Directory of Open Access Journals (Sweden)
B. Hribar-Lee
2013-01-01
Full Text Available Very recently the effect of equisized charged hard sphere solutes in a mixture with core-softened fluid model on the structural and thermodynamic anomalies of the system has been explored in detail by using Monte Carlo simulations and integral equations theory (J. Chem. Phys., Vol. 137, 244502 (2012. Our objective of the present short work is to complement this study by considering univalent ions of unequal diameters in a mixture with the same soft-core fluid model. Specifically, we are interested in the analysis of changes of the temperature of maximum density (TMD lines with ion concentration for three model salt solutes, namely sodium chloride, potassium chloride and rubidium chloride models. We resort to Monte Carlo simulations for this purpose. Our discussion also involves the dependences of the pair contribution to excess entropy and of constant volume heat capacity on the temperature of maximum density line. Some examples of the microscopic structure of mixtures in question in terms of pair distributions functions are given in addition.
Duer, W. C.; And Others
1977-01-01
Discusses comparisons of packing densities derived from known molar volume data of liquids and solutions. Suggests further studies for using assemblies of spheres as models for simple liquids and solutions. (MLH)
Some properties of a non-static uniform density sphere with center singularity
International Nuclear Information System (INIS)
Knutsen, H.
1984-01-01
A class of exact models for non-static uniform density spheres with pressure gradient and singularity is investigated. Necessary and sufficient conditions are given for the pressure gradient to be negative and for the circumference of the sphere to be an increasing function of radial coordinate. The time history of marginally trapped surfaces are studied, and it is found that for physically acceptable models the singularity is always hidden by a trapped surface. (Auth.)
Determinantal point process models on the sphere
DEFF Research Database (Denmark)
Møller, Jesper; Nielsen, Morten; Porcu, Emilio
defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....
Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement
Directory of Open Access Journals (Sweden)
Kim Nygård
2016-02-01
Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality.
Directory of Open Access Journals (Sweden)
Andrea L Miller
Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
Production of graphite spheres with a high density
International Nuclear Information System (INIS)
Tscherry, V.
1976-01-01
It is possible to obtain small spheres with a diameter of approximately 1,000 μm with the help of an automated press fitted with a profiled plunger. The spheres consist of graphite and a binder. Depending on the size of the plunger, 1 + 6 Σn (n = 0,1,2,...) spheres of equivalent diameter may be pressed with one stroke of the plunger. The spheres are bound to each other by a thin burr. The green end product is obtained by breaking the sheets of spheres and deburring them. (orig.) [de
Modeling of steel spheres impacting polyethylene; TOPICAL
International Nuclear Information System (INIS)
Serduke, F; Gerassimenko, M
1999-01-01
The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the Phebus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Energy Technology Data Exchange (ETDEWEB)
Ramirez, D., E-mail: daniel.ramirez@ucv.c [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Laboratorio de Electroquimica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Lincot, D. [Institute de Recherche et Developpement sur l' Energie Photovoltaique-IRDEP, 6 Quai Watier 78401, Chatou Cedex (France)
2010-02-15
In this paper we report the zinc oxide nanorods (ZnO NRs) growth by electrochemical deposition onto polycrystalline gold electrodes modified with assemblies of polystyrene sphere monolayers (PSSMs). Growth occurs through the interstitial spaces between the hexagonally close packed spheres. ZnO NRs nucleate in the region where three adjacent spheres leave a space, being able to grow and projected over the PSSMs. The nanorod surface density (N{sub NR}) shows a linear dependence with respect to a PS sphere diameter selected. XRD analysis shows these ZnO NRs are highly oriented along the (0 0 2) plane (c-axis). This open the possibility to have electronic devices with mechanically supported nanometric materials.
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Directory of Open Access Journals (Sweden)
Solveig Næss
2017-10-01
Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Disordered strictly jammed binary sphere packings attain an anomalously large range of densities
Hopkins, Adam B.; Stillinger, Frank H.; Torquato, Salvatore
2013-08-01
Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤ϕ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.82.061302 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and
Density fluctuations and the structure of a nonuniform hard sphere fluid
Katsov, Kirill; Weeks, John D.
2000-01-01
We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation fo...
International Nuclear Information System (INIS)
Ciftcioglu, M.; Akine, M.; Burkhart, L.
1987-01-01
The effect of agglomerate strength on sintered density was determined for several yttria powders made by intentionally agglomerating 0.1-μm, monodisperse yttriuim hydrocarbonate precursor spheres and calcining separate portions of the precursor at different temperatures to vary the strength of the intraaglomeate bonds. In this way, the effects of differences in particle morphology and other characteristics among the powders were minimized and the effect of agglomerate strength could be seen more clearly
Uniform electron gases. III. Low-density gases on three-dimensional spheres
Energy Technology Data Exchange (ETDEWEB)
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
User Modeling and Personalization in the Microblogging Sphere
Gao, Q.
2013-01-01
Microblogging has become a popular mechanism for people to publish, share, and propagate information on the Web. The massive amount of digital traces that people have left in the microblogging sphere, creates new possibilities and poses challenges for user modeling and personalization. How can
The variation of the density functions on chaotic spheres in chaotic space-like Minkowski space time
International Nuclear Information System (INIS)
El-Ahmady, A.E.
2007-01-01
In this article we introduce types of chaotic spheres in chaotic space-like Minkowski space time M n+1 . The variations of the density functions under the folding of these chaotic spheres are defined. The foldings restriction imposed on the density function are also discussed. The relations between the folding of geometry and pure chaotic manifolds are deduced. Some theorems concerning these relations are presented
International Nuclear Information System (INIS)
Wiegel, B.; Alevra, A.V.; Siebert, B.R.L.
1994-11-01
A realistic geometry model of a Bonner sphere system with a spherical 3 He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3 He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.) [de
International Nuclear Information System (INIS)
Boss, Alan P.; Keiser, Sandra A.
2013-01-01
Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.
International Nuclear Information System (INIS)
Sanchez G, J.
2015-09-01
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
Energy Technology Data Exchange (ETDEWEB)
Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
High-density fluid-perturbation theory based on an inverse 12th-power hard-sphere reference system
International Nuclear Information System (INIS)
Ross, M.
1979-01-01
A variational theory is developed that is accurate at normal liquid densities and densities up to 4 times that of the argon triple point. This theory uses the inverse 12th-power potential as a reference system. The properties of this reference system are expressed in terms of hard-sphere packing fractions by using a modified form of hard-space variational theory. As a result of this ''bootstrapping,'' a variational procedure may be followed that employs the inverse 12th-power system as a reference but uses the hard-sphere packing fraction as the scaling parameter with which to minimize the Helmholtz free energy
The Cognitive Modeling of Development of Tourism Sphere
Directory of Open Access Journals (Sweden)
Los Vita O.
2017-10-01
Full Text Available The article explores the inter-sectoral interaction in the tourism sphere, which is based on the application of cognitive modeling. The authors consider the interaction of powers (political environment, tourism (tourism business, business (socio-economic environment and ecology (ecological environment. The ecology is identified as the exceptional decisive factor in creating an enabling environment for the development of the market for tourism services. A static analysis of the cognitive model was carried out, which revealed 624 contours, of which 473 were stabilizing and 151 were destabilizing. Based on results of the systemic characterizations of the cognitive model, it was found that the interaction between the two sectors, tourism (tourist business and business (socio-economic environment needs special attention. A dynamic analysis of the built cognitive model was carried out using the method of impulse processes that helped to generate alternative scenarios for the development of tourism services. As a result, it has been found that increased investment in restaurant and hotel activities facilitates the increase in the level of development of market for tourism services for one period earlier than the increase in financing tourism sphere from the budget.
Supercooled liquid dynamics for the charged hard-sphere model
International Nuclear Information System (INIS)
Lai, S.K.; Chang, S.Y.
1994-08-01
We study the dynamics of supercooled liquid and the liquid-glass transition by applying the mode coupling theory to the charged hard-sphere model. By exploiting the two independent parameters inherent in the charged hard-sphere system we examine structurally the subtle and competitive role played by the short-range hard-core correlation and the long-range Coulomb tail. It is found in this work that the long-range Coulombic charge factor effect is generally a less effective contribution to structure when the plasma parameter is less than 500 and becomes dominant when it is greater thereof. To extend our understanding of the supercooled liquid and the liquid-glass transition, an attempt is made to calculate and to give physical relevance to the mode-coupling parameters which are frequently used as mere fitting parameters in analysis of experiments on supercooled liquid systems. This latter information enables us to discuss the possible application of the model to a realistic system. (author). 22 refs, 4 figs
The generalized chiral Schwinger model on the two-sphere
International Nuclear Information System (INIS)
Bassetto, A.
1995-01-01
A family of theories which interpolate between vector and chiral Schwinger models is studied on the two-sphere S 2 . The conflict between the loss of gauge invariance and global geometrical properties is solved by introducing a fixed background connection. In this way the generalized Dirac-Weyl operator can be globally defined on S 2 . The generating functional of the Green functions is obtained by taking carefully into account the contribution of gauge fields with non-trivial topological charge and of the related zero-modes of the Dirac determinant. In the decompactification limit, the Green functions of the flat case are recovered; in particular the fermionic condensate in the vacuum vanishes, at variance with its behaviour in the vector Schwinger model. ((orig.))
Model of the absorbed dose on a small sphere into a gamma irradiation field
International Nuclear Information System (INIS)
Mangussi, J.
2009-01-01
Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)
Magnetic dynamics of simple collective modes in a two-sphere plasma model
International Nuclear Information System (INIS)
Essen, Hanno
2005-01-01
A plasma blob is modeled as consisting of two homogeneous spheres of equal radius and equal but opposite charge densities that can move relative to each other. Relative translational and rotational motion are considered separately. Magnetic effects from the current density caused by the relative motion are included. Magnetic interaction is seen to cause an inductive inertia. In the relative translation case the Coulomb attraction, approximately a linear force for small amplitudes, causes an oscillation. For a large number of particles, the corresponding oscillation frequency will not be the Langmuir plasma frequency, because of the large inductive inertia. For rotation an external magnetic field is included and the energy and diamagnetism of the plasma in the model is calculated. Finally, it is noted how the neglect of resistivity is motivated by the results
Ogarko, V.; Luding, Stefan
2012-01-01
We study bi- and polydisperse mixtures of hard sphere fluids with extreme size ratios up to 100. Simulation results are compared with previously found analytical equations of state by looking at the compressibility factor, Z, and agreement is found with much better than 1% deviation in the fluid
Strip yielding model for calculation of COD in spheres with short cracks
International Nuclear Information System (INIS)
Miller, A.G.
1981-08-01
The crack opening displacement at the centre of a crack in a sphere with internal pressure has been calculated, using a strip yielding model. The results have been displayed for a range of geometrical parameters and loads. (author)
SURFACES OF HARD-SPHERE SYSTEMS
Directory of Open Access Journals (Sweden)
Dietrich Stoyan
2014-07-01
Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.
Thermospheric density and satellite drag modeling
Mehta, Piyush Mukesh
GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
Black tide model of QSOs. II. Destruction in an isothermal sphere
International Nuclear Information System (INIS)
Young, P.J.
1977-01-01
The quasar models employing a black hole in a galactic nucleus are considered; it is shown that the black hole may be able to destroy the stellar population of the galactic nucleus in sufficient numbers to provide a power source for QSO, Seyfert nucleus, and radio galaxy phenomena.The basic model is of a black hole embedded in an isothermal sphere. When the mass of the hole M/sub H/9 or approx. =10 6 M/sub sun/it grows mainly by tidally disrupting stars which stray within its Roche limit. This source of gaseous debris for the hole to accrete is cut off due to falling stellar densities outside the galactic nucleus coupled with insufficiently fast relaxation of the stellar population into low angular momentum orbits; luminosities above 10 9 L/sub sun/are not possible. However, when M/sub H/9 or approx. =10 6 M/sub sun/a high-density cusp of stars bound to the black hole generates gaseous debris from stellar collisions and gravitational diffusion processes and allows sufficient fuel to boost the power output of the black hole to > or approx. =10 12 L/sub sun/in superdense galactic nuclei. This is cut off as the hole consumes the nucleus and lengthening relaxation times freeze the quasar into oblivion. This decay occurs only slowly with Lproportionalt/sup -1/2/
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco
2013-10-24
We consider the theory of the glass phase and jamming of hard spheres in the large space dimension limit. Building upon the exact expression for the free-energy functional obtained previously, we find that the random first order transition (RFOT) scenario is realized here with two thermodynamic transitions: the usual Kauzmann point associated with entropy crisis and a further transition at higher pressures in which a glassy structure of microstates is developed within each amorphous state. This kind of glass-glass transition into a phase dominating the higher densities was described years ago by Elisabeth Gardner, and may well be a generic feature of RFOT. Microstates that are small excitations of an amorphous matrix-separated by low entropic or energetic barriers-thus emerge naturally, and modify the high pressure (or low temperature) limit of the thermodynamic functions.
arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere
Closset, Cyril; Seong, Rak-Kyeong
2018-05-04
It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.
Multi-sphere unit cell model to calculate the effective thermal conductivity in pebble bed reactors
International Nuclear Information System (INIS)
Van Antwerpen, W.; Rousseau, P.G.; Du Toit, C.G.
2010-01-01
A proper understanding of the mechanisms of heat transfer, fluid flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature Pebble Bed Reactor (PBR). While the gas flows predominantly in the axial direction through the bed, the total effective thermal conductivity is a lumped parameter that characterises the total heat transfer in the radial direction through the packed bed. The study of the effective thermal conductivity is important because it forms an intricate part of the self-acting decay heat removal chain, which is directly related to the PBR safety case. The effective thermal conductivity is the summation of various heat transport phenomena. These are the enhanced thermal conductivity due to turbulent mixing as the fluid passes through the voids between pebbles, heat transfer due to the movement of the solid spheres and thermal conduction and thermal radiation between the spheres in a stagnant fluid environment. In this study, the conduction and radiation between the spheres are investigated. Firstly, existing correlations for the effective thermal conductivity are investigated, with particular attention given to its applicability in the near-wall region. Several phenomena in particular are examined namely: conduction through the spheres, conduction through the contact area between the spheres, conduction through the gas phase and radiation between solid surfaces. A new approach to simulate the effective thermal conductivity for randomly packed beds is then presented, namely the so-called Multi-sphere Unit Cell Model. The model is validated by comparing the results with that obtained in experiments. (authors)
Kaspi, Yohai
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary
Study of light scattering by a granulated coated sphere - a model of granulated blood cells
Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.
2008-01-01
We performed extensive simulations of light scattering by granulated coated sphere model using the discrete dipole approximation and varying model parameters in the ranges of sizes and refractive indices of granulated blood cells. We compared these results with predictions of Maxwell-Garnett
Ferracane, J L; Ferracane, L L; Braga, R R
2003-07-15
Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models
Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.
2018-06-01
This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).
Experimental investigation of shock wave diffraction over a single- or double-sphere model
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
The Coulomb gas representation of critical RSOS models on the sphere and the torus
International Nuclear Information System (INIS)
Foda, O.; Nienhuis, B.
1989-01-01
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.)
The Coulomb gas representation of critical RSOS models on the sphere and the torus
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Nienhuis, B. (Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde)
1989-10-02
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.).
Directory of Open Access Journals (Sweden)
Arthur Coré
2017-01-01
Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.
Numerical investigation of flow over a sphere using LES and the Spalart-Allmaras turbulence model
International Nuclear Information System (INIS)
Wang, Y.Q.; Jackson, P.L.; Ackerman, J.D.
2005-01-01
Numerical simulations of forced convection of air for flow over a sphere are presented. The primary aim is to determine if FLUENT, a commercial computational fluid dynamics software package, is capable of providing the solution for heat transfer in a three dimensional massively separating flow. Spalart-Allmaras, a one-equation turbulence model and Large Eddy Simulation (LES) are used in the present study. Simulations are performed in the range of Reynolds numbers from 10 3 to 1.5 x 10 5 with a Prandtl number of 0.71. The mean Nusselt number over the sphere predicted by both models are in good agreement with both measurements and empirical correlations. For Reynolds number of 10 4 , the mean Nusselt number over the sphere predicted by LES is 92.92 and predicted by the Spalart-Allmaras model is 94.55 on a coarse grid and 92.94 on a finer grid. The differences between the predicted values and one of the well-established empirical corrections is 0%, 1.7% and 0.02% respectively. In addition, the agreement with previous observations is reasonable for pressure coefficients and skin friction coefficients along the sphere. The present study has established that commercially-available software like FLUENT can provide a reasonable good solution of complicated flow structures, including flow with separation. (author)
Spectral rheology in a sphere. [for geological models
Caputo, M.
1984-01-01
An earth model is considered whose rheology is described by a stress train relation similar to that which seems to fit the laboratory data resulting from constant strain rate and creep experiments on polycrystalline halite and granite. The response of the model to a surface load is studied. It is found that the displacement and the creep are weakly dependent on the wavenumber and that the strain energy is concentrated in the low wavenumber and coherent over large regions.
Development and Analysis of Volume Multi-Sphere Method Model Generation using Electric Field Fitting
Ingram, G. J.
Electrostatic modeling of spacecraft has wide-reaching applications such as detumbling space debris in the Geosynchronous Earth Orbit regime before docking, servicing and tugging space debris to graveyard orbits, and Lorentz augmented orbits. The viability of electrostatic actuation control applications relies on faster-than-realtime characterization of the electrostatic interaction. The Volume Multi-Sphere Method (VMSM) seeks the optimal placement and radii of a small number of equipotential spheres to accurately model the electrostatic force and torque on a conducting space object. Current VMSM models tuned using force and torque comparisons with commercially available finite element software are subject to the modeled probe size and numerical errors of the software. This work first investigates fitting of VMSM models to Surface-MSM (SMSM) generated electrical field data, removing modeling dependence on probe geometry while significantly increasing performance and speed. A proposed electric field matching cost function is compared to a force and torque cost function, the inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom VMSM models generated using electric field matching are investigated. The resulting E-field based VMSM development framework is illustrated on a box-shaped hub with a single solar panel, and convergence properties of select models are qualitatively analyzed. Despite the complex non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions provide force and torque fits within a few percent.
Directory of Open Access Journals (Sweden)
Kristina Vukusic
2013-01-01
Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.
On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies
Degiacomi, Matteo T.
2018-05-01
Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2013-12-01
Recent first-principles theoretical calculations (Stixrude 2009) and experimental shock-wave investigations (Mosenfelder 2009) indicate that melting perovskite requires significantly less energy than previously thought, supporting the idea of a deep-mantle magma ocean early in Earth's history. The modern-day solid Earth is thus likely the result of crystallization from an early predominantly molten state, a process that is primarily controlled by the poorly understood behavior of silicate melts at extreme pressures and temperatures. Probing liquid thermodynamics at mantle conditions is difficult for both theory and experiment, and further challenges are posed by the large relevant compositional space including at least MgO, SiO2, and FeO. First-principles molecular dynamics has been used with great success to determine the high P-T properties of a small set of fixed composition silicate-oxide liquids including MgO (Karki 2006), SiO2 (Karki 2007), Mg2SiO4 (de Koker 2008), MgSiO3 (Stixrude 2005), and Fe2SiO4 (Ramo 2012). While extremely powerful, this approach has limitations including high computational cost, lower bounds on temperature due to relaxation constraints, as well as restrictions to length scales and time scales that are many orders of magnitude smaller than those relevant to the Earth or experimental methods. As a compliment to accurate first-principles calculations, we have developed the Coordinated HArd Sphere Model (CHASM). We extend the standard hard sphere mixture model, recently applied to silicate liquids by Jing (2011), by accounting for the range of oxygen coordination states available to liquid cations. Utilizing approximate analytic expressions for the hard sphere model, the method can predict complex liquid structure and thermodynamics while remaining computationally efficient. Requiring only minutes on standard desktop computers rather than months on supercomputers, the CHASM approach is well-suited to providing an approximate thermodynamic
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
International Nuclear Information System (INIS)
Nastase, Horatiu; Papageorgakis, Constantinos
2009-01-01
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .
DEFF Research Database (Denmark)
Fiig, Christina
The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...
International Nuclear Information System (INIS)
Lin, Z.W.
2011-01-01
It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.
Macromolecular diffusion in crowded media beyond the hard-sphere model.
Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc
2018-04-25
The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.
Creation of a simplified benchmark model for the neptunium sphere experiment
International Nuclear Information System (INIS)
Mosteller, Russell D.; Loaiza, David J.; Sanchez, Rene G.
2004-01-01
Although neptunium is produced in significant amounts by nuclear power reactors, its critical mass is not well known. In addition, sizeable uncertainties exist for its cross sections. As an important step toward resolution of these issues, a critical experiment was conducted in 2002 at the Los Alamos Critical Experiments Facility. In the experiment, a 6-kg sphere of 237 Np was surrounded by nested hemispherical shells of highly enriched uranium. The shells were required in order to reach a critical condition. Subsequently, a detailed model of the experiment was developed. This model faithfully reproduces the components of the experiment, but it is geometrically complex. Furthermore, the isotopics analysis upon which that model is based omits nearly 1 % of the mass of the sphere. A simplified benchmark model has been constructed that retains all of the neutronically important aspects of the detailed model and substantially reduces the computer resources required for the calculation. The reactivity impact, of each of the simplifications is quantified, including the effect of the missing mass. A complete set of specifications for the benchmark is included in the full paper. Both the detailed and simplified benchmark models underpredict k eff by more than 1% Δk. This discrepancy supports the suspicion that better cross sections are needed for 237 Np.
Modelling the normal bouncing dynamics of spheres in a viscous fluid
Directory of Open Access Journals (Sweden)
Izard Edouard
2017-01-01
Full Text Available Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003, e.g. in a multi-particle configuration.
