Forms of density regulation and (quasi-) stationary distributions of population sizes in birds
DEFF Research Database (Denmark)
Sæther, Bernt-Erik; Engen, Steinar; Grøtan, Vidar;
2008-01-01
that have grown from very small population sizes followed by a period of fluctuations around K. We then use these parameters to estimate the quasi-stationary distribution of population size. There were often large uncertainties in these parameters specifying the form of density regulation that were...... generally independent of the duration of the study period. In contrast, precision in the estimates of environmental variance increased with the length of the time series. In most of the populations, a large proportion of the probability density of the (quasi-) stationary distribution of population sizes......The theta-logistic model of density regulation is an especially flexible class of density regulation models where different forms of non-linear density regulation can be expressed by only one parameter, u. Estimating the parameters of the thetalogistic model is, however, challenging. This is mainly...
Carney, Randy P.
2011-06-07
Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.
Reconciliation of size-density bivariate distributions over a separating node
Institute of Scientific and Technical Information of China (English)
Bidarahalli Venkoba Rao; Vivek Ganvir; Sirigeri Jois Gopalakrishna
2008-01-01
Data reconciliation considers the restoration of mass balance among the noise prone measured data by way of component adjustments for the various particle size or particle density classes or assays over the separating node. In this paper, the method of Lagrange multipliers has been extended to balance bivariate feed and product size-density distributions of coal particles split from a settling column. The settling suspension in the column was split into two product fractions at 40% height from the bottom after a minute settling of homogenized suspension at start. Reconciliation of data assists to estimate solid flow split of particles to the settled stream as well as helps to calculate the profiles of partition curves of the marginal particle size or particle density distributions. In general, Lagrange multiplier method with uniform weighting of its components may not guarantee a smooth partition surface and thus the reconciled data needs further refinement to establish the nature of the surface. In order to overcome this difficulty, a simple alternative method of reconciling bivariate size-density data using partition surface concept is explored in this paper.
Size distribution and radial density profile of synaptic vesicles by SAXS and light scattering
Energy Technology Data Exchange (ETDEWEB)
Castorph, Simon; Salditt, Tim [Institute for X-ray Physics, Goettingen (Germany); Holt, Matthew; Jahn, Reinhard [Max Plank Institute for Biophysical Chemistry, Goettingen (Germany); Sztucki, Michael [European Synchrotron Radiation Facility, Grenoble (France)
2008-07-01
Synaptic vesicles are small membraneous organelles within the nerve terminal, encapsulating neurotransmitters by a lipid bilayer. The transport of the neurotransmitter, the fusion at the plasma membrane, and the release of the stored neurotransmitters into the synaptic cleft are since long know as essential step in nerve conduction of the chemical synapse. A detailed structural view of these molecular mechanisms is still lacking, not withstanding the enormous progress in the field during recent years. From measurements and quantitative fitting of small angle X-ray scattering curves and dynamic light scattering the averaged structural properties of synaptic vesicles can be determined. We present SAXS measurements and fits revealing the width of the size distribution function and details of the radial scattering length profile of synaptic vesicles from rat brain. Representative values for the inner and outer radius and the size polydispersity as well as the density and width of the outer protein layer are obtained.
SURFACE AREA, VOLUME, MASS, AND DENSITY DISTRIBUTIONS FOR SIZED BOMASS PARTICLES
Energy Technology Data Exchange (ETDEWEB)
Ramanathan Sampath
2004-05-01
This semi-annual technical progress report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to December 31, 2004 which covers the first six months of the project. Presently work is in progress to characterize surface area, volume, mass, and density distributions for sized biomass particles. During this reporting period, supply requests were processed and supplies including biomass test particles (hardwood sawdust AI14546) in the size range of 100-200 microns were obtained from a cofiring pilot plant research facility owned by Southern Company, Birmingham, AL. Morehouse has completed setting up of the gravimetric technique measurement system in the heat transfer laboratory, department of physics and dual degree engineering, Morehouse College. Simultaneously, REM, our subcontractor, has completed setting up of the electrodynamic balance (EDB) measurement system to characterize shape and mass for individual biomass particles. Testing of the gravimetric system, and calibration of the cameras and imaging systems using known sizes of polystyrene particles are in progress.
Directory of Open Access Journals (Sweden)
Sandra Marcela Fiori
2004-03-01
Full Text Available The yellow clam Mesodesma mactroides (Deshayes, 1854 is a seasonal migrant that moves in spring to the sandy upper intertidal level. In this paper we analyze the spatial distribution of density and mean shell size of the yellow clam population in Monte Hermoso beach (Argentina in winter 1995, i.e., three months before the mass mortality occurred in November 1995. Sampling covered 32 km of beach, with a regular design of 22 transects. The major environmental gradient in the beach was determined using principal component analysis (PCA on the correlation matrix of the environmental data (beach morphology, slope, and sand granulometry. Correlation analysis was used to assess the relationship between the score of a site (transect on the first and second principal component, and clam mean density and mean shell size. Most of the beach seems to be habitable for clams, their spatial heterogeneity not having been explained by the measured variables since, although the first axis of the PCA has demonstrated an E-W physical gradient, clam density was not in correlation with it. Density was maximum near the piers, even though these are points with high tourist activity. It seems that non-extractive touristic activities do not affect population density but rather mean shell size, probably due to reduction of growth rates. The abundance of the winter population, as compared with the assessment done after the mass mortality of November, strongly suggests that a great part of the population was overwintering in the intertidal fringe.O molusco Mesodesma mactroides (Deshayes, 1854 é uma espécie migrante sazonal que na primavera move-se para o nível entremarés superior da praia. Neste estudo, analisamos a distribuição espacial da densidade e o tamanho médio da população do bivalve na praia de Monte Hermoso (Argentina no inverno de 1995, i. é, três meses antes da mortalidade massiva desses moluscos, acontecida em novembro de 1995. A amostragem cobriu 32
Shimizu, H.; Kobayasi, T.; Inaba, H.
1979-01-01
A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.
Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust.
Murakami, Michio; Nakajima, Fumiyuki; Furumai, Hiroaki
2005-11-01
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.
Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.
2000-01-01
Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.
Martínez-Garza, Cristina; Saha, Sonali; Torres, Veronica; Brown, Joel S; Howe, Henry F
2004-05-01
Variability in the size distributions of populations is usually studied in monocultures or in mixed plantings of two species. Variability of size distributions of populations in more complex communities has been neglected. The effects of seeding density (35 or 350 seeds/species/m2) and presence of small vertebrates on the variability of size distributions were studied for a total of 1,920 individuals of 4 species in replicated synthetic communities of 18 species in northern Illinois. End-of season height and above-ground biomass were measured for prairie perennials Dalea purpurea (purple prairie clover), Echinacea purpurea (purple coneflower), Desmanthus illinoensis (Illinois bundleflower) and Heliopsis helianthoides (early sunflower). Variability in biomass distribution of the four target species was twice as great at low than at high densities when small vertebrates were excluded. Our results suggest that inter- and intraspecific competition may affect all individuals more under high-density conditions, thereby reducing the variability in their biomass distributions within this community. This result, a consequence of plant-plant interaction, is obscured when small birds or mammals are present, presumably because either or both add variance that overwhelms the pattern.
DEFF Research Database (Denmark)
Jensen, Niels H.; Balstrøm, Thomas; Breuning-Madsen, Henrik
2005-01-01
A database containing about 800 soil profiles located in a 7-km grid covering Denmark has been used to develop a set of regression equations of soil water content at pressure heads –1, -10, -100 and –1500 kPa versus particle size distribution, organic matter, CaCO3 and bulk density. One purpose...... was to elaborate equations based of soil parameters available in the Danish Soil Classification's texture database on particle size distribution and organic matter. It was also tested if inclusion of bulk density or CaCO3 content (in CaCO3-containing samples) as predictors or grouping in surface and subsurface...... horizons or textural classes improved the regression equations. Compared to existing Danish equations based on much fewer observations the accuracies of the new equations were better. The equations also predicted the soil water content at the measured pressure heads more accurate than the pedotransfer...
2016-06-02
is derived to facilitate use of secondary polarization. The model is supported by exper- imental MFOV lidar measurements carried out in a controlled ...Retrieval of droplet-size density distribution from multiple-field-of- view cross-polarized lidar signals: theory and experimental validation...Gilles Roy, Luc Bissonnette, Christian Bastille, and Gilles Vallee Multiple-field-of- view (MFOV) secondary-polarization lidar signals are used to
Using ultra-short pulses to determine particle size and density distributions
Lee, Christopher James; van der Slot, Petrus J.M.; Boller, Klaus J.
2007-01-01
We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was
Directory of Open Access Journals (Sweden)
J. Voigtländer
2006-05-01
Full Text Available Combustion of fossil fuel in gasoline and diesel powered vehicles is a major source of aerosol particles in a city. In a street canyon, the number concentration of particles smaller than 300 nm in diameter, which can be inhaled and cause serious health effects, is dominated by particles originating from this source.
In this study we measured both, particle number size distribution and traffic density continuously in a characteristic street canyon in Germany for a time period of 6 months. The street canyon with multistory buildings and 4 traffic lanes is very typical for larger cities. Thus, the measurements are also representative for many other street canyons. In contrast to previous studies, we measured and analyzed the particle number size distribution with high size resolution using a Twin Differential Mobility Analyzer (TDMPS. The measured size range was from 3 to 800 nm, separated into 40 size channels.
Correlation coefficients between particle number concentration for integrated size ranges and traffic up to 0.5 counts were determined. Correlations were also calculated for each of the 40 size channels of the DMPS system, respectively. We found two maxima of the correlation coefficient for particles about 10 nm and in the size range 60–80 nm in diameter.
Furthermore, correlations between traffic and particles in dependence of meteorological data were calculated. Relevant parameters were identified by a multiple regression method. In our experiment only wind parameters have influenced the particle number concentration significantly. Very high correlation coefficients (up to 0.85 could be observed in the lee side of the street canyon as well as particles in the range between 60 and 80 nm in diameter. These values are significantly higher than correlation coefficients for other wind directions and other particle sizes. A minimum was found in the luff side of the street. These findings are in good agreement
Density Distribution Sunflower Plots
Directory of Open Access Journals (Sweden)
William D. Dupont
2003-01-01
Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .
Pore size distribution mapping
Strange, John H.; J. Beau W. WEBBER; Schmidt, S.D.
1996-01-01
Pore size distribution mapping has been demonstrated using NMR cryoporometry\\ud in the presence of a magnetic field gradient, This novel method is extendable to 2D and 3D mapping. It offers a unique nondestructive method of obtaining full pore-size distributions in the range 3 to 100 nm at any point within a bulk sample. \\ud
Proussevitch, Alexander
2014-05-01
Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.
D'Hulst, R.; Rodgers, G. J.
2001-10-01
In a recent work, we introduced two models for the dynamics of customers trying to find the business that best corresponds to their expectation for the price of a commodity. In agreement with the empirical data, a power-law distribution for the business sizes was obtained, taking the number of customers of a business as a proxy for its size. Here, we extend one of our previous models in two different ways. First, we introduce a business aggregation rate that is fitness dependent, which allows us to reproduce a spread in empirical data from one country to another. Second, we allow the bankruptcy rate to take a different functional form, to be able to obtain a log-normal distribution with power-law tails for the size of the businesses.
Density Distribution Sunflower Plots
Dupont, William D; W. Dale Plummer Jr.
2003-01-01
Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventio...
Energy Technology Data Exchange (ETDEWEB)
Lang, A.J.; Junge, D.C.
1978-12-01
The increased interest in wood as a fuel source, coupled with the increasing demand to control the emission generated by wood combustion, has created a need for information characterizing the emissions that occur for given combustion conditions. This investigation characterizes the carbon char and inorganic fly ash size and density distribution for each of thirty-eight Douglas fir bark samples collected under known conditions of combustion.
Hail Size Distribution Mapping
2008-01-01
A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.
Sánchez-Quesada, José L; Vinagre, Irene; de Juan-Franco, Elena; Sánchez-Hernández, Juan; Blanco-Vaca, Francisco; Ordóñez-Llanos, Jordi; Pérez, Antonio
2012-07-01
The aim of this study was to determine the effect of intensified hypoglycemic therapy in patients with type 2 diabetes mellitus on the distribution of lipoprotein-associated phospholipase A2 (Lp-PLA2) activity between high-density lipoprotein and low-density lipoprotein (LDL) and its relation with the lipid profile and other qualitative properties of LDL. Forty-two patients with type 2 diabetes on the basis of poor glycemic control and normal or near normal LDL cholesterol were recruited. Lifestyle counseling and pharmacologic hypoglycemic therapy were intensified to improve glycemic control, but lipid-lowering therapy was unchanged. At 4 ± 2 months, glycosylated hemoglobin had decreased by a mean of 2.1%, but the only effect on the lipid profile were statistically significant decreases in nonesterified fatty acids and apolipoprotein B concentration. LDL size increased and the proportion of electronegative LDL decreased significantly. In parallel, total Lp-PLA2 activity decreased significantly, promoting a redistribution of Lp-PLA2 activity toward a higher proportion in high-density lipoprotein. Improvements in glycemic control led to more marked changes in Lp-PLA2 activity and distribution in patients with diabetes who had not received previous lipid-lowering therapy. In conclusion, optimizing glycemic control in patients with type 2 diabetes promotes atheroprotective changes, including larger LDL size, decreased electronegative LDL, and a higher proportion of Lp-PLA2 activity in high-density lipoprotein.
Urban aerosol number size distributions
Directory of Open Access Journals (Sweden)
T. Hussein
2003-10-01
Full Text Available Aerosol number size distributions were measured continuously in Helsinki, Finland from 5 May 1997 to 28 February 2003. The daily, monthly and annual patterns were investigated. The temporal variation of the particle number concentration was seen to follow the traffic density. The highest total particle number concentrations were usually observed during workdays; especially on Fridays, and the lower concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were usually observed during winter and spring and the lowest during June and July. More than 80\\% of the particle number size distributions were tri-modal: nucleation mode (Dp < 30 nm, Aitken mode (20–100 nm and accumulation mode (Dp > 90 nm. Less than 20% of the particle number size distributions have either two modes or consisted of more than three modes. Two different measurement sites are used; in the first place (Siltavuori, 5 May 1997–5 March 2001, the overall means of the integrated particle number concentrations were 7100 cm^{−3}, 6320 cm^{−3}, and 960 cm^{−3}, respectively, for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6 March 2001–28 February 2003 they were 5670 cm^{−3}, 4050 cm^{−3}, and 900 cm^{−3}. The total number concentration in nucleation and Aitken modes were usually significantly higher during weekdays than during weekends. The variations in accumulation mode were less pronounced. The smaller concentrations in Kumpula were mainly due to building construction and also slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation in both sites.
Kinetic narrowing of size distribution
Dubrovskii, V. G.
2016-05-01
We present a model that reveals an interesting possibility for narrowing the size distribution of nanostructures when the deterministic growth rate changes its sign from positive to negative at a certain stationary size. Such a behavior occurs in self-catalyzed one-dimensional III-V nanowires and more generally whenever a negative "adsorption-desorption" term in the growth rate is compensated by a positive "diffusion flux." By asymptotically solving the Fokker-Planck equation, we derive an explicit representation for the size distribution that describes either Poissonian broadening or self-regulated narrowing depending on the parameters. We show how the fluctuation-induced spreading of the size distribution can be completely suppressed in systems with size self-stabilization. These results can be used for obtaining size-uniform ensembles of different nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Chajekshaul, T.; Hayek, T.; Walsh, A.; Breslow, J.L. (Rockefeller University, New York, NY (USA))
1991-08-01
Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to be primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.
Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie
2016-07-01
A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.
Centaur size distribution with DECam
Fuentes, Cesar; Trilling, David E.; Schlichting, Hilke
2014-11-01
We present the results of the 2014 centaur search campaign on the Dark Energy Camera (DECam) in Tololo, Chile. This is the largest debiased Centaur survey to date, measuring for the first time the size distribution of small Centaurs (1-10km) and the first time the sizes of planetesimals from which the entire Solar System formed are directly detected.The theoretical model for the coagulation and collisional evolution of the outer solar system proposed in Schlichting et al. 2013 predicts a steep rise in the size distribution of TNOs smaller than 10km. These objects are below the detection limit of current TNO surveys but feasible for the Centaur population. By constraining the number of Centaurs and this feature in their size distribution we can confirm the collisional evolution of the Solar System and estimate the rate at which material is being transferred from the outer to the inner Solar System. If the shallow power law behavior from the TNO size distribution at ~40km can be extrapolated to 1km, the size of the Jupiter Family of Comets (JFC), there would not be enough small TNOs to supply the JFC population (Volk & Malhotra, 2008), debunking the link between TNOs and JFCs.We also obtain the colors of small Centaurs and TNOs, providing a signature of collisional evolution by measuring if there is in fact a relationship between color and size. If objects smaller than the break in the TNO size distribution are being ground down by collisions then their surfaces should be fresh, and then appear bluer in the optical than larger TNOs that are not experiencing collisions.
Adaptive density dependence of avian clutch size
Both, C; Tinbergen, JM; Visser, ME
2000-01-01
In birds, the annual mean clutch size is often negatively correlated with population density. This relationship is at least in part due to adjustment by individuals. We investigated whether this response is adaptive in two ways. First we used an optimality model to predict how optimal clutch size
Urban aerosol number size distributions
Directory of Open Access Journals (Sweden)
T. Hussein
2004-01-01
Full Text Available Aerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (30nm, Aitken mode (20-100nm and accumulation mode (}$'>90nm. Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001, the arithmetic means of the particle number concentrations were 7000cm, 6500cm, and 1000cm respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003 they were 5500cm, 4000cm, and 1000cm. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites.
Particle Size Estimation Based on Edge Density
Institute of Scientific and Technical Information of China (English)
WANG Wei-xing
2005-01-01
Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful fast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80 frames have been analyzed.
RHOCUBE: 3D density distributions modeling code
Nikutta, Robert; Agliozzo, Claudia
2016-11-01
RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.
How dense can one pack spheres of arbitrary size distribution?
Reis, S. D. S.; Araújo, N. A. M.; Andrade, J. S., Jr.; Herrmann, Hans J.
2012-01-01
We present the first systematic algorithm to estimate the maximum packing density of spheres when the grain sizes are drawn from an arbitrary size distribution. With an Apollonian filling rule, we implement our technique for disks in 2d and spheres in 3d. As expected, the densest packing is achieved with power-law size distributions. We also test the method on homogeneous and on empirical real distributions, and we propose a scheme to obtain experimentally accessible distributions of grain sizes with low porosity. Our method should be helpful in the development of ultra-strong ceramics and high-performance concrete.
Microbubble Size Distributions Data Collection and Analysis
2016-06-13
ABSTRACT A technique for determining the size distribution of micron-size bubbles from underway measurements at sea is described. A camera...Blank TM 841204 INTRODUCTION Properties of micron-sized bubble aggregates in sea water were investigated to determine their influence on the...problem during this study. This paper will discuss bubble size and size distribution measurements in sea water while underway. A technique to detect
2012-01-01
into estimates of percent basal cover, percent bare ground, percent litter ( dead material), and mean shrub and grass height. Shrub density was calculated...2003. [39] W. S. Longland and M. V. Price, “Direct observations of owls and heteromyid rodents: can predation risk explain microhab- itat use?” Ecology, vol. 72, no. 6, pp. 2261–2273, 1991.
Nguyen, Thi Hoai Thu; Chen, Jyh-Chen; Hu, Chieh; Chen, Chun-Hung; Huang, Yen-Hao; Lin, Huang-Wei; Yu, Andy; Hsu, Bruce
2017-06-01
In this study, a global transient numerical simulation of silicon growth from the beginning of the solidification process until the end of the cooling process is carried out modeling the growth of an 800 kg ingot in an industrial seeded directional solidification furnace. The standard furnace is modified by the addition of insulating blocks in the hot zone. The simulation results show that there is a significant decrease in the thermal stress and dislocation density in the modified model as compared to the standard one (a maximal decrease of 23% and 75% along the center line of ingot for thermal stress and dislocation density, respectively). This modification reduces the heating power consumption for solidification of the silicon melt by about 17% and shortens the growth time by about 2.5 h. Moreover, it is found that adjusting the operating conditions of modified model to obtain the lower growth rate during the early stages of the solidification process can lower dislocation density and total heater power.
City-size distribution and the size of urban systems.
Thomas, I
1985-07-01
"This paper is an analysis of the city-size distribution for thirty-five countries of the world in 1975; the purpose is to explain statistically the regularity of the rank-size distribution by the number of cities included in the urban systems. The rank-size parameters have been computed for each country and also for four large urban systems in which several population thresholds have been defined. These thresholds seem to have more influence than the number of cities included in the urban system on the regularity of the distribution." The data are from the U.N. Demographic Yearbook. excerpt
Charge and Size Distributions of Electrospray Drops
de Juan L; de la Mora JF
1997-02-15
The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.
The density curve of F distribution
Institute of Scientific and Technical Information of China (English)
LIU Xiaopeng; LIU Kunhui
2004-01-01
Employing the properties of special function,we discuss the positional relation between two density curves with different parameters for F distribution in this paper.Some varying regularities about the position of density curve of F distribution have been obtained.
Size-dependent density of nanoparticles and nanostructured materials
Energy Technology Data Exchange (ETDEWEB)
Nanda, Karuna Kar, E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 12 (India)
2012-10-01
We discuss the size-dependent density of nanoparticles and nanostructured materials keeping the recent experimental results in mind. The density is predicted to increase with decreasing size for nanoparticles but it can decrease with size for nanostructured materials that corroborates the experimental results reported in the literature. -- Highlights: ► Density of nanoparticles depends mainly on the size-dependent lattice parameter. ► Density is predicted to increase with decreasing size for nanoparticles. ► Density decreases with size for nanostructured materials.
Modeling particle size distributions by the Weibull distribution function
Energy Technology Data Exchange (ETDEWEB)
Fang, Zhigang (Rogers Tool Works, Rogers, AR (United States)); Patterson, B.R.; Turner, M.E. Jr (Univ. of Alabama, Birmingham, AL (United States))
1993-10-01
A method is proposed for modeling two- and three-dimensional particle size distributions using the Weibull distribution function. Experimental results show that, for tungsten particles in liquid phase sintered W-14Ni-6Fe, the experimental cumulative section size distributions were well fit by the Weibull probability function, which can also be used to compute the corresponding relative frequency distributions. Modeling the two-dimensional section size distributions facilitates the use of the Saltykov or other methods for unfolding three-dimensional (3-D) size distributions with minimal irregularities. Fitting the unfolded cumulative 3-D particle size distribution with the Weibull function enables computation of the statistical distribution parameters from the parameters of the fit Weibull function.
Information Theory and the Earth's Density Distribution
Rubincam, D. P.
1979-01-01
An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.
Aggregate size distributions in hydrophobic flocculation
Directory of Open Access Journals (Sweden)
Chairoj Rattanakawin
2003-07-01
Full Text Available The evolution of aggregate (floc size distributions resulting from hydrophobic flocculation has been investigated using a laser light scattering technique. By measuring floc size distributions it is possible to distinguish clearly among floc formation, growth and breakage. Hydrophobic flocculation of hematite suspensions with sodium oleate under a variety of agitating conditions produces uni-modal size distributions. The size distribution of the primary particles is shifted to larger floc sizes when the dispersed suspension is coagulated by pH adjustment. By adding sodium oleate to the pre-coagulated suspension, the distribution progresses further to the larger size. However, prolonged agitation degrades the formed flocs, regressing the distribution to the smaller size. Median floc size derived from the distribution is also used as performance criterion. The median floc size increases rapidly at the initial stage of the flocculation, and decreases with the extended agitation time and intensity. Relatively weak flocs are produced which may be due to the low dosage of sodium oleate used in this flocculation study. It is suggested that further investigation should focus on optimum reagent dosage and non-polar oil addition to strengthen these weak flocs.
Body size distribution of the dinosaurs.
Directory of Open Access Journals (Sweden)
Eoin J O'Gorman
Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.
Body size distribution of the dinosaurs.
O'Gorman, Eoin J; Hone, David W E
2012-01-01
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.
City size distributions and spatial economic change.
Sheppard, E
1982-10-01
"The concept of the city size distribution is criticized for its lack of consideration of the effects of interurban interdependencies on the growth of cities. Theoretical justifications for the rank-size relationship have the same shortcomings, and an empirical study reveals that there is little correlation between deviations from rank-size distributions and national economic and social characteristics. Thus arguments suggesting a close correspondence between city size distributions and the level of development of a country, irrespective of intranational variations in city location and socioeconomic characteristics, seem to have little foundation." (summary in FRE, ITA, JPN, ) excerpt
Effects of Particle Size Distribution on Compacted Density of LMO Electrode Plate%粒度分布对锰酸锂极片压实密度的影响
Institute of Scientific and Technical Information of China (English)
李华成; 李普良; 卢道焕; 韩要丛; 陈平; 胡明超
2011-01-01
从改善锰酸锂材料的粒度分布出发,考察了粒度分布对锰酸锂产品压实密度的影响.实验结果表明,产品粒度D10为6.330μm、D50为11.431 μm、D90为19.424μm、D90 -D10=13.094 μm,粒度分布比较集中时,产品的压实密度最高,达到了3.14g/cm3,对应的全电池1C初始放电容量为105.3 mAh/g,50次循环容量衰减为4.26％,能较好满足锂电厂的要求.%The effects of particle size distribution on compacted density of LMO material was researched in order to improve the size distribition of LMO. Results indicated that the material had the highest compacted density of 3.14 g/cm3 at a concentrated particle size distribution such as Dw =6.330 u,m, D^ =11.431 jxm, D^ =19.424 ujn and Dw -Dw = 13.094 u.m. The full cell 1C made from the material had an initial discharge capacity of 105.3 mAh/g and capacity attenuation rate after 50 cycles of 4.26%. This material can meet with the requirements of a lithium battery plant.
City-size distribution and the size of urban systems
Thomas, I.
1985-01-01
This paper is an analysis of the city-size distribution for thirty-five countries of the world in 1975; the purpose is to explain statistically the regularity of the rank-size distribution by the number of cities included in the urban systems. The rank-size parameters have been computed for each country and also for four large urban systems in which several population thresholds have been defined. These thresholds seem to have more influence than the number of cities included in the urban sys...
Experimental determination of size distributions: analyzing proper sample sizes
Buffo, A.; Alopaeus, V.
2016-04-01
The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.
Aggregate size distributions in sweep flocculation
Directory of Open Access Journals (Sweden)
Chairoj Rattanakawin
2005-09-01
Full Text Available The evolution of aggregate size distributions resulting from sweep flocculation has been investigated using laser light scattering technique. By measuring the (volume distributions of floc size, it is possible to distinguish clearly among floc formation, growth and breakage. Sweep flocculation of stable kaolin suspensions with ferric chloride under conditions of the rapid/slow mixing protocol produces uni-modal size distributions. The size distribution is shifted to larger floc size especially during the rapid mixing step. The variation of the distributions is also shown in the plot of cumulative percent finer against floc size. From this plot, the distributions maintain the same S-shape curves over the range of the mixing intensities/times studied. A parallel shift of the curves indicates that self-preserving size distribution occurred in this flocculation. It is suggested that some parameters from mathematical functions derived from the curves could be used to construct a model and predict the flocculating performance. These parameters will be useful for a water treatment process selection, design criteria, and process control strategies. Thus the use of these parameters should be employed in any further study.
Deshler, Terry
2016-04-01
Balloon-borne optical particle counters were used to make in situ size resolved particle concentration measurements within polar stratospheric clouds (PSCs) over 20 years in the Antarctic and over 10 years in the Arctic. The measurements were made primarily during the late winter in the Antarctic and in the early and mid-winter in the Arctic. Measurements in early and mid-winter were also made during 5 years in the Antarctic. For the analysis bimodal lognormal size distributions are fit to 250 meter averages of the particle concentration data. The characteristics of these fits, along with temperature, water and nitric acid vapor mixing ratios, are used to classify the PSC observations as either NAT, STS, ice, or some mixture of these. The vapor mixing ratios are obtained from satellite when possible, otherwise assumptions are made. This classification of the data is used to construct probability density functions for NAT, STS, and ice number concentration, median radius and distribution width for mid and late winter clouds in the Antarctic and for early and mid-winter clouds in the Arctic. Additional analysis is focused on characterizing the temperature histories associated with the particle classes and the different time periods. The results from theses analyses will be presented, and should be useful to set bounds for retrievals of PSC properties from remote measurements, and to constrain model representations of PSCs.
The size--density relation of extragalactic HII regions
Hunt, L K
2009-01-01
We investigate the size--density relation in extragalactic HII regions, with the aim of understanding the role of dust and different physical conditions in the ionized medium. First, we compiled several observational data sets for Galactic and extragalactic HII regions and confirm that extragalactic HII regions follow the same size (D)--density (n) relation as Galactic ones. Motivated by the inability of static models to explain this, we then modelled the evolution of the size--density relation of HII regions by considering their star formation history, the effects of dust, and pressure-driven expansion. The results are compared with our sample data whose size and density span roughly six orders of magnitude. We find that the extragalactic size--density relation does not result from an evolutionary sequence of HII regions but rather reflects a sequence with different initial gas densities (``density hierarchy''). Moreover, the size of many HII regions is limited by dust absorption of ionizing photons, rather ...
On the Deepwater Horizon drop size distributions
Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brock, C. A.; McKeen, S. A.
2014-12-01
Model simulations of the fate of gas and oil released following the Deepwater Horizon blowout in 2012 depend critically on the assumed drop size distributions. We use direct observations of surfacing time, surfacing location, and atmospheric chemical composition to infer an average drop size distribution for June 10, 2012, providing robust first-order constraints on parameterizations in models. We compare the inferred drop size distribution to published work on Deepwater Horizon and discuss the ability of this approach to determine the efficacy of subsurface dispersant injection.
Particle size distribution instrument. Topical report 13
Energy Technology Data Exchange (ETDEWEB)
Okhuysen, W.; Gassaway, J.D.
1995-04-01
The development of an instrument to measure the concentration of particles in gas is described in this report. An in situ instrument was designed and constructed which sizes individual particles and counts the number of occurrences for several size classes. Although this instrument was designed to detect the size distribution of slag and seed particles generated at an experimental coal-fired magnetohydrodynamic power facility, it can be used as a nonintrusive diagnostic tool for other hostile industrial processes involving the formation and growth of particulates. Two of the techniques developed are extensions of the widely used crossed beam velocimeter, providing simultaneous measurement of the size distribution and velocity of articles.
