocyclic complexes, which can lead to potential optical applications. Here we found that the DFT ground state of the open-shell complexes are mainly characterized by the manifold of low lying f states, having small HOMO-LUMO energy gaps. The results obtained from the wave function theory calculations (SO-RASSI) put on evidence the multiconfigurational character of their ground state and it is observed that the large spin-orbit coupling and the weak crystal field produce a strong mix of the ground and the excited states. The electron localization function (ELF) and the energy decomposition analysis (EDA) support the idea of a dative interaction between the macrocyclic ligand and the lanthanide center for all the studied systems; noting that, this interaction has a covalent character, where the d-orbital participation is evidenced from NBO analysis, leaving the f shell completely noninteracting in the chemical bonding. From the optical part we observed in all cases the characteristic intraligand (IL) (π-π*) and ligand to metal charge-transfer (LMCT) bands that are present in the ultraviolet and visible regions, and for the open-shell complexes we found the inherent f-f electronic transitions on the visible and near-infrared region.
Fang, Changming; Li, Wun-Fan; Koster, Rik S; Klimeš, Jiří; van Blaaderen, Alfons; van Huis, Marijn A
2015-01-07
Knowledge about the intrinsic electronic properties of water is imperative for understanding the behaviour of aqueous solutions that are used throughout biology, chemistry, physics, and industry. The calculation of the electronic band gap of liquids is challenging, because the most accurate ab initio approaches can be applied only to small numbers of atoms, while large numbers of atoms are required for having configurations that are representative of a liquid. Here we show that a high-accuracy value for the electronic band gap of water can be obtained by combining beyond-DFT methods and statistical time-averaging. Liquid water is simulated at 300 K using a plane-wave density functional theory molecular dynamics (PW-DFT-MD) simulation and a van der Waals density functional (optB88-vdW). After applying a self-consistent GW correction the band gap of liquid water at 300 K is calculated as 7.3 eV, in good agreement with recent experimental observations in the literature (6.9 eV). For simulations of phase transformations and chemical reactions in water or aqueous solutions whereby an accurate description of the electronic structure is required, we suggest to use these advanced GW corrections in combination with the statistical analysis of quantum mechanical MD simulations.
Bandura, A V; Sofo, J O; Kubicki, J D
2006-04-27
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.
Directory of Open Access Journals (Sweden)
T. Djerafi
2012-12-01
Full Text Available This paper overviews the state-of-the-art of substrate integrated waveguide (SIW techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3 millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and sys-tems are proposed and studied to exploit the vertical di-mension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed.
Vucic, Z; Gladic, J; Haas, C; DeBoer, JL
1996-01-01
An X-ray study of the quasi-one-dimensional charge density wave (CDW) system (NbSe4)(10)I-3 as a function of temperature from room temperature down to 130 K has been performed by taking oscillation and zeroth level Weissenberg photographs. A reversible transformation of the room temperature tetragon
Torres, Edmanuel; DiLabio, Gino A
2013-08-13
Large clusters of noncovalently bonded molecules can only be efficiently modeled by classical mechanics simulations. One prominent challenge associated with this approach is obtaining force-field parameters that accurately describe noncovalent interactions. High-level correlated wave function methods, such as CCSD(T), are capable of correctly predicting noncovalent interactions, and are widely used to produce reference data. However, high-level correlated methods are generally too computationally costly to generate the critical reference data required for good force-field parameter development. In this work we present an approach to generate Lennard-Jones force-field parameters to accurately account for noncovalent interactions. We propose the use of a computational step that is intermediate to CCSD(T) and classical molecular mechanics, that can bridge the accuracy and computational efficiency gap between them, and demonstrate the efficacy of our approach with methane clusters. On the basis of CCSD(T)-level binding energy data for a small set of methane clusters, we develop methane-specific, atom-centered, dispersion-correcting potentials (DCPs) for use with the PBE0 density-functional and 6-31+G(d,p) basis sets. We then use the PBE0-DCP approach to compute a detailed map of the interaction forces associated with the removal of a single methane molecule from a cluster of eight methane molecules and use this map to optimize the Lennard-Jones parameters for methane. The quality of the binding energies obtained by the Lennard-Jones parameters we obtained is assessed on a set of methane clusters containing from 2 to 40 molecules. Our Lennard-Jones parameters, used in combination with the intramolecular parameters of the CHARMM force field, are found to closely reproduce the results of our dispersion-corrected density-functional calculations. The approach outlined can be used to develop Lennard-Jones parameters for any kind of molecular system.