Liu, Li; Zhang, Jing; Dong, Shaonan; Zhang, Fuping; Wang, Ye; Bi, Shuping
2018-03-07
Density functional theory (DFT) calculations combined with cluster models are performed at the B3LYP/6-311+G(d,p) level for investigating the solvent effects in Al(H 2 O) 6 3+ water-exchange reactions. A "One-by-one" method is proposed to obtain the most representative number and arrangement of explicit H 2 Os in the second hydration sphere. First, all the possible ways to locate one explicit H 2 O in second sphere (N m ' = 1) based on the gas phase structure (N m ' = 0) are examined, and the optimal pathway (with the lowest energy barrier) for N m ' = 1 is determined. Next, more explicit H 2 Os are added one by one until the inner-sphere is fully hydrogen bonded. Finally, the optimal pathways with N m ' = 0-7 are obtained. The structural and energetic parameters as well as the lifetimes of the transition states are compared with the results obtained with the "Independent-minimum" method and the "Independent-average" method, and all three methods show that the pathway with N m ' = 6 may be representative. Our results give a new idea for finding the representative pathway for water-exchange reactions in other hydrated metal ion systems.
International Nuclear Information System (INIS)
Saito, Toki; Nakajima, Yoshikazu; Sugita, Naohiko; Mitsuishi, Mamoru; Hashizume, Hiroyuki; Kuramoto, Kouichi; Nakashima, Yosio
2011-01-01
Statistical deformable model based two-dimensional/three-dimensional (2-D/3-D) registration is a promising method for estimating the position and shape of patient bone in the surgical space. Since its accuracy depends on the statistical model capacity, we propose a method for accurately generating a statistical bone model from a CT volume. Our method employs the Sphere-Attribute-Image (SAI) and has improved the accuracy of corresponding point search in statistical model generation. At first, target bone surfaces are extracted as SAIs from the CT volume. Then the textures of SAIs are classified to some regions using Maximally-stable-extremal-regions methods. Next, corresponding regions are determined using Normalized cross-correlation (NCC). Finally, corresponding points in each corresponding region are determined using NCC. The application of our method to femur bone models was performed, and worked well in the experiments. (author)
Design and tolerance analysis of a transmission sphere by interferometer model
Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao
2015-09-01
The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.
Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun
2017-04-01
One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.
2016-12-01
NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP
National Research Council Canada - National Science Library
Kaspi, Yohai
2008-01-01
... (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet...
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
Dual model for parton densities
International Nuclear Information System (INIS)
El Hassouni, A.; Napoly, O.
1981-01-01
We derive power-counting rules for quark densities near x=1 and x=0 from parton interpretations of one-particle inclusive dual amplitudes. Using these rules, we give explicit expressions for quark distributions (including charm) inside hadrons. We can then show the compatibility between fragmentation and recombination descriptions of low-p/sub perpendicular/ processes
Wang, George T.; Li, Qiming
2013-04-23
A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.
Vector model for mapping of visual space to subjective 4-D sphere
International Nuclear Information System (INIS)
Matuzevicius, Dalius; Vaitkevicius, Henrikas
2014-01-01
Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia
3D Visualization of Trees Based on a Sphere-Board Model
Directory of Open Access Journals (Sweden)
Jiangfeng She
2018-01-01
Full Text Available Because of the smooth interaction of tree systems, the billboard and crossed-plane techniques of image-based rendering (IBR have been used for tree visualization for many years. However, both the billboard-based tree model (BBTM and the crossed-plane tree model (CPTM have several notable limitations; for example, they give an impression of slicing when viewed from the top side, and they produce an unimpressive stereoscopic effect and insufficient lighted effects. In this study, a sphere-board-based tree model (SBTM is proposed to eliminate these defects and to improve the final visual effects. Compared with the BBTM or CPTM, the proposed SBTM uses one or more sphere-like 3D geometric surfaces covered with a virtual texture, which can present more details about the foliage than can 2D planes, to represent the 3D outline of a tree crown. However, the profile edge presented by a continuous surface is overly smooth and regular, and when used to delineate the outline of a tree crown, it makes the tree appear very unrealistic. To overcome this shortcoming and achieve a more natural final visual effect of the tree model, an additional process is applied to the edge of the surface profile. In addition, the SBTM can better support lighted effects because of its cubic geometrical features. Interactive visualization effects for a single tree and a grove are presented in a case study of Sabina chinensis. The results show that the SBTM can achieve a better compromise between realism and performance than can the BBTM or CPTM.
Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.
2018-03-01
circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.
Modelling heat transfer during flow through a random packed bed of spheres
Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel
2018-04-01
Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.
North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby
2015-04-01
With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model
Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model
Wang, Jia Jie; Han, Yi Ping; Chang, Jiao Yong; Chen, Zhu Yang
2018-02-01
Within the framework of generalized Lorenz-Mie theory (GLMT), an eccentrically stratified dielectric sphere model illuminated by an arbitrarily incident Bessel beam is applied to investigate the scattering characteristics of a single nucleated biological cell. The Bessel beam propagating in an arbitrary direction is expanded in terms of vector spherical wave functions (VSWFs), where the beam shape coefficients (BSCs) are calculated rigorously in a closed analytical form. The effects of the half-cone angle of Bessel beam, the location of the particle in the beam, the size ratio of nucleus to cell, and the location of the nucleus inside the cell on the scattering properties of a nucleated cell are analyzed. The results provide useful references for optical diagnostic and imaging of particle having nucleated structure.
The phase behavior of a hard sphere chain model of a binary n-alkane mixture
International Nuclear Information System (INIS)
Malanoski, A. P.; Monson, P. A.
2000-01-01
Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics
Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis
2015-10-01
Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.
Density functional theory and multiscale materials modeling
Indian Academy of Sciences (India)
One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids.
Carr, Elliot J; Pontrelli, Giuseppe
2018-04-12
We present a general mechanistic model of mass diffusion for a composite sphere placed in a large ambient medium. The multi-layer problem is described by a system of diffusion equations coupled via interlayer boundary conditions such as those imposing a finite mass resistance at the external surface of the sphere. While the work is applicable to the generic problem of heat or mass transfer in a multi-layer sphere, the analysis and results are presented in the context of drug kinetics for desorbing and absorbing spherical microcapsules. We derive an analytical solution for the concentration in the sphere and in the surrounding medium that avoids any artificial truncation at a finite distance. The closed-form solution in each concentric layer is expressed in terms of a suitably-defined inverse Laplace transform that can be evaluated numerically. Concentration profiles and drug mass curves in the spherical layers and in the external environment are presented and the dependency of the solution on the mass transfer coefficient at the surface of the sphere analyzed. Copyright © 2018 Elsevier Inc. All rights reserved.
Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong
2016-04-01
The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.
Compatible growth models and stand density diagrams
International Nuclear Information System (INIS)
Smith, N.J.; Brand, D.G.
1988-01-01
This paper discusses a stand average growth model based on the self-thinning rule developed and used to generate stand density diagrams. Procedures involved in testing are described and results are included
Smith, Carol Lynn Kay
2009-01-01
This study contributes an approach to understanding the cognitive models underlying rhetorical arguments about the "first wave" of women's rights discourse in the United States, which began to emerge more publically with the Seneca Falls convention in 1848 and started to gain momentum in 1851 and beyond. The usage of the lexical item "sphere" (in…
Capillary holdup between vertical spheres
Directory of Open Access Journals (Sweden)
S. Zeinali Heris
2009-12-01
Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.
A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity
Directory of Open Access Journals (Sweden)
F. Chen
2017-02-01
Full Text Available The present work is devoted to the determination of linear effective thermal conductivity of porous rocks characterized by an assemblage of grains (oolites coated by a matrix. Two distinct classes of pores, i.e. micropores or intra oolitic pores (oolite porosity and mesopores or inter oolitic pores (inter oolite porosity, are taken into account. The overall porosity is supposed to be connected and decomposed into oolite porosity and matrix porosity. Within the framework of Hashin composite sphere assemblage (CSA models, a two-step homogenization method is developed. At the first homogenization step, pores are assembled into two layers by using self-consistent scheme (SCS. At the second step, the two porous layers constituting the oolites and the matrix are assembled by using generalized self-consistent scheme (GSCS and referred to as three-phase model. Numerical results are presented for data representative of a porous oolitic limestone. It is shown that the influence of porosity on the overall thermal conductivity of such materials may be significant.
Global and local level density models
International Nuclear Information System (INIS)
Koning, A.J.; Hilaire, S.; Goriely, S.
2008-01-01
Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed
Combinatorial nuclear level-density model
International Nuclear Information System (INIS)
Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.
2013-01-01
A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei
Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model
Cardin, P.; Guervilly, C.
2016-12-01
We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.
Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model
Guervilly, Céline; Cardin, Philippe
2016-12-01
We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.
Baryon density in alternative BBN models
International Nuclear Information System (INIS)
Kirilova, D.
2002-10-01
We present recent determinations of the cosmological baryon density ρ b , extracted from different kinds of observational data. The baryon density range is not very wide and is usually interpreted as an indication for consistency. It is interesting to note that all other determinations give higher baryon density than the standard big bang nucleosynthesis (BBN) model. The differences of the ρ b values from the BBN predicted one (the most precise today) may be due to the statistical and systematic errors in observations. However, they may be an indication of new physics. Hence, it is interesting to study alternative BBN models, and the possibility to resolve the discrepancies. We discuss alternative cosmological scenarios: a BBN model with decaying particles (m ∼ MeV, τ ∼ sec) and BBN with electron-sterile neutrino oscillations, which permit to relax BBN constraints on the baryon content of the Universe. (author)
Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.
Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen
2015-09-01
In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Trenz, Hans-Jörg
2015-01-01
In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....
Propulsion Physics Using the Chameleon Density Model
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.
and density-dependent quark mass model
Indian Academy of Sciences (India)
Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].
Models for Experimental High Density Housing
Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia
2017-10-01
The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.
Model-based sphere localization (MBSL) in x-ray projections
Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc
2017-08-01
The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.
Teaching Chemistry with Electron Density Models
Shusterman, Gwendolyn P.; Shusterman, Alan J.
1997-07-01
Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.
Multiple model cardinalized probability hypothesis density filter
Georgescu, Ramona; Willett, Peter
2011-09-01
The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.
International Nuclear Information System (INIS)
Chang Yiren; Hsu Long; Chi Sien
2006-01-01
Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system
Simulation of induced electric field distribution based on five-sphere model used in rTMS.
Pu, Lina; Liu, Zhipeng; Yin, Tao; An, Hao; Li, Song
2010-01-01
Repetitive Transcranial magnetic stimulation (TMS) is a relatively new technique, which is non-invasive and painless used to stimulate the central and peripheral neural tissues. The principle is generating time-varying magnetic fields to stimulate the cerebral cortex neuron and inducing eddy current inside the tissues. Many researches study on the distributing of magnetic field and electric field induced inside the human brain, whereas the static electric field was neglected roughly in many studies. In this paper, a five-sphere model is established to simulate the human head used in rTMS. According to the different dielectric properties of the head tissues, the Laplace equation of static electric field is deduced by both of Gauss theorem and current's continuity principle. Boundary conditions used in different interface between two adjacent layers in the five-sphere model is proposed in this paper. Simulating study is conducted to calculate the distribution of the electric field in the model. Simulating results suggest that the model is useful to get the parameters of the most focus coil. Therefore this study could be potential to promote the development of rTMS stimulator.
International Nuclear Information System (INIS)
Tekuchev, V.V.; Barashkov, B.I.; Rygalov, L.N.; Dolzhikov, Yu.S.
2001-01-01
For the first time one obtained the polytherms of ultrasound velocity for liquid high-melting metals within wide temperature range. In terms of the rigid sphere model on the basis of the acoustic data one calculated the entropy values for 34 liquid metals at the melting point. The average discrepancy of the calculated values of entropy with the published one constitutes 8.2%. With increase of metal valency the error increases from 2.8 up to 13%. In case of francium, radium, promethium, actinium, hafnium, polonium, rhenium one obtained data for the first time [ru
In Vivo Evaluation of a New Embolic Spherical Particle (HepaSphere) in a Kidney Animal Model
International Nuclear Information System (INIS)
Luis, Esther de; Bilbao, Jose I.; Ciercoles, Jose A. Garcia Jalon de; Martinez-Cuesta, Antonio; Martino Rodriguez, Alba de; Lozano, Maria D.
2008-01-01
HepaSphere is a new spherical embolic material developed in a dry state that absorbs fluids and adapts to the vessel wall, leaving no space between the particle and the arterial wall. The aim of this study was to elucidate the final in vivo size, deformation, final location, and main properties of the particles when reconstituted with two different contrast media (Iodixanol and Ioxaglate) in an animal model. Two sizes of 'dry-state' particles (50-100 and 150-200 μm) were reconstituted using both ionic and nonionic contrast media. The mixture was used to partly embolize both kidneys in an animal model (14 pigs). The animals were sacrificed 4 weeks after the procedure and the samples processed. The final size of the particles was 230.2 ± 62.5 μm for the 50- to 100-μm dry-state particles and 314.4 ± 71 μm for the 150- to 200-μm dry-state particles. When the contrast medium (ionic versus nonionic) used for the reconstitution was studied to compare (Student's t-test) the final size of the particles, no differences were found (p > 0.05). The mean in vivo deformation for HepaSphere was 17.1% ± 12.3%. No differences (p > 0.05) were found in the deformation of the particle regarding the dry-state size or the contrast medium (Mann-Whitney test). We conclude that HepaSphere is stable, occludes perfectly, and morphologically adapts to the vessel lumen of the arteries embolized. There is no recanalization of the arteries 4 weeks after embolization. Its final in vivo size is predictable and the particle has the same properties in terms of size and deformation with the two different contrast media (Iodixanol and Ioxaglate)
A single sphere film boiling model for trigger ability and explosion potential
International Nuclear Information System (INIS)
Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan
2012-01-01
The main causes for the controversy about the corium explosiveness are the hydrogen effect, large voided mixture, material property, poor triggering event (wrong position, weak triggering, wrong time), and low superheat due to a high melting temperature. It has been suggested that a steam explosion of the corium/water system must be suppressed due to the physical properties of corium such as high temperature, high density, multicomponent oxide melt, and low thermal conductivity. It was also claimed that the magnitude of the effect on the FCI results of corium/water systems is on the order of higher density, higher temperature, and non eutectic composition. This concept of a material effect is supported to some degree by parametric experimental results. However, the parametric results between the steam explosion pressure and the material compositions do not directly provide an understanding of the mechanism for the material difference affecting a steam explosion process, even though the sensitivity results can reveal the trends of some parameters affecting the FCI results. This concept of a material effect is supported to some degree by parametric experimental results. The parametric tests themselves also provide us with information on the effect of each initial parameter on a steam explosion. However, sensitivity studies between the steam explosion pressure and the initial value of a parameter do not directly provide an understanding of the steam explosion process. Handling the explosion res sure and initial condition without a mixing could not contribute to a code development process. We need a certain parameter for representing mixing, but we cannot measure it during the FCI tests. The particle size distribution collected after the FCI tests can be a good indicator for explaining a mixing process. In this paper, TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. The heat losses and remnants were calculated
Richard, David; Speck, Thomas
2018-06-14
Combining three numerical methods (forward flux sampling, seeding of droplets, and finite-size droplets), we probe the crystallization of hard spheres over the full range from close to coexistence to the spinodal regime. We show that all three methods allow us to sample different regimes and agree perfectly in the ranges where they overlap. By combining the nucleation work calculated from forward flux sampling of small droplets and the nucleation theorem, we show how to compute the nucleation work spanning three orders of magnitude. Using a variation of the nucleation theorem, we show how to extract the pressure difference between the solid droplet and ambient liquid. Moreover, combining the nucleation work with the pressure difference allows us to calculate the interfacial tension of small droplets. Our results demonstrate that employing bulk quantities yields inaccurate results for the nucleation rate.
Structure of colloidal sphere-plate mixtures
International Nuclear Information System (INIS)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I
2011-01-01
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
Structure of colloidal sphere-plate mixtures
Energy Technology Data Exchange (ETDEWEB)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)
2011-05-18
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
Current density and continuity in discretized models
International Nuclear Information System (INIS)
Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.
Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.
2015-12-01
Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality
Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-01-01
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
Model SM-1 ballast density gauge
International Nuclear Information System (INIS)
Gao Weixiang; Fang Jidong; Zhang Xuejuan; Zhang Reilin; Gao Wanshan
1990-05-01
The ballast density is one of the principal parameters for roadbed operating state. It greatly affects the railroad stability, the accumulation of railroad residual deformation and the amount of work for railroad maintenance. SM-1 ballast density gauge is designed to determine the density of ballast by using the effect of γ-ray passed through the ballast. Its fundamentals, construction, specifications, application and economic profit are described
Computer simulations of a rough sphere fluid
International Nuclear Information System (INIS)
Lyklema, J.W.
1978-01-01
A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)
Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
Smulevich, A B; Dorozhenok, I Iu; Romanov, D V; L'vov, A N
2012-01-01
Hypochondria sine materia is a disorder with physical complains corresponding to no any somatic diagnosis. Hypochondria sine materia is a more complicated psychopathological condition compared to hypochondria cum materia. Hypochondria sine materia could be diagnosed not only in psychiatry, but mainly in general medicine. It is especially prevalent in dermatology. As a result of analysis of hypochondriac disorders involving cutaneous sphere in patients without dermatological diseases, a binary model of psychodermatological syndromes presenting with hypochondria sine materia in dermatology was developed. The binary structure of the psychodermatological syndromes includes secondary psychiatric symptoms based on primary coenesthesiopathic phenomena. The heterogeneous psychodermatological syndromes (cutaneous organ neurosis, impulsive excoriations syndrome, circumscripta hypochondria, coenesthesiopathic paranoia) could be arranged in a continuum of consecutively worsening conditions from neurotic to psychotic severity register. The syndromes differ in clinical and social prognosis requiring different approach to diagnosis and treatment.
Pythagoras' celestial spheres in the context of a simple model for quantization of planetary orbits
Energy Technology Data Exchange (ETDEWEB)
Oliveira Neto, Marcal de [Instituto de Quimica, Universidade de Brasilia, Campus Universitario, Asa Norte, 70904-970 Brasilia, DF (Brazil)]. E-mail: marcal@unb.br
2006-10-15
In the present article we attempt to search for a correlation between Pythagoras and Kepler's ideas on harmony of the celestial spheres through simple quantization procedure to describe planetary orbits in our solar system. It is reasoned that starting from a Bohr-like atomic model, planetary mean radii and periods of revolution can be obtained from a set of small integers and just one input parameter given by the mean planetary radius of Mercury. It is also shown that the mean planetary distances can be calculated with the help of a Schroedinger-type equation considering the flatness of the solar system. An attempt to obtain planetary radii using both gravitational and electrostatic approaches linked by Newton's dimensionless constant of gravity is presented.
Propulsion Physics Under the Changing Density Field Model
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
The sintering behavior of close-packed spheres
DEFF Research Database (Denmark)
Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund
2012-01-01
The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....
Impact of a Hydrophobic Sphere onto a Bath
Harris, Daniel M.; Edmonds, John; Galeano-Rios, Carlos A.; Milewski, Paul A.
2017-11-01
Small hydrophobic particles impacting a water surface can rebound completely from the interface (Lee & Kim, Langmuir, 2008). In the present work, we focus on the bouncing dynamics of millimetric hydrophobic spheres impacting the surface of a quiescent water bath. Particular attention is given to the dependence of the normal coefficient of restitution and contact time on the impact velocity and the radius and density of the sphere. Our experimental observations are compared to the predictions of a fluid model derived from linearized Navier-Stokes under the assumption of a high Reynolds number regime (Galeano-Rios et al., JFM, in press). In the model, the motions of the sphere and the fluid interface are found by imposing the natural geometric and kinematic compatibility conditions. Future directions will be discussed. C.A.G.-R. and P.A.M. gratefully acknowledge support through the EPSRC project EP/N018176/1.
Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina
2016-06-01
In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.
CSIR Research Space (South Africa)
Matthews, MW
2013-01-01
Full Text Available A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly...
Modelling of density limit phenomena in toroidal helical plasmas
International Nuclear Information System (INIS)
Itoh, Kimitaka; Itoh, Sanae-I.
2001-01-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)
Modelling of density limit phenomena in toroidal helical plasmas
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.-I.
2000-03-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)
Periodic and Aperiodic Close Packing: A Spontaneous Hard-Sphere Model.
van de Waal, B. W.
1985-01-01
Shows how to make close-packed models from balloons and table tennis balls to illustrate structural features of clusters and organometallic cluster-compounds (which are of great interest in the study of chemical reactions). These models provide a very inexpensive and tactile illustration of the organization of matter for concrete operational…
Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C
2015-03-01
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model
Double layer for hard spheres with an off-center charge
Directory of Open Access Journals (Sweden)
W. Silvestre-Alcantara
2016-02-01
Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.