Effects of Horizontal Density Distribution on Internal Bond Strength of Flakeboard
Institute of Scientific and Technical Information of China (English)
MEIChangtong; DAIChunping; ZHOUDingguo
2005-01-01
Horizontal density variation is a structural phenomenon of non-veneer wood composites. The variation and distribution characteristics of horizontal density have impacts on the products properties. In this study, veneer strip simulated flake boards with 4 kinds of density distribution were made using a mat model. The density variation of the modeled mats was discussed, as well as the relationship between sample size and density variation. The effects of density and density distribution of non-veneer composites on the internal bond strength were analyzed. Result shows that the horizontal density of random formed particleboard follows normal distribution. Density has remarkable influence on internal bond strength (IB). Increasing density helps to improve IB at lower density stage, but has negative impacts on IB at higher density stage.Density variation between testing specimens depends on their sizes. Properly increasing specimen size can decrease the variation of the IBs.
On the Size Distribution of Sand
DEFF Research Database (Denmark)
Sørensen, Michael
2016-01-01
-distribution, by taking into account that individual grains do not have the same travel time from the source to the deposit. The travel time is assumed to be random so that the wear on the individual grains vary randomly. The model provides an interpretation of the parameters of the NIG-distribution, and relates the mean......A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out...
The exponential age distribution and the Pareto firm size distribution
Coad, Alex
2008-01-01
Recent work drawing on data for large and small firms has shown a Pareto distribution of firm size. We mix a Gibrat-type growth process among incumbents with an exponential distribution of firm’s age, to obtain the empirical Pareto distribution.
Use of surfactants to control island size and density
Energy Technology Data Exchange (ETDEWEB)
Merrell, Jason; Liu, Feng; Stringfellow, Gerald B.
2017-08-15
Methods of controlling island size and density on an OMVPE growth film may comprise adding a surfactant at a critical concentration level, allowing a growth phase for a first period of time, and ending the growth phase when desired island size and density are achieved. For example, the island size and density of an OMVPE grown InGaN thin film may be controlled by adding an antimony surfactant at a critical concentration level.
Bubble Size Distributions in Coastal Seas
Leeuw, G. de; Cohen, L.H.
1995-01-01
Bubble size distributions have been measured with an optical system that is based on imaging of a small sample volume with a CCD camera system, and processing of the images to obtain the size of individual bubbles in the diameter range from 30 to lOOO^m. This bubble measuring system is deployed from
Atmospheric Ion Clusters: Properties and Size Distributions
D'Auria, R.; Turco, R. P.
2002-12-01
Ions are continuously generated in the atmosphere by the action of galactic cosmic radiation. Measured charge concentrations are of the order of 103 ~ {cm-3} throughout the troposphere, increasing to about 5 x 103 ~ {cm-3} in the lower stratosphere [Cole and Pierce, 1965; Paltridge, 1965, 1966]. The lifetimes of these ions are sufficient to allow substantial clustering with common trace constituents in air, including water, nitric and sulfuric acids, ammonia, and a variety of organic compounds [e.g., D'Auria and Turco, 2001 and references cited therein]. The populations of the resulting charged molecular clusters represent a pre-nucleation phase of particle formation, and in this regard comprise a key segment of the over-all nucleation size spectrum [e.g., Castleman and Tang, 1972]. It has been suggested that these clusters may catalyze certain heterogeneous reactions, and given their characteristic crystal-like structures may act as freezing nuclei for supercooled droplets. To investigate these possibilities, basic information on cluster thermodynamic properties and chemical kinetics is needed. Here, we present new results for several relevant atmospheric ion cluster families. In particular, predictions based on quantum mechanical simulations of cluster structure, and related thermodynamic parameters, are compared against laboratory data. We also describe a hybrid approach for modeling cluster sequences that combines laboratory measurements and quantum predictions with the classical liquid droplet (Thomson) model to treat a wider range of cluster sizes. Calculations of cluster mass distributions based on this hybrid model are illustrated, and the advantages and limitations of such an analysis are summarized. References: Castelman, A. W., Jr., and I. N. Tang, Role of small clusters in nucleation about ions, J. Chem. Phys., 57, 3629-3638, 1972. Cole, R. K., and E. T. Pierce, Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers, J
Distribution of milled peat density in stockpiles
Energy Technology Data Exchange (ETDEWEB)
Kuntsevich, V.B. (and others)
1987-01-01
The interaction of pile density and spontaneous heating and/or combustion for a range of peat types and decomposition degrees was investigated. Up to a self-heating temperature of 75 degrees C, density distribution was normal throughout the pile but thereafter it increased locally with temperature and involved weight losses of 28-52% of the original peat in the semi-coke zone. The results are tabulated. 4 refs., 1 fig., 1 tab.
Complexity Analysis of Peat Soil Density Distribution
Sampurno, Joko; Diah Faryuni, Irfana; Dzar Eljabbar Latief, Fourier; Srigutomo, Wahyu
2016-08-01
The distributions of peat soil density have been identified using fractal analysis method. The study was conducted on 5 peat soil samples taken from a ground field in Pontianak, West Kalimantan, at the coordinates (0 ° 4 '2:27 "S, 109 ° 18' 48.59" E). In this study, we used micro computerized tomography (pCT Scanner) at 9.41 micro meter per pixel resolution under peat soil samples to provide 2-D high-resolution images L1-L5 (200 200 pixels) that were used to detect the distribution of peat soil density. The method for determining the fractal dimension and intercept was the 2-D Fourier analysis method. The method was used to obtain the log log-plot of magnitude with frequency. Fractal dimension was obtained from the straight regression line that interpolated the points in the interval with the largest coefficient determination. Intercept defined by the point of intersection on the -axis. The conclusion was that the distributions of peat soil density showing the fractal behaviour with the heterogeneity of the samples from the highest to the lowest were L5, L1, L4, L3 and L2. Meanwhile, the range of density values of the samples from the highest to the lowest was L3, L2, L4, L5 and L1. The study also concluded that the behaviour of the distribution of peat soil density was a weakly anisotropic.
THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS
Energy Technology Data Exchange (ETDEWEB)
Gazol, Adriana [Centro de Radioastronomia y Astrofisica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacan (Mexico); Kim, Jongsoo, E-mail: a.gazol@crya.unam.mx, E-mail: jskim@kasi.re.kr [Korea Astronomy and Space Science Institute, 61-1, Hwaam-Dong, Yuseong-Ku, Daejeon 305-348 (Korea, Republic of)
2013-03-01
We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.
Estimation of current density distribution under electrodes for external defibrillation
Directory of Open Access Journals (Sweden)
Papazov Sava P
2002-12-01
Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.
Size dependent pore size distribution of shales by gas physisorption
Roshan, Hamid; Andersen, Martin S.; Yu, Lu; Masoumi, Hossein; Arandian, Hamid
2017-04-01
Gas physisorption, in particular nitrogen adsorption-desorption, is a traditional technique for characterization of geomaterials including the organic rich shales. The low pressure nitrogen is used together with adsorption-desorption physical models to study the pore size distribution (PSD) and porosity of the porous samples. The samples are usually crushed to a certain fragment size to measure these properties however there is not yet a consistent standard size proposed for sample crushing. Crushing significantly increases the surface area of the fragments e.g. the created surface area is differentiated from that of pores using BET technique. In this study, we show that the smaller fragment sizes lead to higher cumulative pore volume and smaller pore diameters. It is also shown that some of the micro-pores are left unaccounted because of the correction of the external surface area. In order to illustrate this, the nitrogen physisorption is first conducted on the identical organic rich shale samples with different sizes: 20-25, 45-50 and 63-71 µm. We then show that such effects are not only a function of pore structure changes induced by crushing, but is linked to the inability of the physical models in differentiating between the external surface area (BET) and micro-pores for different crushing sizes at relatively low nitrogen pressure. We also discuss models currently used in nano-technology such as t-method to address this issue and their advantages and shortcoming for shale rock characterization.
Institute of Scientific and Technical Information of China (English)
李苗苗; 聂三安; 陈晓娟; 罗璐; 朱捍华; 石辉; 葛体达; 童成立; 吴金水
2013-01-01
水稻生长影响土壤有机质在土壤及其各组分中的分布,是关系土壤有机质储量的重要因子.为量化水稻光合同化碳在土壤不同粒径和密度组分中的分布,进而为水稻土有机质积累持续机制与固碳潜力研究提供数据支撑,应用14C连续标记示踪技术,以当地主栽水稻品种“中优169”为供试作物,分别选取亚热带区4种典型稻田土壤,通过土壤有机质物理分组方法探讨了水稻根际输入的光合碳在土壤物理组分(粒径、密度)中的含量和分配特征.结果表明,水稻标记种植80 d后,250～2 000 μm粒径的SOC14含量范围为118.23 ～309.94 mg·kg-1,SOC14/SOC的比例范围为0.52％ ～ 1.55％,均大于20 ～ 250 μm、＜ 20 μm这2个粒径的SOC14含量和SOC14/SOC的比例,250～2000 μm、20～ 250 μm这2个粒径的轻组组分的SOC14含量均显著大于相应的重组组分的SOC14含量,说明稻田生态系统通过水稻的根际沉积作用将有机碳(水稻光合同化碳)主要固定在大粒径的轻组组分中,从而提高了土壤有机碳含量.相关分析表明,250～2000 μm粒径与其轻、重组组分、＜20 μm粒径、20～ 250 μm粒径的SOC14含量之间均呈显著性正相关,而＜20 μm、20 ～ 250 μm粒径的轻组组分的SOC14含量之间呈极显著性负相关.%Rice growth affects the distribution of organic matter in soils and soil fractions, and is thus an important factor to control the storage of soil organic matter. The aims of our study were to quantify the photosynthesized C in soil fraction pools of different size and density during the rice growth, and also to offer data evidence not only in the mechanisms of SOC accumulation, but also in C sequestration potential in paddy soils. Therefore, the microcosm experiment was carried out to quantify the input and distribution of photo-assimilated carbon ( C) in soils size and density aggregates pools by using continuous 14C labeling technique
Correction of bubble size distributions from transmission electron microscopy observations
Energy Technology Data Exchange (ETDEWEB)
Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.
1996-01-01
Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs.
Determination of size distribution using neural networks
Stevens, JH; Nijhuis, JAG; Spaanenburg, L; Mohammadian, M
1999-01-01
In this paper we present a novel approach to the estimation of size distributions of grains in water from images. External conditions such as the concentrations of grains in water cannot be controlled. This poses problems for local image analysis which tries to identify and measure single grains.
Size from Specular Highlights for Analyzing Droplet Size Distributions
Jalba, Andrei C.; Westenberg, Michel A.; Grooten, Mart H. M.
In mechanical engineering, heat-transfer models by dropwise condensation are under development. The condensation process is captured by taking many pictures, which show the formation of droplets, of which the size distribution and area coverage are of interest for model improvement. The current analysis method relies on manual measurements, which is time consuming. In this paper, we propose an approach to automatically extract the positions and radii of the droplets from an image. Our method relies on specular highlights that are visible on the surfaces of the droplets. We show that these highlights can be reliably extracted, and that they provide sufficient information to infer the droplet size. The results obtained by our method compare favorably with those obtained by laborious and careful manual measurements. The processing time per image is reduced by two orders of magnitude.
The computation of relative numerosity, size and density.
Raphael, Sabine; Morgan, Michael J
2016-07-01
To investigate the mechanisms for the perception of relative numerosity, we used two-interval forced-choice (temporal 2AFC) to measure thresholds for area, density and numerosity differences between dot textures, and a 2×2 FC task to measure the ability of observers to distinguish changes in area from changes in density. To prevent the use of a one-dimensional size signal we used textures in which dots were scattered within irregular polygonal areas. Numerosity thresholds were similar in the area and density-varying conditions, consistent with a single numerosity mechanism. Thresholds for area and density discriminations were raised when number was held constant, consistent with numerosity thresholds being lower than those for size and density. Also, area thresholds for polygonal outlines were increased when no dots were present in the outline. However, a single numerosity mechanism cannot account for all the data, because we find that observers in randomly-interleaved size-varying and density-varying conditions are also able to discriminate between changes in size and density with a precision predicted from independently-noisy size and density channels that have similar noise to that in the putative numerosity channel. A complication, previously noted with circular shapes, is that denser textures tend to be confused with larger textures, and vice versa. This could explain why thresholds rise when density and size changes are in opposition, in the constant-number case. These findings taken together do not rule out an independent numerosity mechanism, but they are equally compatible with a flexible computation of numerosity from size and density cues.
Cell-size distribution in epithelial tissue formation and homeostasis.
Puliafito, Alberto; Primo, Luca; Celani, Antonio
2017-03-01
How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.
The size distribution of 'gold standard' nanoparticles.
Bienert, Ralf; Emmerling, Franziska; Thünemann, Andreas F
2009-11-01
The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 +/- 0.04 nm (RM 8011), 12.20 +/- 0.03 nm (RM 8012), and 25.74 +/- 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 +/- 0.006 (RM 8011), 0.103 +/- 0.003, (RM 8012), and 0.10 +/- 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions--repulsive or attractive--were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles.
Collisional processes and size distribution in spatially extended debris discs
Thebault, Philippe
2007-01-01
We present a new multi-annulus code for the study of collisionally evolving extended debris discs. We first aim to confirm results obtained for a single-annulus system, namely that the size distribution in "real" debris discs always departs from the theoretical collisional equilibrium $dN\\proptoR^{-3.5}dR$ power law, especially in the crucial size range of observable particles (<1cm), where it displays a characteristic wavy pattern. We also aim at studying how debris discs density distributions, scattered light luminosity profiles, and SEDs are affected by the coupled effect of collisions and radial mixing due to radiation pressure affected small grains. The size distribution evolution is modeled from micron-sized grains to 50km-sized bodies. The model takes into account the crucial influence of radiation pressure-affected small grains. We consider the collisional evolution of a fiducial a=120AU radius disc with an initial surface density in $\\Sigma(a)\\propto a^{\\alpha}$. We show that the system's radial e...
Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions
Institute of Scientific and Technical Information of China (English)
LI Rui; ZHANG Duan-Ming; LI Zhi-Hao
2011-01-01
We study by numerical simulation the property of velocity distributions of granular gases with a power-law size distribution, driven by uniform heating and boundary heating. It is found that the form of velocity distribution is primarily controlled by the restitution coefficient -q and q, the ratio between the average number of heatings and the average number of collisions in the system. Furthermore, we show that uniform and boundary heating can be understood as different limits of q, with q ? 1 and q >1 and q≤1,respectively.
Prediction of the size distribution of precipitates
Energy Technology Data Exchange (ETDEWEB)
Prikhodovsky, A. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Werkstoffe und Verfahren der Energietechnik 2: Werkstoffstruktur und Eigenschaften
2001-12-01
Modelling has proven to be an efficient way of cutting the time and costs associated with the investigation of materials properties. A new mathematical model for the prediction of the particle size distribution of precipitates has been developed. The model allows the description of all stages of the precipitation process: nucleation, growth and Ostwald ripening of particles. The incorporation of existing thermodynamic databases allows the simulation of a formation of dispersed phases in commercial multicomponent alloys. The influence of the model parameters on the final particle size distribution was investigated with the example of NbC formation in austenite. It was shown that the interfacial energy of a particle-matrix interface has the most significant effect on the final particle arrangement. A pre-exponential factor, which is the subject of nucleation theories, plays a less significant role in the final particle arrangement. (orig.)
Crystallite size distributions of marine gas hydrates
Energy Technology Data Exchange (ETDEWEB)
Klapp, S.A.; Bohrmann, G.; Abegg, F. [Bremen Univ., Bremen (Germany). Research Center of Ocean Margins; Hemes, S.; Klein, H.; Kuhs, W.F. [Gottingen Univ., Gottingen (Germany). Dept. of Crystallography
2008-07-01
Experimental studies were conducted to determine the crystallite size distributions of natural gas hydrate samples retrieved from the Gulf of Mexico, the Black Sea, and a hydrate ridge located near offshore Oregon. Synchrotron radiation technology was used to provide the high photon fluxes and high penetration depths needed to accurately analyze the bulk sediment samples. A new beam collimation diffraction technique was used to measure gas hydrate crystallite sizes. The analyses showed that gas hydrate crystals were globular in shape. Mean crystallite sizes ranged from 200 to 400 {mu}m for hydrate samples taken from the sea floor. Larger grain sizes in the hydrate ridge samples suggested differences in hydrate formation ages or processes. A comparison with laboratory-produced methane hydrate samples showed half a lognormal curve with a mean value of 40{mu}m. Results of the study showed that a cautious approach must be adopted when transposing crystallite-size sensitive physical data from laboratory-made gas hydrates to natural settings. It was concluded that crystallite size information may also be used to resolve the formation ages of gas hydrates when formation processes and conditions are constrained. 48 refs., 1 tab., 9 figs.
Size Dependency of Income Distribution and Its Implications
Institute of Scientific and Technical Information of China (English)
ZHANG Jiang; WANG You-Gui
2011-01-01
We systematically study the size dependency of income distributions, i.e. income distribution versus the population of a country. Using the generalized Lotka--Uolterra model to fit the empirical income data for 1996-2007 in the U.S.A,we find an important parameter A that can scale with a βpower of the size(population) of the U.S.A.in that year. We point out that the size dependency of income distributions, which is a very important property but seldom addressed in previous studies, has two non-trivial implications:(1) the allometric growth pattern,i.e. the power-law relationship between population and GDP in different years, can be mathematically derived from the size-dependent income distributions and also supported by the empirical data;(2)the connection with the anomalous scaling for the probability density function in critical phenomena, since the re-scaled form of the income distributions has asymptotically exactly the same mathematical expression for the limit distribution of the sum of many correlated random variables.
Density Matrix for Mesoscopic Distributed Parameter Circuits
Institute of Scientific and Technical Information of China (English)
JI Ying-Hua; WANG Qi; LUO Hai-Mei; LEI Min-Sheng
2005-01-01
Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for nondissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix p(q, q',β). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.
Remote Laser Diffraction Particle Size Distribution Analyzer
Energy Technology Data Exchange (ETDEWEB)
Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael
2001-03-01
In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.
The size distribution of inhabited planets
Simpson, Fergus
2016-02-01
Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.
Measurement of nonvolatile particle number size distribution
Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.
2016-01-01
An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA
Landslide size distribution in seismic areas
Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni B.
2015-04-01
In seismic areas, the analysis of the landslides size distribution with the distance from the seismic source is very important for hazard zoning and land planning. From numerical modelling (Bourdeau et al., 2004), it has been observed that the area of the sliding mass tends to increase with the ground-motion amplitude up to a certain threshold input acceleration. This has been also observed empirically for the 1989 Loma Prieta earthquake (Keefer and Manson, 1998) and 1999 Chi Chi earthquake (Khazai and Sitar, 2003). Based on this, it possible to assume that the landslide size decreases with the increase of the distance from the seismic source. In this research, we analysed six earthquakes-induced landslides inventories (Papua New Guinea Earthquake, 1993; Northridge Earthquake, 1994; Niigata-Chuetsu Earthquake 2004; Iwate-Miyagi Nairiku Earthquake, 2008; Wenchuan Earthquake, 2008; Tohoku Earthquake, 2011) with a magnitude ranging between 6.6 and 9.0 Mw. For each earthquake, we first analysed the size of landslides as a function of different factors such as the lithology, the PGA, the relief, the distance from the seismic sources (both fault and epicentre). Then, we analysed the magnitude frequency curves for different distances from the source area and for each lithology. We found that a clear relationship between the size distribution and the distance from the seismic source is not evident, probably due to the combined effect of the different influencing factors and to the non-linear relationship between the ground-motion intensity and the distance from the seismic source.
Aerosol Size Distribution in the marine regions
Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub
2014-05-01
We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends
The distribution of bubble sizes during reionization
Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.
2016-09-01
A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.
Energy Technology Data Exchange (ETDEWEB)
Maloney, Daniel J; Monazam, Esmail R; Casleton, Kent H; Shaddix, Christopher R
2008-08-01
Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.
Influence of particle size distribution on nanopowder cold compaction processes
Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.
2017-06-01
Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.
Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.
2007-09-01
We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10-4g/cm3.
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Bimodal micropore size distribution in active carbons
Energy Technology Data Exchange (ETDEWEB)
Vartapetyan, R.S.; Voloshchuk, A.M.; Limonov, N.A.; Romanov, Y.A. (Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry)
1993-03-01
The porous structure of active carbon was compared with that of the original mineral coal and its carbonization products. The parameters of the porous structure were calculated from the adsorption isotherms of CO[sub 2] (298 K) and H[sub 2]O (293 K). It was shown that carbonization of the original coal at 1120 K causes changes in the chemical composition, consolidation of the part which is amorphous to X-rays, generation of an ordered defect-containing structure on its basis, an increase in the volume of the micropores, and a decrease in the mean diameter. Activation of the carbonized coal affords a microporous structure with a bimodal size distribution.
Parameterizing Size Distribution in Ice Clouds
Energy Technology Data Exchange (ETDEWEB)
DeSlover, Daniel; Mitchell, David L.
2009-09-25
PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice
A Maximum Entropy Modelling of the Rain Drop Size Distribution
Directory of Open Access Journals (Sweden)
Francisco J. Tapiador
2011-01-01
Full Text Available This paper presents a maximum entropy approach to Rain Drop Size Distribution (RDSD modelling. It is shown that this approach allows (1 to use a physically consistent rationale to select a particular probability density function (pdf (2 to provide an alternative method for parameter estimation based on expectations of the population instead of sample moments and (3 to develop a progressive method of modelling by updating the pdf as new empirical information becomes available. The method is illustrated with both synthetic and real RDSD data, the latest coming from a laser disdrometer network specifically designed to measure the spatial variability of the RDSD.
Generazio, E. R.
1988-01-01
Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain-size distribution function from which the mean grain shape, size, and orientation can be obtained.
Generazio, E. R.
1986-01-01
Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.
Simulating the particle size distribution of rockfill materials based on its statistical regularity
Institute of Scientific and Technical Information of China (English)
YAN Zongling; QIU Xiande; YU Yongqiang
2003-01-01
The particle size distribution of rockfill is studied by using granular mechanics, mesomechanics and probability statistics to reveal the relationship of the distribution of particle size to that of the potential energy intensity before fragmentation,which finds out that the potential energy density has a linear relation to the logarithm of particle size and deduces that the distribution of the logarithm of particle size conforms to normal distribution because the distribution of the potential energy density does so. Based on this finding and by including the energy principle of rock fragmentation, the logarithm distribution model of particle size is formulated, which uncovers the natural characteristics of particle sizes on statistical distribution. Exploring the properties of the average value, the expectation, and the unbiased variance of particle size indicates that the expectation does notequal to the average value, but increases with increasing particle size and its ununiformity, and is always larger than the average value, and the unbiased variance increases as the ununiformity and geometric average value increase. A case study proves that the simulated results by the proposed logarithm distribution model accord with the actual data. It is concluded that the logarithm distribution model and Kuz-Ram model can be used to forecast the particle-size distribution of inartificial rockfill while for blasted rockfill, Kuz-Ram model is an option, and in combined application of the two models, it is necessary to do field tests to adjust some parameters of the model.
Evaluation of Factors Affecting Size and Size Distribution of Chitosan-Electrosprayed Nanoparticles.
Abyadeh, Morteza; Karimi Zarchi, Ali Akbar; Faramarzi, Mohammad Ali; Amani, Amir
2017-01-01
Size and size distribution of polymeric nanoparticles have important effect on their properties for pharmaceutical application. In this study, Chitosan nanoparticles were prepared by electrospray method (electrohydrodynamic atomization) and parameters that simultaneously affect size and/or size distribution of chitosan nanoparticles were optimized. Effect of formulation/processing three independent formulation/processing parameters, namely concentration, flow rate and applied voltage was investigated on particle size and size distribution of generated nanoparticles using a Box-Behnken experimental design. All the studied factors showed important effects on average size and size distribution of nanoparticles. A decrease in size and size distribution was obtainable with decreasing flow rate and concentration and increasing applied voltage. Eventually, a sample with minimum size and polydispersity was obtained with polymer concentration, flow rate and applied voltage values of 0.5 %w/v, 0.05 ml/hr and 15 kV, respectively. The experimentally prepared nanoparticles, expected having lowest size and size distribution values had a size of 105 nm, size distribution of 36 and Zeta potential of 59.3 mV. Results showed that optimum condition for production of chitosan nanoparticles with the minimum size and narrow size distribution was a minimum value for flow rate and highest value for applied voltage along with an optimum chitosan concentration.
Bble Size Distribution for Waves Propagating over A Submerged Breakwater
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r＞0.8 mm, and a-1.11 power law for r＜0.8 mm.
Effect of the Size Distribution of Nanoscale Dispersed Particles on the Zener Drag Pressure
Eivani, A. R.; Valipour, S.; Ahmed, H.; Zhou, J.; Duszczyk, J.
2011-04-01
In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relationships. Microstructural observations indicated a clear correlation between the size distribution of dispersed particles and recrystallized grain sizes in the AA7020 aluminum alloy. However, the existing relationship to calculate the Zener drag pressure yielded a negligible difference of 0.016 pct between the two structures homogenized at different conditions resulting in totally different size distributions of nanoscale dispersed particles and, consequently, recrystallized grain sizes. The difference in the Zener drag pressure calculated by the application of the new relationship was 5.1 pct, being in line with the experimental observations of the recrystallized grain sizes. Mathematical investigations showed that the ratio of the Zener drag pressure from the new equation to that from the existing equation is maximized when the number densities of all the particles with different sizes are equal. This finding indicates that in the two structures with identical parameters except the size distribution of nanoscale dispersed particles, the one that possesses a broader size distribution of particles, i.e., the number densities of particles with different sizes being equal, gives rise to a larger Zener drag pressure than that having a narrow size distribution of nanoscale dispersed particles, i.e., most of the particles being in the same size range.
Universal functional form of 1-minute raindrop size distribution?
Cugerone, Katia; De Michele, Carlo
2015-04-01
Rainfall remains one of the poorly quantified phenomena of the hydrological cycle, despite its fundamental role. No universal laws describing the rainfall behavior are available in literature. This is probably due to the continuous description of rainfall, which is a discrete phenomenon, made by drops. From the statistical point of view, the rainfall variability at particle size scale, is described by the drop size distribution (DSD). With this term, it is generally indicated as the concentration of raindrops per unit volume and diameter, as the probability density function of drop diameter at the ground, according to the specific problem of interest. Raindrops represent the water exchange, under liquid form, between atmosphere and earth surface, and the number of drops and their size have impacts in a wide range of hydrologic, meteorologic, and ecologic phenomena. DSD is used, for example, to measure the multiwavelength rain attenuation for terrestrial and satellite systems, it is an important input for the evaluation of the below cloud scavenging coefficient of the aerosol by precipitation, and is of primary importance to make estimates of rainfall rate through radars. In literature, many distributions have been used to this aim (Gamma and Lognormal above all), without statistical supports and with site-specific studies. Here, we present an extensive investigation of raindrop size distribution based on 18 datasets, consisting in 1-minute disdrometer data, sampled using Joss-Waldvogel or Thies instrument in different locations on Earth's surface. The aim is to understand if an universal functional form of 1-minute drop diameter variability exists. The study consists of three main steps: analysis of the high order moments, selection of the model through the AIC index and test of the model with the use of goodness-of-fit tests.
Simulation study of territory size distributions in subterranean termites.
Jeon, Wonju; Lee, Sang-Hee
2011-06-21
In this study, on the basis of empirical data, we have simulated the foraging tunnel patterns of two subterranean termites, Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar), using a two-dimensional model. We have defined a territory as a convex polygon containing a tunnel pattern and explored the effects of competition among termite territory colonies on the territory size distribution in the steady state that was attained after a sufficient simulation time. In the model, territorial competition was characterized by a blocking probability P(block) that quantitatively describes the ease with which a tunnel stops its advancement when it meets another tunnel; higher P(block) values imply easier termination. In the beginning of the simulation run, N=10, 20,…,100 territory seeds, representing the founding pair, were randomly distributed on a square area. When the territory density was less (N=20), the differences in the territory size distributions for different P(block) values were small because the territories had sufficient space to grow without strong competitions. Further, when the territory density was higher (N>20), the territory sizes increased in accordance with the combinational effect of P(block) and N. In order to understand these effects better, we introduced an interference coefficient γ. We mathematically derived γ as a function of P(block) and N: γ(N,P(block))=a(N)P(block)/(P(block)+b(N)). a(N) and b(N) are functions of N/(N+c) and d/(N+c), respectively, and c and d are constants characterizing territorial competition. The γ function is applicable to characterize the territoriality of various species and increases with both the P(block) values and N; higher γ values imply higher limitations of the network growth. We used the γ function, fitted the simulation results, and determined the c and d values. In addition, we have briefly discussed the predictability of the present model by comparing it with our previous lattice model
Ansari, A. A.; Sartale, S. D.
2016-08-01
A simple method to grow uniform sized Ag nanoparticles with narrow size distribution on flat support (glass and Si substrates) via spin coating of Ag+ ions (AgNO3) solution followed by thermal reduction in H2 is presented. These grown nanoparticles can be used as model catalytic system to study size dependent oxygen reduction reaction (ORR) activity. Ag nanoparticles formation was confirmed by local surface plasmon resonance and x-ray photoelectron spectroscopy measurements. Influences of process parameters (revolution per minute (rpm), ramp and salt concentration) on grown Ag nanoparticles size, density and size uniformity are studied. With increase in rpm and ramp the size decreases and the particle number density increases, whereas the size dispersion improves. The catalytic activity of the grown Ag particles for ORR is studied and it is found that the catalytic performance is dependent on the size as well as the number density of the grown Ag nanoparticles.
Evaluation of droplet size distributions using univariate and multivariate approaches.
Gaunø, Mette Høg; Larsen, Crilles Casper; Vilhelmsen, Thomas; Møller-Sonnergaard, Jørn; Wittendorff, Jørgen; Rantanen, Jukka
2013-01-01
Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution. Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions. The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution.