Energy Technology Data Exchange (ETDEWEB)
Hansen, S; Schwartz, S
2006-02-08
A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may contribute to the pattern but is not sufficient to fully explain the observations. We feel that the uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate and density driven flow in the asthenosphere. By combining the northeast oriented flow associated with absolute plate motion with the northwest oriented flow associated with the channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that matches our splitting observations and supports models of active rifting processes. This explains why the north-south orientation of the fast polarization direction is so pervasive across the vast Arabian Plate.
Krstovska, Danica
2017-02-01
Magnetic field dependence of the thermopower and Nernst effect of the multiband organic conductor α - (BEDT - TTF)2KHg(SCN)4 is theoretically studied at low temperatures in the charge density wave (CDW) state, to fields of 30 T and several field directions. A theoretical model of quantum interlayer tunneling for the q1D charge carriers is used to probe the thermoelectric effects in the CDW state. The contribution from the q2D carriers is calculated by using the Boltzmann transport theory. The background components of the thermopower and Nernst effect as well as the quantum oscillations that originate from the closed Fermi surface orbits are analyzed. The model implies that in the CDW state, the properties of α - (BEDT - TTF)2KHg(SCN)4 are determined mostly by the orbits on the new open Fermi sheets. This is in accord with the previously reported CDW scenario of the low temperature state of α - (BEDT - TTF)2KHg(SCN)4 with imperfect nesting of the open Fermi surface sections.
Magnetic field controlled charge density wave coupling in underdoped YBa_{2}Cu_{3}O_{6+x}
DEFF Research Database (Denmark)
Chang, J.; Blackburn, E.; Ivashko, O.;
2016-01-01
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures...... remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼ 0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction...... at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry...
Energy Technology Data Exchange (ETDEWEB)
Croft, Thomas; Lester, Christopher; Hayden, Stephen [H.H. Wills Physics Laboratory, University of Bristol (United Kingdom); Bombardi, Alessandro; Senn, Mark [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire (United Kingdom)
2015-07-01
The recent observations of charge and stripe correlations in YBa{sub 2}Cu{sub 3}O{sub 6+x} and La{sub 2-x}Ba{sub x}CuO{sub 4} has reinvigorated interest in their role in influencing the superconductivity of the cuprates. However, structural complications of these systems makes it difficult to isolate the effect the lattice has in inducing the charge order. Here, we report hard X-ray diffraction measurements on three compositions (x=0.11,0.12,0.13) of the high-temperature superconductor La{sub 2-x}Sr{sub x}CuO{sub 4}, a canonical example of HTS with T{sub c} ∼ 35 K and a simple crystal structure. All samples show charge-density-wave (CDW) order with onset temperatures in the range 51-80 K and ordering wavevectors close to (0.23,0,0.5). We present a phase diagram of La{sub 2-x}Sr{sub x}CuO{sub 4} including the pseudogap phase, CDW and magnetic order.
Institute of Scientific and Technical Information of China (English)
DONG Guang-Jiong; HAN Ru-Shan; HUANG Yun; Kaoru Sakatani; HUANG Feng-Yuan
2001-01-01
An algorithm for the biochemical imaging of heterogeneity in the bio-tissue with finite parallel-plane geometry simultaneously using the data of reflectance and transmittance of diffuse-photon density waves is presented.In this algorithm, the priori knowledge of heterogeneity is not needed. This algorithm is suitable for the imaging of heterogeneity in the large volume tissue and in small organs. To reduce the errors produced by the algorithm, it is suggested that the experiment should be performed in two steps, at first step the light source should be placed at one boundary to measure the data of reflectance and transmittance, and these data are used to construct the heterogeneous function in the haff space close to the light source; at the second step the light source should be placed at another boundary to measure the data of reflectance and transmittance, these data are used to construct the heterogeneous function in another half space closed to the light source; after taking above two steps the heterogeneous function in the whole space is constructed.