Directory of Open Access Journals (Sweden)
George P. Petropoulos
2015-05-01
Full Text Available In today’s changing climate, the development of robust, accurate and globally applicable models is imperative for a wider understanding of Earth’s terrestrial biosphere. Moreover, an understanding of the representation, sensitivity and coherence of such models are vital for the operationalisation of any physically based model. A Global Sensitivity Analysis (GSA was conducted on the SimSphere land biosphere model in which a meta-modelling method adopting Bayesian theory was implemented. Initially, effects of assuming uniform probability distribution functions (PDFs for the model inputs, when examining sensitivity of key quantities simulated by SimSphere at different output times, were examined. The development of topographic model input parameters (e.g., slope, aspect, and elevation were derived within a Geographic Information System (GIS before implementation within the model. The effect of time of the simulation on the sensitivity of previously examined outputs was also analysed. Results showed that simulated outputs were significantly influenced by changes in topographic input parameters, fractional vegetation cover, vegetation height and surface moisture availability in agreement with previous studies. Time of model output simulation had a significant influence on the absolute values of the output variance decomposition, but it did not seem to change the relative importance of each input parameter. Sensitivity Analysis (SA results of the newly modelled outputs allowed identification of the most responsive model inputs and interactions. Our study presents an important step forward in SimSphere verification given the increasing interest in its use both as an independent modelling and educational tool. Furthermore, this study is very timely given on-going efforts towards the development of operational products based on the synergy of SimSphere with Earth Observation (EO data. In this context, results also provide additional support for the
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2013-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2012-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates
Directory of Open Access Journals (Sweden)
Thomas Cornelissen
2016-05-01
Full Text Available Parameterization of physically based and distributed hydrological models for mesoscale catchments remains challenging because the commonly available data base is insufficient for calibration. In this paper, we parameterize a mesoscale catchment for the distributed model HydroGeoSphere by transferring evapotranspiration parameters calibrated at a highly-equipped headwater catchment in addition to literature data. Based on this parameterization, the sensitivity of the mesoscale catchment to spatial variability in land use, potential evapotranspiration and precipitation and of the headwater catchment to mesoscale soil and land use data was conducted. Simulations of the mesoscale catchment with transferred parameters reproduced daily discharge dynamics and monthly evapotranspiration of grassland, deciduous and coniferous vegetation in a satisfactory manner. Precipitation was the most sensitive input data with respect to total runoff and peak flow rates, while simulated evapotranspiration components and patterns were most sensitive to spatially distributed land use parameterization. At the headwater catchment, coarse soil data resulted in a change in runoff generating processes based on the interplay between higher wetness prior to a rainfall event, enhanced groundwater level rise and accordingly, lower transpiration rates. Our results indicate that the direct transfer of parameters is a promising method to benefit highly equipped simulations of the headwater catchments.
CSIR Research Space (South Africa)
Singh, A
2011-05-01
Full Text Available . In this instance the samples are made using different concentrations of intralipid and black ink. The total and diffuse transmittance and reflectance is measured on both setups and the accuracy of each model compared by evaluating the prediction errors...
Intrinsic Density Matrices of the Nuclear Shell Model
International Nuclear Information System (INIS)
Deveikis, A.; Kamuntavichius, G.
1996-01-01
A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs
Kravchenko, Olga; Thachuk, Mark
2011-03-21
A study is presented of tracer diffusion in a rough hard sphere fluid. Unlike smooth hard spheres, collisions between rough hard spheres can exchange rotational and translational energy and momentum. It is expected that as tracer particles become larger, their diffusion constants will tend toward the Stokes-Einstein hydrodynamic result. It has already been shown that in this limit, smooth hard spheres adopt "slip" boundary conditions. The current results show that rough hard spheres adopt boundary conditions proportional to the degree of translational-rotational energy exchange. Spheres for which this exchange is the largest adopt "stick" boundary conditions while those with more intermediate exchange adopt values between the "slip" and "stick" limits. This dependence is found to be almost linear. As well, changes in the diffusion constants as a function of this exchange are examined and it is found that the dependence is stronger than that suggested by the low-density, Boltzmann result. Compared with smooth hard spheres, real molecules undergo inelastic collisions and have attractive wells. Rough hard spheres model the effect of inelasticity and show that even without the presence of attractive forces, the boundary conditions for large particles can deviate from "slip" and approach "stick."
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
2011-09-01
cracking patterns ob- served in spherical indentation data indirectly quantify microheterogeneity. The evolution of damage in ceramics due to projectile...Kayenta model’s damage evolution and variability parameters. Figure 5 illustrates the relationship between the model implementation of variability...Materials by Design, ed., J. W. McCauley. Vol. 134, 11–18. Ceramic Transactions, Cocoa Beach, FL, 2002. 3. G. E. Hauver, et al. Interface Defeat of Long-Rod
Porritt, L. A.; Quane, S.; Russell, K.
2011-12-01
Pele's tears are a well known curiosity commonly associated with low viscosity basaltic explosive eruptions. However, these pyroclasts are rarely studied in detail and there is no full explanation for their formation. These intriguing pyroclasts have smooth glassy surfaces, vesiculated interiors, and fluidal morphologies tending towards droplets and then spheres as they decrease in size to Pele's tears from the 1959 fire-fountaining eruption of Kilauea Iki involving size and density measurements. Using thin section and SEM analysis we also consider their internal and external morphologies, porosity and bubble size distributions, and surface textures. Finally we consider the mechanisms of magma fragmentation, timescales of relaxation, and cooling rates that are responsible for their formation.
The power of hard-sphere models: explaining side-chain dihedral angle distributions of Thr and Val.
Zhou, Alice Qinhua; O'Hern, Corey S; Regan, Lynne
2012-05-16
The energy functions used to predict protein structures typically include both molecular-mechanics and knowledge-based terms. In contrast, our approach is to develop robust physics- and geometry-based methods. Here, we investigate to what extent simple hard-sphere models can be used to predict side-chain conformations. The distributions of the side-chain dihedral angle χ(1) of Val and Thr in proteins of known structure show distinctive features: Val side chains predominantly adopt χ(1) = 180°, whereas Thr side chains typically adopt χ(1) = 60° and 300° (i.e., χ(1) = ±60° or g- and g(+) configurations). Several hypotheses have been proposed to explain these differences, including interresidue steric clashes and hydrogen-bonding interactions. In contrast, we show that the observed side-chain dihedral angle distributions for both Val and Thr can be explained using only local steric interactions in a dipeptide mimetic. Our results emphasize the power of simple physical approaches and their importance for future advances in protein engineering and design. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS
International Nuclear Information System (INIS)
BURRELL, K.H.
2003-01-01
OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal
Gelation in a model 1-component system with adhesive hard-sphere interactions
Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman
2012-02-01
Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).
Conditional density estimation using fuzzy GARCH models
Almeida, R.J.; Bastürk, N.; Kaymak, U.; Costa Sousa, da J.M.; Kruse, R.; Berthold, M.R.; Moewes, C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.
2013-01-01
Abstract. Time series data exhibits complex behavior including non-linearity and path-dependency. This paper proposes a flexible fuzzy GARCH model that can capture different properties of data, such as skewness, fat tails and multimodality in one single model. Furthermore, additional information and
Energy Technology Data Exchange (ETDEWEB)
Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)
2015-07-14
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project
Gross-Neveu model on a sphere with a magnetic monopole
International Nuclear Information System (INIS)
Elizalde, E.; Naftulin, S.; Odintsov, S.D.
1996-01-01
We study, for the first time, the phase structure of the Gross-Neveu model with a combination of a (constant) gravitational and a magnetic field. This has been made possible by our finding of an exact solution to the problem, namely, the effective potential for the composite fermions. Then, from the corresponding implicit equation, the phase diagram for the dynamical fermion mass is calculated numerically for some values of the magnetic field. For a small magnetic field the phase diagram hints at the possibility of a second order phase transition at some critical curvature. With a growing magnetic field only the phase with broken chiral symmetry survives, because the magnetic field prevents the decay of the chiral condensate. This result is bound to have important consequences in early Universe cosmology. copyright 1996 The American Physical Society
Multivariate Density Modeling for Retirement Finance
Rook, Christopher J.
2017-01-01
Prior to the financial crisis mortgage securitization models increased in sophistication as did products built to insure against losses. Layers of complexity formed upon a foundation that could not support it and as the foundation crumbled the housing market followed. That foundation was the Gaussian copula which failed to correctly model failure-time correlations of derivative securities in duress. In retirement, surveys suggest the greatest fear is running out of money and as retirement dec...
Modeling of branching density and branching distribution in low-density polyethylene polymerization
Kim, D.M.; Iedema, P.D.
2008-01-01
Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties
Lee, Kwang-Hun; Liapi, Eleni A; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A; Ventura, Veronica Prieto; Geschwind, Jean-Francois H
2010-06-01
The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.
International Nuclear Information System (INIS)
Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.
2010-01-01
The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.
A predictive model for the tokamak density limit
International Nuclear Information System (INIS)
Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; Gates, D. A.; Swerdlow, J.; White, R. B.
2016-01-01
We reproduce the Greenwald density limit, in all tokamak experiments by using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. Furthermore, we found the density limit and it is a local edge limit and weakly dependent on impurity densities. Our results are robust to a substantial variation in model parameters within the range of experiments.
Density contrast indicators in cosmological dust models
Indian Academy of Sciences (India)
contrast, which may or may not be monotonically increasing with time. We also find that monotonic- ity seems to be related to the initial conditions of the model, which may be of potential interest in connection with debates regarding gravitational entropy and the arrow of time. 1. Introduction. An important question in ...
Current Density and Continuity in Discretized Models
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Model FT631 moisture/density combined gauge
International Nuclear Information System (INIS)
Ji Changsong; Dai Zhude; Zhang Jianguo; Zhang Enshang; Huang Jiling; Meng Qingbao
1990-01-01
Model FT631 Moisture/Density Combined Gauge has been developed, with which both water content and density, the two parameters of measured medium (soil), are obtained in one act of measurement at the same time. A China patent has been taken for this invention
Nonparametric volatility density estimation for discrete time models
Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.
2005-01-01
We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed
Unified model of nuclear mass and level density formulas
International Nuclear Information System (INIS)
Nakamura, Hisashi
2001-01-01
The objective of present work is to obtain a unified description of nuclear shell, pairing and deformation effects for both ground state masses and level densities, and to find a new set of parameter systematics for both the mass and the level density formulas on the basis of a model for new single-particle state densities. In this model, an analytical expression is adopted for the anisotropic harmonic oscillator spectra, but the shell-pairing correlation are introduced in a new way. (author)
Fundamental measure theory for hard-sphere mixtures: a review
International Nuclear Information System (INIS)
Roth, Roland
2010-01-01
Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments. (topical review)
International Nuclear Information System (INIS)
Ballone, P.; Pastore, G.; Tosi, M.P.
1986-02-01
Interfacial properties of an ionic fluid next to a uniformly charged planar wall are studied in the restricted primitive model by both theoretical and Monte Carlo methods. The system is a 1:1 fluid of equisized charged hard spheres in a state appropriate to 1M aqueous electrolyte solutions. The interfacial density profiles of counterions and coions are evaluated by extending the hypernetted chain approximation (HNC) to include the leading bridge diagrams for the wall-ion correlations. The theoretical results compare well with those of grand canonical Monte Carlo computations of Torrie and Valleau over the whole range of surface charge density considered by these authors, thus resolving the earlier disagreement between statistical mechanical theories and simulation data at large charge densities. In view of the importance of the model as a testing ground for theories of the diffuse layer, the Monte Carlo calculations are tested by considering alternative choices for the basic simulation cell and are extended so as to allow an evaluation of the differential capacitance of the model interface by two independent methods. These involve numerical differentiation of the mean potential drop as a function of the surface charge density or alternatively an appropriate use of a fluctuation theory formula for the capacitance. The results of these two Monte Carlo approaches consistently indicate an initially smooth increase of the diffuse layer capacitance followed by structure at large charge densities, this behaviour being connected with layering of counterions as already revealed in the density profiles reported by Torrie and Valleau. (author)
Panoramic stereo sphere vision
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to
Chemical theory and modelling through density across length scales
International Nuclear Information System (INIS)
Ghosh, Swapan K.
2016-01-01
One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of
Predicting mesh density for adaptive modelling of the global atmosphere.
Weller, Hilary
2009-11-28
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Bayesian modeling of the mass and density of asteroids
Dotson, Jessie L.; Mathias, Donovan
2017-10-01
Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.
Stochastic transport models for mixing in variable-density turbulence
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
Populational Growth Models Proportional to Beta Densities with Allee Effect
Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.
2009-05-01
We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1
models do not include this effect. In order to inforce it, we present some alternative models and investigate their dynamics, presenting some important results.
Moments Method for Shell-Model Level Density
International Nuclear Information System (INIS)
Zelevinsky, V; Horoi, M; Sen'kov, R A
2016-01-01
The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Molecular Model for HNBR with Tunable Cross-Link Density.
Molinari, N; Khawaja, M; Sutton, A P; Mostofi, A A
2016-12-15
We introduce a chemically inspired, all-atom model of hydrogenated nitrile butadiene rubber (HNBR) and assess its performance by computing the mass density and glass-transition temperature as a function of cross-link density in the structure. Our HNBR structures are created by a procedure that mimics the real process used to produce HNBR, that is, saturation of the carbon-carbon double bonds in NBR, either by hydrogenation or by cross-linking. The atomic interactions are described by the all-atom "Optimized Potentials for Liquid Simulations" (OPLS-AA). In this paper, first, we assess the use of OPLS-AA in our models, especially using NBR bulk properties, and second, we evaluate the validity of the proposed model for HNBR by investigating mass density and glass transition as a function of the tunable cross-link density. Experimental densities are reproduced within 3% for both elastomers, and qualitatively correct trends in the glass-transition temperature as a function of monomer composition and cross-link density are obtained.
CSIR Research Space (South Africa)
Robertson Lain, L
2014-07-01
Full Text Available (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP...
Density Functional Theory and Materials Modeling at Atomistic Length Scales
Directory of Open Access Journals (Sweden)
Swapan K. Ghosh
2002-04-01
Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C [Cambridge Univ. (UK). Inst. of Theoretical Astronomy
1976-05-01
The gravitational effect of density concentrations in the Universe on the temperature distribution of the cosmic blackbody background radiation is considered, using the Swiss cheese model universe, and supposing each hole to contain an expanding, homogeneous dust sphere at its centre. The temperature profile across such a hole differs in an essential way from that obtained earlier by Rees et al (Nature; 217:511 (1968)). The evolution of this effect with the expansion of the Universe is considered for 'relatively increasing' density contrasts emerging from the same initial singular state as the rest of the Universe. This effect becomes comparable to the bremsstrahlung and Compton effects on the isotropy of the background radiation for masses of about 10/sup 19/ times the mass of the sun, and exceeds these other effects as about Msup(2/3) for larger masses. If large-scale condensations of the Universe can be found for z approximately 1 to 5, delineated, maybe, by the clustering of quasars, etc., then this effect may be observable.
Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses
Lerner, Edan; Bouchbinder, Eran
2017-08-01
Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .
Energy Technology Data Exchange (ETDEWEB)
Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)
2012-04-01
A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.
Lain, Lisl Robertson; Bernard, Stewart; Matthews, Mark W
2016-11-28
We regret that the Rrs spectra shown for the EAP modelled high biomass validation in Fig. 7 [Opt. Express, 22, 16745 (2014)] are incorrect. They are corrected here. The closest match of modelled to measured effective diameter is for a generalised 16 μm dinoflagellate population and not a 12 μm one as previously stated. These corrections do not affect the discussion or the conclusions of the paper.
Robertson Lain, L; Bernard, S; Evers-King, H
2014-07-14
There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-dominated signal of these waters additionally addresses an increased interest in Phytoplankton Functional Type (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP model, which places emphasis on explicit bio-physical modelling of the phytoplankton population as a holistic determinant of inherent optical properties. This emphasis is shown to have an impact on the ability to retrieve the detailed phytoplankton spectral scattering information necessary for PFT applications and to successfully simulate reflectance across wide ranges of physical environments, biomass, and assemblage characteristics.
TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD
Directory of Open Access Journals (Sweden)
Yury A. Krasnitsky
2018-01-01
Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties.
Modelling the effect of autotoxicity on density-dependent phytotoxicity.
Sinkkonen, A
2007-01-21
An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in
Radiomic modeling of BI-RADS density categories
Wei, Jun; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Zhou, Chuan; Hadjiiski, Lubomir
2017-03-01
Screening mammography is the most effective and low-cost method to date for early cancer detection. Mammographic breast density has been shown to be highly correlated with breast cancer risk. We are developing a radiomic model for BI-RADS density categorization on digital mammography (FFDM) with a supervised machine learning approach. With IRB approval, we retrospectively collected 478 FFDMs from 478 women. As a gold standard, breast density was assessed by an MQSA radiologist based on BI-RADS categories. The raw FFDMs were used for computerized density assessment. The raw FFDM first underwent log-transform to approximate the x-ray sensitometric response, followed by multiscale processing to enhance the fibroglandular densities and parenchymal patterns. Three ROIs were automatically identified based on the keypoint distribution, where the keypoints were obtained as the extrema in the image Gaussian scale-space. A total of 73 features, including intensity and texture features that describe the density and the parenchymal pattern, were extracted from each breast. Our BI-RADS density estimator was constructed by using a random forest classifier. We used a 10-fold cross validation resampling approach to estimate the errors. With the random forest classifier, computerized density categories for 412 of the 478 cases agree with radiologist's assessment (weighted kappa = 0.93). The machine learning method with radiomic features as predictors demonstrated a high accuracy in classifying FFDMs into BI-RADS density categories. Further work is underway to improve our system performance as well as to perform an independent testing using a large unseen FFDM set.
Improved water density feedback model for pressurized water reactors
International Nuclear Information System (INIS)
Casadei, A.L.
1976-01-01
An improved water density feedback model has been developed for neutron diffusion calculations of PWR cores. This work addresses spectral effects on few-group cross sections due to water density changes, and water density predictions considering open channel and subcooled boiling effects. An homogenized spectral model was also derived using the unit assembly diffusion method for employment in a coarse mesh 3D diffusion computer program. The spectral and water density evaluation models described were incorporated in a 3D diffusion code, and neutronic calculations for a typical PWR were completed for both nominal and accident conditions. Comparison of neutronic calculations employing the open versus the closed channel model for accident conditions indicates that significant safety margin increases can be obtained if subcooled boiling and open channel effects are considered in accident calculations. This is attributed to effects on both core reactivity and power distribution, which result in increased margin to fuel degradation limits. For nominal operating conditions, negligible differences in core reactivity and power distribution exist since flow redistribution and subcooled voids are not significant at such conditions. The results serve to confirm the conservatism of currently employed closed channel feedback methods in accident analysis, and indicate that the model developed in this work can contribute to show increased safety margins for certain accidents
Energy Technology Data Exchange (ETDEWEB)
Ridley, Mora K. [Texas Tech University, Lubbock; Hiemstra, T [Oak Ridge National Laboratory (ORNL); Van Riemsdijk, Willem H. [Wageningen University and Research Centre, The Netherlands; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL
2009-01-01
Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic
Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.
2009-04-01
Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic
Röntgen spheres around active stars
Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista
2018-01-01
X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.
Energy Technology Data Exchange (ETDEWEB)
Cho, SeongKyung
2010-09-15
Risk problems occurred by climate change distinguishes itself from other problems in its nature and influence. It is reasonable for ordinary citizens are unable to realize the climate change problems, and great gap exists between potential disaster and perception of the public as a result. These problems must be solved via democratic procedures and processes. Raising probability concerning governance of climate change risks is possible by balance and harmony of political will, apposite policy, and public supports by participation. This research proposes for establishment of realistic public sphere which is a precondition for countermeasure.
Density-correlation functions in Calogero-Sutherland models
International Nuclear Information System (INIS)
Minahan, J.A.; Polychronakos, A.P.
1994-01-01
Using arguments from two-dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density-correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct
Density correlation functions in Calogero-Sutherland models
Minahan, Joseph A.; Joseph A Minahan; Alexios P Polychronakos
1994-01-01
Using arguments from two dimensional Yang-Mills theory and the collective coordinate formulation of the Calogero-Sutherland model, we conjecture the dynamical density correlation function for coupling l and 1/l, where l is an integer. We present overwhelming evidence that the conjecture is indeed correct.
Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.
Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.
2018-04-01
In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.
Linking density functional and mode coupling models for supercooled liquids
Energy Technology Data Exchange (ETDEWEB)
Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)
2016-03-28
We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.
Linking density functional and mode coupling models for supercooled liquids.
Premkumar, Leishangthem; Bidhoodi, Neeta; Das, Shankar P
2016-03-28
We compare predictions from two familiar models of the metastable supercooled liquid, respectively, constructed with thermodynamic and dynamic approaches. In the so called density functional theory the free energy F[ρ] of the liquid is a functional of the inhomogeneous density ρ(r). The metastable state is identified as a local minimum of F[ρ]. The sharp density profile characterizing ρ(r) is identified as a single particle oscillator, whose frequency is obtained from the parameters of the optimum density function. On the other hand, a dynamic approach to supercooled liquids is taken in the mode coupling theory (MCT) which predict a sharp ergodicity-non-ergodicity transition at a critical density. The single particle dynamics in the non-ergodic state, treated approximately, represents a propagating mode whose characteristic frequency is computed from the corresponding memory function of the MCT. The mass localization parameters in the above two models (treated in their simplest forms) are obtained, respectively, in terms of the corresponding natural frequencies depicted and are shown to have comparable magnitudes.
International Nuclear Information System (INIS)
Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.
2009-01-01
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.
Energy Technology Data Exchange (ETDEWEB)
Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)
2009-12-15
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.
Online traffic flow model applying dynamic flow-density relation
International Nuclear Information System (INIS)
Kim, Y.
2002-01-01
This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the
Energy Technology Data Exchange (ETDEWEB)
Arkar, C.; Medved, S. [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)
2005-11-01
With the integration of latent-heat thermal energy storage (LHTES) in building services, solar energy and the coldness of ambient air can be efficiently used to reduce the energy used for heating and cooling and to improve the level of living comfort. For this purpose, a cylindrical LHTES containing spheres filled with paraffin was developed. For the proper modelling of the LHTES thermal response the thermal properties of the phase change material (PCM) must be accurately known. This article presents the influence of the accuracy of thermal property data of the PCM on the result of the prediction of the LHTES's thermal response. A packed bed numerical model was adapted to take into account the non-uniformity of the PCM's porosity and the fluid's velocity. Both are the consequence of a small tube-to-sphere diameter ratio, which is characteristic of the developed LHTES. The numerical model can also take into account the PCM's temperature-dependent thermal properties. The temperature distribution of the latent heat of the paraffin (RT20) used in the experiment in the form of apparent heat capacity was determined using a differential scanning calorimeter (DSC) at different heating and cooling rates. A comparison of the numerical and experimental results confirmed our hypothesis relating to the important role that the PCM's thermal properties play, especially during slow running processes, which are characteristic for our application.