Directory of Open Access Journals (Sweden)
Yue Bin
Full Text Available Tree size distributions have long been of interest to ecologists and foresters because they reflect fundamental demographic processes. Previous studies have assumed that size distributions are often associated with population trends or with the degree of shade tolerance. We tested these associations for 31 tree species in a 20 ha plot in a Dinghushan south subtropical forest in China. These species varied widely in growth form and shade-tolerance. We used 2005 and 2010 census data from that plot. We found that 23 species had reversed J shaped size distributions, and eight species had unimodal size distributions in 2005. On average, modal species had lower recruitment rates than reversed J species, while showing no significant difference in mortality rates, per capita population growth rates or shade-tolerance. We compared the observed size distributions with the equilibrium distributions projected from observed size-dependent growth and mortality. We found that observed distributions generally had the same shape as predicted equilibrium distributions in both unimodal and reversed J species, but there were statistically significant, important quantitative differences between observed and projected equilibrium size distributions in most species, suggesting that these populations are not at equilibrium and that this forest is changing over time. Almost all modal species had U-shaped size-dependent mortality and/or growth functions, with turning points of both mortality and growth at intermediate size classes close to the peak in the size distribution. These results show that modal size distributions do not necessarily indicate either population decline or shade-intolerance. Instead, the modal species in our study were characterized by a life history strategy of relatively strong conservatism in an intermediate size class, leading to very low growth and mortality in that size class, and thus to a peak in the size distribution at intermediate sizes.
The Distribution of Bubble Sizes During Reionization
Lin, Yin; Furlanetto, Steven R; Sutter, P M
2015-01-01
A key physical quantity during reionization is the size of HII regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm -- widely used for void finding in galaxy surveys -- which we show to be an unbiased method with the lowest dispersion and best performance on Monte-Carlo realizations of a known bubble size PDF. We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect those volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, HI...
Distributed Atmospheric Neutral Density Explorer (DANDE)
2010-08-31
Rolla) 331 Toomey Hall 400 West 13th Street Rolla, MO 65409-0050 AFOSR / RSE 875 North Randolph Street, Suit 325 Room 3112 Arlington, Virginia...22203-1768 AFOSR/ RSE AFRL-OSR-VA-TR-2012-0737 1) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited The DANDE program...systems. Standard terms apply U U U UU 2 Kent Miller, RSE (Program Manager) 703.696.8573 To: technicalreports@afosr.af.mil Subject: Progress
Universal scaling of grain size distributions during dislocation creep
Aupart, Claire; Dunkel, Kristina G.; Angheluta, Luiza; Austrheim, Håkon; Ildefonse, Benoît; Malthe-Sørenssen, Anders; Jamtveit, Bjørn
2017-04-01
Grain size distributions are major sources of information about the mechanisms involved in ductile deformation processes and are often used as paleopiezometers (stress gauges). Several factors have been claimed to influence the stress vs grain size relation, including the water content (Jung & Karato 2001), the temperature (De Bresser et al., 2001), the crystal orientation (Linckens et al., 2016), the presence of second phase particles (Doherty et al. 1997; Cross et al., 2015), and heterogeneous stress distributions (Platt & Behr 2011). However, most of the studies of paleopiezometers have been done in the laboratory under conditions different from those in natural systems. It is therefore essential to complement these studies with observations of naturally deformed rocks. We have measured olivine grain sizes in ultramafic rocks from the Leka ophiolite in Norway and from Alpine Corsica using electron backscatter diffraction (EBSD) data, and calculated the corresponding probability density functions. We compared our results with samples from other studies and localities that have formed under a wide range of stress and strain rate conditions. All distributions collapse onto one universal curve in a log-log diagram where grain sizes are normalized by the mean grain size of each sample. The curve is composed of two straight segments with distinct slopes for grains above and below the mean grain size. These observations indicate that a surprisingly simple and universal power-law scaling describes the grain size distribution in ultramafic rocks during dislocation creep irrespective of stress levels and strain rates. Cross, Andrew J., Susan Ellis, and David J. Prior. 2015. « A Phenomenological Numerical Approach for Investigating Grain Size Evolution in Ductiley Deforming Rocks ». Journal of Structural Geology 76 (juillet): 22-34. doi:10.1016/j.jsg.2015.04.001. De Bresser, J. H. P., J. H. Ter Heege, and C. J. Spiers. 2001. « Grain Size Reduction by Dynamic
Bubble size distribution in surface wave breaking entraining process
Institute of Scientific and Technical Information of China (English)
HAN; Lei; YUAN; YeLi
2007-01-01
From the similarity theorem,an expression of bubble population is derived as a function of the air entrainment rate,the turbulent kinetic energy (TKE) spectrum density and the surface tension.The bubble size spectrum that we obtain has a dependence of a-2.5+nd on the bubble radius,in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range.To relate the bubble population with wave parameters,an expression about the air entrainment rate is deduced by introducing two statistical relations to wave breaking.The bubble population vertical distribution is also derived,based on two assumptions from two typical observation results.
Unstable density distribution associated with equatorial plasma bubble
Kherani, E. A.; Bharuthram, R.; Singh, S.; Lakhina, G. S.; de Meneses, F. Carlos
2016-04-01
In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion grows to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.
Pareto tails and lognormal body of US cities size distribution
Luckstead, Jeff; Devadoss, Stephen
2017-01-01
We consider a distribution, which consists of lower tail Pareto, lognormal body, and upper tail Pareto, to estimate the size distribution of all US cities. This distribution fits the data more accurately than a distribution that comprises of only lognormal and the upper tail Pareto.
Changes of firm size distribution: The case of Korea
Kang, Sang Hoon; Jiang, Zhuhua; Cheong, Chongcheul; Yoon, Seong-Min
2011-01-01
In this paper, the distribution and inequality of firm sizes is evaluated for the Korean firms listed on the stock markets. Using the amount of sales, total assets, capital, and the number of employees, respectively, as a proxy for firm sizes, we find that the upper tail of the Korean firm size distribution can be described by power-law distributions rather than lognormal distributions. Then, we estimate the Zipf parameters of the firm sizes and assess the changes in the magnitude of the exponents. The results show that the calculated Zipf exponents over time increased prior to the financial crisis, but decreased after the crisis. This pattern implies that the degree of inequality in Korean firm sizes had severely deepened prior to the crisis, but lessened after the crisis. Overall, the distribution of Korean firm sizes changes over time, and Zipf’s law is not universal but does hold as a special case.
Estimation of Nanoparticle Size Distributions by Image Analysis
DEFF Research Database (Denmark)
Fisker, Rune; Carstensen, Jens Michael; Hansen, Mikkel Fougt
2000-01-01
Knowledge of the nanoparticle size distribution is important for the interpretation of experimental results in many studies of nanoparticle properties. An automated method is needed for accurate and robust estimation of particle size distribution from nanoparticle images with thousands of particl...
Knife mill operating factors effect on switchgrass particle size distributions.
Bitra, Venkata S P; Womac, Alvin R; Yang, Yuechuan T; Igathinathane, C; Miu, Petre I; Chevanan, Nehru; Sokhansanj, Shahab
2009-11-01
Biomass particle size impacts handling, storage, conversion, and dust control systems. Switchgrass (Panicum virgatum L.) particle size distributions created by a knife mill were determined for integral classifying screen sizes from 12.7 to 50.8 mm, operating speeds from 250 to 500 rpm, and mass input rates from 2 to 11 kg/min. Particle distributions were classified with standardized sieves for forage analysis that included horizontal sieving motion with machined-aluminum sieves of thickness proportional to sieve opening dimensions. Then, a wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Correlation coefficient of geometric mean length with knife mill screen size, feed rate, and speed were 0.872, 0.349, and 0.037, respectively. Hence, knife mill screen size largely determined particle size of switchgrass chop. Feed rate had an unexpected influence on particle size, though to a lesser degree than screen size. The Rosin-Rammler function fit the chopped switchgrass size distribution data with an R(2)>0.982. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Uniformity coefficient was more than 4.0, which indicated a large assortment of particles and also represented a well-graded particle size distribution. Knife mill chopping of switchgrass produced 'strongly fine skewed mesokurtic' particles with 12.7-25.4 mm screens and 'fine skewed mesokurtic' particles with 50.8 mm screen. Results of this extensive analysis of particle sizes can be applied to selection of knife mill operating parameters to produce a particular size of switchgrass chop, and will serve as a guide for relations among the various analytic descriptors of biomass particle distributions.
Droplet size distribution in homogeneous isotropic turbulence
Perlekar, Prasad; Biferale, Luca; Sbragaglia, Mauro; Srivastava, Sudhir; Toschi, Federico
2012-06-01
We study the physics of droplet breakup in a statistically stationary homogeneous and isotropic turbulent flow by means of high resolution numerical investigations based on the multicomponent lattice Boltzmann method. We verified the validity of the criterion proposed by Hinze [AIChE J. 1, 289 (1955)] for droplet breakup and we measured the full probability distribution function of droplets radii at different Reynolds numbers and for different volume fractions. By means of a Lagrangian tracking we could follow individual droplets along their trajectories, define a local Weber number based on the velocity gradients, and study its cross-correlation with droplet deformation.
Density dependence of clutch size: habitat heterogeneity or individual adjustment?
Both, C.
1998-01-01
1. Two hypotheses have been proposed to explain density- dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in heterogeneous environments only being occupied at high densities.
Initial Distribution Spread: A density forecasting approach
Machete, Reason L
2012-01-01
Ensemble forecasting of nonlinear systems involves the use of a model to run forward a discrete ensemble (or set) of initial states. Data assimilation techniques tend to focus on estimating the true state of the system, even though model error limits the value of such efforts. This paper argues for choosing the initial ensemble in order to optimise forecasting performance rather than estimate the true state of the system. Density forecasting and choosing the initial ensemble are treated as one problem. Forecasting performance can be quantified by some scoring rule. In the case of the logarithmic scoring rule, theoretical arguments and empirical results are presented. It turns out that, if the underlying noise dominates model error, we can diagnose the noise spread.
Powder Size and Distribution in Ultrasonic Gas Atomization
Rai, G.; Lavernia, E.; Grant, N. J.
1985-08-01
Ultrasonic gas atomization (USGA) produces powder sizes dependent on the ratio of the nozzle jet diameter to the distance of spread dt/R, Powder size distribution is attributed to the spread of atomizing gas jets during travel from the nozzle exit to the metal stream. The spread diminishes at higher gas atomization pressures. In this paper, calculated powder sizes and distribution are compared with experimentally determined values.
Einasto as a new approach for noncommutativity density distribution?
Hernandez-Almada, Alberto
2016-01-01
In this paper we analyze the galaxy rotation curves using a density profile that comes from noncommutativity (NC) theory. We will refer to this distribution as NC density. In this case, we use the Einasto's density profile as a reference due that it is a generalized case of NC distribution and is one of the most successful phenomenological profiles to describe the rotation curve of galaxies. Based on these results, we open a discussion if Einasto's profile could be used as an extension of NC density and if could be applied to other studies treated by this theory.
Ion Density Distribution in an Inductively Coupled Plasma Chamber
Institute of Scientific and Technical Information of China (English)
陈俊芳; 赵文锋; 吴先球; 樊双莉; 符斯列
2004-01-01
The ion density distribution in the reaction chamber was diagnosed by a Langmuir probe. The rules of the ion density distribution were obtained under the pressures of 9 Pa, 13 Pa,27 Pa and 53 Pa in the reaction chamber, different radio-frequency powers and different positions.The result indicates that the ion density decreases as the pressure increases, and increases as the power decreases. The ion density of axial position z = 0 achieves 5.8×10 10 on the center of coil under the power of 200 w and pressure of 9 Pa in the reaction chamber.
Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin
2017-06-01
Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.
Vapor intrusion in soils with multimodal pore-size distribution
Alfaro Soto Miguel; Hung Kiang Chang
2016-01-01
The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]). The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which ...
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
Passive acoustic inversion to estimate bedload size distribution in rivers
Petrut, Teodor; Geay, Thomas; Belleudy, Philippe; Gervaise, Cédric
2016-04-01
The knowledge of sediment transport rate in rivers is related to issues like changes in channel forms, inundation risks and river's ecological functions. The passive acoustic method introduced here measures the bedload processes by recording the noise generated by the inter-particle collisions. In this research, an acoustic inversion is proposed to estimate the size distribution of mobile particles. The theoretical framework of Hertz's impact between two solids rigid is used to model the sediment-generated noise. This model combined with the acoustical power spectrum density gives the information on the particle sizes. The sensitivity of the method is performed and finally the experimental validation is done through a series of tests in the laboratory as well in a natural stream. The limitations of the proposed inversion method are drawn assuming the wave propagation effects in the channel. It is stated that propagation effects limit the applicability of the method to large rivers, like fluvial channels, in the detriment of mountain torrents.
Vesicle Size Distribution as a Novel Nuclear Forensics Tool
Simonetti, Antonio
2016-01-01
The first nuclear bomb detonation on Earth involved a plutonium implosion-type device exploded at the Trinity test site (33°40′38.28″N, 106°28′31.44″W), White Sands Proving Grounds, near Alamogordo, New Mexico. Melting and subsequent quenching of the local arkosic sand produced glassy material, designated “Trinitite”. In cross section, Trinitite comprises a thin (1–2 mm), primarily glassy surface above a lower zone (1–2 cm) of mixed melt and mineral fragments from the precursor sand. Multiple hypotheses have been put forward to explain these well-documented but heterogeneous textures. This study reports the first quantitative textural analysis of vesicles in Trinitite to constrain their physical and thermal history. Vesicle morphology and size distributions confirm the upper, glassy surface records a distinct processing history from the lower region, that is useful in determining the original sample surface orientation. Specifically, the glassy layer has lower vesicle density, with larger sizes and more rounded population in cross-section. This vertical stratigraphy is attributed to a two-stage evolution of Trinitite glass from quench cooling of the upper layer followed by prolonged heating of the subsurface. Defining the physical regime of post-melting processes constrains the potential for surface mixing and vesicle formation in a post-detonation environment. PMID:27658210
Density and Macroporosity Distribution of Near Earth Asteroids
Dotson, Jessie L.; Mathias, Donovan
2017-01-01
The density of near earth asteroids is a fundamental property which can illuminate the structure of the asteroid, provide clues about it’s collisional history and is key in assessing the hazard of an impact of an NEA with Earth. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or a higher metal content. Unfortunately, measuring the density of asteroids is extremely difficult, has only been attempted for a tiny fraction of NEAs and usually results in measurements with large uncertainties. In the absence of density measurements for a specific object, understanding the range and distribution of likely densities can allow for probabilistic assessments of the population and facilitate estimates of the range of reasonable masses for a specific object. We have developed a candidate macroporosity distribution for near earth asteroids based on measurements of meteorite densities and asteroid densities. The macroporosity of an asteroid can be used to aid extrapolation from meteorite physical properties to asteroid physical properties. In addition, we discuss estimating an asteroid density distribution from the macroporosity distribution.
Placental Size Is Associated Differentially With Postnatal Bone Size and Density
Holroyd, Christopher R; Osmond, Clive; Barker, David JP; Ring, Sue M; Lawlor, Debbie A; Tobias, Jon H; Smith, George Davey; Harvey, Nicholas C
2016-01-01
ABSTRACT We investigated relationships between placental size and offspring adolescent bone indices using a population‐based, mother–offspring cohort. The Avon Longitudinal Study of Parents and Children (ALSPAC) recruited pregnant women from the southwest of England between 1991 and 1993. There were 12,942 singleton babies born at term who survived at least the first 12 months. From these, 8933 placentas were preserved in formaldehyde, with maternal permission for their use in research studies. At the approximate age of 15.5 years, the children underwent a dual‐energy X‐ray absorptiometry (DXA) scan (measurements taken of the whole body minus head bone area [BA], bone mineral content [BMC], and areal bone mineral density [aBMD]). A peripheral quantitative computed tomography (pQCT) scan (Stratec XCT2000L; Stratec, Pforzheim, Germany) at the 50% tibial site was performed at this visit and at approximately age 17.7 years. In 2010 a sample of 1680 placentas were measured and photographed. To enable comparison of effect size across different variables, predictor and outcome variables were standardized to Z‐scores and therefore results may be interpreted as partial correlation coefficients. Complete placental, DXA, and pQCT data were available for 518 children at age 15.5 years. After adjustment for gender, gestational age at birth, and age at time of pQCT, the placental area was positively associated with endosteal circumference (β [95% CI]: 0.21 [0.13, 0.30], p < 0.001), periosteal circumference (β [95% CI]: 0.19 [0.10, 0.27], p < 0.001), and cortical area (β [95% CI]: 0.10 [0.01, 0.18], p = 0.03), and was negatively associated with cortical density (β [95% CI]: –0.11 [–0.20, –0.03], p = 0.01) at age 15.5 years. Similar relationships were observed for placental volume, and after adjustment for additional maternal and offspring covariates. These results suggest that previously observed associations between placental size and
The Collisional Divot in the Kuiper belt Size Distribution
Fraser, Wesley C
2009-01-01
This paper presents the results of collisional evolution calculations for the Kuiper belt starting from an initial size distribution similar to that produced by accretion simulations of that region - a steep power-law large object size distribution that breaks to a shallower slope at r ~1-2 km, with collisional equilibrium achieved for objects r ~0.5 km. We find that the break from the steep large object power-law causes a divot, or depletion of objects at r ~10-20 km, which in-turn greatly reduces the disruption rate of objects with r> 25-50 km, preserving the steep power-law behavior for objects at this size. Our calculations demonstrate that the roll-over observed in the Kuiper belt size distribution is naturally explained as an edge of a divot in the size distribution; the radius at which the size distribution transitions away from the power-law, and the shape of the divot from our simulations are consistent with the size of the observed roll-over, and size distribution for smaller bodies. Both the kink r...
Evaluation of droplet size distributions using univariate and multivariate approaches
DEFF Research Database (Denmark)
Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.
2013-01-01
of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose....... Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions....... The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution. © 2013 Informa Healthcare USA, Inc....
A probability density function of liftoff velocities in mixed-size wind sand flux
Institute of Scientific and Technical Information of China (English)
2008-01-01
With the discrete element method(DEM) ,employing the diameter distribution of natural sands sampled from the Tengger Desert,a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation,the shear wind velocity,particle diameter,incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision,we collected all the initial velocities of rising sand particles,including the liftoff angular velocities,liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component,its probability density functions were obtained,and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function,while the angular velocities are distributed as a normal density function.
On the size, shape, and density of dwarf planet Makemake
Brown, M E
2013-01-01
A recent stellar occultation by dwarf planet Makemake provided an excellent opportunity to measure the size and shape of one of the largest objects in the Kuiper belt. The analysis of these results provided what were reported to be precise measurements of the lengths of the projected axes, the albedo, and even the density of Makemake, but these results were, in part, derived from qualitative arguments. We reanalyzed the occultation timing data using a quantitative statistical description, and, in general, find the previously reported results on the shape of Makemake to be unjustified. In our solution, in which we use our inference from photometric data that Makemake is being viewed nearly pole-on, we find a 1 sigma upper limit to the projected elongation of Makemake of 1.02, with measured equatorial diameter of 1434 +/- 14 km and a projected polar diameter of 1422 +/- 14 km, yielding an albedo of 0.81+0.01/-0.02$. If we remove the external constraint on the pole position of Makemake, we find instead a 1 sigma...
Inversion of spheroid particle size distribution in wider size range and aspect ratio range
Directory of Open Access Journals (Sweden)
Tang Hong
2013-01-01
Full Text Available The non-spherical particle sizing is very important in the aerosol science, and it can be determined by the light extinction measurement. This paper studies the effect of relationship of the size range and aspect ratio range on the inversion of spheroid particle size distribution by the dependent mode algorithm. The T matrix method and the geometric optics approximation method are used to calculate the extinction efficiency of the spheroids with different size range and aspect ratio range, and the inversion of spheroid particle size distribution in these different ranges is conducted. Numerical simulation indicates that a fairly reasonable representation of the spheroid particle size distribution can be obtained when the size range and aspect ratio range are suitably chosen.
Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report
Energy Technology Data Exchange (ETDEWEB)
Kremer, M.; Prausnitz, J.M.
1992-06-01
The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.
Pore-size-distribution of cationic polyacrylamide hydrogels
Energy Technology Data Exchange (ETDEWEB)
Kremer, M.; Prausnitz, J.M.
1992-06-01
The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.
Scale invariance of incident size distributions in response to sizes of their causes.
Englehardt, James D
2002-04-01
Incidents can be defined as low-probability, high-consequence events and lesser events of the same type. Lack of data on extremely large incidents makes it difficult to determine distributions of incident size that reflect such disasters, even though they represent the great majority of total losses. If the form of the incident size distribution can be determined, then predictive Bayesian methods can be used to assess incident risks from limited available information. Moreover, incident size distributions have generally been observed to have scale invariant, or power law, distributions over broad ranges. Scale invariance in the distributions of sizes of outcomes of complex dynamical systems has been explained based on mechanistic models of natural and built systems, such as models of self-organized criticality. In this article, scale invariance is shown to result also as the maximum Shannon entropy distribution of incident sizes arising as the product of arbitrary functions of cause sizes. Entropy is shown by simulation and derivation to be maximized as a result of dependence, diversity, abundance, and entropy of multiplicative cause sizes. The result represents an information-theoretic explanation of invariance, parallel to those of mechanistic models. For example, distributions of incident size resulting from 30 partially dependent causes are shown to be scale invariant over several orders of magnitude. Empirical validation of power law distributions of incident size is reviewed, and the Pareto (power law) distribution is validated against oil spill, hurricane, and insurance data. The applicability of the Pareto distribution, in particular, for assessment of total losses over a planning period is discussed. Results justify the use of an analytical, predictive Bayesian version of the Pareto distribution, derived previously, to assess incident risk from available data.
The role of ligand density and size in mediating quantum dot nuclear transport.
Tang, Peter S; Sathiamoorthy, Sarmitha; Lustig, Lindsay C; Ponzielli, Romina; Inamoto, Ichiro; Penn, Linda Z; Shin, Jumi A; Chan, Warren C W
2014-10-29
Studying the effects of the physicochemical properties of nanomaterials on cellular uptake, toxicity, and exocytosis can provide the foundation for designing safer and more effective nanoparticles for clinical applications. However, an understanding of the effects of these properties on subcellular transport, accumulation, and distribution remains limited. The present study investigates the effects of surface density and particle size of semiconductor quantum dots on cellular uptake as well as nuclear transport kinetics, retention, and accumulation. The current work illustrates that cellular uptake and nuclear accumulation of nanoparticles depend on surface density of the nuclear localization signal (NLS) peptides with nuclear transport reaching a plateau at 20% surface NLS density in as little as 30 min. These intracellular nanoparticles have no effects on cell viability up to 72 h post treatment. These findings will set a foundation for engineering more sophisticated nanoparticle systems for imaging and manipulating genetic targets in the nucleus.
Environmental control of natural gap size distribution in tropical forests
Goulamoussène, Youven; Bedeau, Caroline; Descroix, Laurent; Linguet, Laurent; Hérault, Bruno
2017-01-01
Natural disturbances are the dominant form of forest regeneration and dynamics in unmanaged tropical forests. Monitoring the size distribution of treefall gaps is important to better understand and predict the carbon budget in response to land use and other global changes. In this study, we model the size frequency distribution of natural canopy gaps with a discrete power law distribution. We use a Bayesian framework to introduce and test, using Monte Carlo Markov chain and Kuo-Mallick algorithms, the effect of local physical environment on gap size distribution. We apply our methodological framework to an original light detecting and ranging dataset in which natural forest gaps were delineated over 30 000 ha of unmanaged forest. We highlight strong links between gap size distribution and environment, primarily hydrological conditions and topography, with large gaps being more frequent on floodplains and in wind-exposed areas. In the future, we plan to apply our methodological framework on a larger scale using satellite data. Additionally, although gap size distribution variation is clearly under environmental control, variation in gap size distribution in time should be tested against climate variability.
Effects of Data Frame Size Distribution on Wireless Lans | Aneke ...
African Journals Online (AJOL)
Effects of Data Frame Size Distribution on Wireless Lans. ... Nigerian Journal of Technology ... to replace cables and deploy mobile devices in the communications industry has led to very active research on the utilization of wireless networks.
Wigner Function of Density Operator for Negative Binomial Distribution
Institute of Scientific and Technical Information of China (English)
HE Min-Hua; XU Xing-Lei; ZHANG Duan-Ming; LI Hong-Qi; PAN Gui-Jun; YIN Yan-Ping; CHEN Zhi-Yuan
2008-01-01
By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator.
Size distribution measurements and chemical analysis of aerosol components
Energy Technology Data Exchange (ETDEWEB)
Pakkanen, T.A.
1995-12-31
The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions
Institute of Scientific and Technical Information of China (English)
LI Rui; ZHANG Duan-Ming; LI Zhi-Hao
2012-01-01
Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient.It is found that particles of all sizes move toward regions of low granular temperature.Species segregation is also observed.Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts.Furthermore,the local particle size distribution maintains the same form as the overall (including all particles) size distribution.%Two-dimensional numerical simulations are employed to gain insight into the segregation behavior of granular mixtures with a power-law particle size distribution in the presence of a granular temperature gradient. It is found that particles of all sizes move toward regions of low granular temperature. Species segregation is also observed. Large particles demonstrate a higher affinity for the low-temperature regions and accumulate in these cool regions to a greater extent than their smaller counterparts. Furthermore, the local particle size distribution maintains the same form as the overall (including all particles) size distribution.
Directory of Open Access Journals (Sweden)
Raymond D Semlitsch
Full Text Available We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.
Semlitsch, Raymond D; Peterman, William E; Anderson, Thomas L; Drake, Dana L; Ousterhout, Brittany H
2015-01-01
We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.
Vapor intrusion in soils with multimodal pore-size distribution
Directory of Open Access Journals (Sweden)
Alfaro Soto Miguel
2016-01-01
Full Text Available The Johnson and Ettinger [1] model and its extensions are at this time the most widely used algorithms for estimating subsurface vapor intrusion into buildings (API [2]. The functions which describe capillary pressure curves are utilized in quantitative analyses, although these are applicable for porous media with a unimodal or lognormal pore-size distribution. However, unaltered soils may have a heterogeneous pore distribution and consequently a multimodal pore-size distribution [3], which may be the result of specific granulometry or the formation of secondary porosity related to genetic processes. The present paper was designed to present the application of the Vapor Intrusion Model (SVI_Model to unsaturated soils with multimodal pore-size distribution. Simulations with data from the literature show that the use of a multimodal model in soils with such pore distribution characteristics could provide more reliable results for indoor air concentration, rather than conventional models.
A multivariate rank test for comparing mass size distributions
Lombard, F.
2012-04-01
Particle size analyses of a raw material are commonplace in the mineral processing industry. Knowledge of particle size distributions is crucial in planning milling operations to enable an optimum degree of liberation of valuable mineral phases, to minimize plant losses due to an excess of oversize or undersize material or to attain a size distribution that fits a contractual specification. The problem addressed in the present paper is how to test the equality of two or more underlying size distributions. A distinguishing feature of these size distributions is that they are not based on counts of individual particles. Rather, they are mass size distributions giving the fractions of the total mass of a sampled material lying in each of a number of size intervals. As such, the data are compositional in nature, using the terminology of Aitchison [1] that is, multivariate vectors the components of which add to 100%. In the literature, various versions of Hotelling\\'s T 2 have been used to compare matched pairs of such compositional data. In this paper, we propose a robust test procedure based on ranks as a competitor to Hotelling\\'s T 2. In contrast to the latter statistic, the power of the rank test is not unduly affected by the presence of outliers or of zeros among the data. © 2012 Copyright Taylor and Francis Group, LLC.
Modelling complete particle-size distributions from operator estimates of particle-size
Roberson, Sam; Weltje, Gert Jan
2014-05-01
Estimates of particle-size made by operators in the field and laboratory represent a vast and relatively untapped data archive. The wide spatial distribution of particle-size estimates makes them ideal for constructing geological models and soil maps. This study uses a large data set from the Netherlands (n = 4837) containing both operator estimates of particle size and complete particle-size distributions measured by laser granulometry. This study introduces a logit-based constrained-cubic-spline (CCS) algorithm to interpolate complete particle-size distributions from operator estimates. The CCS model is compared to four other models: (i) a linear interpolation; (ii) a log-hyperbolic interpolation; (iii) an empirical logistic function; and (iv) an empirical arctan function. Operator estimates were found to be both inaccurate and imprecise; only 14% of samples were successfully classified using the Dutch classification scheme for fine sediment. Operator estimates of sediment particle-size encompass the same range of values as particle-size distributions measured by laser analysis. However, the distributions measured by laser analysis show that most of the sand percentage values lie between zero and one, so the majority of the variability in the data is lost because operator estimates are made to the nearest 1% at best, and more frequently to the nearest 5%. A method for constructing complete particle-size distributions from operator estimates of sediment texture using a logit constrained cubit spline (CCS) interpolation algorithm is presented. This model and four other previously published methods are compared to establish the best approach to modelling particle-size distributions. The logit-CCS model is the most accurate method, although both logit-linear and log-linear interpolation models provide reasonable alternatives. Models based on empirical distribution functions are less accurate than interpolation algorithms for modelling particle-size distributions in
Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.
2012-01-01
Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.
Granule Size Distribution and Porosity of Granule Packing
Institute of Scientific and Technical Information of China (English)
DAI Shu-hua; SHEN Feng-man; YU Ai-bing
2008-01-01
The granule size distribution and the porosity of the granule packing process were researched.For realizing the optimizing control of the whole sintering production process,researchers must know the factors influencing the granule size distribution and the porosity.Therefore,tests were carried out in the laboratory with regard to the influences of the size and size distribution of raw materials and the total moisture content on the size and size distribution of granule.Moreover,tests for finding out the influences of the moisture content and the granule volume fraction on the porosity were also carried out.The results show that (1) the raw material has little influence on granulation when its size is in the range of 0.51 mm to 1.0 mm;(2) the influence of the material size on granule size plays a dominant role,and in contrast,the moisture content creates a minor effect on granule size;(3) in binary packing system,with the increase in the constituent volume fraction,the porosity initially increases and then decreases,and there is a minimum value on the porosity curve of the binary mixture system;(4) the minimum value of the porosity in binary packing system occurs at different locations for different moisture contents,and this value shifts from right to left on the porosity curve with increasing the moisture content;(5) the addition of small granules to the same size component cannot create a significant influence on the porosity,whereas the addition of large granules to the same system can greatly change the porosity.
Density dependence of clutch size : habitat heterogeneity or individual adjustment?