Park, Goon Cherl
A state-of-the-art one-dimensional thermal-hydraulic model has been developed to be used for the linear analysis of nuclear-coupled density-wave oscillations in a boiling water nuclear reactor (BWR). The model accounts for phasic slip, distributed spacers, subcooled boiling, space/time -dependent power distributions and distributed heated wall dynamics. In addition to a parallel channel stability analysis, a detailed model was derived for the BWR loop analysis of both the natural and forced circulation modes of operation. In its final form, this model constitutes a multi -input, multi-output(MIMO) linear system, which features a general nodal neutron kinetics model. Kinetics parameters for use in the kinetics model have been obtained by utilizing self-consistent nodal data and power distributions. The stability characteristics of a typical BWR/4 has been investigated with the Nyquist criterion. The computer implementation of this model, NUFREQ -N, was used for the parametric study of a typical BWR/4 and comparisons were made with existing in-core and out -of-core data. Also, NUFREQ-N was used to analyze the expected stability characteristics of a typical BWR/4. The parametric results revealed important factors influencing BWR stability margin. It was found that NUFREQ -N generally agreed well with out-of-core data. This was especially true for the predicted power-to-flow transfer function, which is the most important transfer function in thermal-hydraulic stability analysis. In the stability analysis of a typical BWR/4 it was found that it is very important to use accurate models of thermal-hydraulic and neutron kinetic phenomena. Moreover, the accuracy of the nuclear input data is extremely important.
Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.
2016-09-01
The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.
Hsieh, S H; Solanki, R S; Wang, Y F; Shao, Y C; Lee, S H; Yao, C H; Du, C H; Wang, H T; Chiou, J W; Chin, Y Y; Tsai, H M; Chen, J-L; Pao, C W; Cheng, C-M; Chen, W-C; Lin, H J; Lee, J F; Chou, F C; Pong, W F
2017-12-01
The local electronic and atomic structures of the high-quality single crystal of SrFeO3-δ (δ~0.19) were studied using temperature-dependent x-ray absorption and valence-band photoemission spectroscopy (VB-PES) to investigate the origin of anisotropic resistivity in the ab-plane and along the c-axis close to the region of thermal hysteresis (near temperature for susceptibility maximum, Tm~78 K). All experiments herein were conducted during warming and cooling processes. The Fe L 3,2-edge X-ray linear dichroism results show that during cooling from room temperature to below the transition temperature, the unoccupied Fe 3d e g states remain in persistently out-of-plane 3d 3z(2)-r(2) orbitals. In contrast, in the warming process below the transition temperature, they change from 3d 3z(2)-r(2) to in-plane 3d x(2)-y(2) orbitals. The nearest-neighbor (NN) Fe-O bond lengths also exhibit anisotropic behavior in the ab-plane and along the c-axis below Tm. The anisotropic NN Fe-O bond lengths and Debye-Waller factors stabilize the in-plane Fe 3d x(2)-y(2) and out-of-plane 3d 3z(2)-r(2) orbitals during warming and cooling, respectively. Additionally, a VB-PES study further confirms that a relative band gap opens at low temperature in both the ab-plane and along the c-axis, providing the clear evidence of the charge-density-wave nature of SrFeO3-δ (δ~0.19) single crystal.
Kang, W.; Osada, T.; Konoike, T.; Uchida, K.
2013-11-01
The stereoscopic angle-dependent magnetoresistance oscillations (AMRO) in an organic conductor α-(BEDT-TTF)2KHg(SCN)4 were measured across the temperature-pressure boundary that separates the charge-density-wave state from the metallic state. The gnomonic projections of the data clearly resolved the contributions from different parts of the Fermi surfaces. The temperature and pressure dependencies of the AMRO results revealed the progressive formation of a quasi-one-dimensional orbit in the charge-density-wave state. The AMRO measurements at ambient pressures and at low temperatures revealed the presence of two sets of quasi-one-dimensional Fermi surfaces. Additional evidence for multiple quasi-one-dimensional orbits was obtained from the data collected in conjunction with the in-plane field rotations.
Energy Technology Data Exchange (ETDEWEB)
Almenara, E.; Hidalgo, M.; Saviron, J. M.
1980-07-01
This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.