TRANSMISSION AND ABSORPTION OF MICROWAVES BY AN INHOMOGENEOUS SPHERE PLASMA
Institute of Scientific and Technical Information of China (English)
SONG Falun; CAO Jinxiang; WANG Ge
2004-01-01
The numerical calculation of the transmission and absorption of microwaves at an arbitrarily incident angle to the inhomogeneous spherically symmetric plasma is presented.The nonuniform sphere is modeled by a series of concentric spherical shells, and the electron density is constant in each shell. The overall density profile follows any given distribution function. By using the geometrical optics approximation and considering the propagation coefficient is complex, as well as the attenuation and phase coefficients are vectors, the detailed evaluation shows that the transmission and absorption of microwaves in the inhomogeneous spherically symmetric plasma depend on the electron and neutral particle collision frequency, central density, incident angle of the microwaves and density distribution profiles.
Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
Dinariev, Oleg Yu.; Evseev, Nikolay V.
2017-06-01
Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.
Simplified local density model for adsorption over large pressure ranges
International Nuclear Information System (INIS)
Rangarajan, B.; Lira, C.T.; Subramanian, R.
1995-01-01
Physical adsorption of high-pressure fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases; the separation and purification of lower hydrocarbons; solid-phase extractions; adsorbent regenerations using supercritical fluids; supercritical fluid chromatography; and critical point drying. A mean-field model is developed that superimposes the fluid-solid potential on a fluid equation of state to predict adsorption on a flat wall from vapor, liquid, and supercritical phases. A van der Waals-type equation of state is used to represent the fluid phase, and is simplified with a local density approximation for calculating the configurational energy of the inhomogeneous fluid. The simplified local density approximation makes the model tractable for routine calculations over wide pressure ranges. The model is capable of prediction of Type 2 and 3 subcritical isotherms for adsorption on a flat wall, and shows the characteristic cusplike behavior and crossovers seen experimentally near the fluid critical point
Two-component scattering model and the electron density spectrum
Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.
2010-02-01
In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.
Modelling interactions of toxicants and density dependence in wildlife populations
Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.
2013-01-01
1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to
Transport critical current density in flux creep model
International Nuclear Information System (INIS)
Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.
1992-01-01
The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials
Directory of Open Access Journals (Sweden)
S. Woelki
2011-12-01
Full Text Available In this study the Singlet Reference Interaction Site Model (SRISM is employed to the study of the electrode charge dependence of the capacitance of a planar electric double layer using the primitive model of the double layer for a high density electrolyte that mimics an ionic liquid. The ions are represented by charged hard spheres and the electrode is a uniformly charged flat surface. The capacitance of this model fluid is calculated with the SRISM approach with closures based on the hypernetted chain (HNC and Kovalenko-Hirata (KH closures and compared with simulations. As long as the magnitude of the electrode charge is not too great, the HNC closure shows the most promise. The KH results are reasonably good for a high density electrolyte but are poor when applied at low densities.
Finding a source inside a sphere
International Nuclear Information System (INIS)
Tsitsas, N L; Martin, P A
2012-01-01
A sphere excited by an interior point source or a point dipole gives a simplified yet realistic model for studying a variety of applications in medical imaging. We suppose that there is an exterior field (transmission problem) and that the total field on the sphere is known. We give analytical inversion algorithms for determining the interior physical characteristics of the sphere as well as the location, strength and orientation of the source/dipole. We start with static problems (Laplace’s equation) and then proceed to acoustic problems (Helmholtz equation). (paper)
Model dependence of isospin sensitive observables at high densities
Energy Technology Data Exchange (ETDEWEB)
Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-07
Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.
The sphere-PAC fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.
2000-01-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
The sphere-pac fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.; Nordstroem, L.A.; Hellwig, C.
2001-01-01
Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
Nuclear ``pasta'' phase within density dependent hadronic models
Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.
2009-03-01
In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.
Nuclear 'pasta' phase within density dependent hadronic models
International Nuclear Information System (INIS)
Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.
2009-01-01
In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
Directory of Open Access Journals (Sweden)
N.V. Zaitseva
2017-06-01
Full Text Available We present scientific-methodological approaches to defining risk categories of economic entities which are subject to surveillance in the sphere of consumer rights protection. Risk is suggested to be assessed as a product of violations frequency comprising violations of separate provisions of the law on consumer rights protection detected in the course of scheduled and unscheduled inspections; a number of claims per one detected violation which were satisfied by courts in favor of consumers; each separate case of harm accepted by court in money terms (as a sum of physical and moral damage to health and damage to property; and coefficient of a potential impact scope which differentiates risks for economic entities belonging to micro-, small, medium-sized and large business. Our information sources are official statistic data obtained due to realization of state control in the sphere of consumer rights protection and court practice collected in all the RF regions over 2012–2016. It is shown that a share of economic entities with extremely high risk potential which can cause total material damage to consumers in sums greater than 10 million rubles per year amounts to about 0.15 % of the total number of economic entities (both juridical persons and private entrepreneurs; economic entities with high risk potential account for about 2 %. Such groups are made of companies involved in financial markets, share construction services, insurance and tourism. About 23 % of juridical persons and private entrepreneurs can be classified as having low risk potential and they can be excluded from scheduled inspections. Economic entities structure in general corresponds to world practices. It is shown that risk-oriented surveillance model development requires improvements in keeping registers of juridical persons and private entrepreneurs as such registers should contain comprehensive information; it is necessary for correct risk category (or hazard category
A Trade Study of Thermosphere Empirical Neutral Density Models
2014-08-01
solar radio F10.7 proxy and magnetic activity measurements are used to calculate the baseline orbit. This approach is applied to compare the daily... approach is to calculate along-track errors for these models and compare them against the baseline error based on the “ground truth” neutral density data...n,m = Degree and order, respectively ′ = Geocentric latitude Approved for public release; distribution is unlimited. 2 λ = Geocentric
Modelling high density phenomena in hydrogen fibre Z-pinches
International Nuclear Information System (INIS)
Chittenden, J.P.
1990-09-01
The application of hydrogen fibre Z-pinches to the study of the radiative collapse phenomenon is studied computationally. Two areas of difficulty, the formation of a fully ionized pinch from a cryogenic fibre and the processes leading to collapse termination, are addressed in detail. A zero-D model based on the energy equation highlights the importance of particle end losses and changes in the Coulomb logarithm upon collapse initiation and termination. A 1-D Lagrangian resistive MHD code shows the importance of the changing radial profile shapes, particularly in delaying collapse termination. A 1-D, three fluid MHD code is developed to model the ionization of the fibre by thermal conduction from a high temperature surface corona to the cold core. Rate equations for collisional ionization, 3-body recombination and equilibration are solved in tandem with fluid equations for the electrons, ions and neutrals. Continuum lowering is found to assist ionization at the corona-core interface. The high density plasma phenomena responsible for radiative collapse termination are identified as the self-trapping of radiation and free electron degeneracy. A radiation transport model and computational analogues for the effects of degeneracy upon the equation of state, transport coefficients and opacity are implemented in the 1-D, single fluid model. As opacity increases the emergent spectrum is observed to become increasingly Planckian and a fall off in radiative cooling at small radii and low frequencies occurs giving rise to collapse termination. Electron degeneracy terminates radiative collapse by supplementing the radial pressure gradient until the electromagnetic pinch force is balanced. Collapse termination is found to be a hybrid process of opacity and degeneracy effects across a wide range of line densities with opacity dominant at large line densities but with electron degeneracy becoming increasingly important at lower line densities. (author)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Gravitational potential energy of a disk-sphere pair of galaxies
International Nuclear Information System (INIS)
Ballabh, G.M.
1975-01-01
Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)
Graphs with Eulerian unit spheres
Knill, Oliver
2015-01-01
d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...
Hydrodynamic interaction between bacteria and passive sphere
Zhang, Bokai; Ding, Yang; Xu, Xinliang
2017-11-01
Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Ab initio derivation of model energy density functionals
International Nuclear Information System (INIS)
Dobaczewski, Jacek
2016-01-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)
Process development and fabrication for sphere-pac fuel rods
International Nuclear Information System (INIS)
Welty, R.K.; Campbell, M.H.
1981-06-01
Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted
Improving Frozen Precipitation Density Estimation in Land Surface Modeling
Sparrow, K.; Fall, G. M.
2017-12-01
The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in
K-correlation power spectral density and surface scatter model
Dittman, Michael G.
2006-08-01
The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.
Modeling a nucleon system: static and dynamical properties - density fluctuations
International Nuclear Information System (INIS)
Idier, D.
1997-01-01
This thesis sets forth a quasi-particle model for the static and dynamical properties of nuclear matter. This model is based on a scale ratio of quasi-particle to nucleons and the projection of the semi-classical distribution on a coherent Gaussian state basis. The first chapter is dealing with the transport equations, particularly with the Vlasov equation for Wigner distribution function. The second one is devoted to the statics of nuclear matter. Here, the sampling effect upon the nuclear density is treated and the state equation of the Gaussian fluid is compared with that given by Hartree-Fock approximation. We define state equation as the relationship between the nucleon binding energy and density, for a given temperature. The curvature around the state equation minimum of the quasi-particle system is shown to be related to the speed of propagation of density perturbation. The volume energy and the surface properties of a (semi-)infinite nucleon system are derived. For the resultant saturated auto-coherent semi-infinite system of quasi-particles the surface coefficient appearing in the mass formula is extracted as well as the system density profile. The third chapter treats the dynamics of the two-particle residual interactions. The effect of different parameters on relaxation of a nucleon system without a mean field is studied by means of a Eulerian and Lagrangian modeling. The fourth chapter treats the volume instabilities (spinodal decomposition) in nuclear matter. The quasi-particle systems, initially prepared in the spinodal region of the utilized interaction, are set to evolve. It is shown then that the scale ratio acts upon the amount of fluctuations injected in the system. The inhomogeneity degree and a proper time are defined and the role of collisions in the spinodal decomposition as well as that of the initial temperature and density, are investigated. Assuming different effective macroscopic interactions, the influence of quantities as
Dynamic density functional theory of solid tumor growth: Preliminary models
Directory of Open Access Journals (Sweden)
Arnaud Chauviere
2012-03-01
Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.
The level density parameters for fermi gas model
International Nuclear Information System (INIS)
Zuang Youxiang; Wang Cuilan; Zhou Chunmei; Su Zongdi
1986-01-01
Nuclear level densities are crucial ingredient in the statistical models, for instance, in the calculations of the widths, cross sections, emitted particle spectra, etc. for various reaction channels. In this work 667 sets of more reliable and new experimental data are adopted, which include average level spacing D D , radiative capture width Γ γ 0 at neutron binding energy and cumulative level number N 0 at the low excitation energy. They are published during 1973 to 1983. Based on the parameters given by Gilbert-Cameon and Cook the physical quantities mentioned above are calculated. The calculated results have the deviation obviously from experimental values. In order to improve the fitting, the parameters in the G-C formula are adjusted and new set of level density parameters is obsained. The parameters is this work are more suitable to fit new measurements
From Real Materials to Model Hamiltonians With Density Matrix Downfolding
Directory of Open Access Journals (Sweden)
Huihuo Zheng
2018-05-01
Full Text Available Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: how do we extract useful physical models and insight from these simulations? In this article, we present a formal theory of downfolding–extracting an effective Hamiltonian from first-principles calculations. The theory maps the downfolding problem into fitting information derived from wave functions sampled from a low-energy subspace of the full Hilbert space. Since this fitting process most commonly uses reduced density matrices, we term it density matrix downfolding (DMD.
Elasticity of Hard-Spheres-And-Tether Systems
International Nuclear Information System (INIS)
Farago, O.; Kantor, Y.
1999-01-01
Physical properties of a large class of systems ranging from noble gases to polymers and rubber are primarily determined by entropy, while the internal energy plays a minor role. Such systems can be conveniently modeled and numerically studied using ''hard' (i.e., ''infinity-or-zero'') potentials, such as hard sphere repulsive interactions, or inextensible (''tether'') bonds which limit the distance between the bonded monomers, but have zero energy at all permitted distances. The knowledge of elastic constants is very important for understanding the behavior of entropy-dominated systems. Computational methods for determination of the elastic constants in such systems are broadly classified into ''strain'' methods and (fluctuation methods. In the former, the elastic constants are extracted from stress-strain relations, while in the latter they are determined from measurements of stress fluctuations. The fluctuation technique usually enables more accurate and well-controlled determination of the elastic constants since in this method the elastic constants are computed directly from simulations of the un strained system with no need to deform the simulation cell and perform numerical differentiations. For central forces systems, the original ''fluctuation'' formalism can be applied provided the pair potential is twice differentiable. We have extended this formalism to apply to hard-spheres-and-tether models in which this requirement is not fulfilled. We found that for such models the components of the tensor of elastic constants can be related to (two-, three- and four-point) probability densities of contacts between hard spheres and stretched bonds. We have tested our formalism on simple (phantom networks and three-dimensional hard spheres systems
Acoustic levitation of a large solid sphere
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
Energy Technology Data Exchange (ETDEWEB)
Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)
2016-07-25
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
International Nuclear Information System (INIS)
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-01-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Calibration models for density borehole logging - construction report
International Nuclear Information System (INIS)
Engelmann, R.E.; Lewis, R.E.; Stromswold, D.C.
1995-10-01
Two machined blocks of magnesium and aluminum alloys form the basis for Hanford's density models. The blocks provide known densities of 1.780 ± 0.002 g/cm 3 and 2.804 ± 0.002 g/cm 3 for calibrating borehole logging tools that measure density based on gamma-ray scattering from a source in the tool. Each block is approximately 33 x 58 x 91 cm (13 x 23 x 36 in.) with cylindrical grooves cut into the sides of the blocks to hold steel casings of inner diameter 15 cm (6 in.) and 20 cm (8 in.). Spacers that can be inserted between the blocks and casings can create air gaps of thickness 0.64, 1.3, 1.9, and 2.5 cm (0.25, 0.5, 0.75 and 1.0 in.), simulating air gaps that can occur in actual wells from hole enlargements behind the casing
Neutron density optimal control of A-1 reactor analoque model
International Nuclear Information System (INIS)
Grof, V.
1975-01-01
Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)
Spin-density functional for exchange anisotropic Heisenberg model
International Nuclear Information System (INIS)
Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.
2009-01-01
Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.
A cosmological model with compact space sections and low mass density
International Nuclear Information System (INIS)
Fagundes, H.V.
1982-01-01
A general relativistic cosmological model is presented, which has closed space sections and mass density below a critical density similar to that of Friedmann's models. The model may predict double images of cosmic sources. (Author) [pt
Blanken, T.C.; Felici, F.; Rapson, C.J.; de Baar, M.R.; Heemels, W.P.M.H.
2018-01-01
A model-based approach to real-time reconstruction of the particle density profile in tokamak plasmas is presented, based on a dynamic state estimator. Traditionally, the density profile is reconstructed in real-time by solving an ill-conditioned inversion problem using a measurement at a single
Models of asthma: density-equalizing mapping and output benchmarking
Directory of Open Access Journals (Sweden)
Fischer Tanja C
2008-02-01
Full Text Available Abstract Despite the large amount of experimental studies already conducted on bronchial asthma, further insights into the molecular basics of the disease are required to establish new therapeutic approaches. As a basis for this research different animal models of asthma have been developed in the past years. However, precise bibliometric data on the use of different models do not exist so far. Therefore the present study was conducted to establish a data base of the existing experimental approaches. Density-equalizing algorithms were used and data was retrieved from a Thomson Institute for Scientific Information database. During the period from 1900 to 2006 a number of 3489 filed items were connected to animal models of asthma, the first being published in the year 1968. The studies were published by 52 countries with the US, Japan and the UK being the most productive suppliers, participating in 55.8% of all published items. Analyzing the average citation per item as an indicator for research quality Switzerland ranked first (30.54/item and New Zealand ranked second for countries with more than 10 published studies. The 10 most productive journals included 4 with a main focus allergy and immunology and 4 with a main focus on the respiratory system. Two journals focussed on pharmacology or pharmacy. In all assigned subject categories examined for a relation to animal models of asthma, immunology ranked first. Assessing numbers of published items in relation to animal species it was found that mice were the preferred species followed by guinea pigs. In summary it can be concluded from density-equalizing calculations that the use of animal models of asthma is restricted to a relatively small number of countries. There are also differences in the use of species. These differences are based on variations in the research focus as assessed by subject category analysis.
Instability of extremal relativistic charged spheres
International Nuclear Information System (INIS)
Anninos, Peter; Rothman, Tony
2002-01-01
With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood
Automated structure solution, density modification and model building.
Terwilliger, Thomas C
2002-11-01
The approaches that form the basis of automated structure solution in SOLVE and RESOLVE are described. The use of a scoring scheme to convert decision making in macromolecular structure solution to an optimization problem has proven very useful and in many cases a single clear heavy-atom solution can be obtained and used for phasing. Statistical density modification is well suited to an automated approach to structure solution because the method is relatively insensitive to choices of numbers of cycles and solvent content. The detection of non-crystallographic symmetry (NCS) in heavy-atom sites and checking of potential NCS operations against the electron-density map has proven to be a reliable method for identification of NCS in most cases. Automated model building beginning with an FFT-based search for helices and sheets has been successful in automated model building for maps with resolutions as low as 3 A. The entire process can be carried out in a fully automatic fashion in many cases.
Modelling CO2-Brine Interfacial Tension using Density Gradient Theory
Ruslan, Mohd Fuad Anwari Che
2018-03-01
Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data
ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE
Directory of Open Access Journals (Sweden)
Rosemarie HAINES
2013-12-01
Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.
An empirical probability model of detecting species at low densities.
Delaney, David G; Leung, Brian
2010-06-01
False negatives, not detecting things that are actually present, are an important but understudied problem. False negatives are the result of our inability to perfectly detect species, especially those at low density such as endangered species or newly arriving introduced species. They reduce our ability to interpret presence-absence survey data and make sound management decisions (e.g., rapid response). To reduce the probability of false negatives, we need to compare the efficacy and sensitivity of different sampling approaches and quantify an unbiased estimate of the probability of detection. We conducted field experiments in the intertidal zone of New England and New York to test the sensitivity of two sampling approaches (quadrat vs. total area search, TAS), given different target characteristics (mobile vs. sessile). Using logistic regression we built detection curves for each sampling approach that related the sampling intensity and the density of targets to the probability of detection. The TAS approach reduced the probability of false negatives and detected targets faster than the quadrat approach. Mobility of targets increased the time to detection but did not affect detection success. Finally, we interpreted two years of presence-absence data on the distribution of the Asian shore crab (Hemigrapsus sanguineus) in New England and New York, using our probability model for false negatives. The type of experimental approach in this paper can help to reduce false negatives and increase our ability to detect species at low densities by refining sampling approaches, which can guide conservation strategies and management decisions in various areas of ecology such as conservation biology and invasion ecology.
Human postprandial gastric emptying of 1-3-millimeter spheres
International Nuclear Information System (INIS)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-01-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food
Human postprandial gastric emptying of 1-3-millimeter spheres
Energy Technology Data Exchange (ETDEWEB)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-06-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food.
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.
2000-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.
1999-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed
International Nuclear Information System (INIS)
Vu-Quoc, L.; Lesburg, L.; Zhang, X.
2004-01-01
An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles
Element-specific density profiles in interacting biomembrane models
International Nuclear Information System (INIS)
Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Gochev, Georgi; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg
2017-01-01
Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces. (paper)
Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo
2010-03-01
Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.
International Nuclear Information System (INIS)
Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo
2010-01-01
Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.
A generalized model for estimating the energy density of invertebrates
James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.
2012-01-01
Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2 = 0.96, p cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.
Guthrie, Forbes; Saidel-Keesing, Maish
2011-01-01
The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late
Calculation of the 3D density model of the Earth
Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.
2009-04-01
The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at
Density Functional Theory Modeling of Ferrihydrite Nanoparticle Adsorption Behavior
Kubicki, J.
2016-12-01
Ferrihydrite is a critical substrate for adsorption of oxyanion species in the environment1. The nanoparticulate nature of ferrihydrite is inherent to its formation, and hence it has been called a "nano-mineral"2. The nano-scale size and unusual composition of ferrihydrite has made structural determination of this phase problematic. Michel et al.3 have proposed an atomic structure for ferrihydrite, but this model has been controversial4,5. Recent work has shown that the Michel et al.3 model structure may be reasonably accurate despite some deficiencies6-8. An alternative model has been proposed by Manceau9. This work utilizes density functional theory (DFT) calculations to model both the structure of ferrihydrite nanoparticles based on the Michel et al. 3 model as refined in Hiemstra8 and the modified akdalaite model of Manceau9. Adsorption energies of carbonate, phosphate, sulfate, chromate, arsenite and arsenate are calculated. Periodic projector-augmented planewave calculations were performed with the Vienna Ab-initio Simulation Package (VASP10) on an approximately 1.7 nm diameter Michel nanoparticle (Fe38O112H110) and on a 2 nm Manceau nanoparticle (Fe38O95H76). After energy minimization of the surface H and O atoms. The model will be used to assess the possible configurations of adsorbed oxyanions on the model nanoparticles. Brown G.E. Jr. and Calas G. (2012) Geochemical Perspectives, 1, 483-742. Hochella M.F. and Madden A.S. (2005) Elements, 1, 199-203. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., and Parise, J.B., 2007, Science, 316, 1726-1729. Rancourt, D.G., and Meunier, J.F., 2008, American Mineralogist, 93, 1412-1417. Manceau, A., 2011, American Mineralogist, 96, 521-533. Maillot, F., Morin, G., Wang, Y., Bonnin, D., Ildefonse, P., Chaneac, C., Calas, G., 2011, Geochimica et Cosmochimica Acta, 75, 2708-2720. Pinney, N., Kubicki, J.D., Middlemiss, D.S., Grey, C.P., and Morgan, D
The soft-sphere equation of state for liquid Flibe
International Nuclear Information System (INIS)
Chen, X.M.; Schrock, V.E.; Peterson, P.F.