Both, Christiaan
1998-01-01
1. Two hypotheses have been proposed to explain density-dependent patterns in reproduction. The habitat heterogeneity hypothesis (HHH) explains density-dependent reproduction at the population level from poorer quality territories in hetero geneous environments only being occupied at high
Probability distribution functions in the finite density lattice QCD
Ejiri, S; Aoki, S; Kanaya, K; Saito, H; Hatsuda, T; Ohno, H; Umeda, T
2012-01-01
We study the phase structure of QCD at high temperature and density by lattice QCD simulations adopting a histogram method. We try to solve the problems which arise in the numerical study of the finite density QCD, focusing on the probability distribution function (histogram). As a first step, we investigate the quark mass dependence and the chemical potential dependence of the probability distribution function as a function of the Polyakov loop when all quark masses are sufficiently large, and study the properties of the distribution function. The effect from the complex phase of the quark determinant is estimated explicitly. The shape of the distribution function changes with the quark mass and the chemical potential. Through the shape of the distribution, the critical surface which separates the first order transition and crossover regions in the heavy quark region is determined for the 2+1-flavor case.
Particle size and shape distributions of hammer milled pine
Energy Technology Data Exchange (ETDEWEB)
Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.
Particle size and shape distributions of hammer milled pine
Energy Technology Data Exchange (ETDEWEB)
Westover, Tyler Lott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Matthews, Austin Colter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christopher Luke [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ryan, John Chadron Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.
Packing fraction of particles with lognormal size distribution.
Brouwers, H J H
2014-05-01
This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.
Packing fraction of particles with lognormal size distribution
Brouwers, H. J. H.
2014-05-01
This paper addresses the packing and void fraction of polydisperse particles with a lognormal size distribution. It is demonstrated that a binomial particle size distribution can be transformed into a continuous particle-size distribution of the lognormal type. Furthermore, an original and exact expression is derived that predicts the packing fraction of mixtures of particles with a lognormal distribution, which is governed by the standard deviation, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose) the applicable values are given. This closed-form analytical expression governing the packing fraction is thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.
Directory of Open Access Journals (Sweden)
Dr.I.Neethi Manickam,
2011-04-01
Full Text Available Coir pith can be used as fuel in loose form or in briquettes. Bulk density, coefficient of friction, porosity and particle density affects densification and combustion of coir pith. The moisture content and particle size ranges were 10.1 to 60.2%w.b. and 0.098 to 0.925mm respectively. Porosity was varied from 0.623 to 0.862 and the particle density was varied from 0.939 to 0.605 gm/cc for the above ranges of moisture content and particle size. Bulk density was in the range of 0.097 to 0.341gm/cc. The coefficient of friction against mild steel was in the range of 0.5043 to 0.6332. Models were developed to find out bulk density, porosity, particle density and coefficient of friction for different moisture content and particle size.
Recurrent frequency-size distribution of characteristic events
Directory of Open Access Journals (Sweden)
S. G. Abaimov
2009-04-01
Full Text Available Statistical frequency-size (frequency-magnitude properties of earthquake occurrence play an important role in seismic hazard assessments. The behavior of earthquakes is represented by two different statistics: interoccurrent behavior in a region and recurrent behavior at a given point on a fault (or at a given fault. The interoccurrent frequency-size behavior has been investigated by many authors and generally obeys the power-law Gutenberg-Richter distribution to a good approximation. It is expected that the recurrent frequency-size behavior should obey different statistics. However, this problem has received little attention because historic earthquake sequences do not contain enough events to reconstruct the necessary statistics. To overcome this lack of data, this paper investigates the recurrent frequency-size behavior for several problems. First, the sequences of creep events on a creeping section of the San Andreas fault are investigated. The applicability of the Brownian passage-time, lognormal, and Weibull distributions to the recurrent frequency-size statistics of slip events is tested and the Weibull distribution is found to be the best-fit distribution. To verify this result the behaviors of numerical slider-block and sand-pile models are investigated and the Weibull distribution is confirmed as the applicable distribution for these models as well. Exponents β of the best-fit Weibull distributions for the observed creep event sequences and for the slider-block model are found to have similar values ranging from 1.6 to 2.2 with the corresponding aperiodicities C_{V} of the applied distribution ranging from 0.47 to 0.64. We also note similarities between recurrent time-interval statistics and recurrent frequency-size statistics.
Density distribution in a heavy-medium cyclone
Institute of Scientific and Technical Information of China (English)
Wang Yuling; Zhao Yuemin; Yang Jianguo
2011-01-01
Heavy-medium cyclones are widely used to upgrade run-of-mine coal. But the understanding of flow in a cyclone containing a dense medium is still incomplete. By introducing turbulent diffusion into calculations of centrifugal settling a theoretical distribution function giving the density field can be deduced. Qualitative analysis of the density field in every part of a cylindrical cyclone suggests an optimum design that has exhibited good separation effectiveness and anti-wear performance when in commercial operation.
Estrada, Nicolas
2016-12-01
Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.
Cloud particle size distributions measured with an airborne digital in-line holographic instrument
Directory of Open Access Journals (Sweden)
J. P. Fugal
2009-03-01
Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.
HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.
Influence of Population Density on Offspring Number and Size in Burying Beetles
Rauter, Claudia M.
2010-01-01
This laboratory exercise investigates the influence of population density on offspring number and size in burying beetles. Students test the theoretical predictions that brood size declines and offspring size increases when competition over resources becomes stronger with increasing population density. Students design the experiment, collect and…
Extraction of density distributions and particle locations from hologram images
Energy Technology Data Exchange (ETDEWEB)
Ikeda, Koh; Okamoto, Koji [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Kato, Fumitake; Shimizu, Isao
1996-11-01
In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. In the hologram, the interferogram between reference beam and particle scattering were recorded. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the plane wave was reconstructed with the low-pass filter, resulting in the information of the density distributions to be obtained. With the high-pass filter, the particle three-dimensional positions was determined, i.e., the same procedure with the original HPIV technique. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)
Size Distributions of Solar Proton Events: Methodological and Physical Restrictions
Miroshnichenko, L. I.; Yanke, V. G.
2016-12-01
Based on the new catalogue of solar proton events (SPEs) for the period of 1997 - 2009 (Solar Cycle 23) we revisit the long-studied problem of the event-size distributions in the context of those constructed for other solar-flare parameters. Recent results on the problem of size distributions of solar flares and proton events are briefly reviewed. Even a cursory acquaintance with this research field reveals a rather mixed and controversial picture. We concentrate on three main issues: i) SPE size distribution for {>} 10 MeV protons in Solar Cycle 23; ii) size distribution of {>} 1 GV proton events in 1942 - 2014; iii) variations of annual numbers for {>} 10 MeV proton events on long time scales (1955 - 2015). Different results are critically compared; most of the studies in this field are shown to suffer from vastly different input datasets as well as from insufficient knowledge of underlying physical processes in the SPEs under consideration. New studies in this field should be made on more distinct physical and methodological bases. It is important to note the evident similarity in size distributions of solar flares and superflares in Sun-like stars.
Energy Technology Data Exchange (ETDEWEB)
Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; Martinez-Inesta, Maria
2017-04-13
The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and
Lognormal Behavior of the Size Distributions of Animation Characters
Yamamoto, Ken
This study investigates the statistical property of the character sizes of animation, superhero series, and video game. By using online databases of Pokémon (video game) and Power Rangers (superhero series), the height and weight distributions are constructed, and we find that the weight distributions of Pokémon and Zords (robots in Power Rangers) follow the lognormal distribution in common. For the theoretical mechanism of this lognormal behavior, the combination of the normal distribution and the Weber-Fechner law is proposed.
Particle size distribution in ferrofluid macro-clusters
Energy Technology Data Exchange (ETDEWEB)
Lee, Wah-Keat, E-mail: wklee@bnl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Ilavsky, Jan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States)
2013-03-15
Under an applied magnetic field, many commercial and concentrated ferrofluids agglomerate and form large micron-sized structures. Although large diameter particles have been implicated in the formation of these macro-clusters, the question of whether the particle size distribution of the macro-clusters are the same as the original fluid remains open. Some studies suggest that these macro-clusters consist of larger particles, while others have shown that there is no difference in the particle size distribution between the macro-clusters and the original fluid. In this study, we use X-ray imaging to aid in a sample (diluted EFH-1 from Ferrotec) separation process and conclusively show that the average particle size in the macro-clusters is significantly larger than those in the original sample. The average particle size in the macro-clusters is 19.6 nm while the average particle size of the original fluid is 11.6 nm. - Highlights: Black-Right-Pointing-Pointer X-ray imaging was used to isolate ferrofluid macro-clusters under an applied field. Black-Right-Pointing-Pointer Small angle X-ray scattering was used to determine particle size distributions. Black-Right-Pointing-Pointer Results show that macro-clusters consist of particles that are larger than average.
Formation and size distribution of self-assembled vesicles
Huang, Changjin; Quinn, David; Suresh, Subra
2017-01-01
When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065
Mass size distribution of particle-bound water
Canepari, S.; Simonetti, G.; Perrino, C.
2017-09-01
The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).
Stone, J. R.; Danielewicz, P.; Iwata, Y.
2017-07-01
Background: The distribution of protons and neutrons in the matter created in heavy-ion collisions is one of the main points of interest for the collision physics, especially at supranormal densities. These distributions are the basis for predictions of the density dependence of the symmetry energy and the density range that can be achieved in a given colliding system. We report results of the first systematic simulation of proton and neutron density distributions in central heavy-ion collisions within the beam energy range of Ebeam≤800 MeV /nucl . The symmetric 40Ca+40Ca , 48Ca+48Ca , 100Sn+100Sn , and 120Sn+120Sn and asymmetric 40Ca+48Ca and 100Sn+120Sn systems were chosen for the simulations. Purpose: We simulate development of proton and neutron densities and asymmetries as a function of initial state, beam energy, and system size in the selected collisions in order to guide further experiments pursuing the density dependence of the symmetry energy. Methods: The Boltzmann-Uhlenbeck-Uehling (pBUU) transport model with four empirical models for the density dependence of the symmetry energy was employed. Results of simulations using pure Vlasov dynamics were added for completeness. In addition, the time-dependent Hartree-Fock (TDHF) model, with the SV-bas Skyrme interaction, was used to model the heavy-ion collisions at Ebeam≤40 MeV /nucl . Maximum proton and neutron densities ρpmax and ρnmax, reached in the course of a collision, were determined from the time evolution of ρp and ρn. Results: The highest total densities predicted at Ebeam=800 MeV /nucl . were of the order of ˜2.5 ρ0 (ρ0=0.16 fm-3 ) for both Sn and Ca systems. They were found to be only weakly dependent on the initial conditions, beam energy, system size, and a model of the symmetry energy. The proton-neutron asymmetry δ =(ρnmax-ρpmax) /(ρnmax+ρpmax) at maximum density does depend, though, on these parameters. The highest value of δ found in all systems and at all investigated beam
Simulation of distribution of radiation energy density in water balls
Institute of Scientific and Technical Information of China (English)
TANG Shi-Biao; MA Qing-Li; YIN Ze-Jie; TANG Yu; HUANG Huan; RAO Nan-Xia; ZHU Da-Ming
2005-01-01
The distribution of energy deposition density in radiate region and its surrounding areas from γ-rays was simulated and analyzed for a water-ball model with Geant4 package ( Geant4.7.0,2005 ) developed by CERN (the Center of European Research of Nucleus). The results show that the distribution depends strongly on the collimating condition of radiation beam. A well-collimated beam would reduce radiation effects on surrounding areas.
Molecular theory of size exclusion chromatography for wide pore size distributions.
Sepsey, Annamária; Bacskay, Ivett; Felinger, Attila
2014-02-28
Chromatographic processes can conveniently be modeled at a microscopic level using the molecular theory of chromatography. This molecular or microscopic theory is completely general; therefore it can be used for any chromatographic process such as adsorption, partition, ion-exchange or size exclusion chromatography. The molecular theory of chromatography allows taking into account the kinetics of the pore ingress and egress processes, the heterogeneity of the pore sizes and polymer polydispersion. In this work, we assume that the pore size in the stationary phase of chromatographic columns is governed by a wide lognormal distribution. This property is integrated into the molecular model of size exclusion chromatography and the moments of the elution profiles were calculated for several kinds of pore structure. Our results demonstrate that wide pore size distributions have strong influence on the retention properties (retention time, peak width, and peak shape) of macromolecules. The novel model allows us to estimate the real pore size distribution of commonly used HPLC stationary phases, and the effect of this distribution on the size exclusion process. Copyright © 2014 Elsevier B.V. All rights reserved.
Global patterns of city size distributions and their fundamental drivers.
Directory of Open Access Journals (Sweden)
Ethan H Decker
Full Text Available Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity. Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors.
Production, depreciation and the size distribution of firms
Ma, Qi; Chen, Yongwang; Tong, Hui; Di, Zengru
2008-05-01
Many empirical researches indicate that firm size distributions in different industries or countries exhibit some similar characters. Among them the fact that many firm size distributions obey power-law especially for the upper end has been mostly discussed. Here we present an agent-based model to describe the evolution of manufacturing firms. Some basic economic behaviors are taken into account, which are production with decreasing marginal returns, preferential allocation of investments, and stochastic depreciation. The model gives a steady size distribution of firms which obey power-law. The effect of parameters on the power exponent is analyzed. The theoretical results are given based on both the Fokker-Planck equation and the Kesten process. They are well consistent with the numerical results.
Weil, Ernesto; Losada, Freddy; Bone, David
1984-01-01
The distribution, population density and size structure of Diadema antillarum Philippi was found to vary with reef locality, food availability and the structural complexity of the reef. Structural complexity was classified according to the growth morphology and abundance of the coral species found i
Sirianni, Greg; Hosgood, Howard Dean; Slade, Martin D; Borak, Jonathan
2008-05-01
Previous studies indicate that the relationship between empirically derived particle counts, particle mass determinations, and particle size-related silica content are not constant within mines or across mine work tasks. To better understand the variability of particle size distributions and variations in silica content by particle size in a granite quarry, exposure surveys were conducted with side-by-side arrays of four closed face cassettes, four cyclones, four personal environmental monitors, and a real-time particle counter. In general, the proportion of silica increased as collected particulate size increased, but samples varied in an inconstant way. Significant differences in particle size distributions were seen depending on the extent of ventilation and the nature and activity of work performed. Such variability raises concerns about the adequacy of silica exposure assessments based on only limited numbers of samples or short-term samples.
Theory of Nanocluster Size Distributions from Ion Beam Synthesis
Energy Technology Data Exchange (ETDEWEB)
Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.
2008-06-13
Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.
Influence of particle size distribution on random close packing of spheres.
Desmond, Kenneth W; Weeks, Eric R
2014-08-01
The densest amorphous packing of rigid particles is known as random close packing. It has long been appreciated that higher densities are achieved by using collections of particles with a variety of sizes. For spheres, the variety of sizes is often quantified by the polydispersity of the particle size distribution: the standard deviation of the radius divided by the mean radius. Several prior studies quantified the increase of the packing density as a function of polydispersity. A particle size distribution is also characterized by its skewness, kurtosis, and higher moments, but the influence of these parameters has not been carefully quantified before. In this work, we numerically generate many sphere packings with different particle radii distributions, varying polydispersity and skewness independently of one another. We find that the packing density can increase significantly with increasing skewness and in some cases skewness can have a larger effect than polydispersity. However, the packing fraction is relatively insensitive to the higher moment value of the kurtosis. We present a simple empirical formula for the value of the random close packing density as a function of polydispersity and skewness.
Particle size distributions in the Eastern Mediterranean troposphere
Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.
2008-11-01
Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter population was governed mainly by coagulation and that particle formation was absent during most days.
Modal character of atmospheric black carbon size distributions
Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.
1996-08-01
Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.
Size distribution of Portuguese firms between 2006 and 2012
Pascoal, Rui; Augusto, Mário; Monteiro, A. M.
2016-09-01
This study aims to describe the size distribution of Portuguese firms, as measured by annual sales and total assets, between 2006 and 2012, giving an economic interpretation for the evolution of the distribution along the time. Three distributions are fitted to data: the lognormal, the Pareto (and as a particular case Zipf) and the Simplified Canonical Law (SCL). We present the main arguments found in literature to justify the use of distributions and emphasize the interpretation of SCL coefficients. Methods of estimation include Maximum Likelihood, modified Ordinary Least Squares in log-log scale and Nonlinear Least Squares considering the Levenberg-Marquardt algorithm. When applying these approaches to Portuguese's firms data, we analyze if the evolution of estimated parameters in both lognormal power and SCL is in accordance with the known existence of a recession period after 2008. This is confirmed for sales but not for assets, leading to the conclusion that the first variable is a best proxy for firm size.
The degree distribution of fixed act-size collaboration networks
Indian Academy of Sciences (India)
Qinggui Zhao; Xiangxing Kong; Zhenting Hou
2009-11-01
In this paper, we investigate a special evolving model of collaboration net-works, where the act-size is fixed. Based on the first-passage probability of Markov chain theory, this paper provides a rigorous proof for the existence of a limiting degree distribution of this model and proves that the degree distribution obeys the power-law form with the exponent adjustable between 2 and 3.
Lozano-Cortes, Diego
2015-10-29
Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north–south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.
Lozano-Cortés, Diego F; Berumen, Michael L
2016-04-30
Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.
Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions
Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.
2014-12-01
The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.
Size distribution of native cytosolic proteins of Thermoplasma acidophilum.
Sun, Na; Tamura, Noriko; Tamura, Tomohiro; Knispel, Roland Wilhelm; Hrabe, Thomas; Kofler, Christine; Nickell, Stephan; Nagy, István
2009-07-01
We used molecular sieve chromatography in combination with LC-MS/MS to identify protein complexes that can serve as templates in the template matching procedures of visual proteomics approaches. By this method the sample complexity was lowered sufficiently to identify 464 proteins and - on the basis of size distribution and bioinformatics analysis - 189 of them could be assigned as subunits of macromolecular complexes over the size of 300 kDa. From these we purified six stable complexes of Thermoplasma acidophilum whose size and subunit composition - analyzed by electron microscopy and MALDI-TOF-MS, respectively - verified the accuracy of our method.
Aerosol mobility imaging for rapid size distribution measurements
Wang, Jian; Hering, Susanne Vera; Spielman, Steven Russel; Kuang, Chongai
2016-07-19
A parallel plate dimensional electrical mobility separator and laminar flow water condensation provide rapid, mobility-based particle sizing at concentrations typical of the remote atmosphere. Particles are separated spatially within the electrical mobility separator, enlarged through water condensation, and imaged onto a CCD array. The mobility separation distributes particles in accordance with their size. The condensation enlarges size-separated particles by water condensation while they are still within the gap of the mobility drift tube. Once enlarged the particles are illuminated by a laser. At a pre-selected frequency, typically 10 Hz, the position of all of the individual particles illuminated by the laser are captured by CCD camera. This instantly records the particle number concentration at each position. Because the position is directly related to the particle size (or mobility), the particle size spectra is derived from the images recorded by the CCD.
Quantifying the PAH Size Distribution in H II-Regions
Allamandola, Louis
We propose to determine the astronomical PAH size distribution for 20 compact H II-regions from the ISO H II-regions spectroscopic archive (catalog). The selected sample includes H IIregions at a range of distances, all with angular sizes captured by the ISO aperture. This is the first time that the PAH size distribution will be put on an accurate, quantitative footing and that a breakdown of the overall PAH population into different size bins is possible. Since the PAH properties that influence the astronomical environment are PAH-size dependent, this new knowledge will provide a deeper understanding of the specific, and sometimes critical, roles that PAHs play in different astronomical environments. This research will be carried out using the PAH spectra and tools that are available through the NASA Ames PAH IR Spectroscopic Database (www.astrochemistry.org/pahdb/). The ISO compact, H II-regions spectroscopic catalog contains the 2.3 196 µm spectra from some 45 H II-regions. Of these, 20 capture the PAH spectrum with high enough quality between 2.5 15 µm to carry out the proposed work. From the outset of the PAH hypothesis it has been thought that the 3.3/11.2 µm PAH band strength ratio is a qualitative proxy for PAH size and a rough measure of variations in the astronomical PAH size distribution between objects or within extended objects. However, because of the intrinsic uncertainties for most of the observational data available for these two bands, and the very limited spectroscopic data available for PAHs representative of the astronomical PAH population, only very crude estimates of the astronomical PAH size distribution have been possible up to now. The work proposed here overcomes these two limitations, allowing astronomers to quantitatively and accurately determine the astronomical PAH size distribution for the first time. The spectra and tools from the NASA Ames PAH IR Spectroscopic Database will be used to determine the astronomical PAH size
Selecting series size where the generalized Pareto distribution best fits
Ben-Zvi, Arie
2016-10-01
Rates of arrival and magnitudes of hydrologic variables are frequently described by the Poisson and the generalized Pareto (GP) distributions. Variations of their goodness-of-fit to nested series are studied here. The variable employed is depth of rainfall events at five stations of the Israel Meteorological Service. Series sizes range from about 50 (number of years on records) to about 1000 (total number of recorded events). The goodness-of-fit is assessed by the Anderson-Darling test. Three versions of this test are applied here. These are the regular two-sided test (of which the statistic is designated here by A2), the upper one-sided test (UA2) and the adaptation to the Poisson distribution (PA2). Very good fits, with rejection significance levels higher than 0.5 for A2 and higher than 0.25 for PA2, are found for many series of different sizes. Values of the shape parameter of the GP distribution and of the predicted rainfall depths widely vary with series size. Small coefficients of variation are found, at each station, for the 100-year rainfall depths, predicted through the series with very good fit of the GP distribution. Therefore, predictions through series of very good fit appear more consistent than through other selections of series size. Variations of UA2, with series size, are found narrower than those of A2. Therefore, it is advisable to predict through the series of low UA2. Very good fits of the Poisson distribution to arrival rates are found for series with low UA2. But, a reversed relation is not found here. Thus, the model of Poissonian arrival rates and GP distribution of magnitudes suits here series with low UA2. It is recommended to predict through the series, to which the lowest UA2 is obtained.
Spatial Distribution of City Tweets and Their Densities
Jiang, Bin; Yin, Junjun; Sandberg, Mats
2016-01-01
Social media outlets such as Twitter constitute valuable data sources for understanding human activities in the virtual world from a geographic perspective. This paper examines spatial distribution of tweets and densities within cities. The cities refer to natural cities that are automatically aggregated from a country's small street blocks, so called city blocks. We adopted street blocks (rather than census tracts) as the basic geographic units and topological center (rather than geometric center) in order to assess how tweets and densities vary from the center to the peripheral border. We found that, within a city from the center to the periphery, the tweets first increase and then decrease, while the densities decrease in general. These increases and decreases fluctuate dramatically, and differ significantly from those if census tracts are used as the basic geographic units. We also found that the decrease of densities from the center to the periphery is less significant, and even disappears, if an arbitra...
Comparisons of Particulate Size Distributions from Multiple Combustion Strategies
Zhang, Yizhou
In this study, a comparison of particle size distribution (PSD) measurements from eight different combustion strategies was conducted at four different load-speed points. The PSDs were measured using a scanning mobility particle sizer (SMPS) together with a condensation particle counter (CPC). To study the influence of volatile particles, PSD measurements were performed with and without a volatile particle remover (thermodenuder, TD) at both low and high dilution ratios. The common engine platform utilized in the experiment helps to eliminate the influence of background particulate and ensures similarity in dilution conditions. The results show a large number of volatile particles were present under LDR sample conditions for most of the operating conditions. The use of a TD, especially when coupled with HDR, was demonstrated to be effective at removing volatile particles and provided consistent measurements across all combustion strategies. The PSD comparison showed that gasoline premixed combustion strategies such as HCCI and GCI generally have low PSD magnitudes for particle sizes greater than the Particle Measurement Programme (PMP) cutoff diameter (23 nm), and the PSDs were highly nuclei-mode particle dominated. The strategies using diesel as the only fuel (DLTC and CDC) generally showed the highest particle number emissions for particles larger than 23 nm and had accumulation-mode particle dominated PSDs. A consistent correlation between the increase of the direct-injection of diesel fuel and a higher fraction of accumulation-mode particles was observed over all combustion strategies. A DI fuel substitution study and injector nozzle geometry study were conducted to better understand the correlation between PSD shape and DI fueling. It was found that DI fuel properties has a clear impact on PSD behavior for CDC and NG DPI. Fuel with lower density and lower sooting tendency led to a nuclei-mode particle dominated PSD shape. For NG RCCI, accumulation
Kamataki, K.; Morita, Y.; Shiratani, M.; Koga, K.; Uchida, G.; Itagaki, N.
2012-04-01
We have developed a simple in-situ method for measuring the size distribution (the mean size (mean diameter) and size dispersion) of nano-particles generated in reactive plasmas using the 2 dimensional laser light scattering (2DLLS) method. The principle of the method is based on thermal coagulation of the nano-particles, which occurs after the discharge is turned off, and the size and density of the nano-particles can then be deduced. We first determined the 2D spatial distribution of the density and size of the nano-particles in smaller particle size (a few nm) range than ones deduced from the conventional 2DLLS method. From this 2D dataset, we have for the first time been able to determine the size distribution of nano-particles generated in a reactive plasma without ex-situ measurements.
Finite-size corrections to the density of states
Wörner, C. H.; Muñoz, E.
2012-09-01
The counting of states used in the well-known calculus of the density of states is revisited with emphasis on the error involved in the standard calculation. For pedagogical reasons, we restrict our treatment mainly to the two-dimensional case. This question is discussed in connection with the mathematical Gauss circle problem. It is shown that the typical error involved is negligible when the number of states tends to infinity.
Subchondral bone density distribution in the human femoral head
Energy Technology Data Exchange (ETDEWEB)
Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)
2012-06-15
This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)
Buczkowski, Grzegorz; VanWeelden, Matthew
2010-12-01
Food acquisition by ant colonies is a complex process that starts with acquiring food at the source (i.e., foraging) and culminates with food exchange in or around the nest (i.e., feeding). While ant foraging behavior is relatively well understood, the process of food distribution has received little attention, largely because of the lack of methodology that allows for accurate monitoring of food flow. In this study, we used the odorous house ant, Tapinoma sessile (Say) to investigate the effect of foraging arena size and structural complexity on the rate and the extent of spread of liquid carbohydrate food (sucrose solution) throughout a colony. To track the movement of food, we used protein marking and double-antibody sandwich enzyme-linked immunosorbent assay, DAS-ELISA. Variation in arena size, in conjunction with different colony sizes, allowed us to test the effect of different worker densities on food distribution. Results demonstrate that both arena size and colony size have a significant effect on the spread of the food and the number of workers receiving food decreased as arena size and colony size increased. When colony size was kept constant and arena size increased, the percentage of workers testing positive for the marker decreased, most likely because of fewer trophallactic interactions resulting from lower worker density. When arena size was kept constant and colony size increased, the percentage of workers testing positive decreased. Nonrandom (clustered) worker dispersion and a limited supply of food may have contributed to this result. Overall, results suggest that food distribution is more complete is smaller colonies regardless of the size of the foraging arena and that colony size, rather than worker density, is the primary factor affecting food distribution. The structural complexity of foraging arenas ranged from simple, two-dimensional space (empty arenas) to complex, three-dimensional space (arenas filled with mulch). The structural
Velders, G.J.M.; Feil, D.
1989-01-01
Quantum-chemical density-functional theory (DFT) calculations, using the local-density approximation (LDA), have been performed for hydrogen-bounded silicon clusters to determine the electron density distribution of the Si-Si bond. The density distribution in the bonding region is compared with calc
Global abundance and size distribution of streams and rivers
Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J.
2012-01-01
To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2 cont
Comparison of aerosol size distribution in coastal and oceanic environments
Kusmierczyk-Michulec, J.T.; Eijk, A.M.J. van
2006-01-01
The results of applying the empirical orthogonal functions (EOF) method to decomposition and approximation of aerosol size distributions are presented. A comparison was made for two aerosol data sets, representing coastal and oceanic environments. The first data set includes measurements collected a
Casein Micelles: Size Distribution in Milks from Individual Cows
de Kruif, C.G.; Huppertz, T.
2012-01-01
The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences i
Global abundance and size distribution of streams and rivers
Downing, J.A.; Cole, J.J.; Duarte, C.M.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J.
2012-01-01
To better integrate lotic ecosystems into global cycles and budgets, we provide approximations of the size-distribution and areal extent of streams and rivers. One approach we used was to employ stream network theory combined with data on stream width. We also used detailed stream networks on 2
Effects of Mixtures on Liquid and Solid Fragment Size Distributions
2016-05-01
Bath of an Immiscible Liquid, Physical Review Letters, 110, 264503, 2013 X. Li and R. S. Tankin, Droplet Size Distribution: A Derivation of a...10), 811-823, 1969 C. R. Hoggatt and R. F. Recht, Fracture Behavior of Tubular Bombs , Journal of Applied Physics, 39(3), 1856-1862, 1968
Modeling of Microporosity Size Distribution in Aluminum Alloy A356
Yao, Lu; Cockcroft, Steve; Zhu, Jindong; Reilly, Carl
2011-12-01
Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.
The Detection and Measurement of the Activity Size Distributions
Ramamurthi, Mukund
The infiltration of radon into the indoor environment may cause the exposure of the public to excessive amounts of radioactivity and has spurred renewed research interest over the past several years into the occurrence and properties of radon and its decay products in indoor air. The public health risks posed by the inhalation and subsequent lung deposition of the decay products of Rn-222 have particularly warranted the study of their diffusivity and attachment to molecular cluster aerosols in the ultrafine particle size range (0.5-5 nm) and to accumulation mode aerosols. In this research, a system for the detection and measurement of the activity size distributions and concentration levels of radon decay products in indoor environments has been developed. The system is microcomputer-controlled and involves a combination of multiple wire screen sampler -detector units operated in parallel. The detection of the radioactivity attached to the aerosol sampled in these units permits the determination of the radon daughter activity -weighted size distributions and concentration levels in indoor air on a semi-continuous basis. The development of the system involved the design of the detection and measurement system, its experimental characterization and testing in a radon-aerosol chamber, and numerical studies for the optimization of the design and operating parameters of the system. Several concepts of utility to aerosol size distribution measurement methods sampling the ultrafine cluster size range evolved from this study, and are discussed in various chapters of this dissertation. The optimized multiple wire screen (Graded Screen Array) system described in this dissertation is based on these concepts. The principal facet of the system is its ability to make unattended measurements of activity size distributions and concentration levels of radon decay products on a semi-continuous basis. Thus, the capability of monitoring changes in the activity concentrations and size
Energy Technology Data Exchange (ETDEWEB)
Lingen Chen; Junlin Zheng; Fengrui Sun [Naval Univ. of Engineering, Faculty 306, Wuhan (China); Chih Wu [U.S. Naval Academy, Mechanical Engineering Dept., Annapolis, MD (United States)
2001-02-07
In this paper, the power density (defined as the ratio of the power output to the maximum specific volume in the cycle) is taken as the objective for performance optimisations of an endoreversible closed Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite-time thermodynamics (FTT) or entropy generation minimisation (EGM). The optimum heat conductance distribution corresponding to the optimum power density of the hot- and cold-side heat exchangers for the fixed heat exchanger inventory is analysed using numerical examples. The influence of some design parameters on the optimum heat conductance distribution and the maximum power density and the optimum pressure ratio corresponding to the maximum power density are provided. The power plant design with optimisation leads to higher efficiency and smaller size. (Author)
Remnant lipoprotein size distribution profiling via dynamic light scattering analysis.