Kinetic-arrest-induced phase coexistence and metastability in (Mn,Fe ) 2(P ,Si )
Miao, X. F.; Mitsui, Y.; Dugulan, A. Iulian; Caron, L.; Thang, N. V.; Manuel, P.; Koyama, K.; Takahashi, K.; van Dijk, N. H.; Brück, E.
2016-09-01
Neutron diffraction, Mössbauer spectroscopy, magnetometry, and in-field x-ray diffraction are employed to investigate the magnetoelastic phase transition in hexagonal (Mn,Fe ) 2(P ,Si ) compounds. (Mn,Fe ) 2(P ,Si ) compounds undergo for certain compositions a second-order paramagnetic (PM) to a spin-density-wave (SDW) phase transition before further transforming into a ferromagnetic (FM) phase via a first-order phase transition. The SDW-FM transition can be kinetically arrested, causing the coexistence of FM and untransformed SDW phases at low temperatures. Our in-field x-ray diffraction and magnetic relaxation measurements clearly reveal the metastability of the untransformed SDW phase. This unusual magnetic configuration originates from the strong magnetoelastic coupling and the mixed magnetism in hexagonal (Mn,Fe ) 2(P ,Si ) compounds.
Horwitz, J. L.; Zeng, W.
2009-01-01
Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.
Robust Wave Resource Estimation
DEFF Research Database (Denmark)
Lavelle, John; Kofoed, Jens Peter
2013-01-01
An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...
Energy Technology Data Exchange (ETDEWEB)
Dap, Simon; Hugon, Robert; Poucques, Ludovic de; Briancon, Jean-Luc; Bougdira, Jamal [Universite de Lorraine-Institut Jean Lamour, Dpt CP2S UMR 7198 CNRS, Faculte des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France); Lacroix, David [Universite de Lorraine-LEMTA, UMR 7563 CNRS, Faculte des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex (France)
2013-03-15
In this paper, an experimental investigation of dust particle agglomeration in a capacitively coupled RF discharge is reported. Carbonaceous particles are produced in an argon plasma using acetylene. As soon as the particle density becomes sufficient, dust density waves (DDWs) are spontaneously excited within the cathode sheath. Recently, it was proven that DDWs can significantly enhance the agglomeration rate between particles by transferring them a significant kinetic energy. Thus, it helps them to overcome Coulomb repulsion. The influence of this mechanism is studied from acetylene injection to the formation of very large agglomerates forming an organized structure after a few dozens of seconds. For this purpose, three diagnostic tools are used: extinction measurements to probe nanometer-sized particles, fast imaging for large agglomerates and a dust extraction technique developed for ex-situ analysis.
Institute of Scientific and Technical Information of China (English)
景月岭; Yuehua Zeng; 林皋; Genda Chen; 李建波
2012-01-01
在多次各向异性散射理论的基础上,本文重新推导了方向性散射系数的球函数展开式.引入特征时间的概念,来定义震源处初始地震波脉冲宽度,并在地震波能量密度积分方程中引入任意给定频率的初始脉冲能量谱密度的解析表达.通过离散波数方法求解了修正的地震波能量密度积分方程.基于积分方程的数值解,研究了不同散射模式对S波能量密度包络曲线的影响.计算结果表明:随着震源距的增加,在S波到时之后,多次各向异性散射模式与多次各向同性散射模式合成的能量密度包络差异逐渐增大.其中通过多次前散射模式,我们可以得到不同震源距的尾波能量密度包络的同一衰减趋势,以及S波能量密度包络随着震源距的增加而出现的展宽现象.最后,利用美国内华达州Wells地震余震的台站记录验证了多次前散射模式的实用性与有效性.%Based on the multiple anisotropic scattering theory, we reevaluate the spherical harmonic series expansion of directional scattering coefficient. A characteristic source time is introduced to define the initial impulse width of energy density at the source. We use an analytical expression of the initial spectral energy intensity in the integral equation of seismic wave energy density at any given frequency. The modified integral equation is solved by a discrete wave number method. Based on this solution, we investigate the effect of scattering pattern on S wave energy density envelope. And the numerical simulation shows that after the S arrival time the difference of the energy density envelope between the multiple anisotropic scattering pattern and the isotropic scattering pattern increases with distances. Using forward anisotropic scattering pattern, we successfully reproduce the common decay of the seismic coda wave energy density envelopes at different hypocentral distances. For the same pattern, the S wave energy density