1992-01-01
Molten Flibe (Li 2 BeF 4 ) salt is a candidate material for the liquid blanket in the HYLIFE-II inertial confinement fusion reactor. The thermodynamic properties of the liquid are very important for the study of the thermohydraulic behavior of the concept design, particularly, the compressible analysis of the blanket isochoric heating problem. In this paper, a soft sphere model equation of state, which was used for describing liquid metals previously, is deployed with slight modifications for fitting the available experimental data for liquid Flibe. It is found that within the available temperature range the model gives a good agreement with experimental data for density, enthalpy and speed of sound. Additionally the model provides reasonable isotherms, spinodal line and predicts a 'critical point'. The results show that the model has good thermodynamic behavior, although for a material like Flibe the 'critical point' phenomenon is more complex than for pure component material
Fe2O3 hollow sphere nanocomposites for supercapacitor applications
Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming
2018-02-01
Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
A unified model of density limit in fusion plasmas
Zanca, P.; Sattin, F.; Escande, D. F.; Pucella, G.; Tudisco, O.
2017-05-01
In this work we identify by analytical and numerical means the conditions for the existence of a magnetic and thermal equilibrium of a cylindrical plasma, in the presence of Ohmic and/or additional power sources, heat conduction and radiation losses by light impurities. The boundary defining the solutions’ space having realistic temperature profile with small edge value takes mathematically the form of a density limit (DL). Compared to previous similar analyses the present work benefits from dealing with a more accurate set of equations. This refinement is elementary, but decisive, since it discloses a tenuous dependence of the DL on the thermal transport for configurations with an applied electric field. Thanks to this property, the DL scaling law is recovered almost identical for two largely different devices such as the ohmic tokamak and the reversed field pinch. In particular, they have in common a Greenwald scaling, linearly depending on the plasma current, quantitatively consistent with experimental results. In the tokamak case the DL dependence on any additional heating approximately follows a 0.5 power law, which is compatible with L-mode experiments. For a purely externally heated configuration, taken as a cylindrical approximation of the stellarator, the DL dependence on transport is found stronger. By adopting suitable transport models, DL takes on a Sudo-like form, in fair agreement with LHD experiments. Overall, the model provides a good zeroth-order quantitative description of the DL, applicable to widely different configurations.
International Nuclear Information System (INIS)
Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T
2010-01-01
We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.
Falling-sphere radioactive viscometry
International Nuclear Information System (INIS)
Souza, R. de.
1987-01-01
In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt
Directory of Open Access Journals (Sweden)
Rena R. Timirualeeva
2015-01-01
Full Text Available The article describes the methodology of modeling andstructuring of business networks theory. Accounting ofenvironmental factors mega-, macro- and mesolevels, theinternal state of the managed system and the error management command execution by control system implemented inthis. The proposed methodology can improve the quality of enterprise management of resort complex through a moreﬂexible response to changes in the parameters of the internaland external environments.
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Directory of Open Access Journals (Sweden)
Zhong Kuo
2018-03-01
Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Zhong, Kuo; Song, Kai; Clays, Koen
2018-03-01
In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glass transition in soft-sphere dispersions
International Nuclear Information System (INIS)
RamIrez-Gonzalez, P E; Medina-Noyola, M
2009-01-01
The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.
Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume
International Nuclear Information System (INIS)
Krainov, A Yu; Moiseeva, K M
2016-01-01
The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)
High pressure gas spheres for neutron and photon experiments
Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.
2009-09-01
High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.
Directory of Open Access Journals (Sweden)
Aleksandr Vladimirovich Dorzhdeev
2015-12-01
Full Text Available The article is devoted to building up a financial and mathematical model and designing the appropriate procedure of forming the quota, directed to the payroll of the vocational education teaching staff under the circumstances of normative-per capita financing. Nowadays the given problem occurred after the implementation of normative-per capita financing system is one of the most urgent and complicated problems. The procedures used in many educational institutions are outdated, based on a totally hourly basis and don’t meet the modern requirements of the educational economics and financial management. The approach, suggested in the article, not only solves many financial problems of educational institutions but also reveals problem areas, unprofitable educational programs, resolves optimization tasks, and proposes the algorithm of making the appropriate managerial decisions. Besides, the article describes the distribution procedure of the teaching staff payroll among structural subdivisions of the vocational educational institutions. In the context of the given model, financing should be implemented in proportion to the part of the structural subdivision in the educational process. This part is determined on the basis of the education financial plan of the current academic year of each educational program in this educational institution. In addition, the part of each structural subdivision is determined as the sum of parts of the respective subjects of the educational plan. The suggested procedure promotes the optimization of managing financial performance of vocational educational institutions, provides the opportunity of implementing individual contracts with the teaching staff, and using a number of other modern approaches to financial management of educational institutions.
Analytic functionals on the sphere
Morimoto, Mitsuo
1998-01-01
This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.
New interior solution describing relativistic fluid sphere
Indian Academy of Sciences (India)
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
Energy Technology Data Exchange (ETDEWEB)
Walton, O.R.; Braun, R.L.
1993-11-01
The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence
Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef
2015-09-01
Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.
International Nuclear Information System (INIS)
Serre, S.
2010-01-01
This research thesis first describes the problematic of the effects of natural radiation on micro- and nano-electronic components, and the atmospheric-radiative stress of atmospheric neutrons from cosmic origin: issue of 'Single event upsets', present knowledge of the atmospheric radiative environment induced by cosmic rays. The author then presents the neutron-based detection and spectrometry by using the Bonner sphere technique: principle of moderating spheres, definition and mathematical formulation of neutron spectrometry using Bonner spheres, active sensors of thermal neutrons, response of a system to conventional Bonner spheres, extension to the range of high energies. Then, he reports the development of a Bonner sphere system extended to the high-energy range for the spectrometry of atmospheric neutrons: definition of a conventional system, Monte Carlo calculation of response functions, development of the response matrix, representation and semi-empirical verification of fluence response, uncertainty analysis, extension to high energies, and measurement tests of the spectrometer. He reports the use of a Monte Carlo simulation to characterize the spectrometer response in the high-energy range
Conditional Density Models Integrating Fuzzy and Probabilistic Representations of Uncertainty
R.J. Almeida e Santos Nogueira (Rui Jorge)
2014-01-01
markdownabstract__Abstract__ Conditional density estimation is an important problem in a variety of areas such as system identification, machine learning, artificial intelligence, empirical economics, macroeconomic analysis, quantitative finance and risk management. This work considers the
Viscosity and density models for copper electrorefining electrolytes
Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari
2016-01-01
Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...
An LTE implementation based on a road traffic density model
Attaullah, Muhammad
2013-01-01
The increase in vehicular traffic has created new challenges in determining the behavior of performance of data and safety measures in traffic. Hence, traffic signals on intersection used as cost effective and time saving tools for traffic management in urban areas. But on the other hand the signalized intersections in congested urban areas are the key source of high traffic density and slow traffic. High traffic density causes the slow network traffic data rate between vehicle to vehicle and...
CSIR Research Space (South Africa)
Monem, S
2015-12-01
Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...
Collapse of radiating fluid spheres and cosmic censorship
International Nuclear Information System (INIS)
Unruh, W.G.
1985-01-01
The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship
Nonstatic radiating spheres in general relativity
International Nuclear Information System (INIS)
Krori, K.D.; Borgohain, P.; Sarma, R.
1985-01-01
The method of Herrera, Jimenez, and Ruggeri of obtaining nonstatic solutions of Einstein's field equations to study the evolution of stellar bodies is applied to obtain two models of nonstatic radiating spheres from two well-known static solutions of field equations, viz., Tolman's solutions IV and V. Whereas Tolman's type-IV model is found to be contracting for the period under investigation, Tolman's type-V model shows a bounce after attaining a minimum radius
Pizio, Orest; Sokołowski, Stefan
2013-05-28
We apply a density functional theory to describe properties of a restricted primitive model of an ionic fluid in slit-like pores. The pore walls are modified by grafted chains. The chains are built of uncharged or charged segments. We study the influence of modification of the pore walls on the structure, adsorption, ion selectivity, and the electric double layer capacitance of ionic fluid under confinement. The brush built of uncharged segments acts as a collection of obstacles in the walls vicinity. Consequently, separation of charges requires higher voltages, in comparison to the models without brushes. At high grafting densities the formation of crowding-type structure is inhibited. The double layer structure becomes more complex in various aspects, if the brushes are built of charged segments. In particular, the evolution of the brush height with the bulk fluid density and with the charge on the walls depends on the length of the blocks of charged spheres as well as on the distribution of charged species along chains. We also investigated how the dependence of the double layer capacitance on the electrostatic potential (or on the charge on the walls) changes with grafting density, the chain length, distribution of charges along the chain, the bulk fluid density, and, finally, with the pore width. The shape of the electric double layer capacitance vs. voltage changes from a camel-like to bell-like shape, if the bulk fluid density changes from low to moderate and high. If the bulk density is appropriately chosen, it is possible to alter the shape of this curve from the double hump to single hump by changing the grafting density. Moreover, in narrow pores one can observe the capacitance curve with even three humps for a certain set of parameters describing brush. This behavior illustrates how strong the influence of brushes on the electric double layer properties can be, particularly for ionic fluids in narrow pores.
Spherical Approximation on Unit Sphere
Directory of Open Access Journals (Sweden)
Eman Samir Bhaya
2018-01-01
Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of functions in spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in spaces for by modulus of smoothness of functions.
Response matrix calculation of a Bonner Sphere Spectrometer using ENDF/B-VII libraries
Energy Technology Data Exchange (ETDEWEB)
Morató, Sergio; Juste, Belén; Miró, Rafael; Verdú, Gumersindo [Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (Spain); Guardia, Vicent, E-mail: bejusvi@iqn.upv.es [GD Energy Services, Valencia (Spain). Grupo dominguis
2017-07-01
The present work is focused on the reconstruction of a neutron spectra using a multisphere spectrometer also called Bonner Spheres System (BSS). To that, the determination of the response detector curves is necessary therefore we have obtained the response matrix of a neutron detector by Monte Carlo (MC) simulation with MCNP6 where the use of unstructured mesh geometries is introduced as a novelty. The aim of these curves was to study the theoretical response of a widespread neutron spectrometer exposed to neutron radiation. A neutron detector device has been used in this work which is formed by a multispheres spectrometer (BSS) that uses 6 high density polyethylene spheres with different diameters. The BSS consists of a set of 0.95 g/cm{sup 3} high density polyethylene spheres. The detector is composed of a lithium iodide 6LiI cylindrical scintillator crystal 4mm x 4mm size LUDLUM Model 42 coupled to a photomultiplier tube. Thermal tables are required to include polyethylene cross section in the simulation. These data are essential to get correct and accurate results in problems involving neutron thermalization. Nowadays available literature present the response matrix calculated with ENDF.B.V cross section libraries (V.Mares et al 1993) or with ENDF.B.VI (R.Vega Carrillo et al 2007). This work uses two novelties to calculate the response matrix. On the one hand the use of unstructured meshes to simulate the geometry of the detector and the Bonner Spheres and on the other hand the use of the updated ENDF.B.VII cross sections libraries. A set of simulations have been performed to obtain the detector response matrix. 29 mono energetic neutron beams between 10 KeV to 20 MeV were used as source for each moderator sphere up to a total of 174 simulations. Each mono energetic source was defined with the same diameter as the moderating sphere used in its corresponding simulation and the spheres were uniformly irradiated from the top of the photomultiplier tube. Some
The effect of attractions on the structure of fused sphere chains confined between surfaces
International Nuclear Information System (INIS)
Patra, C.N.; Yethiraj, A.; Curro, J.G.
1999-01-01
The effect of attractive interactions on the behavior of polymers between surfaces is studied using Monte Carlo simulations. The molecules are modeled as fused sphere freely rotating chains with fixed bond lengths and bond angles; wall endash fluid and fluid endash fluid site endash site interaction potentials are of the hard sphere plus Yukawa form. For athermal chains the density at the surface (relative to the bulk) is depleted at low densities and enhanced at high densities. The introduction of a fluid endash fluid attraction causes a reduction of site density at the surface, and an introduction of a wall endash fluid attraction causes an enhancement of site density at the surface, compared to when these interactions are absent. When the wall endash fluid and fluid endash fluid attractions are of comparable strength, however, the depletion mechanism due to the fluid endash fluid attraction dominates. The center of mass profiles show the same trends as the site density profiles. Near the surface, the parallel and the perpendicular components of chain dimensions are different, which is explained in terms of a reorientation of chains. copyright 1999 American Institute of Physics. thinsp
Squeeze flow between a sphere and a textured wall
Energy Technology Data Exchange (ETDEWEB)
Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)
2016-02-15
The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.
Color-flavor locked strange quark matter in a mass density-dependent model
International Nuclear Information System (INIS)
Chen Yuede; Wen Xinjian
2007-01-01
Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)
Bubble entrapment during sphere impact onto quiescent liquid surfaces
Marston, Jeremy
2011-06-20
We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.
Densities and isothermal compressibilities of ionic liquids - Modelling and application
DEFF Research Database (Denmark)
Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.
2010-01-01
Two corresponding-states forms have been developed for direct correlation function integrals in liquids to represent pressure effects on the volume of ionic liquids over wide ranges of temperature and pressure. The correlations can be analytically integrated from a chosen reference density to pro...
Musica Universalis or the Music of the Spheres
Birat, Jean-Pierre
2018-06-01
The Music of the Spheres was a model of the universe proposed by Pythagoras and Aristotle, which explained cosmology in terms of spheres to which the sun, the moon and the planets were pinned, while their motion was driven by something akin to music. Modern thinking, related to ecology and industrial ecology, has metaphorically breathed life back into this old model by speaking about spheres again: biosphere, geosphere, anthroposphere, technosphere, hydrosphere, cryosphere, atmosphere, etc. Sustainable development also speaks about its three pillars (economy, environment, society) represented in a Venn diagram as intersecting circles (or spheres). All these models differ from the models of physicists, as they are more conceptual diagrams than a representation of the world as it is. Thus, they remind us of the old Music of the Spheres model. They also stress connections, exchanges, equilibria between the spheres - or the lack of them -, like Pythagoras' music. The presentation will discuss these various approaches, see how they match to some extent, but also how they do not show a perfect fit. Analyzing what happens at the boundaries of the spheres, where they overlap or penetrate into each other, is a powerful way to analyze the connection between technology, society, life and ecosystems. It can also help discuss pollution, ecotoxicology and explore global solutions. This article was given as a keynote lecture at the EMERC 2017 (First International Conference on Energy and Material Efficiency), organized by ISIJ in Kobe, Japan, 11-13 October, 2017.
Trombley, N.; Weber, E.; Moehl, J.
2017-12-01
Many studies invoke dasymetric mapping to make more accurate depictions of population distribution by spatially restricting populations to inhabited/inhabitable portions of observational units (e.g., census blocks) and/or by varying population density among different land classes. LandScan USA uses this approach by restricting particular population components (such as residents or workers) to building area detected from remotely sensed imagery, but also goes a step further by classifying each cell of building area in accordance with ancillary land use information from national parcel data (CoreLogic, Inc.'s ParcelPoint database). Modeling population density according to land use is critical. For instance, office buildings would have a higher density of workers than warehouses even though the latter would likely have more cells of detection. This paper presents a modeling approach by which different land uses are assigned different densities to more accurately distribute populations within them. For parts of the country where the parcel data is insufficient, an alternate methodology is developed that uses National Land Cover Database (NLCD) data to define the land use type of building detection. Furthermore, LiDAR data is incorporated for many of the largest cities across the US, allowing the independent variables to be updated from two-dimensional building detection area to total building floor space. In the end, four different regression models are created to explain the effect of different land uses on worker distribution: A two-dimensional model using land use types from the parcel data A three-dimensional model using land use types from the parcel data A two-dimensional model using land use types from the NLCD data, and A three-dimensional model using land use types from the NLCD data. By and large, the resultant coefficients followed intuition, but importantly allow the relationships between different land uses to be quantified. For instance, in the model
Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres
International Nuclear Information System (INIS)
Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang
2007-01-01
In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results
Buckled graphene: A model study based on density functional theory
Khan, Yasser
2010-09-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
Buckled graphene: A model study based on density functional theory
Khan, Yasser; Mukaddam, Mohsin Ahmed; Schwingenschlö gl, Udo
2010-01-01
We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Gulisashvili, Archil; Stein, Elias M.
2010-01-01
We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.
Anomalies, conformal manifolds, and spheres
Energy Technology Data Exchange (ETDEWEB)
Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Coherent density fluctuation model as a local-scale limit to ATDHF
International Nuclear Information System (INIS)
Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.
1985-04-01
The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
The Finite Deformation Dynamic Sphere Test Problem
Energy Technology Data Exchange (ETDEWEB)
Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-02
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r_{i} = 10mm, r_{o} = 20mm and p = 1000Kg/m^{3} respectively.
Nuclear interaction potential in a folded-Yukawa model with diffuse densities
International Nuclear Information System (INIS)
Randrup, J.
1975-09-01
The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)
Modelling CO2-Brine Interfacial Tension using Density Gradient Theory
Ruslan, Mohd Fuad Anwari Che
2018-01-01
In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections
Joint density of eigenvalues in spiked multivariate models.
Dharmawansa, Prathapasinghe; Johnstone, Iain M
2014-01-01
The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density in terms of a single contour integral. This will be of use for deriving approximate distributions for likelihood ratios and 'linear' statistics used in testing.
Modeling dendrite density from magnetic resonance diffusion measurements
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif
2007-01-01
in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...
ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION
International Nuclear Information System (INIS)
Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.; Green, Gregory M.; Finkbeiner, Douglas P.
2016-01-01
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps
ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION
Energy Technology Data Exchange (ETDEWEB)
Bovy, Jo [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Rix, Hans-Walter; Schlafly, Edward F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Green, Gregory M.; Finkbeiner, Douglas P., E-mail: bovy@astro.utoronto.ca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2016-02-20
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.
Public Sphere as Digital Assemblage
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...
A phenomenological constitutive model for low density polyurethane foams
International Nuclear Information System (INIS)
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.
1987-04-01
Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs
Differential Calculus on Quantum Spheres
Welk, Martin
1998-01-01
We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.
2d Model Field Theories at Finite Temperature and Density
Schoen, Verena; Thies, Michael
2000-01-01
In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...
Models for turbulent flows with variable density and combustion
International Nuclear Information System (INIS)
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
White Dwarf Stars as Polytropic Gas Spheres
Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.
2014-01-01
Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...
Log Gaussian Cox processes on the sphere
DEFF Research Database (Denmark)
Pacheco, Francisco Andrés Cuevas; Møller, Jesper
We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....
On the revolution of heavenly spheres
Copernicus, Nicolaus
1995-01-01
The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.
Jourde, K.; Gibert, D.; Marteau, J.
2015-08-01
This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon-gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.
Density-temperature scaling of the fragility in a model glass-former
DEFF Research Database (Denmark)
Schrøder, Thomas; Sengupta, Shiladitya; Sastry, Srikanth
2013-01-01
. Such a scaling, referred to as density-temperature (DT) scaling, is exact for liquids with inverse power law (IPL) interactions but has also been found to be approximately valid in many non-IPL liquids. We have analyzed the consequences of DT scaling on the density dependence of the fragility in a model glass......Dynamical quantities e.g. diffusivity and relaxation time for some glass-formers may depend on density and temperature through a specific combination, rather than independently, allowing the representation of data over ranges of density and temperature as a function of a single scaling variable......-former. We find the density dependence of kinetic fragility to be weak, and show that it can be understood in terms of DT scaling and deviations of DT scaling at low densities. We also show that the Adam-Gibbs relation exhibits DT scaling and the scaling exponent computed from the density dependence...
DEFF Research Database (Denmark)
S. Fausto, Robert; E. Box, Jason; Vandecrux, Baptiste Robert Marcel
2018-01-01
The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constrained. Site-specific surface snow densities are typically derived from empirical relations based...... on temperature and wind speed. These parameterizations commonly calculate the average density of the top meter of snow, thereby systematically overestimating snow density at the actual surface. Therefore, constraining surface snow density to the top 0.1 m can improve boundary conditions in high-resolution firn......-evolution modeling. We have compiled an extensive dataset of 200 point measurements of surface snow density from firn cores and snow pits on the Greenland ice sheet. We find that surface snow density within 0.1 m of the surface has an average value of 315 kg m−3 with a standard deviation of 44 kg m−3, and has...
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
Ceramic sphere-pac breeder design for fusion blankets
International Nuclear Information System (INIS)
Gierszewski, P.J.; Sullivan, J.D.
1991-01-01
Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
Modeling charged defects inside density functional theory band gaps
International Nuclear Information System (INIS)
Schultz, Peter A.; Edwards, Arthur H.