Chandra, Richa; Mellis, Birgit; Garza, Kyana; Hameed, Samee A; Jurica, James M; Hernandez, Ana V; Nguyen, Mia N; Mittal, Chandra K
2016-11-01
Remnant lipoproteins (RLP) are a metabolically derived subpopulation of triglyceride-rich lipoproteins (TRL) in human blood that are involved in the metabolism of dietary fats or triglycerides. RLP, the smaller and denser variants of TRL particles, are strongly correlated with cardiovascular disease (CVD) and were listed as an emerging atherogenic risk factor by the AHA in 2001. Varying analytical techniques used in clinical studies in the size determination of RLP contribute to conflicting hypotheses in regard to whether larger or smaller RLP particles contribute to CVD progression, though multiple pathways may exist. We demonstrated a unique combinatorial bioanalytical approach involving the preparative immunoseparation of RLP, and dynamic light scattering for size distribution analysis. This is a new facile and robust methodology for the size distribution analysis of RLP that in conjunction with clinical studies may reveal the mechanisms by which RLP cause CVD progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Size distribution and structure of Barchan dune fields
Directory of Open Access Journals (Sweden)
O. Durán
2011-07-01
Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.
Casein micelles: size distribution in milks from individual cows.
de Kruif, C G Kees; Huppertz, Thom
2012-05-09
The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences in the size and polydispersity of the casein micelles were observed between the milks of different cows, but not as a function of stage of milking or stage of lactation and not even over successive lactations periods. Modal radii varied from 55 to 70 nm, whereas hydrodynamic radii at a scattering angle of 73° (Q² = 350 μm⁻²) varied from 77 to 115 nm and polydispersity varied from 0.27 to 0.41, in a log-normal distribution. Casein micelle size in the milks of individual cows was not correlated with age, milk production, or lactation stage of the cows or fat or protein content of the milk.
Size distribution and structure of Barchan dune fields
DEFF Research Database (Denmark)
Duran, O.; Schwämmle, Veit; Lind, P. G.;
2011-01-01
Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a co-operative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between...... dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well...... as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields...
Thoron progeny size distribution in monazite storage facility.
Rogozina, Marina; Zhukovsky, Michael; Ekidin, Aleksey; Vasyanovich, Maksim
2014-11-01
Field experiments in the atmosphere of monazite warehouses with a high content of (220)Rn progeny concentration were conducted. Size distribution of aerosol particles was measured with the combined use of diffusion battery with varied capture elements and cascade impactor. Four (212)Pb aerosol modes were detected-three in the ultrafine region (aerosol median thermodynamic diameters ∼0.3, 1 and 5 nm) and one with an aerosol median aerodynamic diameter of 500 nm. The activity fraction of aerosol particles with the size <10 nm is nearly 20-25 %. The dose conversion factor for EEC₂₂₀Rn exposure, obtained on the basis of the aerosol size distribution and existing research data on lung absorption types of (212)Pb aerosols, is close to 180 nSv per Bq h m(-3).
Thresholded Power Law Size Distributions of Instabilities in Astrophysics
Aschwanden, Markus J
2015-01-01
Power law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold $x_0$; (3) contamination by an event-unrelated background $x_b$; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in simplest terms with a "thresholded power law" distribution function (also called generalized Pareto [type II] or Lomax distribution), $N(x) dx \\propto (x+x_0)^{-a} dx$, where $x_0 > 0$ is positive for a threshold effect, while $x_0 < 0$ is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential-growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold $x_0$. We app...
Size distributions and failure initiation of submarine and subaerial landslides
ten Brink, U.S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.
2009-01-01
Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area
Density Distribution Sunflower Plots in Stata Version 8
Dupont, William D
2004-01-01
Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional ...
Crystal structure and electron density distribution in niobium carbide
Energy Technology Data Exchange (ETDEWEB)
Will, G.; Platzbecker, R. [Bonn Univ. (Germany). Abt. fuer Mineralogie und Kristallographie
2001-09-01
In this paper the bonding properties, e. g. the charge distribution between the atoms and the deformation of niobium carbide densities have been studied. The crystal studied had the composition NbC{sub 0.98}. Careful and redundant data collection (74 unique reflections out of 2087 reflections measured) gave the basis for a detailed study. IAM models (independent atom model), high order and multipole refinements were made resulting in R values of R=0.4% and R=0.07%. In the corresponding deformation density maps electron accumulations between the niobium atoms were detected, but no bonding to the carbon atoms. (orig.)
Modeling of branching density and branching distribution in low-density polyethylene polymerization
Kim, D.M.; Iedema, P.D.
2008-01-01
Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties i
Demeler, Borries
2014-08-05
A critical problem in materials science is the accurate characterization of the size dependent properties of colloidal inorganic nanocrystals. Due to the intrinsic polydispersity present during synthesis, dispersions of such materials exhibit simultaneous heterogeneity in density ρ, molar mass M, and particle diameter d. The density increments ∂ρ/∂d and ∂ρ/∂M of these nanoparticles, if known, can then provide important information about crystal growth and particle size distributions. For most classes of nanocrystals, a mixture of surfactants is added during synthesis to control their shape, size, and optical properties. However, it remains a challenge to accurately determine the amount of passivating ligand bound to the particle surface post synthesis. The presence of the ligand shell hampers an accurate determination of the nanocrystal diameter. Using CdSe and PbS semiconductor nanocrystals, and the ultrastable silver nanoparticle (M4Ag 44(p-MBA)30), as model systems, we describe a Custom Grid method implemented in UltraScan-III for the characterization of nanoparticles and macromolecules using sedimentation velocity analytical ultracentrifugation. We show that multiple parametrizations are possible, and that the Custom Grid method can be generalized to provide high resolution composition information for mixtures of solutes that are heterogeneous in two out of three parameters. For such cases, our method can simultaneously resolve arbitrary two-dimensional distributions of hydrodynamic parameters when a third property can be held constant. For example, this method extracts partial specific volume and molar mass from sedimentation velocity data for cases where the anisotropy can be held constant, or provides anisotropy and partial specific volume if the molar mass is known. © 2014 American Chemical Society.
Directory of Open Access Journals (Sweden)
Bernadete A. Bittencourt
2009-01-01
Full Text Available Neste trabalho foram investigadas as características de amostras de pó de polietileno de ultra alto peso molecular (PEUAPM, tais como porosidade, morfologia, tamanho médio e distribuição de partícula, que são importantes na moldagem por compressão a frio. Também foi avaliada a influência dessas características na densidade a verde de pré-formas. As amostras dos pós foram caracterizadas por calorimetria diferencial de varredura (DSC, análise granulométrica, absorção de óleo, área superficial, porosimetria de mercúrio, fluidez do pó, densidade de compactação, densidade aparente e microscopia eletrônica de varredura (MEV. Através das técnicas de caracterização estudadas ficou evidenciado que as características da partícula citadas anteriormente, assim como o parâmetro de densificação (DP, que é função direta da porosidade interparticular, favorecem a densidade a verde relativa (DVR e consequentemente a tensão de resistência à flexão (TRF.In this paper an investigation was made of the characteristics of Ultra High Molecular Weight Polyethylene (UHMWPE powder samples, including porosity, particles average size, size distribution and morphology, which are important in cold compression molding. The influence of these characteristics on the green density of molded pre-shapes was also investigated. The UHMWPE powder samples were characterized by Differential Scanning Calorimetry (DSC, granulometric analysis, oil absorption, surface area, mercury porosity, density compaction, apparent density and Scanning Electron Microscopy (SEM. The characterization techniques used demonstrate that the UHMWPE particles characteristics cited above as well as the densification parameter (DP, which is a direct function of the interparticles porosity, affect the relative green density (RGD and hence, the flexural tensile strength (FTS.
Effect of ship structure and size on grounding and collision damage distributions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Zhang, Shengming
2000-01-01
of the ship have the same probability density distributions regardless of a particular structural design and ship size.The present paper explores analytical methods for assessing the overall effect of structural design on the damage distributions in accidental grounding and collisions. The results...... of a larger relative damage length than that of a smaller ship in grounding damage. On the other hand, the damages to the side structure caused by ship collisions are found to be relatively smaller for large ships.The main conclusion is that the existing IMO damage distributions will severely underestimate...
Packing fraction of particles with a Weibull size distribution
Brouwers, H. J. H.
2016-07-01
This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ1, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1 - φ1)β as function of φ1 is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.
Numerical Simulation of Sub-cooled Cavitating Flow by Using Bubble Size Distribution
Institute of Scientific and Technical Information of China (English)
Yutaka ITO; Hideki WAKAMATSU; Takao NAGASAKI
2003-01-01
A new cavitating model by using bubble size distribution based on mass of bubbles is proposed. Liquid phase is treated with Eulerian framework as a mixture containing minute cavitating bubbles. Vapor phase consists of various sizes of minute vapor bubbles, which is distributed to classes based on their mass. The change of bubble number density for each class was solved by considering the change of bubble mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method the mass of bubbles is treated as an independent variable, in other word, a new coordinate, and dependant variables are solved in Eulerian framework for spatial coordinates and bubble-mass coordinate. The present method is applied to a cavitating flow in a convergent-divergent nozzle, and the two-phase flow with bubble size distribution and phase change was successfully predicted.
Raindrop size distribution: Fitting performance of common theoretical models
Adirosi, E.; Volpi, E.; Lombardo, F.; Baldini, L.
2016-10-01
Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov-Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.
Galaxy rotation curves with log-normal density distribution
Marr, John H
2015-01-01
The log-normal distribution represents the probability of finding randomly distributed particles in a micro canonical ensemble with high entropy. To a first approximation, a modified form of this distribution with a truncated termination may represent an isolated galactic disk, and this disk density distribution model was therefore run to give the best fit to the observational rotation curves for 37 representative galaxies. The resultant curves closely matched the observational data for a wide range of velocity profiles and galaxy types with rising, flat or descending curves in agreement with Verheijen's classification of 'R', 'F' and 'D' type curves, and the corresponding theoretical total disk masses could be fitted to a baryonic Tully Fisher relation (bTFR). Nine of the galaxies were matched to galaxies with previously published masses, suggesting a mean excess dynamic disk mass of dex0.61+/-0.26 over the baryonic masses. Although questionable with regard to other measurements of the shape of disk galaxy g...
Student Difficulties in Learning Density: A Distributed Cognition Perspective
Xu, Lihua; Clarke, David
2012-08-01
Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in classroom interactions, and what consequences these interactions have for individual students' conceptual understanding. This paper reports a detailed analysis of two lessons on density in a 7th Grade Australian science classroom, employing the theory of Distributed Cognition (Hollan et al. 1999; Hutchins 1995). The analysis demonstrated that student understanding of density was shaped strongly by the public classroom discussion on the density of two metal blocks. It also revealed the ambiguities associated with the teacher demonstration and the student practical work. These ambiguities contributed to student difficulties with the concept of density identified in this classroom. The results of this study suggest that deliberate effort is needed to establish shared understanding not only about the purpose of the activities, but also about the meaning of scientific language and the utility of tools. It also suggests the importance of appropriate employment of instructional resources in order to facilitate student scientific understanding.
Lopes Cardozo, David; Holdsworth, Peter C. W.
2016-04-01
The magnetization probability density in d = 2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.
New Fitting Formula for Cosmic Nonlinear Density Distribution
Shin, Jihye; Kim, Juhan; Pichon, Christophe; Jeong, Donghui; Park, Changbom
2017-07-01
We have measured the probability distribution function (PDF) of a cosmic matter density field from a suite of N-body simulations. We propose the generalized normal distribution of version 2 ({{ N }}{{v}2}) as an alternative fitting formula to the well-known log-normal distribution. We find that {{ N }}{{v}2} provides a significantly better fit than that of the log-normal distribution for all smoothing radii (2, 5, 10, 25 [Mpc h -1]) that we studied. The improvement is substantial in the underdense regions. The development of non-Gaussianities in the cosmic matter density field is captured by continuous evolution of the skewness and shift parameters of the {{ N }}{{v}2} distribution. We present the redshift evolution of these parameters for aforementioned smoothing radii and various background cosmology models. All the PDFs measured from large and high-resolution N-body simulations that we use in this study can be obtained from the web site https://astro.kias.re.kr/jhshin.
Particle size distributions in the Eastern Mediterranean troposphere
Directory of Open Access Journals (Sweden)
N. Kalivitis
2008-04-01
Full Text Available Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS and an aerodynamic particle sizer (APS and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm^{−3}. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm^{−3}. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm^{−3} without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm^{−3} s^{−1}. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm were low compared to continental boundary layer conditions with an average concentration of 300 cm^{−3}. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.
Particle size distributions in the Eastern Mediterranean troposphere
Directory of Open Access Journals (Sweden)
N. Kalivitis
2008-11-01
Full Text Available Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS and an aerodynamic particle sizer (APS and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm^{−3}. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm^{−3}. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm^{−3} without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm^{−3} s^{−1}. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm were low compared to continental boundary layer conditions with an average concentration of 300 cm^{−3}. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.
Rock sampling. [method for controlling particle size distribution
Blum, P. (Inventor)
1971-01-01
A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the Ne /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame
Lucchesi, Marco
2017-02-05
A modeling framework based on Direct Simulation Monte Carlo (DSMC) is employed to simulate the evolution of the soot particle size distribution in turbulent sooting flames. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of a n-heptane turbulent nonpremixed flame. The DSMC method is validated against experimentally measured size distributions in laminar premixed flames and found to reproduce quantitatively the experimental results, including the appearance of the second mode at large aggregate sizes and the presence of a trough at mobility diameters in the range 3–8 nm. The model is then applied to the simulation of soot formation and growth in simplified configurations featuring a constant concentration of soot precursors and the evolution of the size distribution in time is found to depend on the intensity of the nucleation rate. Higher nucleation rates lead to a higher peak in number density and to the size distribution attaining its second mode sooner. The ensemble-averaged PSDF in the turbulent flame is computed from individual samples of the PSDF from large sets of Lagrangian trajectories. This statistical measure is equivalent to time-averaged, scanning mobility particle size (SMPS) measurements in turbulent flames. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a long, broad tail, which implies significant polydispersity induced by turbulence. Our results agree very well with SMPS measurements available in the literature. Conditioning on key features of the trajectory, such as mixture fraction or radial locations does not reduce the scatter in the size distributions and the ensemble-averaged PSDF remains broad. The results highlight and explain the important role of turbulence in broadening the size distribution of
Determining proportions of lunar crater populations by fitting crater size distribution
Wang, Nan
2016-01-01
We determine the proportions of two mixed crater populations distinguishable by size distributions on the Moon. A "multiple power-law" model is built to formulate crater size distribution $N(D) \\propto D^{-\\alpha}$ whose slope $\\alpha$ varies with crater diameter $D$. Fitted size distribution of lunar highland craters characterized by $\\alpha = 1.17 \\pm 0.04$, $1.88 \\pm 0.07$, $3.17 \\pm 0.10$ and $1.40 \\pm 0.15$ for consecutive $D$ intervals divided by 49, 120 and 251 km and that of lunar Class 1 craters with a single slope $\\alpha = 1.96 \\pm 0.14$, are taken as Population 1 and 2 crater size distribution respectively, whose sum is then fitted to the size distribution of global lunar craters with $D$ between 10 and 100 km. Estimated crater densities of Population 1 and 2 are $44 \\times 10^{-5}$ and $5 \\times 10^{-5}$ km$^{-2}$ respectively, leading to the proportion of the latter $10 \\%$. The results underlines the need for considering the Population 1 craters and the relevant impactors, the primordial main-b...
MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS
Directory of Open Access Journals (Sweden)
M. S. Santos
Full Text Available Abstract Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical. We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.
Size distribution of FeNiB nanoparticles
Directory of Open Access Journals (Sweden)
Lackner P.
2014-07-01
Full Text Available Two samples of amorphous nanoparticles FeNiB, one of them with SiO2 sheath around the core and one without, were investigated by transmission electron microscopy and magnetic measurements. The coating gives mean particle diameters of 4.3 nm compared to 7.2 nm for the uncoated particles. Magnetic measurements prove superparamagnetic behaviour above 160 K (350 K for the coated (uncoated sample. With use of effective anisotropy constant Keff – determined from hysteresis loops – size distributions are determined both from ZFC curves, as well as from relaxation measurements. Both are in good agreement and are very similar for both samples. Comparison with the size distribution determined from TEM pictures shows that magnetic clusters consist of only few physical particles.
Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Moser, D. E.; Blaauw, R. C.; Cooke, W. J.
2017-01-01
Meteoroids are known to damage spacecraft: they can crater or puncture components, disturb a spacecraft's attitude, and potentially create secondary electrical effects. Because the damage done depends on the speed, size, density, and direction of the impactor, accurate environment models are critical for mitigating meteoroid-related risks. Yet because meteoroid properties are derived from indirect observations such as meteors and impact craters, many characteristics of the meteoroid environment are uncertain. In this work, we present recent improvements to the meteoroid speed and density distributions. Our speed distribution is derived from observations made by the Canadian Meteor Orbit Radar. These observations are de-biased using modern descriptions of the ionization efficiency. Our approach yields a slower meteoroid population than previous analyses (see Fig. 1 for an example) and we compute the uncertainties associated with our derived distribution. We adopt a higher fidelity density distribution than that used by many older models. In our distribution, meteoroids with TJ less than 2 are assigned to a low-density population, while those with TJ greater than 2 have higher densities (see Fig. 2). This division and the distributions themselves are derived from the densities reported by Kikwaya et al. These changes have implications for the environment: for instance, the helion/antihelion sporadic sources have lower speeds than the apex and toroidal sources and originate from high-T(sub J) parent bodies. Our on-average slower and denser distributions thus imply that the helion and antihelion sources dominate the meteoroid environment even more completely than previously thought. Finally, for a given near-Earth meteoroid cratering rate, a slower meteoroid population produces a comparatively higher rate of satellite attitude disturbances.
Energy conservation potential of Portland Cement particle size distribution control
Energy Technology Data Exchange (ETDEWEB)
Tresouthick, S.W.
1985-01-01
The main objective of Phase 3 is to develop practical economic methods of controlling the particle size distribution of portland cements using existing or modified mill circuits with the principal aim of reducing electrical energy requirements for cement manufacturing. The work of Phase 3, because of its scope, will be carried out in 10 main tasks, some of which will be handled simultaneously. Progress on each of these tasks is discussed in this paper.
Power law olivine crystal size distributions in lithospheric mantle xenoliths
Armienti, P.; Tarquini, S.
2002-12-01
Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.
An overview of aerosol particle sensors for size distribution measurement
Directory of Open Access Journals (Sweden)
Panich Intra
2007-08-01
Full Text Available Fine aerosols are generally referred to airborne particles of diameter in submicron or nanometer size range. Measurement capabilities are required to gain understanding of these particle dynamics. One of the most important physical and chemical parameters is the particle size distribution. The aim of this article is to give an overview of recent development of already existing sensors for particle size distribution measurement based on electrical mobility determination. Available instruments for particle size measurement include a scanning mobility particle sizer (SMPS, an electrical aerosol spectrometer (EAS, an engine exhaust particle sizer (EEPS, a bipolar charge aerosol classifier (BCAC, a fast aerosol spectrometer (FAS a differential mobility spectrometer (DMS, and a CMU electrical mobility spectrometer (EMS. The operating principles, as well as detailed physical characteristics of these instruments and their main components consisting of a particle charger, a mobility classifier, and a signal detector, are described. Typical measurements of aerosol from various sources by these instruments compared with an electrical low pressure impactor (ELPI are also presented.
Estimation of coal particle size distribution by image segmentation
Institute of Scientific and Technical Information of China (English)
Zhang Zelin; Yang Jianguo; Ding Lihua; Zhao Yuemin
2012-01-01
Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter (EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5％ and the errors were reduced as the size of the fraction increased.
Houghton, J.C.
1988-01-01
The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.
Indian Academy of Sciences (India)
J MANGAIYARKKARASI; R SARAVANAN; MUKHLIS M ISMAIL
2016-12-01
A-site deficient, Lanthanum substituted Ba1−xLa2x/3TiO3 (x=0.000, 0.005, 0.015, 0.020 and 0.025) ceramics have been synthesized by chemical route. The effects of lanthanum dopant on the BaTiO3 lattice and the electron density distributions in the unit cell of the samples were investigated. Structural studies suggested the reduction in cell parameters and shrinkage in cell volume with the increase in lanthanum content. Chemical bonding and electron density distributions were examined through high resolution maximum entropy method (MEM). The mid bond electron density values revealed the enhancement of covalent nature between titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes were estimated for the undoped and doped samples. SEM investigations showed the existence of smaller grains with large voids in between them.
Protostellar fragmentation in a power-law density distribution
Burkert, A; Bodenheimer, P
1997-01-01
Hydrodynamical calculations in three space dimensions of the collapse of an isothermal, rotating 1 M\\sol protostellar cloud are presented. The initial density stratification is a power law with density $\\rho \\propto r^{-p}$, with $p=1$. The case of the singular isothermal sphere ($p=2$) is not considered; however $p=1$ has been shown observationally to be a good representation of the density distribution in molecular cloud cores just before the beginning of collapse. The collapse is studied with two independent numerical methods, an SPH code with 200,000 particles, and a finite-difference code with nested grids which give high spatial resolution in the inner regions. Although previous numerical studies have indicated that such a power-law distribution would not result in fragmentation into a binary system, both codes show, in contrast, that multiple fragmentation does occur in the central regions of the protostar. Thus the process of binary formation by fragmentation is shown to be consistent with the fact th...
Directory of Open Access Journals (Sweden)
P. Dinakara Prasad Reddy
2016-05-01
Full Text Available Distributed generator (DG resources are small, self contained electric generating plants that can provide power to homes, businesses or industrial facilities in distribution feeders. By optimal placement of DG we can reduce power loss and improve the voltage profile. However, the values of DGs are largely dependent on their types, sizes and locations as they were installed in distribution feeders. The main contribution of the paper is to find the optimal locations of DG units and sizes. Index vector method is used for optimal DG locations. In this paper new optimization algorithm i.e. flower pollination algorithm is proposed to determine the optimal DG size. This paper uses three different types of DG units for compensation. The proposed methods have been tested on 15-bus, 34-bus, and 69-bus radial distribution systems. MATLAB, version 8.3 software is used for simulation.
Directory of Open Access Journals (Sweden)
Lampert Winfried
2005-04-01
Full Text Available Abstract Background In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD with Costs". An experiment has been designed to test the density (competition dependence of the vertical distribution as this is a basic assumption of IFD theory. Results Experiments were performed in large, indoor mesocosms (Plankton Towers with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors. Conclusion The Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.
Fog-Influenced Submicron Aerosol Number Size Distributions
Zikova, N.; Zdimal, V.
2013-12-01
The aim of this work is to evaluate the influence of fog on aerosol particle number size distributions (PNSD) in submicron range. Thus, five-year continuous time series of the SMPS (Scanning Mobility Particle Sizer) data giving information on PNSD in five minute time step were compared with detailed meteorological records from the professional meteorological station Kosetice in the Czech Republic. The comparison included total number concentration and PNSD in size ranges between 10 and 800 nm. The meteorological records consist from the exact times of starts and ends of individual meteorological phenomena (with one minute precision). The records longer than 90 minutes were considered, and corresponding SMPS spectra were evaluated. Evaluation of total number distributions showed considerably lower concentration during fog periods compared to the period when no meteorological phenomenon was recorded. It was even lower than average concentration during presence of hydrometeors (not only fog, but rain, drizzle, snow etc. as well). Typical PNSD computed from all the data recorded in the five years is in Figure 1. Not only median and 1st and 3rd quartiles are depicted, but also 5th and 95th percentiles are plotted, to see the variability of the concentrations in individual size bins. The most prevailing feature is the accumulation mode, which seems to be least influenced by the fog presence. On the contrary, the smallest aerosol particles (diameter under 40 nm) are effectively removed, as well as the largest particles (diameter over 500 nm). Acknowledgements: This work was supported by the projects GAUK 62213 and SVV-2013-267308. Figure 1. 5th, 25th, 50th, 75th and 95th percentile of aerosol particle number size distributions recorded during fog events.
Measuring Technique of Bubble Size Distributions in Dough
Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki
A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.
Directory of Open Access Journals (Sweden)
Kai Yan
2015-01-01
Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.
Size and spacial distribution of micropores in SBA-15 using CM-SANS
Energy Technology Data Exchange (ETDEWEB)
Pollock, Rachel A [ORNL; Walsh, Brenna R [ORNL; Fry, Jason A [ORNL; Ghampson, Tyrone [University of Maine; Centikol, Ozgul [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL; Kaiser, Helmut [ORNL; Pynn, Roger [ORNL; Frederick, Brian G [ORNL
2011-01-01
Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.
Varenne, Fanny; Makky, Ali; Gaucher-Delmas, Mireille; Violleau, Frédéric; Vauthier, Christine
2016-05-01
Evaluation of particle size distribution (PSD) of multimodal dispersion of nanoparticles is a difficult task due to inherent limitations of size measurement methods. The present work reports the evaluation of PSD of a dispersion of poly(isobutylcyanoacrylate) nanoparticles decorated with dextran known as multimodal and developed as nanomedecine. The nine methods used were classified as batch particle i.e. Static Light Scattering (SLS) and Dynamic Light Scattering (DLS), single particle i.e. Electron Microscopy (EM), Atomic Force Microscopy (AFM), Tunable Resistive Pulse Sensing (TRPS) and Nanoparticle Tracking Analysis (NTA) and separative particle i.e. Asymmetrical Flow Field-Flow Fractionation coupled with DLS (AsFlFFF) size measurement methods. The multimodal dispersion was identified using AFM, TRPS and NTA and results were consistent with those provided with the method based on a separation step prior to on-line size measurements. None of the light scattering batch methods could reveal the complexity of the PSD of the dispersion. Difference between PSD obtained from all size measurement methods tested suggested that study of the PSD of multimodal dispersion required to analyze samples by at least one of the single size particle measurement method or a method that uses a separation step prior PSD measurement.
Fine structure of mass size distributions in an urban environment
Salma, Imre; Ocskay, Rita; Raes, Nico; Maenhaut, Willy
As part of an urban aerosol research project, aerosol samples were collected by a small deposit area low-pressure impactor and a micro-orifice uniform deposit impactor in downtown Budapest in spring 2002. A total number of 23 samples were obtained with each device for separate daytime periods and nights. The samples were analysed by particle-induced X-ray emission spectrometry for 29 elements, or by gravimetry for particulate mass. The raw size distribution data were processed by the inversion program MICRON utilising the calibrated collection efficiency curve for each impactor stage in order to study the mass size distributions in the size range of about 50 nm to 10 μm in detail. Concentration, geometric mean aerodynamic diameter, and geometric standard deviation for each contributing mode were determined and further evaluated. For the crustal elements, two modes were identified in the mass size distributions: a major coarse mode and a (so-called) intermediate mode, which contained about 4% of the elemental mass. The coarse mode was associated with suspension, resuspension, and abrasion processes, whereby the major contribution likely came from road dust, while the particles of the intermediate mode may have originated from the same but also from the other sources. The typical anthropogenic elements exhibited usually trimodal size distributions including a coarse mode and two submicrometer modes instead of a single accumulation mode. The mode diameter of the upper submicrometer mode was somewhat lower for the particulate mass (PM) and S than for the anthropogenic metals, suggesting different sources and/or source processes. The different relative intensities of the two submicrometer modes for the anthropogenic elements and the PM indicate that the elements and PM have multiple sources. An Aitken mode was unambiguously observed for S, Zn, and K, but in a few cases only. The relatively large coarse mode of Cu and Zn, and the small night-to-daytime period
Energy Technology Data Exchange (ETDEWEB)
JEWETT, J R
2002-01-30
Recommended values have been developed for particle size distribution, particle density, and slurry viscosity that maybe used in slurry flow calculations that support the design of the piping system that is being modified to deliver Hanford wastes from the underground storage tanks to the planned Waste Treatment Plant for vitrification. The objective of this document is to provide recommended values for three waste properties to be used in a planned revision of the Waste Feed Delivery Transfer System Analysis. These properties are particle size distribution (PSD), particle density, and slurry viscosity. In this document, the results of laboratory and engineering studies will be collated and summarized to provide a succinct source of physical property data for use in the hydraulic analysis of the transfer system.
Building predictive models of soil particle-size distribution
Directory of Open Access Journals (Sweden)
Alessandro Samuel-Rosa
2013-04-01
Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.
Size Distributions of Solar Flares and Solar Energetic Particle Events
Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.
2012-01-01
We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.
Laboratory Liquefaction Test of Sand Based on Grain Size and Relative Density
Directory of Open Access Journals (Sweden)
Abdul Hakam
2016-08-01
Full Text Available Liquefaction due to strong earthquakes often occurs in sandy soil under low water table conditions with certain physical properties. The physical properties of sandy soil that give effect to liquefaction resistance include grain size and relative density. This paper presents the physical properties of sand soils related to their resistance to vibration. Vibration tests were conducted by using a shaking table. The acceleration and settlement of the samples were recorded during shaking. The tests were conducted with variation of soil density and mean grain size. The test results showed that average grain size and relative density of sand have a unique effect on liquefaction resistance. It can be concluded that there is a density limit with respect to the mean grain size of the sand particles associated with the liquefaction resistance for a certain acceleration.
Grain size effects on He bubbles distribution and evolution
Energy Technology Data Exchange (ETDEWEB)
Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)
2015-02-15
Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.
Method for measuring the size distribution of airborne rhinovirus
Energy Technology Data Exchange (ETDEWEB)
Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.
2002-01-01
About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.