2014-01-01
Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in materials. The fundamental band gap defines the energy scale for charge transition energy levels of point defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge boundary conditions in supercells, we find that calculations of defect energy levels derived from total energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unhampered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often possible to use conventional DFT for quantitative studies of defect chemistry governing interesting materials behavior in semiconductors and oxides despite a band gap problem
Directory of Open Access Journals (Sweden)
Robert S. Fausto
2018-05-01
Full Text Available The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constrained. Site-specific surface snow densities are typically derived from empirical relations based on temperature and wind speed. These parameterizations commonly calculate the average density of the top meter of snow, thereby systematically overestimating snow density at the actual surface. Therefore, constraining surface snow density to the top 0.1 m can improve boundary conditions in high-resolution firn-evolution modeling. We have compiled an extensive dataset of 200 point measurements of surface snow density from firn cores and snow pits on the Greenland ice sheet. We find that surface snow density within 0.1 m of the surface has an average value of 315 kg m−3 with a standard deviation of 44 kg m−3, and has an insignificant annual air temperature dependency. We demonstrate that two widely-used surface snow density parameterizations dependent on temperature systematically overestimate surface snow density over the Greenland ice sheet by 17–19%, and that using a constant density of 315 kg m−3 may give superior results when applied in surface mass budget modeling.
Crystallizing hard-sphere glasses by doping with active particles
Ni, Ran; Cohen Stuart, Martien A.; Dijkstra, Marjolein; Bolhuis, Peter G.
2014-01-01
Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
International Nuclear Information System (INIS)
Sanchez, Rene G.; Loaiza, David J.; Kimpland, Robert H.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.; Butterfield, Kenneth B.
2003-01-01
A critical mass experiment using a 6-kg 237 Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of 237 Np. To attain criticality, the 237 Np sphere was surrounded with 93 wt% 235 U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k eff of 0.99089 ± 0.0003 compared with a k eff 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of 237 Np ranges from kilogram weights in the high fifties to low sixties. (author)
Coated sphere scattering by geometric optics approximation.
Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang
2014-10-01
A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.
Directory of Open Access Journals (Sweden)
O. Pizio
2014-06-01
Full Text Available We investigate the electric double layer formed between charged walls of a slit-like pore and a solvent primitive model (SPM for electrolyte solution. The recently developed version of the weighted density functional approach for electrostatic interparticle interaction is applied to the study of the density profiles, adsorption and selectivity of adsorption of ions and solvent species. Our principal focus, however, is in the dependence of differential capacitance on the applied voltage, on the electrode and on the pore width. We discuss the properties of the model with respect to the behavior of a primitive model, i.e., in the absence of a hard-sphere solvent. We observed that the differential capacitance of the SPM on the applied electrostatic potential has the camel-like shape unless the ion fraction is high. Moreover, it is documented that the dependence of differential capacitance of the SPM on the pore width is oscillatory, which is in close similarity to the primitive model.
A Creep Model for High-Density Snow
2017-04-01
proportionality, Q = activation energy (Cal/mol), R = the ideal gas constant (1.985 Cal/mol K), and T = absolute temperature in Kelvin. Applying this, I...modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...this power law ). The present study used this general form as the basis for developing two creep models: one to describe the pri- mary creep and
Density and viscosity modeling and characterization of heavy oils
DEFF Research Database (Denmark)
Cisneros, Sergio; Andersen, Simon Ivar; Creek, J
2005-01-01
to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...
Non-local energy density functionals: models plus some exact general results
International Nuclear Information System (INIS)
March, N.H.
2001-02-01
Holas and March (Phys. Rev. A51, 2040, 1995) gave a formally exact expression for the force - δV xc (r-tilde)/δr-tilde associated with the exchange-correlation potential V xc (r-tilde) of density functional theory. This forged a precise link between first- and second-order density matrices and V xc (r-tilde). Here models are presented in which these low-order matrices can be related to the ground-state electron density. This allows non-local energy density functionals to be constructed within the framework of such models. Finally, results emerging from these models have led to the derivation of some exact 'nuclear cusp' relations for exchange and correlation energy densities in molecules, clusters and condensed phases. (author)
Energy Technology Data Exchange (ETDEWEB)
Beatty, R.L. Norman, R.E.; Notz, K.J. (comps.)
1979-11-01
Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and /sup 233/U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology.
International Nuclear Information System (INIS)
Beatty, R.L.; Norman, R.E.; Notz, K.J.
1979-11-01
Recent interest in proliferation-resistant fuel cycles for light-water reactors has focused attention on spiked plutonium and 233 U-Th fuels, requiring remote refabrication. The gel-sphere-pac process for fabricating metal-clad fuel elements has drawn special attention because it involves fewer steps. Gel-sphere-pac fabrication technology involves two major areas: the preparation of fuel spheres of high density and loading these spheres into rods in an efficiently packed geometry. Gel sphere preparation involves three major steps: preparation of a sol or of a special solution (broth), gelation of droplets of sol or broth to give semirigid spheres of controlled size, and drying and sintering these spheres to a high density. Gelation may be accomplished by water extraction (suitable only for sols) or ammonia gelation (suitable for both sols and broths but used almost exclusively with broths). Ammonia gelation can be accomplished either externally, via ammonia gas and ammonium hydroxide, or internally via an added ammonia generator such as hexamethylenetetramine. Sphere-pac fuel rod fabrication involves controlled blending and metering of three sizes of spheres into the rod and packing by low- to medium-energy vibration to achieve about 88% smear density; these sizes have diametral ratios of about 40:10:1 and are blended in size fraction amounts of about 60% coarse, 18% medium, and 22% fine. Irradiation test results indicate that sphere-pac fuel performs at least as well as pellet fuel, and may in fact offer an advantage in significantly reducing mechanical and chemical interaction between the fuel and cladding. The normal feed for gel sphere preparation, heavy metal nitrate solution, is the usual product of fuel reprocessing, so that fabrication of gel spheres performs all the functions performed by both conversion and pellet fabrication in the case of pellet technology
Single-particle spectral density of the Hubbard model
Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL
MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ
1995-01-01
We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.
2012-07-19
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.; Marston, J. O.; Thoroddsen, Sigurdur T
2012-01-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Studying and modelling variable density turbulent flows for industrial applications
Energy Technology Data Exchange (ETDEWEB)
Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.
1996-07-01
Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.). 18 refs.
Studying and modelling variable density turbulent flows for industrial applications
International Nuclear Information System (INIS)
Chabard, J.P.; Simonin, O.; Caruso, A.; Delalondre, C.; Dalsecco, S.; Mechitoua, N.
1996-07-01
Industrial applications are presented in the various fields of interest for EDF. A first example deals with transferred electric arcs couplings flow and thermal transfer in the arc and in the bath of metal and is related with applications of electricity. The second one is the combustion modelling in burners of fossil power plants. The last one comes from the nuclear power plants and concerns the stratified flows in a nuclear reactor building. (K.A.)
DEFF Research Database (Denmark)
Herceg, Matija; Artemieva, Irina; Thybo, Hans
2014-01-01
-density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions from velocity to density...... and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density...
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Evaluation of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. Research report (Interim)
International Nuclear Information System (INIS)
Solaimanian, M.; Holmgreen, R.J.; Kennedy, T.W.
1990-07-01
The report describes the results of a research study to determine the effectiveness of the Troxler Model 4640 Thin Lift Nuclear Density Gauge. The densities obtained from cores and the nuclear density gauge from seven construction projects were compared. The projects were either newly constructed or under construction when the tests were performed. A linear regression technique was used to investigate how well the core densities could be predicted from nuclear densities. Correlation coefficients were determined to indicate the degree of correlation between the core and nuclear densities. Using a statistical analysis technique, the range of the mean difference between core and nuclear measurements was established for specified confidence levels for each project. Analysis of the data indicated that the accuracy of the gauge is material dependent. While relatively acceptable results were obtained with limestone mixtures, the gauge did not perform satisfactorily with mixtures containing siliceous aggregate
Directory of Open Access Journals (Sweden)
J. Thuburn
2014-05-01
Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
Construction of a voxel model from CT images with density derived from CT numbers
International Nuclear Information System (INIS)
Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican
2011-01-01
The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density and elemental composition are the most important physical properties of voxel model. Usually, when creating the Monte Carlo input files, the average tissue densities recommended in ICRP Publication were used to assign each voxel in the existing voxel models. As each tissue consists of many voxels with different densities, the conventional method of average tissue densities failed to take account of the voxel's discrepancy, and therefore could not represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the densities of which were derived from CT number. In order to compare with the traditional method, we constructed two models from the cadaver specimen dataset. A CT-based pelvic voxel model called Pelvis-CT model was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model was also constructed, the densities of which were taken from ICRP Publication. The CT images and the color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were both ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometry. The results were compared with those of given in ICRP Publication 74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis- Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model agreed well with that of ICRP Publication 74 data. (author)
Assessment of Nucleation Site Density Models for CFD Simulations of Subcooled Flow Boiling
International Nuclear Information System (INIS)
Hoang, N. H.; Chu, I. C.; Euh, D. J.; Song, C. H.
2015-01-01
The framework of a CFD simulation of subcooled flow boiling basically includes a block of wall boiling models communicating with governing equations of a two-phase flow via parameters like temperature, rate of phasic change, etc. In the block of wall boiling models, a heat flux partitioning model, which describes how the heat is taken away from a heated surface, is combined with models quantifying boiling parameters, i.e. nucleation site density, and bubble departure diameter and frequency. It is realized that the nucleation site density is an important parameter for predicting the subcooled flow boiling. The number of nucleation sites per unit area decides the influence region of each heat transfer mechanism. The variation of the nucleation site density will mutually change the dynamics of vapor bubbles formed at these sites. In addition, the nucleation site density is needed as one initial and boundary condition to solve the interfacial area transport equation. A lot of effort has been devoted to mathematically formulate the nucleation site density. As a consequence, numerous correlations of the nucleation site density are available in the literature. These correlations are commonly quite different in their mathematical form as well as application range. Some correlations of the nucleation site density have been applied successfully to CFD simulations of several specific subcooled boiling flows, but in combination with different correlations of the bubble departure diameter and frequency. In addition, the values of the nucleation site density, and bubble departure diameter and frequency obtained from simulations for a same problem are relatively different, depending on which models are used, even when global characteristics, e.g., void fraction and mean bubble diameter, agree well with experimental values. It is realized that having a good CFD simulations of the subcooled flow boiling requires a detailed validations of all the models used. Owing to the importance
Energy Technology Data Exchange (ETDEWEB)
Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-01-30
Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-01
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.
Zhao, Yan; Chen, Min; Wu, Limin
2016-08-26
Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.
Troubleshooting vSphere storage
Preston, Mike
2013-01-01
This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge
Impact of particle density and initial volume on mathematical compression models
DEFF Research Database (Denmark)
Sonnergaard, Jørn
2000-01-01
In the calculation of the coefficients of compression models for powders either the initial volume or the particle density is introduced as a normalising factor. The influence of these normalising factors is, however, widely different on coefficients derived from the Kawakita, Walker and Heckel...... equations. The problems are illustrated by investigations on compaction profiles of 17 materials with different molecular structures and particle densities. It is shown that the particle density of materials with covalent bonds in the Heckel model acts as a key parameter with a dominating influence...
A Density-Based Ramp Metering Model Considering Multilane Context in Urban Expressways
Directory of Open Access Journals (Sweden)
Li Tang
2017-01-01
Full Text Available As one of the most effective intelligent transportation strategies, ramp metering is regularly discussed and applied all over the world. The classic ramp metering algorithm ALINEA dominates in practical applications due to its advantages in stabilizing traffic flow at a high throughput level. Although ALINEA chooses the traffic occupancy as the optimization parameter, the classic traffic flow variables (density, traffic volume, and travel speed may be easier obtained and understood by operators in practice. This paper presents a density-based ramp metering model for multilane context (MDB-RM on urban expressways. The field data of traffic flow parameters is collected in Chengdu, China. A dynamic density model for multilane condition is developed. An error function represented by multilane dynamic density is introduced to adjust the different usage between lanes. By minimizing the error function, the density of mainstream traffic can stabilize at the set value, while realizing the maximum decrease of on-ramp queues. Also, VISSIM Component Object Model of Application Programming Interface is used for comparison of the MDB-RM model with a noncontrol, ALINEA, and density-based model, respectively. The simulation results indicate that the MDB-RM model is capable of achieving a comprehensive optimal result from both sides of the mainstream and on-ramp.
High-Density Spot Seeding for Tissue Model Formation
Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)
2016-01-01
A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.
Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate
Directory of Open Access Journals (Sweden)
Li Yingke
2011-01-01
Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.
International Nuclear Information System (INIS)
Assaf, J.
2009-07-01
Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)
Neutron star models with realistic high-density equations of state
International Nuclear Information System (INIS)
Malone, R.C.; Johnson, M.B.; Bethe, H.A.
1975-01-01
We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar
Gender and Diversity in the European Public Spheres
DEFF Research Database (Denmark)
Siim, Birte
The increasing institutionalization of rights in EU has inspired a debate about the gap between the EU polity and citizens' abilities to influence multilevel governance and politics. The objective of the paper is to discuss diversity in the European public spheres from a gender perspective....... It first gives an overview of different feminist approaches to diversity and intersectionality. It explores the arguments for and against creating a democratic European Public Sphere and discusses the tensions between universal principles of equality at the one hand and concerns for inequalities...... state and to link feminist proposals for gender justice with frames for a multilayered trans-national citizenship. The paper aims to contribute to debates about theoretical approaches and models to study gender and diversity in the public sphere in general and in particular The European Public Sphere...
Geometry-based density functional theory an overview
Schmidt, M
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.
Geometry-based density functional theory: an overview
Schmidt, Matthias
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls.
Geometry-based density functional theory: an overview
International Nuclear Information System (INIS)
Schmidt, Matthias
2003-01-01
An overview of recent developments and applications of a specific density functional approach that originates from Rosenfeld's fundamental measure theory for hard spheres is given. Model systems that were treated include penetrable spheres that interact with a step function pair potential, the Widom-Rowlinson model, the Asakura-Oosawa colloid-polymer mixture, ternary mixtures of spheres, needles, and globular polymers, hard-body amphiphilic mixtures, fluids in porous media, and random sequential adsorption that describes non-equilibrium processes such as colloidal deposition and random car parking. In these systems various physical phenomena were studied, such as correlations in liquids, freezing and demixing phase behaviour, the properties of fluid interfaces with and without orientational order, and wetting and layering phenomena at walls
Spatially explicit modeling of lesser prairie-chicken lek density in Texas
Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, Heather A.
2014-01-01
As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.
2010-01-01
We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium
Three-particle equilibrium correlations in dense hard-sphere fluids
Haffmans, A.F.E.M.; Schepper, I.M. de; Michels, J.P.J.; Beijeren, H. van
1988-01-01
We performed molecular-dynamics simulation experiments for a hard-sphere fluid at four high densities and determined the spatial Fourier transform of the three-particle equilibrium correlation function with two of the three particles at contact.
Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling
DEFF Research Database (Denmark)
Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.
2005-01-01
Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....
Charge and transition densities of samarium isotopes in the interacting Boson model
International Nuclear Information System (INIS)
Moinester, M.A.; Alster, J.; Dieperink, A.E.L.
1982-01-01
The interacting boson approximation (IBA) model has been used to interpret the ground-state charge distributions and lowest 2 + transition charge densities of the even samarium isotopes for A = 144-154. Phenomenological boson transition densities associated with the nucleons comprising the s-and d-bosons of the IBA were determined via a least squares fit analysis of charge and transition densities in the Sm isotopes. The application of these boson trasition densities to higher excited 0 + and 2 + states of Sm, and to 0 + and 2 + transitions in neighboring nuclei, such as Nd and Gd, is described. IBA predictions for the transition densities of the three lowest 2 + levels of 154 Gd are given and compared to theoretical transition densities based on Hartree-Fock calculations. The deduced quadrupole boson transition densities are in fair agreement with densities derived previously from 150 Nd data. It is also shown how certain moments of the best fit boson transition densities can simply and sucessfully describe rms radii, isomer shifts, B(E2) strengths, and transition radii for the Sm isotopes. (orig.)
Microscopic calculation of level densities: the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Alhassid, Yoram
2012-01-01
The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments
Modeling density-driven flow in porous media principles, numerics, software
Holzbecher, Ekkehard O
1998-01-01
Modeling of flow and transport in groundwater has become an important focus of scientific research in recent years. Most contributions to this subject deal with flow situations, where density and viscosity changes in the fluid are neglected. This restriction may not always be justified. The models presented in the book demonstrate immpressingly that the flow pattern may be completely different when density changes are taken into account. The main applications of the models are: thermal and saline convection, geothermal flow, saltwater intrusion, flow through salt formations etc. This book not only presents basic theory, but the reader can also test his knowledge by applying the included software and can set up own models.
Specific surface area of overlapping spheres in the presence of obstructions.
Jenkins, D R
2013-02-21
This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.
Spontaneous orbiting of two spheres levitated in a vibrated liquid.
Pacheco-Martinez, H A; Liao, L; Hill, R J A; Swift, Michael R; Bowley, R M
2013-04-12
In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration, there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here, we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration, the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations reproduce the observed behavior qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability.
Electrodepositing of Au on hollow PS micro-spheres
International Nuclear Information System (INIS)
Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing
2010-01-01
Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)
Directory of Open Access Journals (Sweden)
Elizabeth A. Becker
2017-05-01
Full Text Available Managing marine species effectively requires spatially and temporally explicit knowledge of their density and distribution. Habitat-based density models, a type of species distribution model (SDM that uses habitat covariates to estimate species density and distribution patterns, are increasingly used for marine management and conservation because they provide a tool for assessing potential impacts (e.g., from fishery bycatch, ship strikes, anthropogenic sound over a variety of spatial and temporal scales. The abundance and distribution of many pelagic species exhibit substantial seasonal variability, highlighting the importance of predicting density specific to the season of interest. This is particularly true in dynamic regions like the California Current, where significant seasonal shifts in cetacean distribution have been documented at coarse scales. Finer scale (10 km habitat-based density models were previously developed for many cetacean species occurring in this region, but most models were limited to summer/fall. The objectives of our study were two-fold: (1 develop spatially-explicit density estimates for winter/spring to support management applications, and (2 compare model-predicted density and distribution patterns to previously developed summer/fall model results in the context of species ecology. We used a well-established Generalized Additive Modeling framework to develop cetacean SDMs based on 20 California Cooperative Oceanic Fisheries Investigations (CalCOFI shipboard surveys conducted during winter and spring between 2005 and 2015. Models were fit for short-beaked common dolphin (Delphinus delphis delphis, Dall's porpoise (Phocoenoides dalli, and humpback whale (Megaptera novaeangliae. Model performance was evaluated based on a variety of established metrics, including the percentage of explained deviance, ratios of observed to predicted density, and visual inspection of predicted and observed distributions. Final models were
Spheres of discharge of springs
Springer, Abraham E.; Stevens, Lawrence E.
2009-02-01
Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.
Neuroscience in the public sphere.
O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene
2012-04-26
The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.
Neuroscience in the Public Sphere
O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene
2012-01-01
The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere.
Constraining snowmelt in a temperature-index model using simulated snow densities
Bormann, Kathryn J.; Evans, Jason P.; McCabe, Matthew
2014-01-01
Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027gcm-3 to -0.004gcm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the
Constraining snowmelt in a temperature-index model using simulated snow densities
Bormann, Kathryn J.
2014-09-01
Current snowmelt parameterisation schemes are largely untested in warmer maritime snowfields, where physical snow properties can differ substantially from the more common colder snow environments. Physical properties such as snow density influence the thermal properties of snow layers and are likely to be important for snowmelt rates. Existing methods for incorporating physical snow properties into temperature-index models (TIMs) require frequent snow density observations. These observations are often unavailable in less monitored snow environments. In this study, previous techniques for end-of-season snow density estimation (Bormann et al., 2013) were enhanced and used as a basis for generating daily snow density data from climate inputs. When evaluated against 2970 observations, the snow density model outperforms a regionalised density-time curve reducing biases from -0.027gcm-3 to -0.004gcm-3 (7%). The simulated daily densities were used at 13 sites in the warmer maritime snowfields of Australia to parameterise snowmelt estimation. With absolute snow water equivalent (SWE) errors between 100 and 136mm, the snow model performance was generally lower in the study region than that reported for colder snow environments, which may be attributed to high annual variability. Model performance was strongly dependent on both calibration and the adjustment for precipitation undercatch errors, which influenced model calibration parameters by 150-200%. Comparison of the density-based snowmelt algorithm against a typical temperature-index model revealed only minor differences between the two snowmelt schemes for estimation of SWE. However, when the model was evaluated against snow depths, the new scheme reduced errors by up to 50%, largely due to improved SWE to depth conversions. While this study demonstrates the use of simulated snow density in snowmelt parameterisation, the snow density model may also be of broad interest for snow depth to SWE conversion. Overall, the
ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE
Energy Technology Data Exchange (ETDEWEB)
Margaret A. Marshall
2013-09-01
In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.
Experimental determination of the dynamics of an acoustically levitated sphere
Energy Technology Data Exchange (ETDEWEB)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Experimental determination of the dynamics of an acoustically levitated sphere
International Nuclear Information System (INIS)
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-01-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator
Model for the evolution of network dislocation density in irradiated metals
International Nuclear Information System (INIS)
Garner, F.A.; Wolfer, W.G.
1982-01-01
It is a well-known fact that the total dislocation density that evolves in irradiated metals is a strong function of irradiation temperature. The dislocation density comprises two components, however, and only one of these (Frank loops) retains its temperature dependence at high fluence. The network dislocation density approaches a saturation level which is relatively insensitive to starting microstructure, stress, irradiation temperature, displacement rate and helium level. The latter statement is supported in this paper by a review of published microstructural data. A model has been developed to explain the insensitivity to many variables of the saturation network dislocation density in irradiated metals. This model also explains how the rate of approach to saturation can be sensitive to displacement rate and temperature while the saturation level itself is not dependent on temperature
Travelling waves of density for a fourth-gradient model of fluids
Gouin, Henri; Saccomandi, Giuseppe
2016-09-01
In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.