Size distribution of wet crushed waste printed circuit boards
Institute of Scientific and Technical Information of China (English)
Tan Zhihai; He Yaqun; Xie Weining; Duan Chenlong; Zhou Enhui; Yu Zheng
2011-01-01
A wet impact crusher was used to breakdown waste printed circuit boards (PCB's) in a water medium.The relationship between the yield of crushed product and the operating parameters was established.The crushing mechanism was analyzed and the effects of hammerhead style,rotation speed,and inlet water volume on particle size distribution were investigated.The results show that the highest yield of -1 + 0.75 mm sized product was obtained with an inlet water volume flow rate of 5.97 m3/h and a smooth hammerhead turning at 1246.15 r/min.Cumulative undersize-product yield curves were fitted to a nonlinear function:the fitting correlation coefficient was greater than 0.998.These research results provide a theoretical basis for the highly effective wet crushing of PCB's.
Dust generation in powders: Effect of particle size distribution
Directory of Open Access Journals (Sweden)
Chakravarty Somik
2017-01-01
Full Text Available This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.
Measurement of non-volatile particle number size distribution
Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.
2015-06-01
An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type
Condensation on surface energy gradient shifts drop size distribution toward small drops.
Macner, Ashley M; Daniel, Susan; Steen, Paul H
2014-02-25
During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for
Simulation of soot size distribution in an ethylene counterflow flame
Zhou, Kun
2014-01-06
Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.
Saharan Dust Particle Size And Concentration Distribution In Central Ghana
Sunnu, A. K.
2010-12-01
A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for
Mass size distributions of elemental aerosols in industrial area
Directory of Open Access Journals (Sweden)
Mona Moustafa
2015-11-01
Full Text Available Outdoor aerosol particles were characterized in industrial area of Samalut city (El-minia/Egypt using low pressure Berner cascade impactor as an aerosol sampler. The impactor operates at 1.7 m3/h flow rate. Seven elements were investigated including Ca, Ba, Fe, K, Cu, Mn and Pb using atomic absorption technique. The mean mass concentrations of the elements ranged from 0.42 ng/m3 (for Ba to 89.62 ng/m3 (for Fe. The mass size distributions of the investigated elements were bi-modal log normal distribution corresponding to the accumulation and coarse modes. The enrichment factors of elements indicate that Ca, Ba, Fe, K, Cu and Mn are mainly emitted into the atmosphere from soil sources while Pb is mostly due to anthropogenic sources.
Empirical Reference Distributions for Networks of Different Size
Smith, Anna; Browning, Christopher R
2015-01-01
Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although "normalized" versions of some network statistics exist, we demonstrate via simulation why direct comparison of raw and normalized statistics is often inappropriate. We examine a recent suggestion to normalize network statistics relative to Erdos-Renyi random graphs and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively ...
Institute of Scientific and Technical Information of China (English)
Yuan LIU; Yanxiang LI; Huawei ZHANG; Jiang WAN
2006-01-01
The effect of gas pressures on the mean pore size, the porosity and the pore size distribution of lotus-type porous magnesium fabricated with Gasar process were investigated. The theoretical analysis and the experimental results all indicate that there exists an optimal ratio of the partial pressures of hydrogen pH2 to argon pAr for producing lotus-type structures with narrower pore size distribution and smaller pore size. The effect of solidification mode on the pore size distribution and pore size was also discussed.
Evolution of column density distributions within Orion~A
Stutz, A M
2015-01-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus) by Sadavoy; here we test if a similar correlation is observed in a high-mass star-forming region. We use Herschel data to derive a column density map of Orion A. We use the Herschel Orion Protostar Survey catalog for accurate identification and classification of the Orion A young stellar object (YSO) content, including the short-lived Class 0 protostars (with a $\\sim$ 0.14 Myr lifetime). We divide Orion A into eight independent 13.5 pc$^2$ regions; in each region we fit the N-PDF distribution with a power-law, and we measure the fraction of Class 0 protostars. We use a maximum likelihood method to measure the N-PDF power-law ...
Seagrass species distribution, density and coverage at Panggang Island, Jakarta
Wahab, Iswandi; Madduppa, Hawis; Kawaroe, Mujizat
2017-01-01
This study aimed to assess species distribution, density and coverage of seagrass in Panggang Island, within Kepulauan Seribu Marine National Park, northern Jakarta. Seagrass sampling was conducted between March to April 2016 at three observation stations in the West, East, and South of Panggang Island. A total of 6 seagrass species was recorded during sampling period, including Cymodocea rotundata, C. serulata, Halodule uninervis, Syiringodium isoetifolium, Enhalus acoroides, and Thalassia hempricii. All species were observed in the South station, while in the West and East station found only three species (C. rotundata, E. acoroides, and T. hemprichii). While, C. rotundata and T. hemprichii were observed at all station. The highest density was observed for C. rotundata (520 ind/m2) and for T. hempricii (619 ind/m2) in the West station and South Station, respectively. The lowest density was observed in South Station for C. serulata (18 ind/m2), Halodule uninervis (20 ind/m2), and Syiringodium isoetifolium (15 ind/m2). Seagrass coverage of Thalassia hempricii was the highest (43.60%) and the lowest observed at Syiringodium isoetifolium (0.40%). This could be basic information for the management of seagrass ecosystem in the Kepulauan Seribu Marine National Park.
Differential Density Statistics of Galaxy Distribution and the Luminosity Function
Albani, V V L; Ribeiro, M B; Stöger, W R; Albani, Vinicius V. L.; Iribarrem, Alvaro S.; Ribeiro, Marcelo B.; Stoeger, William R.
2006-01-01
This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number densities statistics of the galaxy distribution as discussed in Ribeiro (2005), namely the differential density $\\gamma$ and the integral differential density $\\gamma^\\ast$. By applying the theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts $dN/dz$ are extracted from the LF and used to calculate both $\\gamma$ and $\\gamma^\\ast$ with various cosmological distance definitions, namely the area distance, luminosity distance, galaxy area distance and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and $\\gamma$ and $\\gamma^\\ast$ are calculated for two cosmological models: Einstein-de Sitter and an $\\Omega_{m_0}=0.3$, $\\Omega_{\\Lambda_0}=0.7$ standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in...
Optimal placement and sizing of multiple distributed generating units in distribution
Directory of Open Access Journals (Sweden)
D. Rama Prabha
2016-06-01
Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.
Patch size and isolation predict plant species density in a naturally fragmented forest.
Munguía-Rosas, Miguel A; Montiel, Salvador
2014-01-01
Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.
Patch size and isolation predict plant species density in a naturally fragmented forest.
Directory of Open Access Journals (Sweden)
Miguel A Munguía-Rosas
Full Text Available Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest. We surveyed the vascular flora (except lianas and epiphytes of 19 forest patches using five belt transects (50×4 m each per patch (area sampled per patch = 0.1 ha. As predicted, plant species density was positively associated (logarithmically with patch size and negatively associated (linearly with patch isolation (distance to the nearest patch. Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation, however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.
Engineering metal precipitate size distributions to enhance gettering in multicrystalline silicon
Energy Technology Data Exchange (ETDEWEB)
Hofstetter, Jasmin; Fenning, David P.; Buonassisi, Tonio [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA, 02139 (United States); Lelievre, Jean-Francois [Universidad Politecnica de Madrid, Avd. Complutense s/n, 28040 Madrid (Spain); Del Canizo, Carlos [Centro de Tecnologia del Silicio Solar CENTESIL, Getafe (Spain)
2012-10-15
The extraction of metal impurities during phosphorus diffusion gettering (PDG) is one of the crucial process steps when fabricating high-efficiency solar cells using low-cost, lower-purity silicon wafers. In this work, we show that for a given metal concentration, the size and density of metal silicide precipitates strongly influences the gettering efficacy. Different precipitate size distributions can be already found in silicon wafers grown by different techniques. In our experiment, however, the as-grown distribution of precipitated metals in multicrystalline Si sister wafers is engineered through different annealing treatments in order to control for the concentration and distribution of other defects. A high density of small precipitates is formed during a homogenization step, and a lower density of larger precipitates is formed during extended annealing at 740 C. After PDG, homogenized samples show a decreased interstitial iron concentration compared to as-grown and ripened samples, in agreement with simulations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Klok, C.; Roos, de A.M.
1998-01-01
1. The effects of changes in habitat size and quality on the expected population density and the expected time to extinction of Sorex araneus are studied by means of mathematical models that incorporate demographic stochasticity. 2. Habitat size is characterized by the number of territories, while h
Combined effects of patch size and plant nutritional quality on local densities of insect herbivores
Bukovinszky, T.; Gols, R.; Kamp, A.; Oliveira-Domingues, de F.; Hamback, P.A.; Jongema, Y.; Bezemer, T.M.; Dicke, M.; Dam, N.; Harvey, J.A.
2010-01-01
Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates
Vertical Raindrop Size Distribution in Central Spain: A Case Study
Directory of Open Access Journals (Sweden)
Roberto Fraile
2015-01-01
Full Text Available A precipitation event that took place on 12 October 2008 in Madrid, Spain, is analyzed in detail. Three different devices were used to characterize the precipitation: a disdrometer, a rain gauge, and a Micro Rain Radar (MRR. These instruments determine precipitation intensity indirectly, based on measuring different parameters in different sampling points in the atmosphere. A comparative study was carried out based on the data provided by each of these devices, revealing that the disdrometer and the rain gauge measure similar precipitation intensity values, whereas the MRR measures different rain fall volumes. The distributions of drop sizes show that the mean diameter of the particles varied considerably depending on the altitude considered. The level at which saturation occurs in the atmosphere is decisive in the distribution of drop sizes between 2,700 m and 3,000 m. As time passes, the maximum precipitation intensities are registered at a lower height and are less intense. The maximum precipitation intensities occurred at altitudes above 1,000 m, while the maximum fall speeds are typically found at altitudes below 700 m.
Size Distribution of Main-Belt Asteroids with High Inclination
Terai, Tsuyoshi
2010-01-01
We investigated the size distribution of high-inclination main-belt asteroids (MBAs) to explore asteroid collisional evolution under hypervelocity collisions of around 10 km/s. We performed a wide-field survey for high-inclination sub-km MBAs using the 8.2-m Subaru Telescope with the Subaru Prime Focus Camera (Suprime-Cam). Suprime-Cam archival data were also used. A total of 616 MBA candidates were detected in an area of 9.0 deg^2 with a limiting magnitude of 24.0 mag in the SDSS r filter. Most of candidate diameters were estimated to be smaller than 1 km. We found a scarcity of sub-km MBAs with high inclination. Cumulative size distributions (CSDs) were constructed using Subaru data and published asteroid catalogs. The power-law indexes of the CSDs were 2.17 +/- 0.02 for low-inclination ( 15 deg) MBAs in the 0.7-50 km diameter range. The high-inclination MBAs had a shallower CSD. We also found that the CSD of S-like MBAs had a small slope with high inclination, whereas the slope did not vary with inclinatio...
Control of sizes and densities of nano catalysts for nanotube synthesis by plasma breaking method
Energy Technology Data Exchange (ETDEWEB)
Gao, J.S.; Umeda, K.; Uchino, K.; Nakashima, H.; Muraoka, K
2004-03-15
Sizes and densities of nano catalysts for carbon nanotube synthesis, formed by the plasma breaking method of thin Fe films deposited using pulse laser deposition (PLD) were controlled by the changes of operating parameters. At the best optimum condition, nano catalysts with a density of 1.9x10{sup 15} m{sup -2} and a diameter of about 15 nm were obtained. Carbon nanotubes (CNTs) synthesized on these catalysts were shown to have almost the same size and density as those of the catalysts.
Ishizaka, Masaaki; Motoyoshi, Hiroki; Yamaguchi, Satoru; Nakai, Sento; Shiina, Toru; Muramoto, Ken-ichiro
2016-11-01
The initial density of deposited snow is mainly controlled by snowfall hydrometeors. The relationship between snowfall density and hydrometeors has been qualitatively examined by previous researchers; however, a quantitative relationship has not yet been established due to difficulty in parameterizing the hydrometeor characteristics of a snowfall event. Thus, in an earlier study, we developed a new variable, the centre of mass flux distribution (CMF), which we used to describe the main hydrometeors contributing to a snowfall event. The CMF is based on average size and fall speed weighted by the mass flux estimated from all measured hydrometeors in a snowfall event. It provides a quantitative representation of the predominant hydrometeor characteristics of the event. In this study, we examine the relationships between the density of newly fallen snow and predominant snow type as indicated by the CMFs. We measured snowfall density at Nagaoka, Japan, where riming and aggregation are predominant, simultaneously observing the size and fall speed of snowfall hydrometeors, and deduced the predominant hydrometeor characteristics of each snowfall event from their CMFs. Snow density measurements were carried out for short periods, 1 or 2 h, during which the densification of the deposited snow was negligible. Also, we grouped snowfall events based on similar hydrometeor characteristics. As a result, we were able to obtain not only the qualitative relationships between the main types of snow and snowfall density as reported by previous researchers, but also quantitative relationships between snowfall density and the CMF density introduced here. CMF density is defined as the ratio between mass and volume, assuming the diameter of a sphere is equal to the CMF size component. This quantitative relationship provides a means for more precise estimation of snowfall density based on snow type (hydrometeor characteristics), by using hydrometeor size and fall speed data to derive
Energy Technology Data Exchange (ETDEWEB)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H., E-mail: B.H.Erne@uu.nl
2014-03-15
A numerical inversion method known from the analysis of light scattering by colloidal dispersions is now applied to magnetization curves of ferrofluids. The distribution of magnetic particle sizes or dipole moments is determined without assuming that the distribution is unimodal or of a particular shape. The inversion method enforces positive number densities via a non-negative least squares procedure. It is tested successfully on experimental and simulated data for ferrofluid samples with known multimodal size distributions. The created computer program MINORIM is made available on the web. - Highlights: • A method from light scattering is applied to analyze ferrofluid magnetization curves. • A magnetic size distribution is obtained without prior assumption of its shape. • The method is tested successfully on ferrofluids with a known size distribution. • The practical limits of the method are explored with simulated data including noise. • This method is implemented in the program MINORIM, freely available online.
Size Distribution of Chlorinated Polycyclic Aromatic Hydrocarbons in Atmospheric Particles.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Nakano, Takeshi; Hata, Mitsuhiko; Furuuchi, Masami; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira
2017-01-01
The particle size distribution of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) in particulate matter (PM) in Japan is examined for the first time. PM was collected using a PM0.1 air sampler with a six-stage filter. PM was collected in October 2014 and January 2015 to observe potential seasonal variation in the atmospheric behavior and size of PM, including polycyclic aromatic hydrocarbons (PAHs) and ClPAHs. We found that the concentration of PAHs and ClPAHs between 0.5-1.0 μm and 1.0-2.5 μm markedly increase in January (i.e., the winter season). Among the ClPAHs, 1-ClPyrene and 6-ClBenzo[a]Pyrene were the most commonly occurring compounds; further, approximately 15% of ClPAHs were in the nanoparticle phase (<0.1 μm). The relatively high presence of nanoparticles is a potential human health concern because these particles can easily be deposited in the lung periphery. Lastly, we evaluated the aryl hydrocarbon receptor (AhR) ligand activity of PM extracts in each size fraction. The result indicates that PM < 2.5 μm has the strong AhR ligand activity.
Ganglion cell size and distribution in the retina of the two-toed sloth (Choloepus didactylus L.).
Andrade-da-Costa, B L; Pessoa, V F; Bousfield, J D; Clarke, R J
1989-01-01
The distribution of ganglion cell densities and sizes was studied in Nissl-stained flat-mount retinae of the two-toed sloth. The area centralis, a weak specialization with low ganglion cell density, is located in the temporal retina close to the center of the eye. The presence of a visual streak was noted. The distribution of different ganglion cell sizes was approximately equal throughout the retina. Although the retinal organization differs from that of the closely related three-toed sloth, the presumed function of retinal specializations in both species is to guide limb movements by permitting visualization of the branch along which the animal is climbing.
Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes.
Lu, Hui-Li; Lin, Dong-Qiang; Zhu, Mi-Mi; Yao, Shan-Jing
2012-11-01
Ion exchange chromatography (IEC) is a common and powerful technique for the purification of proteins. The ligand density and pore properties of ion-exchange resins have significant effects on the separation behaviors of protein, however, the understandings are quite limited. In the present work, the adsorption isotherms of bovine serum albumin (BSA) and human serum albumin (HSA) were investigated systematically with series of diethylaminoethyl (DEAE) ion-exchange resins, which have different ligand densities and pore sizes. The Langmuir equation was used to fit the experimental data and the influences of ligand density and pore size on the saturated adsorption capacity and the dissociation constant were discussed. The zeta potentials and hydrodynamic diameters of proteins at different pHs were also measured, and the surface charge characteristics of proteins and the adsorption mechanism were discussed. The results demonstrated that the ligand density, pore size, and protein properties affect the protein adsorption capacities in an integrative way. An integrative parameter was introduced to describe the complicated effects of ligand density and pore size on the protein adsorption. For a given protein, the ligand density and pore size should be optimized for improving the protein adsorption.
MinSORTING: an Excel macro for modelling sediment composition and grain-size distribution
Resentini, Alberto; Malusà, Marco G.; Garzanti, Eduardo
2013-04-01
Detrital mineral analyses are gaining increasing attention in the geosciences as new single-grain analytical techniques are constantly improving their resolution, and consequently widening their range of application, including sedimentary petrology, tectonic geomorphology and archaeology (Mange and Wright, 2007; von Eynatten and Dunkl, 2012). We present here MinSORTING, a new tool to quickly predict the size distribution of various minerals and rock fragments in detrital sediments, based on the physical laws that control sedimentation by tractive wind or water currents (Garzanti et al., 2008). The input values requested by the software are the sediment mean size, sorting, fluid type (seawater, freshwater, air) and standard sediment composition chosen from a given array including nine diverse tectonic settings. MinSORTING calculates the bulk sediment density and the settling velocity. The mean size of each single detrital component, assumed as lognormally-distributed, is calculated from its characteristic size-shift with respect to bulk sediment mean size, dependent in turn on its density and shape. The final output of MinSORTING is the distribution of each single detrital mineral in each size classes (at the chosen 0.25, 0.5 or 1 phi intervals). This allows geochronolgists to select the most suitable grain size of sediment to be sampled in the field, as well as the most representative size-window for analysis. Also, MinSORTING provides an estimate of the volume/weight of the fractions not considered in both sizes finer and coarser than the selected size-window. A beta version of the software is available upon request from: alberto.resentini@unimib.it Mange, M., and Wright, D. (eds), 2007. Heavy minerals in use. Developments in Sedimentology Series, 58. Elsevier, Amsterdam. Garzanti, E., Andò, S., Vezzoli, G., 2008. Settling-equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273, 138-151. von
Rivera-Milan, F. F.; Collazo, J.A.; Stahala, C.; Moore, W.J.; Davis, A.; Herring, G.; Steinkamp, M.; Pagliaro, R.; Thompson, J.L.; Bracey, W.
2005-01-01
Once abundant and widely distributed, the Bahama parrot (Amazona leucocephala bahamensis) currently inhabits only the Great Abaco and Great lnagua Islands of the Bahamas. In January 2003 and May 2002-2004, we conducted point-transect surveys (a type of distance sampling) to estimate density and population size and make recommendations for monitoring trends. Density ranged from 0.061 (SE = 0.013) to 0.085 (SE = 0.018) parrots/ha and population size ranged from 1,600 (SE = 354) to 2,386 (SE = 508) parrots when extrapolated to the 26,154 ha and 28,162 ha covered by surveys on Abaco in May 2002 and 2003, respectively. Density was 0.183 (SE = 0.049) and 0.153 (SE = 0.042) parrots/ha and population size was 5,344 (SE = 1,431) and 4,450 (SE = 1,435) parrots when extrapolated to the 29,174 ha covered by surveys on Inagua in May 2003 and 2004, respectively. Because parrot distribution was clumped, we would need to survey 213-882 points on Abaco and 258-1,659 points on Inagua to obtain a CV of 10-20% for estimated density. Cluster size and its variability and clumping increased in wintertime, making surveys imprecise and cost-ineffective. Surveys were reasonably precise and cost-effective in springtime, and we recommend conducting them when parrots are pairing and selecting nesting sites. Survey data should be collected yearly as part of an integrated monitoring strategy to estimate density and other key demographic parameters and improve our understanding of the ecological dynamics of these geographically isolated parrot populations at risk of extinction.
Carbon density and distribution of six Chinese temperate forests
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for > 99% of the total vegetation C pool.The foliage biomass,small root(diameter < 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability
Optimal city size and population density for the 21st century.
Speare A; White, M J
1990-10-01
The thesis that large scale urban areas result in greater efficiency, reduced costs, and a better quality of life is reexamined. The environmental and social costs are measured for different scales of settlement. The desirability and perceived problems of a particular place are examined in relation to size of place. The consequences of population decline are considered. New York city is described as providing both opportunities in employment, shopping, and cultural activities as well as a high cost of living, crime, and pollution. The historical development of large cities in the US is described. Immigration has contributed to a greater concentration of population than would have otherwise have occurred. The spatial proximity of goods and services argument (agglomeration economies) has changed with advancements in technology such as roads, trucking, and electronic communication. There is no optimal city size. The overall effect of agglomeration can be assessed by determining whether the markets for goods and labor are adequate to maximize well-being and balance the negative and positive aspects of urbanization. The environmental costs of cities increase with size when air quality, water quality, sewage treatment, and hazardous waste disposal is considered. Smaller scale and lower density cities have the advantages of a lower concentration of pollutants. Also, mobilization for program support is easier with homogenous population. Lower population growth in large cities would contribute to a higher quality of life, since large metropolitan areas have a concentration of immigrants, younger age distributions, and minority groups with higher than average birth rates. The negative consequences of decline can be avoided if reduction of population in large cities takes place gradually. For example, poorer quality housing can be removed for open space. Cities should, however, still attract all classes of people with opportunities equally available.
Scale effects on the variability of the raindrop size distribution
Raupach, Timothy; Berne, Alexis
2016-04-01
The raindrop size distribution (DSD) is of utmost important to the study of rainfall processes and microphysics. All important rainfall variables can be calculated as weighted moments of the DSD. Qualitative precipitation estimation (QPE) algorithms and numerical weather prediction (NWP) models both use the DSD in order to calculate quantities such as the rain rate. Often these quantities are calculated at a pixel scale: radar reflectivities, for example, are integrated over a volume, so a DSD for the volume must be calculated or assumed. We present results of a study in which we have investigated the change of support problem with respect to the DSD. We have attempted to answer the following two questions. First, if a DSD measured at point scale is used to represent an area, how much error does this introduce? Second, how representative are areal DSDs calculated by QPE and NWP algorithms of the microphysical process happening inside the pixel of interest? We simulated fields of DSDs at two representative spatial resolutions: at the 2.1x2.1 km2 resolution of a typical NWP pixel, and at the 5x5 km2 resolution of a Global Precipitation Mission (GPM) satellite-based weather radar pixel. The simulation technique uses disdrometer network data and geostatistics to simulate the non-parametric DSD at 100x100 m2 resolution, conditioned by the measured DSD values. From these simulations, areal DSD measurements were derived and compared to point measurements of the DSD. The results show that the assumption that a point represents an area introduces error that increases with areal size and drop size and decreases with integration time. Further, the results show that current areal DSD estimation algorithms are not always representative of sub-grid DSDs. Idealised simulations of areal DSDs produced representative values for rain rate and radar reflectivity, but estimations of drop concentration and characteristic drop size that were often outside the sub-grid value ranges.
Correction of distribution density of deep sea manganese nodules based on their occurrence type
Energy Technology Data Exchange (ETDEWEB)
Kang, Jung-Seock; Kong, Gee-Soo [Korea Institute of Geoscience and Mineral Resources, Taejeon(Korea)
2001-06-01
This study aims to improve the method for more exact estimation of the distribution density and amount of seabed manganese modules in the Korean districts of northeastern Pacific, which are registered at International Seabed Authority(ISA). As the result of the study, correction formulas are obtained, and the grade of correction shows great differences depending upon the type of nodule occurrence. Four types of nodule occurrence are recognized based on the combination of shape, size and distribution density. The abundance of nodules are calculated from the area ratios of grabbing nodules and the correlation modules of sample abundances, and finally are obtained the correction formulas multiplying the corrective coefficients (experimental values between the recoveries and the covered ratios) to the bottom abundances. (author). 7 refs., 6 tabs., 6 figs.
A Study of Cirrus Ice Particle Size Distribution Using TC4 Observations
Tian, Lin; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.; Bansemer, Aaron; Twohy, Cynthia H.; Srivastava, Ramesh C.
2010-01-01
An analysis of two days of in situ observations of ice particle size spectra, in convectively generated cirrus, obtained during NASA s Tropical Composition, Cloud, and Climate Coupling (TC4) mission is presented. The observed spectra are examined for their fit to the exponential, gamma, and lognormal function distributions. Characteristic particle size and concentration density scales are determined using two (for the exponential) or three (for the gamma and lognormal functions) moments of the spectra. It is shown that transformed exponential, gamma, and lognormal distributions should collapse onto standard curves. An examination of the transformed spectra, and of deviations of the transformed spectra from the standard curves, shows that the lognormal function provides a better fit to the observed spectra.
Directory of Open Access Journals (Sweden)
H. Asmus
2017-08-01
Full Text Available We present results of in situ measurements of mesosphere–lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs. The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ∼ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ∼ 1 km thickness and lying some kilometers apart from each other.
Gandiwa, E.
2014-01-01
Understanding factors influencing large herbivore densities and distribution in terrestrial ecosystems is a fundamental goal of ecology. This study examined environmental factors influencing the density and distribution of wild large herbivores in Gonarezhou National Park, Zimbabwe. Vegetation and s
Gandiwa, E.
2014-01-01
Understanding factors influencing large herbivore densities and distribution in terrestrial ecosystems is a fundamental goal of ecology. This study examined environmental factors influencing the density and distribution of wild large herbivores in Gonarezhou National Park, Zimbabwe. Vegetation and
Angular momentum of disc galaxies with a lognormal density distribution
Marr, John Herbert
2015-01-01
Whilst most galaxy properties scale with galaxy mass, similar scaling relations for angular momentum are harder to demonstrate. A lognormal (LN) density distribution for disc mass provides a good overall fit to the observational data for disc rotation curves for a wide variety of galaxy types and luminosities. In this paper, the total angular momentum J and energy $\\vert{}$E$\\vert{}$ were computed for 38 disc galaxies from the published rotation curves and plotted against the derived disc masses, with best fit slopes of 1.683$\\pm{}$0.018 and 1.643$\\pm{}$0.038 respectively, using a theoretical model with a LN density profile. The derived mean disc spin parameter was $\\lambda{}$=0.423$\\pm{}$0.014. Using the rotation curve parameters V$_{max}$ and R$_{max}$ as surrogates for the virial velocity and radius, the virial mass estimator $M_{disc}\\propto{}R_{max}V_{max}^2$ was also generated, with a log-log slope of 1.024$\\pm{}$0.014 for the 38 galaxies, and a proportionality constant ${\\lambda{}}^*=1.47\\pm{}0.20\\time...
Raindrop size distributions and storm classification in Mexico City
Amaro-Loza, Alejandra; Pedrozo-Acuña, Adrián; Agustín| Breña-Naranjo, José
2017-04-01
Worldwide, the effects of urbanization and land use change have caused alterations to the hydrological response of urban catchments. This observed phenomenon implies high resolution measurements of rainfall patterns. The work provides the first dataset of raindrop size distributions and storm classification, among others, across several locations of Mexico City. Data were derived from a recent established network of laser optical disdrometers (LOD) and retrieving measurements of rainrate, reflectivity, number of drops, drop diameter & velocity, and kinetic energy, at a 1-minute resolution. Moreover, the comparison of hourly rainfall patterns revealed the origin and classification of storms into three types: stratiform, transition and convective, by means of its corresponding reflectivity and rainrate relationship (Z-R). Finally, a set of rainfall statistics was applied to evaluate the performance of the LOD disdrometer and weighing precipitation gauge (WPG) data at different aggregated timescales. It was found that WPG gauge estimates remain below the precipitation amounts measured by the LOD.
Pore Size Distribution of High Performance Metakaolin Concrete
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days, the compressive strength of the concrete with metakaolin and silica fume replacement increases.A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.
Effects of the confining solvent on the size distribution of silver NPs by laser ablation
Energy Technology Data Exchange (ETDEWEB)
Oseguera-Galindo, D. O., E-mail: david.omar0927@hotmail.com; Martinez-Benitez, A.; Chavez-Chavez, A.; Gomez-Rosas, G.; Perez-Centeno, A.; Santana-Aranda, M. A., E-mail: miguelangelsantana@gmail.com [CUCEI, Universidad de Guadalajara, Departamento de Fisica (Mexico)
2012-09-15
Laser ablation of a silver target confined in acetone, ethanol, methanol, propanol, and distilled water allowed us to obtain silver nanoparticles with different size distributions. We employed a pulsed Nd:YAG laser ({lambda} = 532 nm, 0.5 J/pulse) with a high fluence of 64 J/cm{sup 2} with a scanning density of 2,500 pulses/cm{sup 2}, having overlapping of consecutive pulses. The analysis of transmission electron micrographs showed that the smaller particle sizes were obtained confining the target in propanol, while the larger ones were obtained employing ethanol. Nanoparticle size distributions were fitted with two Gaussian peaks in all five cases, being the smaller sizes the most frequent. Predominant peaks were centered at 4.8 and 13.9 nm in propanol and ethanol, respectively, having a broader distribution for the nanoparticles obtained in ethanol. Furthermore, comparison of electron micrographs taken the day of synthesis and 4 and 9 months later in the case of water and propanol, respectively, shows that nanoparticle suspension is more stable in propanol.
Size distribution and seasonal variation of atmospheric cellulose
Puxbaum, Hans; Tenze-Kunit, Monika
Atmospheric cellulose is a main constituent of the insoluble organic aerosol and a "macrotracer" for plant debris. A time series of the cellulose concentration at a downtown site in Vienna showed a maximum concentration during fall and a secondary maximum during spring. The fall maximum appears to be associated with leaf litter production, the spring maximum with increased biological activity involving repulsion of cellulose-containing particles, e.g. seed production. The grand average of the time series over 9 months was 0.374 μg m -3 cellulose, respectively, 0.75 μg m -3 plant debris. Compared to an annual average of 5.7 μg m -3 organic carbon as observed at a Vienna downtown site it becomes clear that plant debris is a major contributor to the organic aerosol and has to be considered in source attribution studies. Simultaneous measurements at the downtown and a suburban site indicated that particulate cellulose is obviously not produced within the city in notable amounts, at least during the campaign in December. Size distribution measurements with impactors showed the unexpected result that "fine aerosol" size particles (0.1- 1.6 μm aerodynamic diameter) contained 0.7% "free cellulose" on a mass basis, forming a wettable, but insoluble part of the accumulation mode aerosol.
Airborne Measurements of Aerosol Size Distributions During PACDEX
Rogers, D. C.; Gandrud, B.; Campos, T.; Kok, G.; Stith, J.
2007-12-01
The Pacific Dust Experiment (PACDEX) is an airborne project that attempts to characterize the indirect aerosol effect by tracing plumes of dust and pollution across the Pacific Ocean. This project occurred during April-May 2007 and used the NSF/NCAR HIAPER research aircraft. When a period of strong generation of dust particles and pollution was detected by ground-based and satellite sensors, then the aircraft was launched from Colorado to Alaska, Hawaii, and Japan. Its mission was to intercept and track these plumes from Asia, across the Pacific Ocean, and ultimately to the edges of North America. For more description, see the abstract by Stith and Ramanathan (this conference) and other companion papers on PACDEX. The HIAPER aircraft carried a wide variety of sensors for measuring aerosols, cloud particles, trace gases, and radiation. Sampling was made in several weather regimes, including clean "background" air, dust and pollution plumes, and regions with cloud systems. Altitude ranges extended from 100 m above the ocean to 13.4 km. This paper reports on aerosol measurements made with a new Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), a Radial Differential Mobility Analyzer (RDMA), a water-based CN counter, and a Cloud Droplet Probe (CDP). These cover the size range 10 nm to 10 um diameter. In clear air, dust was detected with the UHSAS and CDP. Polluted air was identified with high concentrations of carbon monoxide, ozone, and CN. Aerosol size distributions will be presented, along with data to define the context of weather regimes.
Energy Technology Data Exchange (ETDEWEB)
Kumar, N.K.; Roy, B.; Das, J., E-mail: j.das@metal.iitkgp.ernet.in
2015-01-05
Highlights: • Nanotwinned α-brass with varying lamellae thickness (28–170 nm), has been produced by cryorolling. • Equal thickness and uniform distribution of nanotwins increase the hardness homogeneity. • Formation of ∼10 nm subgrains within preexisting twin lamellae causes the refinement. • Flow stress has been predicted considering dislocation density, twin spacing and crystallite size. - Abstract: Nanotwinned α-brass (Cu–30 wt.% Zn) with varying lamellae thickness in the range of 28–170 nm, has been produced by cryorolling (CR). The effect of CR strain (ε{sub CR} = 0.2–0.95) on the evolution of homogeneity and refinement in terms of twin lamellae thickness, twin spacing, and their distribution, have been studied using high-resolution transmission electron microscopy (HRTEM) and microhardness measurements. Analysis of X-ray peak broadening has shown that the crystallite size reduces down to 20 nm at ε{sub CR} = 0.95, which scales with the subgrain size in preexisting twin lamellae, as revealed under HRTEM. The effect of dislocation density and crystallite size on the strength of nanotwinned brass has been correlated using an analytical model.
JeongAhn, Youngmin; Malhotra, Renu; Werner, Stephanie; Lee, Jui-Chi; Trang, David; Ip, Wing-Huen; Reyes-Ruiz, Mauricio
2016-10-01
The depth/diameter (d/D) ratio of simple lunar craters (D15km) have smaller d/D ratios. We examine the spatial distribution of high d/D ratio (>0.18) craters using LU60645GT catalogue (Salamunićcar et al. 2012). We select craters larger than 8km for which the census is known to be almost complete over the whole lunar surface. We find that the number density of steep craters in maria is significantly lower than in highlands, which may be explained by the age differences of the background surfaces. We also find that the spatial density of steep craters in the equatorial region is lower than in the polar region. On the contrary, higher cratering flux on the lunar equator has been claimed: from the numerical calculations with the orbital distribution of observed Earth Crossing Objects (ECOs) larger than 1km (Le Feuvre & Wieczorek 2008; Ito & Malhotra 2010) and from the distribution of steepest slopes at a 25m baseline (Kreslavsky & Head, 2016). In order to reconcile our findings with previous observations, we hypothesize that the cratering rate at low latitudes has been higher for meter to decameter size ECOs than for kilometer size objects since the Late Imbrian epoch; smaller objects have triggered more frequent mass wasting on the pre-existing large steep craters (D>8km, d/D>0.18) at low latitudes, thereby reducing the surviving number of steep craters. Our hypothesis is supported by the finding that the power-law slope in the H magnitude distribution for the low inclination ECOs (i<15 deg) is steeper than for the high inclination objects. Renu Malhotra acknowledges research support from NSF (grant AST-1312498).
Rank-size Distributions of Chinese Cities: Macro and Micro Patterns
Institute of Scientific and Technical Information of China (English)
LI Shujuan
2016-01-01
A large number of studies have been conducted to find a better fit for city rank-size distributions in different countries.Many theoretical curves have been proposed,but no consensus has been reached.This study argues for the importance of examining city rank-size distribution across different city size scales.In addition to focusing on macro patterns,this study examines the micro patterns of city rank-size distributions in China.A moving window method is developed to detect rank-size distributions of cities in different sizes incrementally.The results show that micro patterns of the actual city rank-size distributions in China are much more complex than those suggested by the three theoretical distributions examined (Pareto,quadratic,and q-exponential distributions).City size distributions present persistent discontinuities.Large cities are more evenly distributed than small cities and than that predicted by Zipf's law.In addition,the trend is becoming more pronounced over time.Medium-sized cities became evenly distributed first and then unevenly distributed thereafter.The rank-size distributions of small cities are relatively consistent.While the three theoretical distributions examined in this study all have the ability to detect the overall dynamics of city rank-size distributions,the actual macro distribution may be composed of a combination of the three theoretical distributions.
Evaluation and interpretation of bubble size distributions in pulsed megasonic fields
Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.
2013-05-01
The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental
Crystal Size Distributions in Igneous rocks: Where are we now?
Higgins, M.
2003-12-01
Modern Crystal Size Distributions (CSD) studies started in 1988 and have expanded since then, albeit somewhat slowly. We have now measured CSDs in a variety of different compositions and for both plutonic and volcanic rocks. However, the subject still lags far behind chemical petrology and we need many more studies. CSD methodology has advanced considerably, both for 3D and 2D methods, but it is unfortunate that some 2D studies still do not use appropriate stereological conversions or publish their raw data. The nature of the lower size limit is very important, real or measurement artefact, but is not commonly stated. All this is especially important for comparing data with earlier studies. Individual CSDs of minerals are not always very informative. A much better approach is to look at suites of related CSDs. For instance, different minerals within a single sample, ensembles of related whole rock samples, comparison of late and early textures as preserved in oikocrysts, dykes or volcanic rocks. As more data become available it will be possible to compare usefully unrelated suites of rocks. Straight or nearly straight CSDs in volcanic rocks can be produced by steady-state crystallisation. If the growth rate is known then the residence time can be determined. In some rocks there is a good agreement with other chronometric techniques, but others show no such concordance. In the latter case another model may be more appropriate, such as textural coarsening. This model has been applied in some cases in inappropriate situations, which has cast doubt on the whole subject of CSDs. For plutonic rocks exponentially increasing undercooling can also produce straight CSDs. However, many CSDs are slightly curved and other models are possible, especially if no small crystals are present. Within ensembles of straight CSDs the slope and intercept are commonly correlated. This is mostly accounted for by closure and hence this correlation is not significant, although the variation
Variation in the fitness effects of mutations with population density and size in Escherichia coli.
Directory of Open Access Journals (Sweden)
Huansheng Cao
Full Text Available The fitness effects of mutations are context specific and depend on both external (e.g., environment and internal (e.g., cellular stress, genetic background factors. The influence of population size and density on fitness effects are unknown, despite the central role population size plays in the supply and fixation of mutations. We addressed this issue by comparing the fitness of 92 Keio strains (Escherichia coli K12 single gene knockouts at comparatively high (1.2×10(7 CFUs/mL and low (2.5×10(2 CFUs/mL densities, which also differed in population size (high: 1.2×10(8; low: 1.25×10(3. Twenty-eight gene deletions (30% exhibited a fitness difference, ranging from 5 to 174% (median: 35%, between the high and low densities. Our analyses suggest this variation among gene deletions in fitness responses reflected in part both gene orientation and function, of the gene properties we examined (genomic position, length, orientation, and function. Although we could not determine the relative effects of population density and size, our results suggest fitness effects of mutations vary with these two factors, and this variation is gene-specific. Besides being a mechanism for density-dependent selection (r-K selection, the dependence of fitness effects on population density and size has implications for any population that varies in size over time, including populations undergoing evolutionary rescue, species invasions into novel habitats, and cancer progression and metastasis. Further, combined with recent advances in understanding the roles of other context-specific factors in the fitness effects of mutations, our results will help address theoretical and applied biological questions more realistically.
Statistical properties of the normalized ice particle size distribution
Delanoë, Julien; Protat, Alain; Testud, Jacques; Bouniol, Dominique; Heymsfield, A. J.; Bansemer, A.; Brown, P. R. A.; Forbes, R. M.
2005-05-01
Testud et al. (2001) have recently developed a formalism, known as the "normalized particle size distribution (PSD)", which consists in scaling the diameter and concentration axes in such a way that the normalized PSDs are independent of water content and mean volume-weighted diameter. In this paper we investigate the statistical properties of the normalized PSD for the particular case of ice clouds, which are known to play a crucial role in the Earth's radiation balance. To do so, an extensive database of airborne in situ microphysical measurements has been constructed. A remarkable stability in shape of the normalized PSD is obtained. The impact of using a single analytical shape to represent all PSDs in the database is estimated through an error analysis on the instrumental (radar reflectivity and attenuation) and cloud (ice water content, effective radius, terminal fall velocity of ice crystals, visible extinction) properties. This resulted in a roughly unbiased estimate of the instrumental and cloud parameters, with small standard deviations ranging from 5 to 12%. This error is found to be roughly independent of the temperature range. This stability in shape and its single analytical approximation implies that two parameters are now sufficient to describe any normalized PSD in ice clouds: the intercept parameter N*0 and the mean volume-weighted diameter Dm. Statistical relationships (parameterizations) between N*0 and Dm have then been evaluated in order to reduce again the number of unknowns. It has been shown that a parameterization of N*0 and Dm by temperature could not be envisaged to retrieve the cloud parameters. Nevertheless, Dm-T and mean maximum dimension diameter -T parameterizations have been derived and compared to the parameterization of Kristjánsson et al. (2000) currently used to characterize particle size in climate models. The new parameterization generally produces larger particle sizes at any temperature than the Kristjánsson et al. (2000
Kostadinov, Tihomir S.; Milutinović, Svetlana; Marinov, Irina; Cabré, Anna
2016-04-01
Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global text">SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ˜ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the
The effect of cell size and channel density on neuronal information encoding and energy efficiency.
Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E
2013-09-01
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
Directory of Open Access Journals (Sweden)
Miguel Angelo Branco Camargo
2011-01-01
Full Text Available Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D and tree height. Thirty five trees (>17 m tall of different species were selected. Stomatal type, density (S D, size (S S and stomatal distribution on the leaf surface were determined using nail polish imprints taken from both leaf surfaces. Irrespective of tree species, stomata were located only on the abaxial surface (hypostomaty, with large variation in both S D and S S among species. S D ranged from 110 mm-2 in Neea altissima to 846 mm-2 in Qualea acuminata. However, in most species S D ranges between 271 and 543 mm-2, with a negative relationship between S D and S S. We also found a positive relationship between S D and tree height (r² = 0.14, p Estômatos são válvulas operadas a turgor que controlam a perda de água e a captura de CO2 durante a fotossíntese. Assim, as relações hídricas e o acumulo de biomassa vegetal são fortemente influenciadas pelo funcionamento estomático. Os objetivos deste trabalho foram: documentar como os estômatos estão distribuídos na superfície foliar e determinar se existe variação das características estomáticas entre espécies da Amazônia, estudar a relação entre densidade estomática (S D e altura arbórea. Trinta e cinco árvores (>17 m de altura de diferentes espécies foram selecionadas. Tipo de complexo estomático, S D, tamanho (S S e distribuição na superfície foliar foram determinados utilizando impressões de ambas as superfícies foliares com esmalte incolor. Independente da espécie, os estômatos foram encontrados
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS
Energy Technology Data Exchange (ETDEWEB)
Hoerst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)
2013-06-10
The organic haze produced from complex CH{sub 4}/N{sub 2} chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogs, or tholins, for CH{sub 4} concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are higher than the measured densities of our tholins.
DeMartini, Edward E.; Anderson, Todd W.; Friedlander, Alan M.; Beets, James P.
2011-01-01
Group incidence and size are described for recruit parrotfishes, wrasses, and damselfishes on Hawaiian reefs over 3 years (2006–2008) at sites spanning the archipelago (20–28°N, 155–177°W). Coral-poor and coral-rich areas were surveyed at sites with both low (Hawaii Island) and high (Midway Atoll) predator densities, facilitating examination of relations among predator and recruit densities, habitat, and group metrics. Predator and recruit densities varied spatially and temporally, with a sixfold range in total recruit densities among years. Group (≥2 recruits) metrics varied with time and tracked predator and recruit densities and the proportion of schooling species. Groups often included heterospecifics whose proportion increased with group size. A non-saturating relationship between group size and recruit density suggests that the anti-predator benefits of aggregation exceeded competitive costs. Grouping behavior may have overarching importance for recruit survival—even at high recruit densities—and merits further study on Hawaiian reefs and elsewhere.
Subsurface Droplet Size Distribution generated as breaking waves entrain an oil slick
Li, Cheng; Miller, Jesse; Katz, Joseph
2016-11-01
Breaking waves are a primary mechanism for entraining and dispersing oil spills. Knowledge of the resulting droplet size distribution is crucial for predicting the transport and fate of this oil. In this on-going experimental study, a controlled oil slick of varying viscosity (μd) , density (ρd), interfacial tension (σ) , and thickness δ = 0.5mm are entrained by waves of varying energy (Ew) . The changes to droplet size over time, from seconds to hours, are measured at several locations using multi-resolution holography, which covers sizes ranging from μm to mm. Using dispersants to reduce σ, the Webber number, We =Ew δ / σ , and Ohnesorge number, Oh =μd /(ρd δσ) 0 . 5 , are varied from 6 to 813 and from 0.09 to 0.95, respectively. Droplets smaller than the turbulence scale (2-30 μm - diameter), are generated by "micro-threading". Their size distribution becomes steeper and their total number increase substantially with decreasing interfacial tension. For slopes smaller than -3, measured for σ around 10-1 mN/m, the volumetric size distribution decreases with diameter, i.e. most of the oil breaks into micron-scale droplets. For high interfacial tension oil, the concentration of small droplets increases with wave energy, but this effect diminishes as σ decreases. Droplets larger than 100 μm are generated by turbulent shear. Hence, their number is impacted by μd and Ew. Increasing We from 6 to 15 (Oh from 0.09 to 2.95) increases the initial number of droplets by up to 5 times, but the distribution slopes remain largely similar. Supported by Gulf of Mexico Research Initiative (GoMRI).
Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis
Institute of Scientific and Technical Information of China (English)
Yan XUE; Hai Ying YANG; Yong Tan YANG
2005-01-01
A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.
Constant size, variable density aerosol particles by ultrasonic spray freeze drying.
D'Addio, Suzanne M; Chan, John Gar Yan; Kwok, Philip Chi Lip; Prud'homme, Robert K; Chan, Hak-Kim
2012-05-10
This work provides a new understanding of critical process parameters involved in the production of inhalation aerosol particles by ultrasonic spray freeze drying to enable precise control over particle size and aerodynamic properties. A series of highly porous mannitol, lysozyme, and bovine serum albumin (BSA) particles were produced, varying only the solute concentration in the liquid feed, c(s), from 1 to 5 wt%. The particle sizes of mannitol, BSA, and lysozyme powders were independent of solute concentration, and depend only on the drop size produced by atomization. Both mannitol and lysozyme formulations showed a linear relationship between the computed Fine Particle Fraction (FPF) and the square root of c(s), which is proportional to the particle density, ρ, given a constant particle size d(g). The FPF decreased with increasing c(s) from 57.0% to 16.6% for mannitol and 44.5% to 17.2% for lysozyme. Due to cohesion, the BSA powder FPF measured by cascade impaction was less than 10% and independent of c(s). Ultrasonic spray freeze drying enables separate control over particle size, d(g), and aerodynamic size, d(a) which has allowed us to make the first experimental demonstration of the widely accepted rule d(a)=d(g)(ρ/ρ(o))(1/2) with particles of constant d(g), but variable density, ρ (ρ(o) is unit density).
Directory of Open Access Journals (Sweden)
Bakshi Surbhi
2016-01-01
Full Text Available Distributed Generation has drawn the attention of industrialists and researchers for quite a time now due to the advantages it brings loads. In addition to cost-effective and environmentally friendly, but also brings higher reliability coefficient power system. The DG unit is placed close to the load, rather than increasing the capacity of main generator. This methodology brings many benefits, but has to address some of the challenges. The main is to find the optimal location and size of DG units between them. The purpose of this paper is distributed generation by adding an additional means to reduce losses on the line. This paper attempts to optimize the technology to solve the problem of optimal location and size through the development of multi-objective particle swarm. The problem has been reduced to a mathematical optimization problem by developing a fitness function considering losses and voltage distribution line. Fitness function by using the optimal value of the size and location of this algorithm was found to be minimized. IEEE-14 bus system is being considered, in order to test the proposed algorithm and the results show improved performance in terms of accuracy and convergence rate.
ESTIMATING SOIL PARTICLE-SIZE DISTRIBUTION FOR SICILIAN SOILS
Directory of Open Access Journals (Sweden)
Vincenzo Bagarello
2009-09-01
Full Text Available The soil particle-size distribution (PSD is commonly used for soil classification and for estimating soil behavior. An accurate mathematical representation of the PSD is required to estimate soil hydraulic properties and to compare texture measurements from different classification systems. The objective of this study was to evaluate the ability of the Haverkamp and Parlange (HP and Fredlund et al. (F PSD models to fit 243 measured PSDs from a wide range of 38 005_Bagarello(547_33 18-11-2009 11:55 Pagina 38 soil textures in Sicily and to test the effect of the number of measured particle diameters on the fitting of the theoretical PSD. For each soil textural class, the best fitting performance, established using three statistical indices (MXE, ME, RMSE, was obtained for the F model with three fitting parameters. In particular, this model performed better in the fine-textured soils than the coarse-textured ones but a good performance (i.e., RMSE < 0.03 was detected for the majority of the investigated soil textural classes, i.e. clay, silty-clay, silty-clay-loam, silt-loam, clay-loam, loamy-sand, and loam classes. Decreasing the number of measured data pairs from 14 to eight determined a worse fitting of the theoretical distribution to the measured one. It was concluded that the F model with three fitting parameters has a wide applicability for Sicilian soils and that the comparison of different PSD investigations can be affected by the number of measured data pairs.
Single and Joint Multifractal Analysis of Soil Particle Size Distributions
Institute of Scientific and Technical Information of China (English)
LI Yi; LI Min; R.HORTON
2011-01-01
It is noted that there has been little research to compare volume-based and number-based soil particle size distributions (PSDs).Our objectives were to characterize the scaling properties and the possible connections between volume-based and number-based PSDs by applying single and joint multifractal analysis.Twelve soil samples were taken from selected sites in Northwest China and their PSDs were analyzed using laser diffractometry.The results indicated that the volume-based PSDs of all 12 samples and thc number-based PSDs of 4 samples had multifractal scalings for moment order -6 ＜ q ＜ 6.Some empirical relationships were identified between the extreme probability values, maximum probability (Pmax), minimum probability (Pmin), and Pmax/Pmin, and the multifractal indices,the difference and the ratio of generalized dimensions at q=0 and 1(D0-D1 and D1/D0), maximum and minimum singularity strength (αmax and αmin) and their difference (αmax - αmin, spectrum width), and asymmetric index (RD).An increase in Pmax generally resulted in corresponding increases of D0 - D1, αmax, αmax - αmin, and RD, which indicated that a large Pmax increased the multifractality of a distribution.Joint multifractal analysis showed that there was significant correlation between the scaling indices of volume-based and number-based PSDs.The multifractality indices indicated that for a given soil, the volume-based PSD was more homogeneous than the number-based PSD, and more likely to display monofractal rather than multifractal scaling.
Aerosol size distribution in a coagulating plume: Analytical behavior and modeling applications
Turco, Richard P.; Yu, Fangqun
In a previous paper (Turco and Yu, 1997), a series of analytical solutions were derived for the problem of aerosol coagulation in an expanding plume, as from a jet engine. Those solutions were shown to depend on a single dimensionless time-dependent number, NT, which is related to the particle coagulation kernel and the plume volume. Here, we derive a new analytical expression that describes the particle size distribution in an expanding plume in terms of NT. We show how this solution can be extended to include the effects of soot particles on the evolving volatile sulfuric acid aerosols in an aircraft wake. Our solutions apply primarily to cases where changes in the size distribution—beyond an initial period encompassing emission and prompt nucleation/condensation—is controlled mainly by coagulation. The analytical size distributions allow most of the important properties of an evolving aerosol population—mean size, number greater than a minimum size, surface area density, size dependent reactivities, and optical properties—to be estimated objectively. We have applied our analytical solution to evaluate errors associated with numerical diffusion in a detailed microphysical code, and demonstrate that, if care is not exercised in solving the coagulation equation, substantial errors can result in the predictions at large particle sizes. This effect is particularly important when comparisons between models and field observations are carried out. The analytical expressions derived here can also be employed to initialize models that do not resolve individual aircraft plumes, by providing a simple means for parameterizing the initial aerosol properties after an appropriate mixing time.
QUICK DETERMINATION OF CRYSTAL SIZE DISTRIBUTIONS OF ROCKS BY MEANS OF A COLOR SCANNER
Directory of Open Access Journals (Sweden)
Simone Tarquini
2011-05-01
Full Text Available An acquisition and analysis method based on a commercial, low-cost, high-resolution film scanner is presented. It allows to collect data from standard rock thin sections with a resolution up to 9.4 μm per pixel. Common and general purpose facilities (scanner + PC + image analysis software may thus be transformed in an appropriate tool for quantitative textural analysis of rocks. The procedure implies the acquisition of four images with crossed polarizers and one parallel light image. Crystal boundaries are extracted from fields in crossed polarizers, while markers for mineral recognition are obtained thresholding the parallel light image. The method is tested for fresh rocks with simple mineralogy (harzburgites and marbles with no more than three phases, all exhibiting well distinct optical properties. Image processing is performed developing procedures with VISILOG 5.2 package. 2-D size data from binary images are converted to 3-D size data applying stereological corrections. 3-D data are reported in bi-logarithmic diagrams, plotting the crystal number density versus characteristic lengths. The harzburgite samples show a scale invariance of size distributions of olivine while mosaic equant marbles exhibit a different size distribution pattern, without scale invariance and a relative maximum.
Directory of Open Access Journals (Sweden)
Mahesh Kumar
2017-06-01
Full Text Available In recent years, renewable types of distributed generation in the distribution system have been much appreciated due to their enormous technical and environmental advantages. This paper proposes a methodology for optimal placement and sizing of renewable distributed generation(s (i.e., wind, solar and biomass and capacitor banks into a radial distribution system. The intermittency of wind speed and solar irradiance are handled with multi-state modeling using suitable probability distribution functions. The three objective functions, i.e., power loss reduction, voltage stability improvement, and voltage deviation minimization are optimized using advanced Pareto-front non-dominated sorting multi-objective particle swarm optimization method. First a set of non-dominated Pareto-front data are called from the algorithm. Later, a fuzzy decision technique is applied to extract the trade-off solution set. The effectiveness of the proposed methodology is tested on the standard IEEE 33 test system. The overall results reveal that combination of renewable distributed generations and capacitor banks are dominant in power loss reduction, voltage stability and voltage profile improvement.
Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic
Directory of Open Access Journals (Sweden)
E. Asmi
2015-07-01
Full Text Available Four years of continuous aerosol number size distribution measurements from an Arctic Climate Observatory in Tiksi Russia are analyzed. Source region effects on particle modal features, and number and mass concentrations are presented for different seasons. The monthly median total aerosol number concentration in Tiksi ranges from 184 cm-3 in November to 724 cm-3 in July with a local maximum in March of 481 cm-3. The total mass concentration has a distinct maximum in February–March of 1.72–2.38 μg m-3 and two minimums in June of 0.42 μg m-3 and in September–October of 0.36–0.57 μg m-3. These seasonal cycles in number and mass concentrations are related to isolated aerosol sources such as Arctic haze in early spring which increases accumulation and coarse mode numbers, and biogenic emissions in summer which affects the smaller, nucleation and Aitken mode particles. The impact of temperature dependent natural emissions on aerosol and cloud condensation nuclei numbers was significant. Therefore, in addition to the precursor emissions of biogenic volatile organic compounds, the frequent Siberian forest fires, although far are suggested to play a role in Arctic aerosol composition during the warmest months. During calm and cold months aerosol concentrations were occasionally increased by nearby aerosol sources in trapping inversions. These results provide valuable information on inter-annual cycles and sources of Arctic aerosols.
Controllable microgels from multifunctional molecules: structure control and size distribution
Gu, Zhenyu; Patterson, Gary; Cao, Rong; Armitage, Bruce
2004-03-01
Supramolecular microgels with fractal structures were produced by engineered multifunctional molecules. The combination of static and dynamic light scattering was utilized to characterize the fractal dimension (Df) of the microgels and analyze the aggregation process of the microgels. The microgels are assembled from (1) a tetrafunctional protein (avidin), (2) a trifunctional DNA construct known as a three-way junction, and (3) a biotinylated peptide nucleic acid (PNA) that acts as a crosslinker by binding irreversibly to four equivalent binding sites on the protein and thermoreversibly to three identical binding sites on the DNA. The structure of microgels can be controlled through different aggregation mechanisms. The initial microgels formed by titration have a compact structure with Df ˜2.6; while the reversible microgels formed from melted aggregates have an open structure with Df ˜1.8. The values are consistent with the point-cluster and the cluster-cluster aggregation mechanisms, respectively. A narrow size distribution of microgels was observed and explained in terms of the Flory theory of reversible self-assembly.
Bubble Size Distribution in a Vibrating Bubble Column
Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian
2016-11-01
While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.
Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese
2014-01-01
Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...
Exploring patterns of variation in clutch size-density reaction norms in a wild passerine bird
Nicolaus, M.; Brommer, J. E.; Ubels, R.; Tinbergen, J. M.; Dingemanse, N. J.
2013-01-01
Negative density dependence of clutch size is a ubiquitous characteristic of avian populations and is partly due to within-individual phenotypic plasticity. Yet, very little is known about the extent to which individuals differ in their degree of phenotypic plasticity, whether such variation has a g
CONSTANCY OF THE RELATION BETWEEN FLOC SIZE AND DENSITY IN SAN FRANCISCO BAY
Ganju, N.K., D.H. Schoellhamer, M.C. Murrell, J.W. Gartner and S.A. Wright. In press. Constancy of the Relation Between Floc Size and Density in San Francisco Bay. In: INTERCOH 2003: Proceedings of the 7th International Conference on Nearshore and Estuarine Cohesive Sediment Tran...
In Situ Measurements of the Size and Density of Titan Aerosol Analogues
Horst, Sarah M
2013-01-01
The organic haze produced from complex CH4/N2 chemistry in the atmosphere of Titan plays an important role in processes that occur in the atmosphere and on its surface. The haze particles act as condensation nuclei and are therefore involved in Titan's methane hydrological cycle. They also may behave like sediment on Titan's surface and participate in both fluvial and aeolian processes. Models that seek to understand these processes require information about the physical properties of the particles including their size and density. Although measurements obtained by Cassini-Huygens have placed constraints on the size of the haze particles, their densities remain unknown. We have conducted a series of Titan atmosphere simulation experiments and measured the size, number density, and particle density of Titan aerosol analogues, or tholins, for CH4 concentrations from 0.01% to 10% using two different energy sources, spark discharge and UV. We find that the densities currently in use by many Titan models are highe...
The mapping of electronic energy distributions using experimental electron density.
Tsirelson, Vladimir G
2002-08-01
It is demonstrated that the approximate kinetic energy density calculated using the second-order gradient expansion with parameters of the multipole model fitted to experimental structure factors reproduces the main features of this quantity in a molecular or crystal position space. The use of the local virial theorem provides an appropriate derivation of approximate potential energy density and electronic energy density from the experimental (model) electron density and its derivatives. Consideration of these functions is not restricted by the critical points in the electron density and provides a comprehensive characterization of bonding in molecules and crystals.
Inferring Gravitational Potentials from Mass Densities in Cluster-sized Halos
Miller, Christopher J.; Stark, Alejo; Gifford, Daniel; Kern, Nicholas
2016-05-01
We use N-body simulations to quantify how the escape velocity in cluster-sized halos maps to the gravitational potential in a ΛCDM universe. Using spherical density-potential pairs and the Poisson equation, we find that the matter density inferred gravitational potential profile predicts the escape velocity profile to within a few percent accuracy for group and cluster-sized halos (10{}13\\lt {M}200\\lt {10}15 M {}⊙ , with respect to the critical density). The accuracy holds from just outside the core to beyond the virial radius. We show the importance of explicitly incorporating a cosmological constant when inferring the potential from the Poisson equation. We consider three density models and find that the Einasto and Gamma profiles provide a better joint estimate of the density and potential profiles than the Navarro, Frenk, and White profile, which fails to accurately represent the escape velocity. For individual halos, the 1σ scatter between the measured escape velocity and the density-inferred potential profile is small (<5%). Finally, while the sub-halos show 15% biases in their representation of the particle velocity dispersion profile, the sub-halo escape velocity profile matches the dark matter escape velocity profile to high accuracy with no evidence of velocity bias outside 0.4r 200.
Density-functional errors in ionization potential with increasing system size
Energy Technology Data Exchange (ETDEWEB)
Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)
2015-05-14
This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.