The importance of spatial models for estimating the strength of density dependence
DEFF Research Database (Denmark)
Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper
2014-01-01
the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...
Global Calibration of Multiple Cameras Based on Sphere Targets
Directory of Open Access Journals (Sweden)
Junhua Sun
2016-01-01
Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.
Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero
2017-08-01
The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.
Density Forecasts of Crude-Oil Prices Using Option-Implied and ARCH-Type Models
DEFF Research Database (Denmark)
Tsiaras, Leonidas; Høg, Esben
The predictive accuracy of competing crude-oil price forecast densities is investigated for the 1994-2006 period. Moving beyond standard ARCH models that rely exclusively on past returns, we examine the benefits of utilizing the forward-looking information that is embedded in the prices...... as for regions and intervals that are of special interest for the economic agent. We find that non-parametric adjustments of risk-neutral density forecasts perform significantly better than their parametric counterparts. Goodness-of-fit tests and out-of-sample likelihood comparisons favor forecast densities...
Kwasniok, Frank
2013-11-01
A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.
International Nuclear Information System (INIS)
Calvin W. Johnson
2005-01-01
The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ∼ 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70
A density-based clustering model for community detection in complex networks
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
A mass-density model can account for the size-weight illusion
Bergmann Tiest, Wouter M.; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness
A mass-density model can account for the size-weight illusion.
Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut
2018-01-01
When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.
Density forecasts of crude-oil prices using option-implied and ARCH-type models
DEFF Research Database (Denmark)
Høg, Esben; Tsiaras, Leonicas
2011-01-01
of derivative contracts. Risk-neutral densities, obtained from panels of crude-oil option prices, are adjusted to reflect real-world risks using either a parametric or a non-parametric calibration approach. The relative performance of the models is evaluated for the entire support of the density, as well...... obtained by option prices and non-parametric calibration methods over those constructed using historical returns and simulated ARCH processes. © 2010 Wiley Periodicals, Inc. Jrl Fut Mark...
International Nuclear Information System (INIS)
Mungan, M.; Coppersmith, S.; Vinokur, V.M.
1999-01-01
We analyze the strains near threshold in 1-d charge density wave models at zero temperature and strong pinning. We show that in these models local strains diverge near the depinning threshold and characterize the scaling behavior of the phenomenon. This helps quantify when the underlying elastic description breaks down and plastic effects have to be included
Construction of a voxel model from CT images with density derived from CT numbers
International Nuclear Information System (INIS)
Cheng Mengyun; Zeng Qin; Cao Ruifen; Li Gui; Zheng Huaqing; Huang Shanqing; Song Gang; Wu Yican
2010-01-01
The voxel models representing human anatomy have been developed to calculate dose distribution in human body, while the density is the most important physical property of voxel model. Traditionally, when creating the Monte Carlo input files, the average tissue parameters recommended in ICRP report were used to assign each voxel in the existing voxel models. However, as each tissue consists of many voxels in which voxels are different in their densities, the method of assigning average tissue parameters doesn't take account of the voxel's discrepancy, and can't represent human anatomy faithfully. To represent human anatomy more faithfully, a method was implemented to assign each voxel, the density of which was derived from CT number. In order to compare with the traditional method, we have constructed two models from a same cadaver specimen date set. A CT-based pelvic voxel model called Pelvis-CT model, was constructed, the densities of which were derived from the CT numbers. A color photograph-based pelvic voxel model called Pelvis-Photo model, was also constructed, the densities of which were taken from ICRP Publication. The CT images and color photographs were obtained from the same female cadaver specimen. The Pelvis-CT and Pelvis-Photo models were ported into Monte Carlo code MCNP to calculate the conversion coefficients from kerma free-in-air to absorbed dose for external monoenergetic photon beams with energies of 0.1, 1 and 10 MeV under anterior-posterior (AP) geometries. The results were compared with those of given in ICRP74. Differences of up to 50% were observed between conversion coefficients of Pelvis-CT and Pelvis-Photo models, moreover the discrepancies decreased for the photon beams with higher energies. The overall trend of conversion coefficients of the Pelvis-CT model were agreed well with that of ICRP74 data. (author)
On the simplified path integral on spheres
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo [Universita di Bologna, Dipartimento di Fisica ed Astronomia, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Corradini, Olindo [Universita degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany)
2017-11-15
We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d = 14 and d = 16. (orig.)
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2007-01-01
We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Dynamic crushing of uniform and density graded cellular structures based on the circle arc model
Directory of Open Access Journals (Sweden)
Jianjun Zhang
Full Text Available AbstractA new circle-arc model was established to present the cellular structure. Dynamic response of models with density gradients under constant velocities is investigated by employing Ls-dyna 971. Compared with the uniform models, the quasi-static plateau stress of different layers seems a significant parameter correlated with the deformation mode except for inertia effect when the density gradient is introduced. The impact velocity becomes much more vital on the deformation of the unit cell than the density gradient. The stress at both the impact and stationary sides is investigated in details. Furthermore, the stress-strain curve is compared with the modified shock wave theory. The density gradient does have some remarkable influence on the energy absorption capability, and a certain density gradient is not always beneficial to the energy absorption. Irrespective of the impact velocity, there seems always a critical strain where the energy absorbed by all these specimens could approximate to nearly the same value. So the critical strain-velocity curve is plotted and gives the beneficial area for energy absorption pertinent to density gradients and impact velocity.
Rheological Studies of Komatiite Liquids by In-Situ Falling Sphere Viscometry
O Dwyer, L.; Lesher, C. E.; Baxter, G.; Clark, A.; Fuss, T.; Tangeman, J.; Wang, Y.
2005-12-01
The rheological properties of komatiite liquids at high pressures and temperatures are being investigated by the in situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reduce the density contrast between the melt and the marker sphere, and thus increase the Stoke's travel time, we have begun testing various composite spheres composed of refractory silicates and metals. Two successful custom designs are zirconia silicate mantled by Pt and Pt mantled by forsterite. These custom spheres contain sufficient Pt to absorb x-rays, while containing sufficient low-density refractory silicate so that marker sphere densities are in the range of 4-6 g/cc. These relatively more buoyant spheres increase travel time. These custom spheres, together with Re or Pt marker spheres, have been used to determine the viscosity of Gorgona anhydrous komatiite around 1600 ° C between 3.5 and 6 GPa. Initial experiments yield viscosities of 2.8 Pa s at 3.5 GPa, 5.3 Pa s at 4.6 GPa and 7.6 Pa s at 6 GPa. The observed positive pressure dependence of viscosity is consistent with recent results on pyrolite composition liquids and suggests that the activation volume for highly depolymerized melts will be positive for at least upper mantle conditions. The development of low-density, x-ray detectable marker spheres has applications in studies of melt density, whereby in situ detection of sink-float behavior during heating and compression cycles may be possible.
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-01
As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong
2014-07-01
Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})
International Nuclear Information System (INIS)
Wang, Hui; Wu, Ping; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming; Lu, Tianhong
2014-01-01
Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO 2 spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g −1 after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g −1 ), which is much higher than that of bare Si spheres (430.7 mA h g −1 )
Gravitational form factors and angular momentum densities in light-front quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Kumar, Narinder [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Sharma, Neetika [I K Gujral Punjab Technical University, Department of Physical Sciences, Jalandhar, Punjab (India); Panjab University, Department of Physics, Chandigarh (India)
2017-12-15
We investigate the gravitational form factors (GFFs) and the longitudinal momentum densities (p{sup +} densities) for proton in a light-front quark-diquark model. The light-front wave functions are constructed from the soft-wall AdS/QCD prediction. The contributions from both the scalar and the axial vector diquarks are considered here. The results are compared with the consequences of a parametrization of nucleon generalized parton distributions (GPDs) in the light of recent MRST measurements of parton distribution functions (PDFs) and a soft-wall AdS/QCD model. The spatial distribution of angular momentum for up and down quarks inside the nucleon has been presented. At the density level, we illustrate different definitions of angular momentum explicitly for an up and down quark in the light-front quark-diquark model inspired by AdS/QCD. (orig.)
Fog Density Estimation and Image Defogging Based on Surrogate Modeling for Optical Depth.
Jiang, Yutong; Sun, Changming; Zhao, Yu; Yang, Li
2017-05-03
In order to estimate fog density correctly and to remove fog from foggy images appropriately, a surrogate model for optical depth is presented in this paper. We comprehensively investigate various fog-relevant features and propose a novel feature based on the hue, saturation, and value color space which correlate well with the perception of fog density. We use a surrogate-based method to learn a refined polynomial regression model for optical depth with informative fog-relevant features such as dark-channel, saturation-value, and chroma which are selected on the basis of sensitivity analysis. Based on the obtained accurate surrogate model for optical depth, an effective method for fog density estimation and image defogging is proposed. The effectiveness of our proposed method is verified quantitatively and qualitatively by the experimental results on both synthetic and real-world foggy images.
Archaic artifacts resembling celestial spheres
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.
Spheres of Justice within Schools
DEFF Research Database (Denmark)
Sabbagh, Clara; Resh, Nura; Mor, Michal
2006-01-01
This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do not correspond...
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
International Nuclear Information System (INIS)
Tamer A Tabet; Fauziah Abdul Aziz
2009-01-01
Wood density measurement is related to the several factors that influence wood quality. In this paper, density, relaxation length and half-thickness value of eight ages, 3, 5, 7, 10, 11, 13 and 15 year-old of Acacia mangium wood were determined using gamma radiation from 137 Cs source. Results show that Acacia mangium tree of age 3 year has the highest relaxation length of 83.33 cm and least density of 0.43 gcm -3 , while the tree of age 15 year has the least Relaxation length of 28.56 cm and highest density of 0.76 gcm -3 . Results also show that the 3 year-old Acacia mangium wood has the highest half thickness value of 57.75 cm and 15 year-old tree has the least half thickness value of 19.85 cm. Two mathematical models have been developed for the prediction of density, variation with relaxation length and half-thickness value of different age of tree. A good agreement (greater than 85% in most cases) was observed between the measured values and predicted ones. Very good linear correlation was found between measured density and the age of tree (R2 = 0.824), and between estimated density and Acacia mangium tree age (R2 = 0.952). (Author)
Chong, Song Hun
2016-08-09
Geosystems often experience numerous loading cycles. Plastic strain accumulation during repetitive mechanical loads can lead to shear shakedown or continued shear ratcheting; in all cases, volumetric strains diminish as the specimen evolves towards terminal density. Previously suggested models and new functions are identified to fit plastic strain accumulation data. All accumulation models are formulated to capture terminal density (volumetric strain) and either shakedown or ratcheting (shear strain). Repetitive vertical loading tests under zero lateral strain conditions are conducted using three different sands packed at initially low and high densities. Test results show that plastic strain accumulation for all sands and density conditions can be captured in the same dimensionless plot defined in terms of the initial relative density, terminal density, and ratio between the amplitude of the repetitive load and the initial static load. This observation allows us to advance a simple but robust procedure to estimate the maximum one-dimensional settlement that a foundation could experience if subjected to repetitive loads. © 2016, Canadian Science Publishing. All rights reserved.
Falge, Eva; Tennhunen, John D.; Ryel, Ronald J.; Alsheimer, Martina; Köstner, Barbara
2000-01-01
International audience; Differences in canopy exchange of water and carbon dioxide that occur due to changes in tree structure and density in montane Norway spruce stands of Central Germany were analyzed with a three dimensional microclimate and gas exchange model STANDFLUX. The model was used to calculate forest radiation absorption, the net photosynthesis and transpiration of single trees, and gas exchange of tree canopies. Model parameterizations were derived for six stands of Picea abies ...
A hierarchical model for estimating density in camera-trap studies
Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.
2009-01-01
Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.
The optical levitation of spheres
International Nuclear Information System (INIS)
Roosen, G.
1979-01-01
In this article we are dealing with optical levitation, that is the possibility of maintaining particles in a stable equilibrium position in air or vacuum by means of laser beams. In the first part, we review the methods used to calculate the force exerted on a sphere by a laser beam. The axial and transverse force components could be obtained either by applying Debye theory to laser beams which have a non-uniform energy distribution or by using, in the case of large spheres, a geometrical optics approach. From the results achieved with the geometrical optics approach, we derive, in a second part, the required stable equilibrium conditions for a sphere placed either in a vertical beam or in two horizontal ones having the same axis but opposite direction. In the last part, we describe in detail the levitation experiments carried out using either a vertical or two horizontal beams. In conclusion, we point out some applications of optical levitation, emphasizing especially the suspension by optical levitation of the targets used in laser fusion experiments. (author) [fr
International Nuclear Information System (INIS)
Starodubskij, V.E.; Shaginyan, V.R.
1979-01-01
Friar-Negele method is applied to determine the static densities of neutrons and nuclear matter from the fast proton-nuclei elastic scattering data. This model-independent analysis (MIA) has been carried out for 28 Si, sup(32,34)S, sup(40,42,44,48)Ca, 48 Ti, sup(58,60)Ni, 90 Zr, 208 Pb nuclei. The binding energies, rms radii, densities and scattering cross sections of 1 GeV-proton are calculated in the framework of the Hartree-Fock theory (HF) with Skyrme's interaction. The HF and MIA densities and cross sections have been compared to draw a conclusion on the quality of the HF densities. Calculation of the cross sections has included the spin-orbit interaction with parameters taken from the polarization data
International Nuclear Information System (INIS)
Shankar, Sadasivan; Simka, Harsono; Haverty, Michael
2008-01-01
In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development
Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation
Directory of Open Access Journals (Sweden)
Michal Halas
2012-01-01
Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.
Refitting density dependent relativistic model parameters including Center-of-Mass corrections
International Nuclear Information System (INIS)
Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern
2011-01-01
Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
Population density models of integrate-and-fire neurons with jumps: well-posedness.
Dumont, Grégory; Henry, Jacques
2013-09-01
In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.
The sphere-PAC fuel code 'SPHERE-3'
Energy Technology Data Exchange (ETDEWEB)
Wallin, H
2000-07-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan
2009-06-01
the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.
Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.
Directory of Open Access Journals (Sweden)
Geng Li
Full Text Available The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.
Directory of Open Access Journals (Sweden)
Shen Min
2016-01-01
Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.
Local order and crystallization of dense polydisperse hard spheres
Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic
2018-04-01
Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.
Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell
Directory of Open Access Journals (Sweden)
Ravichandra S. Jupudi
2009-12-01
Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.
Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment
Energy Technology Data Exchange (ETDEWEB)
Greg J. Shott, Vefa Yucel, Lloyd Desotell
2007-06-01
Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.
Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment
International Nuclear Information System (INIS)
Greg J. Shott, Vefa Yucel, Lloyd Desotell Non-Nstec Authors: G. Pyles and Jon Carilli
2007-01-01
Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory
A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS
Bota Anton Florin
2009-01-01
The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou
Inner- and outer-sphere complexation of ions at the goethite-solution interface
Rahnemaie, R.; Hiemstra, T.; Riemsdijk, van W.H.
2006-01-01
Formation of inner- and outer-sphere complexes of environmentally important divalent ions on the goethite surface was examined by applying the charge distribution CD model for inner- and outer-sphere complexation. The model assumes spatial charge distribution between the surface (0-plane) and the
Bloch, Rebecca A; Cronin, Kimberly; Hoover, John P; Pechman, Robert D; Payton, Mark E
2010-03-01
Barium impregnated polyethylene spheres (BIPS) are used in small animal medicine as an alternative to barium sulfate for radiographic studies of the gastrointestinal tract. To determine the usefulness of BIPS as an alternative to barium suspension in measuring gastrointestinal (GI) transit time for avian species, ventrodorsal radiographs were used to follow the passage of BIPS and 30% barium sulfate suspension through the GI tracts of domestic pigeons (Columba livia). Gastrointestinal transit times of thirty 1.5-mm BIPS administered in moistened gelatin capsules and 30% barium sulfate suspension gavaged into the crop were compared in 6 pigeons. Although the barium suspension passed out of the GI tract of all pigeons within 24 hours, the 1.5-mm BIPS remained in the ventriculus for 368.0 +/- 176.8 hours and did not clear the GI tract for 424.0 +/- 204.6 hours. Although the times for passage of BIPS and 30% barium sulfate suspension from the crop into the ventriculus were not significantly different (P = .14), the times for passage of BIPS from the ventriculus into the large intestine-cloaca and for clearance from the GI tract of the pigeons were significantly longer (P barium sulfate suspension. From the results of this study, we conclude that BIPS are not useful for radiographically evaluating GI transit times in pigeons and are unlikely to be useful in other avian species that have a muscular ventriculus. BIPS may or may not be useful for evaluating GI transit times in species that lack a muscular ventriculus.
Generating perfect fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-06-01
Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.
Fusion breeder sphere - PAC blanket design
International Nuclear Information System (INIS)
Sullivan, J.D.; Palmer, B.J.F.
1987-11-01
There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm
Turesson, Martin; Szparaga, Ryan; Ma, Ke; Woodward, Clifford E; Forsman, Jan
2014-05-14
A new classical density functional approach is developed to accurately treat a coarse-grained model of room temperature aromatic ionic liquids. Our major innovation is the introduction of charge-charge correlations, which are treated in a simple phenomenological way. We test this theory on a generic coarse-grained model for aromatic RTILs with oligomeric forms for both cations and anions, approximating 1-alkyl-3-methyl imidazoliums and BF₄⁻, respectively. We find that predictions by the new density functional theory for fluid structures at charged surfaces are very accurate, as compared with molecular dynamics simulations, across a range of surface charge densities and lengths of the alkyl chain. Predictions of interactions between charged surfaces are also presented.
DEFF Research Database (Denmark)
Hrsak, Dalibor; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob
2017-01-01
Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic...... densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation...... interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc....
Reactive flow modeling of initial density effect on divergence JB-9014 detonation driving
Yu, Xin; Huang, Kuibang; Zheng, Miao
2016-06-01
A serious of experiments were designed and the results were represented in this paper, in which 2mm thickness cooper shells were impacted by explosives named JB-9014 with different densities, and the surface velocities of the OFHC shells were measured. The comparison of experimental data shows the free surface velocity of the OFHC shell increase with the IHE density. Numerical modeling, which occupied phenomenological reactive flow rate model using the two-dimensional Lagrange hydrodynamic code, were carried out to simulate the above experiments, and empirical adjustments on detonation velocity and pressure and Pier Tang's adjustments on EOS of detonation products were both introduced in our numerical simulation work. The computational results agree well with that of experiments, and the numerical results with original parameters of products and the adjusted ones of JB-9014 could describe the density effect distinctly.
Regularity of optimal transport maps on multiple products of spheres
Figalli, Alessio; Kim, Young-Heon; McCann, Robert J.
2010-01-01
This article addresses regularity of optimal transport maps for cost="squared distance" on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of o...
Directory of Open Access Journals (Sweden)
Shuya Yano
Full Text Available Stomach cancer carcinomatosis peritonitis (SCCP is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI. FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP, or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.
2016-01-01
Stomach cancer carcinomatosis peritonitis (SCCP) is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI). FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP), or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301. PMID:27673332
International Nuclear Information System (INIS)
Terwilliger, Thomas C.; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H.; Hung, Li-Wei; Read, Randy J.; Adams, Paul D.
2008-01-01
The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution
Energy Technology Data Exchange (ETDEWEB)
Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.
2007-04-29
The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.
Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density
Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.
A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan
Density functional theory study of the concerted pyrolysis mechanism for lignin models
Thomas Elder; Ariana Beste
2014-01-01
ABSTRACT: Studies on the pyrolysis mechanisms of lignin model compounds have largely focused on initial homolytic cleavage reactions. It has been noted, however, that concerted mechanisms may also account for observed product formation. In the current work, the latter processes are examined and compared to the former, by the application of density functional theory...
Theoretical model of the density of states of random binary alloys
International Nuclear Information System (INIS)
Zekri, N.; Brezini, A.
1991-09-01
A theoretical formulation of the density of states for random binary alloys is examined based on a mean field treatment. The present model includes both diagonal and off-diagonal disorder and also short-range order. Extensive results are reported for various concentrations and compared to other calculations. (author). 22 refs, 6 figs
Coastal circulations driven by river outflow in a variable-density 1.5-layer model
Digital Repository Service at National Institute of Oceanography (India)
McCreary, J.P.; Zhang, S.; Shetye, S.R.
A variable-density, 1.5-layer model is used to investigate the dynamics of the fresher-water plumes generated by river outflow. Solutions are found in a north-south channel, and the transport M sub(tau) and salinity S sub(tau) of the outflow...
International Nuclear Information System (INIS)
Lehmann, Christoph; Beckert, Steffen; Gläser, Roger; Kolditz, Olaf; Nagel, Thomas
2017-01-01
Highlights: • Characteristic curves fit for binderless Zeolite 13XBFK. • Detailed comparison of adsorbate density models for Dubinin’s adsorption theory. • Predicted heat storage densities robust against choice of density model. • Use of simple linear density models sufficient. - Abstract: The study of water sorption in microporous materials is of increasing interest, particularly in the context of heat storage applications. The potential-theory of micropore volume filling pioneered by Polanyi and Dubinin is a useful tool for the description of adsorption equilibria. Based on one single characteristic curve, the system can be extensively characterised in terms of isotherms, isobars, isosteres, enthalpies etc. However, the mathematical description of the adsorbate density’s temperature dependence has a significant impact especially on the estimation of the energetically relevant adsorption enthalpies. Here, we evaluate and compare different models existing in the literature and elucidate those leading to realistic predictions of adsorption enthalpies. This is an important prerequisite for accurate simulations of heat and mass transport ranging from the laboratory scale to the reactor level of the heat store.
Chemical modeling of a high-density inductively-coupled plasma reactor containing silane
Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan
We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy
Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis
DEFF Research Database (Denmark)
Abildskov, Jens; O’Connell, John P.
2015-01-01
Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure...
Lifshitz-Allen-Cahn domain-growth kinetics of Ising models with conserved density
DEFF Research Database (Denmark)
Fogedby, Hans C.; Mouritsen, Ole G.
1988-01-01
The domain-growth kinetics of p=fourfold degenerate (2×1) ordering in two-dimensional Ising models with conserved density is studied as a function of temperature and range of Kawasaki spin exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for nearest-nei...
Modelling energy level alignment at organic interfaces and density functional theory
DEFF Research Database (Denmark)
Flores, F.; Ortega, J.; Vazquez, Patricia
2009-01-01
A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualit...
John D. Alexander; Jaime L. Stephens; Sam Veloz; Leo Salas; Josée S. Rousseau; C. John Ralph; Daniel A. Sarr
2017-01-01
As data about populations of indicator species become available, proactive strategies that improve representation of biological diversity within protected area networks should consider finer-scaled evaluations, especially in regions identified as important through course-scale analyses. We use density distribution models derived from a robust regional bird...
DEFF Research Database (Denmark)
Falk, Anne Katrine Vinther; Gryning, Sven-Erik
1997-01-01
In this model for atmospheric dispersion particles are simulated by the Langevin Equation, which is a stochastic differential equation. It uses the probability density function (PDF) of the vertical velocity fluctuations as input. The PDF is constructed as an expansion after Hermite polynomials...
Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling
Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.
2012-01-01
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold
Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model
James H. Roberds; James F. Selgrade
2000-01-01
A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...
Calabia, A.; Matsuo, T.; Jin, S.
2017-12-01
The upper atmospheric expansion refers to an increase in the temperature and density of Earth's thermosphere due to increased geomagnetic and space weather activities, producing anomalous atmospheric drag on LEO spacecraft. Increased drag decelerates satellites, moving their orbit closer to Earth, decreasing the lifespan of satellites, and making satellite orbit determination difficult. In this study, thermospheric neutral density variations due to geomagnetic forcing are investigated from 10 years (2003-2013) of GRACE's accelerometer-based estimates. In order to isolate the variations produced by geomagnetic forcing, 99.8% of the total variability has been modeled and removed through the parameterization of annual, LST, and solar-flux variations included in the primary Empirical Orthogonal Functions. The residual disturbances of neutral density variations have been investigated further in order to unravel their relationship to several geomagnetic indices and space weather activity indicators. Stronger fluctuations have been found in the southern polar cap, following the dipole-tilt angle variations. While the parameterization of the residual disturbances in terms of Dst index results in the best fit to training data, the use of merging electric field as a predictor leads to the best forecasting performance. An important finding is that modeling of neutral density variations in response geomagnetic forcing can be improved by accounting for the latitude-dependent delay. Our data-driven modeling results are further compared to modeling with TIEGCM.
Rapid model building of beta-sheets in electron-density maps.
Terwilliger, Thomas C
2010-03-01
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
Motion of a damped oscillating sphere as a function of the medium viscosity
International Nuclear Information System (INIS)
Mendoza-Arenas, J J; Perico, E L D; Fajardo, F
2010-01-01
In this paper, an experimental setup for undergraduate courses to study the damped harmonic motion of a sphere inside a fluid as a function of the medium viscosity is presented. To observe the dependence of the oscillation of the sphere on the medium viscosity, different concentrations of glycerin in water were used. The sphere is suspended on the end of a spring and its displacement is indirectly obtained using a force sensor. To describe the sphere motion, a drag force different from that given by Stokes' law is used. Our experimental results fit satisfactorily when semiempirical coefficients are introduced in the model. The frequency and relaxation time of the sphere oscillations diminish as the concentration of glycerin increases. Boundary effects due to the fluid container size are studied. We found that when the container size decreases the oscillations decay more rapidly due to a greater resistance to the motion of the sphere.
Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.
Energy Technology Data Exchange (ETDEWEB)
Mattingly, John K.
2009-11-01
Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.
Polyethylene-reflected plutonium metal sphere: subcritical neutron and gamma measurements
International Nuclear Information System (INIS)
Mattingly, John K.
2009-01-01
Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.
Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model
DEFF Research Database (Denmark)
Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim
2014-01-01
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations...... propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate....
A thermodynamic model for aqueous solutions of liquid-like density
Energy Technology Data Exchange (ETDEWEB)
Pitzer, K.S.
1987-06-01
The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...
Directory of Open Access Journals (Sweden)
Noritaka Shimizu
2016-02-01
Full Text Available We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+ and 2− states in 58Ni in a unified manner.
Energy Technology Data Exchange (ETDEWEB)
Rao, Rekha R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Mondy, Lisa Ann [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Noble, David R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Brunini, Victor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Roberts, Christine Cardinal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Long, Kevin Nicholas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Soehnel, Melissa Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Celina, Mathias C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Wyatt, Nicholas B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Thompson, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Tinsley, James
2015-09-01
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to
The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data
Directory of Open Access Journals (Sweden)
Changcheng Wang
2016-03-01
Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.
International Nuclear Information System (INIS)
Zwingelstein, Gilles; Thabet, Gabriel.
1977-01-01
Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr
Comparison of M33 and NGC7793: stochastic models of spiral galaxies modulated by density waves
International Nuclear Information System (INIS)
Smith, G.; Elmegreen, B.G.; Elmegreen, D.M.
1984-01-01
Two late-type spiral galaxies with similar kinematic and photometric properties but different spiral arm structures, M33 and NGC7793, are compared to model galaxies with stochastic self-propagating star formation. The spontaneous probability, Psub(sp), representing the rate of primary star formation, is modulated by a smooth, density wave-like spiral pattern in the models of M33. When propagating star formation is included, these models show no age gradients in the underlying spiral arms. Models which have no imposed spiral modulation to Psub(sp) resemble the observed structure of NGC7793. (author)
Guthrie, Forbes
2013-01-01
Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v
Density model for medium range order in amorphous materials: application to small angle scattering
International Nuclear Information System (INIS)
Boucher, B.; Tournarie, M.; Chieux, P.; Convert, P.
1983-06-01
We consider a family of randomly spaced parallel planes, each plane dressed with a density function, h(x), where x is the distance from the plane. An expression for the volume scattering power from a system of N such families with random orientations in space is derived from Fourier transform of h(x), which can subsequently be determined from experimental observations. This density model is used to interpret the small angle neutron scattering (SANS) results for the amorphous alloy TbCusub(3.54)
Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam
2003-03-07
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.
The tempered one-sided stable density: a universal model for hydrological transport?
International Nuclear Information System (INIS)
Cvetkovic, Vladimir
2011-01-01
A generalized distribution for the water residence time in hydrological transport is proposed in the form of the tempered one-sided stable (TOSS) density. It is shown that limiting cases of the TOSS distribution recover virtually all distributions that have been considered in the literature for hydrological transport, from plug flow to flow reactor, the advection-dispersion model, and the gamma and Levy densities. The stable property of TOSS is particularly important, enabling a seamless transition between a time-domain random walk, and the Lagrangian (trajectory) approach along hydrological transport pathways.
Weighted-density functional approach for the solid-liquid interfaces in electrolytes
International Nuclear Information System (INIS)
Cherepanova, T.A.; Stekolnikov, A.V.
1991-09-01
A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab
Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.
Lourenço, Pedro M; Sousa, Carla A; Seixas, Júlia; Lopes, Pedro; Novo, Maria T; Almeida, A Paulo G
2011-12-01
Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (pNDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities. © 2011 The Society for Vector Ecology.
Tobacco Town: Computational Modeling of Policy Options to Reduce Tobacco Retailer Density.
Luke, Douglas A; Hammond, Ross A; Combs, Todd; Sorg, Amy; Kasman, Matt; Mack-Crane, Austen; Ribisl, Kurt M; Henriksen, Lisa
2017-05-01
To identify the behavioral mechanisms and effects of tobacco control policies designed to reduce tobacco retailer density. We developed the Tobacco Town agent-based simulation model to examine 4 types of retailer reduction policies: (1) random retailer reduction, (2) restriction by type of retailer, (3) limiting proximity of retailers to schools, and (4) limiting proximity of retailers to each other. The model examined the effects of these policies alone and in combination across 4 different types of towns, defined by 2 levels of population density (urban vs suburban) and 2 levels of income (higher vs lower). Model results indicated that reduction of retailer density has the potential to decrease accessibility of tobacco products by driving up search and purchase costs. Policy effects varied by town type: proximity policies worked better in dense, urban towns whereas retailer type and random retailer reduction worked better in less-dense, suburban settings. Comprehensive retailer density reduction policies have excellent potential to reduce the public health burden of tobacco use in communities.
Directory of Open Access Journals (Sweden)
Yongjun Ahn
Full Text Available The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
Energy Technology Data Exchange (ETDEWEB)
Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)
2015-04-08
As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model
International Nuclear Information System (INIS)
Qin Shaojin; Qian Tiezheng; Su Zhaobin
1995-03-01
Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs
International Nuclear Information System (INIS)
Cech, R; Leitgeb, N; Pediaditis, M
2008-01-01
The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded
International Nuclear Information System (INIS)
Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni
2014-01-01
We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example
International Nuclear Information System (INIS)
Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.
1990-01-01
The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs
DEFF Research Database (Denmark)
Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas
2012-01-01
A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this....
Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes
Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration
2015-11-01
A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
Quantum black holes: the event horizon as a fuzzy sphere
International Nuclear Information System (INIS)
Dolan, Brian P.
2005-01-01
Modeling the event horizon of a black hole by a fuzzy sphere leads us to modify some suggestions in the literature concerning black hole mass spectra. We derive a formula for the mass spectrum of quantum black holes in terms of four integers which define the area, angular momentum, electric and magnetic charge of the black hole. Although the event horizon becomes a commutative sphere in the classical limit a vestige of the quantum theory still persists in that the event horizon stereographically projects onto the non-commutative plane. We also suggest how the classical bounds on extremal black holes might be modified in the quantum theory. (author)
Entanglement entropy in scalar field theory on the fuzzy sphere
International Nuclear Information System (INIS)
Okuno, Shizuka; Suzuki, Mariko; Tsuchiya, Asato
2016-01-01
We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy
Use of a mixture statistical model in studying malaria vectors density.
Directory of Open Access Journals (Sweden)
Olayidé Boussari
Full Text Available Vector control is a major step in the process of malaria control and elimination. This requires vector counts and appropriate statistical analyses of these counts. However, vector counts are often overdispersed. A non-parametric mixture of Poisson model (NPMP is proposed to allow for overdispersion and better describe vector distribution. Mosquito collections using the Human Landing Catches as well as collection of environmental and climatic data were carried out from January to December 2009 in 28 villages in Southern Benin. A NPMP regression model with "village" as random effect is used to test statistical correlations between malaria vectors density and environmental and climatic factors. Furthermore, the villages were ranked using the latent classes derived from the NPMP model. Based on this classification of the villages, the impacts of four vector control strategies implemented in the villages were compared. Vector counts were highly variable and overdispersed with important proportion of zeros (75%. The NPMP model had a good aptitude to predict the observed values and showed that: i proximity to freshwater body, market gardening, and high levels of rain were associated with high vector density; ii water conveyance, cattle breeding, vegetation index were associated with low vector density. The 28 villages could then be ranked according to the mean vector number as estimated by the random part of the model after adjustment on all covariates. The NPMP model made it possible to describe the distribution of the vector across the study area. The villages were ranked according to the mean vector density after taking into account the most important covariates. This study demonstrates the necessity and possibility of adapting methods of vector counting and sampling to each setting.
Poisson denoising on the sphere
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect
International Nuclear Information System (INIS)
Zhao Min; Sun Di-Hua; Tian Chuan
2012-01-01
By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)
Modelling of interactions between variable mass and density solid particles and swirling gas stream
International Nuclear Information System (INIS)
Wardach-Święcicka, I; Kardaś, D; Pozorski, J
2011-01-01
The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.
International Nuclear Information System (INIS)
Singh, Vishal; Modi, Swati; Arumugam, P.
2017-01-01
Recent advancements in accelerator technology and polarized beams have created opportunities to study oriented collisions of deformed targets. We extend the Glauber model to calculate the interaction cross section for a spherical projectile and a deformed target at different orientation angles of the target. It has been found that the observed reaction cross sections of various systems at high energies can be reproduced with this model. We have used the relativistic mean field (RMF) theory to find the density distribution of nucleons in the projectile and target which are utilised in the Glauber model. We present the variation of interaction cross section of target and projectile with the orientation of deformed target
A geographical model of radio-frequency power density around mobile phone masts
International Nuclear Information System (INIS)
Briggs, David; Beale, Linda; Bennett, James; Toledano, Mireille B.; Hoogh, Kees de
2012-01-01
Public concern about possible health effects of EMF radiation from mobile phone masts has led to an increase of epidemiological studies and health risk assessments which, in turn, require adequate methods of exposure estimation. Difficulties in exposure modelling are exacerbated both by the complexity of the propagation processes, and the need to obtain estimates for large study populations in order to provide sufficient statistical power to detect or exclude the small relative risks that might exist. Use of geographical information system (GIS) techniques offers the means to make such computations efficiently. This paper describes the development and field validation of a GIS-based exposure model (Geomorf). The model uses a modified Gaussian formulation to represent spatial variations in power densities around mobile phone masts, on the basis of power output, antenna height, tilt and the surrounding propagation environment. Obstruction by topography is allowed for, through use of a visibility function. Model calibration was done using field data from 151 measurement sites (1510 antenna-specific measurements) around a group of masts in a rural location, and 50 measurement sites (658 antenna-specific measurements) in an urban area. Different parameter settings were found to be necessary in urban and rural areas to obtain optimum results. The calibrated models were then validated against independent sets of data gathered from measurement surveys in rural and urban areas, and model performance was compared with that of two commonly used path-loss models (the COST-231 adaptations of the Hata and Walfisch–Ikegami models). Model performance was found to vary somewhat between the rural and urban areas, and at different measurement levels (antenna-specific power density, total power density), but overall gave good estimates (R 2 = 0.641 and 0.615, RMSE = 10.7 and 6.7 dB m at the antenna and site-level respectively). Performance was considerably better than that of both
Directory of Open Access Journals (Sweden)
Hrubý Jan
2012-04-01
Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
Energy Technology Data Exchange (ETDEWEB)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-10-12
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
International Nuclear Information System (INIS)
Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth
2015-01-01
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7 cm/s at a low sheet charge density of 7.8 × 10 11 cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, V.
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Density functional and many-body theories of Hydrogen plasmas
International Nuclear Information System (INIS)
Perrot, F.; Dharma-Wardana, M.W.C.
1983-11-01
This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state
Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret
2017-04-01
Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.
How can we model selectively neutral density dependence in evolutionary games.
Argasinski, Krzysztof; Kozłowski, Jan
2008-03-01
The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.
Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles
International Nuclear Information System (INIS)
Tegnered, D; Oberparleiter, M; Nordman, H; Strand, P
2016-01-01
Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/L T , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/L n region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/L n and a change of direction from inward to outward for positive R/L n . This might have serious consequences for pellet fuelling of high β plasmas. (paper)
Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals
Kery, Marc; Gardner, Beth; Stoeckle, Tabea; Weber, Darius; Royle, J. Andrew
2011-01-01
Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek-rub lure sticks, extracted DNA from the samples, and identified each animals' genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture-recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home-range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap- and individual-level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture-recapture models will improve population assessments, especially for rare and elusive animals.
Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training
2016-03-01
identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research
Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…
Surface phenomena and the evolution of radiating fluid spheres in general relativity
International Nuclear Information System (INIS)
Herrera, L.; Jimenez, J.; Esculpi, M.; Ibanez, J.
1989-01-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs
Memory effects in microscopic traffic models and wide scattering in flow-density data
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
Method for producing small hollow spheres
International Nuclear Information System (INIS)
Hendricks, C.D.
1979-01-01
A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
The Positive Freedom of the Public Sphere
DEFF Research Database (Denmark)
Hansen, Ejvind
2015-01-01
calls for new reflections on the possible relationship between media, public sphere and democracy. This paper argues that we should change the questions that are raised when we try to assess the public sphere. It is argued that the traditional (Enlightenment) focus upon negative liberties and the truth-value......The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...
Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C
1970-01-30
Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.
Analysis of electronic models for solar cells including energy resolved defect densities
Energy Technology Data Exchange (ETDEWEB)
Glitzky, Annegret
2010-07-01
We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)
Study of Streamers in Gradient Density Air: Table Top Modeling of Red Sprites
Opaits, D. F.; Shneider, M. N.; Howard, P. J.; Miles, R. B.; Milikh, G. M.
2009-12-01
Sprites and blue jets develop in the upper atmosphere where ambient density changes drastically over their lengths. Theoretical analysis of Red Sprites [1] and Blue Jets [2,3] are based on the streamer tip parameters’ functional dependence on a local gas density N(h). At the moment there is a lack of experimental data for streamer propagation in a non-uniform ambient gas density. Small scale experiments in controllable conditions are important for validation of analytical models as well as numerical simulations, which can be used for the investigation of real scale plasma phenomena that develop above thunderclouds. Controllable, non-uniform gas density can be achieved in laboratory conditions in super sonic nozzles, fast centrifuges or gas filled tubes with a non-uniform temperature distribution along the axis. The latter approach was used in the present work. A quartz tube, approximately one foot in length, was filled with air at different pressures. A density gradient was created by heating up the top of the tube while keeping the bottom at room temperature. The discharge was initiated by applying a high voltage pulse to a pin electrode at the top of the tube while a flat electrode was grounded at the bottom. Similar to Red Sprites, the streamer propagates downwards into a region of higher density and stops before reaching the lower electrode while the top electrode remains under high potential. This work will present results of streamer propagation at different pressures and voltages. Measurements of current-voltage characteristics as well as integral images will be presented. 1. Y. P.Raizer, G. M. Milikh, M. N. Shneider, and S. V. Novakovski (1998), J. Phys. D: Appl. Phys. 31, 3255-3264. 2. Y. P.Raizer, G. M. Milikh, and M. N. Shneider (2006), Geophys. Res. Lett., 33, L23801 3. Y .P.Raizer, G. M. Milikh, and M. N. Shneider (2007), J. Atmos. & Solat-Terr. Phys, 69, 925-938
A new electron density model of the plasmasphere for operational applications and services
Jakowski, Norbert; Hoque, Mohammed Mainul
2018-03-01
The Earth's plasmasphere contributes essentially to total electron content (TEC) measurements from ground or satellite platforms. Furthermore, as an integral part of space weather, associated plasmaspheric phenomena must be addressed in conjunction with ionosphere weather monitoring by operational space weather services. For supporting space weather services and mitigation of propagation errors in Global Navigation Satellite Systems (GNSS) applications we have developed the empirical Neustrelitz plasmasphere model (NPSM). The model consists of an upper L shell dependent part and a lower altitude dependent part, both described by specific exponential decays. Here the McIllwain parameter L defines the geomagnetic field lines in a centered dipole model for the geomagnetic field. The coefficients of the developed approaches are successfully fitted to numerous electron density data derived from dual frequency GPS measurements on-board the CHAMP satellite mission from 2000 to 2005. The data are utilized for fitting up to the L shell L = 3 because a previous validation has shown a good agreement with IMAGE/RPI measurements up to this value. Using the solar radio flux index F10.7 as the only external parameter, the operation of the model is robust, with 40 coefficients fast and sufficiently accurate to be used as a background model for estimating TEC or electron density profiles in near real time GNSS applications and services. In addition to this, the model approach is sensitive to ionospheric coupling resulting in anomalies such as the Nighttime Winter Anomaly and the related Mid-Summer Nighttime Anomaly and even shows a slight plasmasphere compression of the dayside plasmasphere due to solar wind pressure. Modelled electron density and TEC values agree with estimates reported in the literature in similar cases.
Metastability of the (φiφi)32 model at finite temperature and density
International Nuclear Information System (INIS)
Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.
1996-11-01
Using concurrently the dimensional and analytic regularization methods we applied the Gross-Neveu model at finite temperature and density (chemical potential) in a D-dimensional spacetime. The renormalized effective potential is presented at the one-loop approximation. In the case of non-zero chemical potential we show that the effective potential acquires an imaginary part, which means that the system becomes metastable, indicating the possibility of a first phase transition. (author)
Generalized Models from Beta(p, 2) Densities with Strong Allee Effect: Dynamical Approach
Aleixo, Sandra M.; Rocha, J. Leonel
2012-01-01
A dynamical approach to study the behaviour of generalized populational growth models from Beta(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic ...
Suwa , Misako; Fujimoto , Katsuhito
2006-01-01
http://www.suvisoft.com; Color mixing occurs between background and foreground colors when a pattern is post-printed on a colored area because ink is not completely opaque. This paper proposes a new method for the correction of color mixing in line pattern such as characters and stamps, by using a modified particle density model. Parameters of the color correction can be calculated from two sets of foreground and background colors. By employing this method, the colors of foreground patterns o...
A note on the conditional density estimate in single functional index model
2010-01-01
Abstract In this paper, we consider estimation of the conditional density of a scalar response variable Y given a Hilbertian random variable X when the observations are linked with a single-index structure. We establish the pointwise and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application, we show how our result can be applied in the prediction problem via the conditional mode estimate. Finally, the estimation of the funct...
Modeling nuclear weak-interaction processes with relativistic energy density functionals
International Nuclear Information System (INIS)
Paar, N.; Marketin, T.; Vale, D.; Vretenar, D.
2015-01-01
Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground state properties and collective excitations over the entire nuclide chart. In this paper, we review recent developments in modeling nuclear weak-interaction processes: Charge-exchange excitations and the role of isoscalar proton–neutron pairing, charged-current neutrino–nucleus reactions relevant for supernova evolution and neutrino detectors and calculation of β-decay rates for r-process nucleosynthesis. (author)