The simulation and error analysis of raindrop size distribution obtained by micro rain radar
Institute of Scientific and Technical Information of China (English)
JIANG; Shiyang; GAO; Taichang; LIU; Xichuan
2015-01-01
Observation of raindrop size distribution( DSD) with a vertically pointing micro rain radar( MRR) has important significance in the precipitation measurement field. The Mie scattering of large particle,vertical wind and air turbulence have great influences on the retrieval of DSD measured by MRR. This paper simulates the process of how three factors affect the inversion of DSD and the calculation of other precipitation parameters,then makes the errors analysis. Because the wavelength of MRR is 12.5mm,M ie theory is more suitable for the precipitation particle than Rayleigh approximation,w hich may cause the underestimation of number density of small droplets and the overestimation of that in middle field. The vertical wind results in inaccurate estimation of particle terminal velocity,so the diameter is measured with some errors by empirical relationship,w hich affects the calculating accuracy of radar reflectivity and rain rate. Air turbulence can broaden the pow er spectral density,of which the impact on the inversion of DSD are concentrated in small droplets field. Then the measured data from MRR is analyzed and the results prove the impacts of those factors. Finally,according to the analysis and application limits,the prospect of the future research trend of particle size distribution is conducted.
10 CFR 960.5-2-1 - Population density and distribution.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that, during... specified in § 960.5-1(a)(1). (b) Favorable conditions. (1) A low population density in the general region...
Single-peak distribution model of particulate size for welding aerosols
Institute of Scientific and Technical Information of China (English)
施雨湘; 李爱农
2003-01-01
A large number of particulate size distributions of welding aerosols are measured by means of DMPS method, several distribution types are presented. Among them the single-peak distribution is the basic composing unit of particulate size. The research on the mathematic models and distributions functions shows that the single-peak distribution features the log-normal distribution. The diagram-estimating method (DEM) is a concise approach to dealing with distribution types, obtaining distribution functions for the particulate sizes of welding aerosols. It proves that the distribution function of particulate size possesses the extending property, being from quantity distribution to volume, as well as high-order moment distributions, with K-S method verifying the application of single-peak distribution and of DEM.
Nazir, Habiba; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Zhang, Yueling; Liu, Yuan; Ma, Guanghui
2012-12-01
Silicone oil droplets have limited deposition on hair due to electrostatic repulsion with negative surface charge of hair substrates. Aiming to improve silicone deposition on hair substrates, surface properties of uniform-sized silicone oil droplets (produced by membrane emulsification) were modified using layer-by-layer electrostatic deposition. By using this method, silicone oil droplets were coated with large molecular weight polymers, i.e. quaternized chitosan and alginate, and low molecular weight compounds, i.e. diallyl dimethyl ammonium chloride and glycerol to obtain six alternate layers of different surface charges. It was found that the dispersion of coated silicone oil droplets of narrow size distribution exhibited much improved mechanical strength and increased viscosity against shear compared to uncoated droplets. These multilayered silicone oil droplets were then added into model shampoos and conditioners to study the effect of charge and molecular weight of coating materials on silicone oil deposition on hair. The results clearly demonstrated that surface charge and charge density have significant influence on silicone oil deposition. Droplets with higher positive charge density resulted in increased deposition of silicone on hair due to electrostatic attraction. Characterization of the hair surface potential, wetting properties and friction certified the results further, showing reduced friction, decreased wetting angle and positive surface potential of high density positively charged silicone oil droplets. Therefore, LBL surface modification combined with membrane emulsification is a promising method for preparing multilayered silicone oil droplets of increased mechanical strength, viscosity and deposition on hair.
Ion energy distributions and densities in the plume of Enceladus
Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter
2016-10-01
Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local
Simulation of 2D Fields of Raindrop Size Distributions
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
Rank-size distribution and primate city characteristics in India--a temporal analysis.
Das, R J; Dutt, A K
1993-02-01
"This paper is an analysis of the historical change in city size distribution in India....Rank-size distribution at national level and primate city-size distribution at regional levels are examined....The paper also examines, in the Indian context, the relation between rank-size distribution and an integrated urban system, and the normative nature of the latter as a spatial organization of human society. Finally, we have made a modest attempt to locate the research on city-size distribution...." excerpt
Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History
Gopal, Divya; Nagendra, Harini; Manthey, Michael
2015-06-01
There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.
Czechowski, Zbigniew
2015-07-01
On the basis of simple cellular automaton, the microscopic mechanisms, which can be responsible for elongation of tails of cluster size distributions, were analyzed. It was shown that only the appropriate forms of rebound function can lead to inverse power tails if densities of the grid are small or moderate. For big densities, correlations between clusters become significant and lead to elongation of tails and flattening of the distribution to a straight line in log-log scale. The microscopic mechanism, given by the rebound function, included in simple 1D RDA can be projected on the geometric mechanism, which favours larger clusters in 2D RDA.
Both, C.
2000-01-01
The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One
Childhood body size and pubertal timing in relation to adult mammographic density phenotype.
Schoemaker, Minouk J; Jones, Michael E; Allen, Steven; Hoare, Jean; Ashworth, Alan; Dowsett, Mitch; Swerdlow, Anthony J
2017-02-07
An earlier age at onset of breast development and longer time between pubertal stages has been implicated in breast cancer risk. It is not clear whether associations of breast cancer risk with puberty or predictors of onset of puberty, such as weight and height, are mediated via mammographic density, an important risk factor for breast cancer. We investigated whether childhood body size and pubertal timing and tempo, collected by questionnaire, are associated with percentage and absolute area mammographic density at ages 47-73 years in 1105 women recruited to a prospective study. After controlling for adult adiposity, weight at ages 7 and 11 years was strongly significantly inversely associated with percentage and absolute dense area (p trend density (p trend = 0.016). Later age at menarche and age at when regular periods were established was associated with increased density, but additional adjustment for childhood weight attenuated the association. A longer interval between thelarche and menarche, and between thelarche and regular periods, was associated with increased dense area, even after adjusting for childhood weight (p trend = 0.013 and 0.028, respectively), and was independent of age at pubertal onset. Greater prepubertal weight and earlier pubertal onset are associated with lower adult breast density, but age at pubertal onset does not appear to have an independent effect on adult density after controlling for childhood adiposity. A possible effect of pubertal tempo on density needs further investigation.
Thermal Properties, Sizes, and Size Distribution of Jupiter-Family Cometary Nuclei
Fernandez, Y R; Lamy, P L; Toth, I; Groussin, O; Lisse, C M; A'Hearn, M F; Bauer, J M; Campins, H; Fitzsimmons, A; Licandro, J; Lowry, S C; Meech, K J; Pittichova, J; Reach, W T; Snodgrass, C; Weaver, H A
2013-01-01
We present results from SEPPCoN, an on-going Survey of the Ensemble Physical Properties of Cometary Nuclei. In this report we discuss mid-infrared measurements of the thermal emission from 89 nuclei of Jupiter-family comets (JFCs). All data were obtained in 2006 and 2007 with the Spitzer Space Telescope. For all 89 comets, we present new effective radii, and for 57 comets we present beaming parameters. Thus our survey provides the largest compilation of radiometrically-derived physical properties of nuclei to date. We conclude the following. (a) The average beaming parameter of the JFC population is 1.03+/-0.11, consistent with unity, and indicating low thermal inertia. (b) The known JFC population is not complete even at 3 km radius, and even for comets with perihelia near ~2 AU. (c) We find that the JFC nuclear cumulative size distribution (CSD) has a power-law slope of around -1.9. (d) This power-law is close to that derived from visible-wavelength observations, suggesting that there is no strong dependenc...
Tiller size/density compensation in grazed Tifton 85 bermudagrass swards
Directory of Open Access Journals (Sweden)
Sbrissia André Fischer
2003-01-01
Full Text Available The objective of this study was to evaluate the occurrence of the tiller size/density compensation mechanism in Tifton 85 bermudagrass swards grazed by sheep under continuous stocking. Treatments corresponded to four sward steady state conditions (5, 10, 15, and 20 cm of sward surface height, maintained by sheep grazing. The experimental design was a complete randomized block with four replicates. Pasture responses evaluated include: tiller population density, tiller mass, leaf mass and leaf area per tiller, and herbage mass. Tiller volume, leaf area index, tiller leaf/stem ratio, and tiller leaf area/volume ratio were calculated and simple regression analyses between tiller population density and tiller mass were performed. Measurements were made in December, 1998, and January, April, and July, 1999. The swards showed a tiller size/density compensation mechanism in which high tiller population densities were associated with small tillers and vice-versa, except in July, 1999. Regression analyses revealed that linear coefficients were steeper than the theoretical expectation of -3/2. Increments in herbage mass were attributable to increases in tiller mass in December and January. Leaf area/volume ratio values of Tifton 85 tillers were much lower than those commonly found for temperate grass species.
Li, Ming; Zhu, Wei; Guo, Lili; Hu, Jing; Chen, Huaimin; Xiao, Man
2016-11-01
The buoyancy of Microcystis colonies is a principal factor determining blooms occurrence but the knowledge of seasonal variation in buoyancy is quite poor because of challenge in analysis method. In this study, a method based on the Stokes’ Law after researching on the effects of shapes on settling velocity of Microcystis colonies, whose gas vesicles were collapsed, to accurately measure density was established. The method was used in Lake Taihu. From January to May, mean density of Microcystis colonies decreased from 995 kg m-3 to 978 kg m-3 and then increased to 992 kg m-3 in December. The density of colonies in different Microcystis species was in the order M. wesenbergii > M. aeruginosa > M. ichthyoblabe. For all the Microcystis species, the density of colonies with gas vasicles increased significantly along with the increase of colony size. Our results suggested that the main driving factor of Microcystis blooms formation in Lake Taihu was low density for M. ichthyoblabe from May to July but was large colony size for M. wesenbergii and M. aeruginosa from August to October.
Zenil-Ferguson, Rosana; Ponciano, José M; Burleigh, J Gordon
2016-07-01
Whole-genome duplications (WGDs) can rapidly increase genome size in angiosperms. Yet their mean genome size is not correlated with ploidy. We compared three hypotheses to explain the constancy of genome size means across ploidies. The genome downsizing hypothesis suggests that genome size will decrease by a given percentage after a WGD. The genome size threshold hypothesis assumes that taxa with large genomes or large monoploid numbers will fail to undergo or survive WGDs. Finally, the genome downsizing and threshold hypothesis suggests that both genome downsizing and thresholds affect the relationship between genome size means and ploidy. We performed nonparametric bootstrap simulations to compare observed angiosperm genome size means among species or genera against simulated genome sizes under the three different hypotheses. We evaluated the hypotheses using a decision theory approach and estimated the expected percentage of genome downsizing. The threshold hypothesis improves the approximations between mean genome size and simulated genome size. At the species level, the genome downsizing with thresholds hypothesis best explains the genome size means with a 15% genome downsizing percentage. In the genus level simulations, the monoploid number threshold hypothesis best explains the data. Thresholds of genome size and monoploid number added to genome downsizing at species level simulations explain the observed means of angiosperm genome sizes, and monoploid number is important for determining the genome size mean at the genus level. © 2016 Botanical Society of America.
Size-dependent error of the density functional theory ionization potential in vacuum and solution.
Sosa Vazquez, Xochitl A; Isborn, Christine M
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Energy Technology Data Exchange (ETDEWEB)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Student Difficulties in Learning Density: A Distributed Cognition Perspective
Xu, Lihua; Clarke, David
2012-01-01
Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in…
Energy Technology Data Exchange (ETDEWEB)
T.C. Eisele; S.K. Kawatra; H.J. Walqui
2004-10-01
The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This is being accomplished by mathematical modeling of the grinding circuits to determine how to correct this problem. The approaches taken included (1) Modeling of the circuit to determine process bottlenecks that restrict flowrates in one area while forcing other parts of the circuit to overgrind the material; (2) Modeling of hydrocyclones to determine the mechanisms responsible for retaining fine, high-density particles in the circuit until they are overground, and improving existing models to accurately account for this behavior; and (3) Evaluation of advanced technologies to improve comminution efficiency and produce sharper product size distributions with less overgrinding.
Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Huang, Ye; Chen, Yuanchen; Chen, Han; Tao, Shu
2015-01-01
Emissions and size distributions of 28 particle-bound polycyclic aromatic hydrocarbons (PAHs) from residential combustion of 19 fuels in a domestic cooking stove in rural China were studied. Measured emission factors of total PAHs were 1.79±1.55, 12.1±9.1, and 5.36±4.46 mg/kg for fuel wood, brushwood, and bamboo, respectively. Approximate 86.7, 65.0, and 79.7% of the PAHs were associated with fine particulate matter with size less than 2.1 µm for these three types of fuels. Statistically significant difference in emission factors and size distributions of particle-bound PAHs between fuel wood and brushwood was observed, with the former had lower emission factors but more PAHs in finer PM. Mass fraction of the fine particles associated PAHs was found to be positively correlated with fuel density and moisture, and negatively correlated with combustion efficiency. Low and high molecular weight PAHs segregated into the coarse and fine PM, respectively. The high accumulation tendency of the PAHs from residential wood combustion in fine particles implies strong adverse health impact. PMID:25678760
Jackman, T. M.; Morgan, S. R.; Barest, G. D.; Morgan, E. F.
2015-01-01
Summary This study's goal was to determine associations among the intravertebral heterogeneity in bone density, bone strength, and intervertebral disc (IVD) health. Results indicated that predictions of vertebral strength can benefit from considering the magnitude of the density heterogeneity and the congruence between the spatial distribution of density and IVD health. Introduction This study aims to determine associations among the intravertebral heterogeneity in bone density, bone strength, and IVD health Methods Regional measurements of bone density were performed throughout 30 L1 vertebral bodies using microcomputed tomography (μCT) and quantitative computed tomography (QCT). The magnitude of the intravertebral heterogeneity in density was defined as the interquartile range and quartile coefficient of variation in regional densities. The spatial distribution of density was quantified using ratios of regional densities representing different anatomical zones (e.g., anterior to posterior regional densities). Cluster analysis was used to identify groups of vertebrae with similar spatial distributions of density. Vertebral strength was measured in compression. IVD health was assessed using two scoring systems. Results QCT- and μCT-based measures of the magnitude of the intravertebral heterogeneity in density were strongly correlated with each other (p<0.005). Accounting for the interquartile range in regional densities improved predictions of vertebral strength as compared to predictions based only on mean density (R2=0.59 vs. 0.43; F-test p-value=0.018). Specifically, after adjustment for mean density, vertebral bodies with greater heterogeneity in density exhibited higher strength. No single spatial distribution of density was associated with high vertebral strength. Analyses of IVD scores suggested that the health of the adjacent IVDs may modulate the effect of a particular spatial distribution of density on vertebral strength. Conclusions Noninvasive
Tosheska, Katerina; Labudovic, Danica; Jovanova, Silvana; Jaglikovski, Branko; Alabakovska, Sonja
2011-08-01
Cholesteryl ester transfer protein (CETP) plays a key role in reverse cholesterol transport and high density lipoprotein (HDL) metabolism. Predominance of small, dense LDL particles is associated with an increased risk of atherosclerosis and coronary heart disease (CHD).The aim of the study was to determine the potential relationship between the CETP concentration and low density lipoprotein (LDL) particle size and their association with intima media thickness (IMT) in patients with CHD. Lipid parameters, CETP concentration and LDL particle size were determined in 100 healthy subjects (control group) and in 100 patients with CHD, aged 43 to 77 years. Plasma CETP concentrations were measured by an enzyme-linked immuno-sorbent assay with two different monoclonal antibodies. LDL subclasses were separated by nondenaturing polyacrilamide 3-31% gradient gel electrophoresis. CETP concentration was higher in patients compared to controls (2.02 ± 0.75 mg/ml vs. 1.74 ± 0.63 mg/ml, p<0.01). Mean LDL particle size (nm) was significantly smaller in patients than in controls (24.5 ± 1.1 vs. 26.1 ± 0.9; p<0.001). There was no relation between LDL particle size and CETP concentration (r=-0.1807, p=0.072). Age, diastolic blood pressure, CETP concentration and LDL particle size were independent factors for determing IMT by multiple linear regression analysis. They accounted for 35.2 % of the observed variability in IMT. CETP is not an independent contributor of LDL particle size. CETP might play a role in determining lipoprotein distributions, but did not seem to be the sole factor in the formation of small LDL particles.
Mammographic Breast Density in Chinese Women: Spatial Distribution and Autocorrelation Patterns.
Directory of Open Access Journals (Sweden)
Christopher W K Lai
Full Text Available Mammographic breast density (MBD is a strong risk factor for breast cancer. The spatial distribution of MBD in the breast is variable and dependent on physiological, genetic, environmental and pathological factors. This pilot study aims to define the spatial distribution and autocorrelation patterns of MBD in Chinese women aged 40-60. By analyzing their digital mammographic images using a public domain Java image processing program for segmentation and quantification of MBD, we found their left and right breasts were symmetric to each other in regard to their breast size (Total Breast Area, the amount of BMD (overall PD and Moran's I values. Their MBD was also spatially autocorrelated together in the anterior part of the breast in those with a smaller breast size, while those with a larger breast size tend to have their MBD clustered near the posterior part of the breast. Finally, we observed that the autocorrelation pattern of MBD was dispersed after a 3-year observation period.
Growth and change in the analysis of rank - size distributions: empirical findings
Malecki, E.J.
1980-01-01
This paper analyzes the interrelationships of city size and growthin the American Midwest from 1940 to 1970 in an effort to synthesize the study of urban growth rates and of city-size distributions. Changes in the rank - size distribution are related to the differential growth of different-size urban places; some relationship in changes over time is evident, but there is little correspondence in static analyses. The urban system analyzed by various threshold sizes examines the sensitivity of ...
Drop Size Distribution - Based Separation of Stratiform and Convective Rain
Thurai, Merhala; Gatlin, Patrick; Williams, Christopher
2014-01-01
For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective
Raindrop size distribution variability estimated using ensemble statistics
Directory of Open Access Journals (Sweden)
C. R. Williams
2009-02-01
Full Text Available Before radar estimates of the raindrop size distribution (DSD can be assimilated into numerical weather prediction models, the DSD estimate must also include an uncertainty estimate. Ensemble statistics are based on using the same observations as inputs into several different models with the spread in the outputs providing an uncertainty estimate. In this study, Doppler velocity spectra from collocated vertically pointing profiling radars operating at 50 and 920 MHz were the input data for 42 different DSD retrieval models. The DSD retrieval models were perturbations of seven different DSD models (including exponential and gamma functions, two different inverse modeling methodologies (convolution or deconvolution, and three different cost functions (two spectral and one moment cost functions.
Two rain events near Darwin, Australia, were analyzed in this study producing 26 725 independent ensembles of mass-weighted mean raindrop diameter D_{m} and rain rate R. The mean and the standard deviation (indicated by the symbols <x> and σx of D_{m} and R were estimated for each ensemble. For small ranges of <D_{m}> or <R>, histograms of σD_{m} and σR were found to be asymmetric, which prevented Gaussian statistics from being used to describe the uncertainties. Therefore, 10, 50, and 90 percentiles of σD_{m} and σR were used to describe the uncertainties for small intervals of <D_{m}> or <R>. The smallest D_{m} uncertainty occurred for <D_{m}> between 0.8 and 1.8 mm with the 90th and 50th percentiles being less than 0.15 and 0.11 mm, which correspond to relative errors of less than 20% and 15%, respectively. The uncertainty increased for smaller and larger <D_{m}> values. The uncertainty of R increased with <R>. While the 90th percentile
The Hierarchy Model of the Size Distribution of Centres
J. Tinbergen (Jan)
1968-01-01
textabstractWe know that human beings live in centres, that is, cities, towns and villages of different size. Both large and small centres have a number of advantages and disadvantages, different for different people and this is why we have a whole range of sizes. Statistically, we even find that th
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyo Jeong; Chandra, Saha Leton; Jang, Joon Kyung [Pusan National University, Busan (Korea, Republic of)
2007-10-15
Mie theory has been used to calculate the extinction of a gold nanoparticle in water by varying its diameter from 1 to 1000 nm. Utilizing this size-dependent theoretical spectrum, we have calculated the extinction spectrum of a colloidal gold by taking into account the size distribution of particle. Such calculation is in better agreement with experiment than the calculation without considering the size distribution. A least-squares fitting is used to deduce the size distribution from an experimental extinction spectrum. For particles with their diameters ranging from 10 to 28 nanometers, the fitting gives reasonable agreement with the size distribution obtained from tunneling electron microscope images.
Institute of Scientific and Technical Information of China (English)
Hong Tang; Xiaogang Sun; Guibin Yuan
2007-01-01
In total light scattering particle sizing technique, the relationship among Sauter mean diameter D32, mean extinction efficiency Q, and particle size distribution function is studied in order to inverse the mean diameter and particle size distribution simply. We propose a method which utilizes the mean extinction efficiency ratio at only two selected wavelengths to solve D32 and then to inverse the particle size distribution associated with (Q) and D32. Numerical simulation results show that the particle size distribution is inversed accurately with this method, and the number of wavelengths used is reduced to the greatest extent in the measurement range. The calculation method has the advantages of simplicity and rapidness.
DEFF Research Database (Denmark)
Sun, Yanqi; Yan, Fei; Cui, Xiaoyong
2014-01-01
The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato...... leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg-1 soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were...... unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination...
Predicting size effect on diffusion-limited current density of oxygen reduction by copper wire
Institute of Scientific and Technical Information of China (English)
LU Yonghong; XU Haibo; WANG Jia; ZHONG Lian
2011-01-01
The size effect of copper wire radius (0.04鈥?.82 mm) on the diffusion-limited current density of an oxygen reduction reaction in stagnant simulated seawater (naturally aerated 0.5 mol/L NaCl) is investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and compared with the results obtained in 0.5 mol/L H2SO4. In the oxygen diffusion-limited range, size effect is found to occur independent of electrolytes, which is attributed to non-linear diffusion. Additionally, to satisfy application in a marine setting, an empirical equation correlating oxygen diffusion-limited current density to copper wire radius is proposed by fitting experimental data.
Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2
Pajola, Maurizio; Lucchetti, Alice; Bertini, Ivano; Marzari, Francesco; A'Hearn, Michael F.; La Forgia, Fiorangela; Lazzarin, Monica; Naletto, Giampiero; Barbieri, Cesare
2016-01-01
Aims: We derive the size-frequency distribution of boulders on comet 103P/Hartley 2, which are computed from the images taken by the Deep Impact/HRI-V imaging system. We indicate the possible physical processes that lead to these boulder size distributions. Methods: We used images acquired by the High Resolution Imager-Visible CCD camera on 4 November 2010. Boulders ≥10 m were identified and manually extracted from the datasets with the software ArcGIS. We derived the global size-frequency distribution of the illuminated side of the comet (~50%) and identified the power-law indexes characterizing the two lobes of 103P. The three-pixel sampling detection, together with the shadowing of the surface, enables unequivocally detection of boulders scattered all over the illuminated surface. Results: We identify 332 boulders ≥10 m on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power law with index of -2.7 ± 0.2. The two lobes of 103P show similar indexes, i.e., -2.7 ± 0.2 for the bigger lobe (called L1) and -2.6+ 0.2/-0.5 for the smaller lobe (called L2). The similar power-law indexes and similar maximum boulder sizes derived for the two lobes both point toward a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. The difference in the number of boulders per km2 between L1 and L2 suggests that the more diffuse H2O sublimation on L1 produce twice the boulders per km2 with respect to those produced on L2 (primary activity CO2 driven). The 103P comet has a lower global power-law index (-2.7 vs. -3.6) with respect to 67P. The global differences between the two comets' activities, coupled with a completely different surface geomorphology, make 103P hardly comparable to 67P. A shape distribution analysis of boulders ≥30 m performed on 103P suggests that the cometary boulders show more elongated shapes
New general pore size distribution model by classical thermodynamics application: Activated carbon
Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.
2001-01-01
A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.
Drop size distributions and related properties of fog for five locations measured from aircraft
Zak, J. Allen
1994-01-01
Fog drop size distributions were collected from aircraft as part of the Synthetic Vision Technology Demonstration Program. Three west coast marine advection fogs, one frontal fog, and a radiation fog were sampled from the top of the cloud to the bottom as the aircraft descended on a 3-degree glideslope. Drop size versus altitude versus concentration are shown in three dimensional plots for each 10-meter altitude interval from 1-minute samples. Also shown are median volume radius and liquid water content. Advection fogs contained the largest drops with median volume radius of 5-8 micrometers, although the drop sizes in the radiation fog were also large just above the runway surface. Liquid water content increased with height, and the total number of drops generally increased with time. Multimodal variations in number density and particle size were noted in most samples where there was a peak concentration of small drops (2-5 micrometers) at low altitudes, midaltitude peak of drops 5-11 micrometers, and high-altitude peak of the larger drops (11-15 micrometers and above). These observations are compared with others and corroborate previous results in fog gross properties, although there is considerable variation with time and altitude even in the same type of fog.
Comparing spectral densities of stationary time series with unequal sample sizes
Hildebrandt, Thimo; Preuß, Philip
2012-01-01
This paper deals with the comparison of several stationary processes with unequal sample sizes. We provide a detailed theoretical framework on the testing problem for equality of spectral densities in the bivariate case, after which the generalization of our approach to the m dimensional case and to other statistical applications (like testing for zero correlation or clustering of time series data with different length) is straightforward. We prove asymptotic normality of an appropriately sta...
A grain size distribution model for non-catalytic gas-solid reactions
Heesink, Albertus B.M.; Prins, W.; van Swaaij, Willibrordus Petrus Maria
1993-01-01
A new model to describe the non-catalytic conversion of a solid by a reactant gas is proposed. This so-called grain size distribution (GSD) model presumes the porous particle to be a collection of grains of various sizes. The size distribution of the grains is derived from mercury porosimetry measur
Energy Technology Data Exchange (ETDEWEB)
Abramov, Yu.A. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)
1997-05-01
A simple new approach for the evaluation of the electronic kinetic energy density, G(r), from the experimental (multipole-fitted) electron density is proposed. It allows a quantitative and semi-quantitative description of the G(r) behavior at the bond critical points of compounds with closed-shell and shared interactions, respectively. This can provide information on the values of the kinetic electron energy densities at the bond critical points, which appears to be useful for quantum-topological studies of chemical interactions using experimental electron densities. (orig.).
Directory of Open Access Journals (Sweden)
A. G. Dugam
1999-07-01
Full Text Available Influence of boron content in boron-based pyrotechnic composition and particle size distribution of oxidiser, i.e., KNO3 in boron-based pyrotechnic composition is examined by subjecting these to various tests. Study on boron-based pyrotechnic compositions reveals that compositions with 20, 25 and 30 parts by weight of boron are promising igniter compositions wrt their calorimetric values, pressure maximum, ignition delay, etc. However, from sensitivity point of view, the composition with 30 parts of boron is more safe to handle, manufacture and use. From the study of particle size distribution of KNO3 in Mg- based pyrotechnic compositions, it is observed that the composition with wider particle size distribution of oxidiser gives better packing density for their binary miJQ with metal fuel, which in turn gives lower ignition delay and ignition temperature.
Insights into plant size-density relationships from models and agricultural crops.
Deng, Jianming; Zuo, Wenyun; Wang, Zhiqiang; Fan, Zhexuan; Ji, Mingfei; Wang, Genxuan; Ran, Jinzhi; Zhao, Changming; Liu, Jianquan; Niklas, Karl J; Hammond, Sean T; Brown, James H
2012-05-29
There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M(-3/4), energy use as M(0), and total biomass as M(1/4). Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M(-0.78), total resource use as M(-0.02), and total biomass as M(0.22); (iii) these scaling exponents are very close to the predicted values of M(-3/4), M(0), and M(1/4), respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences.
A generalized statistical model for the size distribution of wealth
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2012-12-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.
Particle size distribution and physico-chemical composition of clay.
African Journals Online (AJOL)
HP USER
obtained after acid digestion of clay samples were used in determining the elements by Atomic. Absorption ... ignition (LOI) reveal a general reduction in composition as particles sizes reduces. However, Mg .... Murray, H.H. Diagnostic Tests for.
Directory of Open Access Journals (Sweden)
Gabriela Pérez-Irineo
2014-12-01
Full Text Available The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22km2 during a two years period (March 2011-June, 2013, in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8 529 trap-days. Density of 22-38individuals/100km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%, and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h, but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas. Rev. Biol. Trop. 62 (4: 1421-1432. Epub 2014 December 01.
Finite-size effects in quasi-one-dimensional conductors with a charge-density wave
Energy Technology Data Exchange (ETDEWEB)
Zaitsev-Zotov, Sergei V [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation)
2004-06-30
Recent studies of finite-size effects in charge-density wave conductors are reviewed. Various manifestations of finite-size effects, including the transverse-size dependence of the nonlinear-conduction threshold field, the Peierls transition temperature, high-frequency conduction, and the relaxation rates of metastable states, are discussed. Resistivity jumps in thin samples, the smeared threshold field for nonlinear conduction, and threshold conduction above the Peierls transition temperature are considered, as are mesoscopic oscillations of the threshold field, one-dimensional conduction in thin crystals, absolute negative conductivity of quasi-one-dimensional conductors, the length dependence of the phase-slip voltage, and the Aharonov-Bohm oscillations in sliding CDWs. Problems yet to be solved are discussed. (reviews of topical problems)
Polarizabilities of Intermediate Sized Lithium Clusters From Density-Functional Theory
Zope, Rajendra R; Pederson, Mark R
2007-01-01
We present a detailed investigation of static dipole polarizability of lithium clusters containing up to 22 atoms. We first build a database of lithium clusters by optimizing several candidate structures for the ground state geometry for each size. Full polarizability tensor is determined for about 5-6 isomers of each cluster size using the finite-field method. All calculations are performed using large Gaussian basis sets, and within the generalized gradient approximation to the density functional theory, as implemented in the NRLMOL suite of codes. The average polarizability per atom varies from 11 to 9 Angstrom^3, within the 8-22 size range, in general agreement with experimental results. While the average polarizability exhibits a relatively weak dependence on cluster conformation, significant changes in the degree of anisotropy of the polarizability tensor are observed. Interestingly, in addition to the expected even odd (0 and 1 $\\mu_B$) magnetic states, our results show several cases where clusters wit...
Size distributions of sprays produced by violent wave impacts on vertical sea walls.
Watanabe, Y; Ingram, D M
2016-10-01
When a steep, breaking wave hits a vertical sea wall in shallow water, a flip-through event may occur, leading to the formation of an up-rushing planar jet. During such an event, a jet of water is ejected at a speed many times larger than the approaching wave's celerity. As the jet rises, the bounded fluid sheet ruptures to form vertical ligaments which subsequently break up to form droplets, creating a polydisperse spray. Experiments in the University of Hokkaido's 24 m flume measured the resulting droplet sizes using image analysis of high-speed video. Consideration of the mechanisms forming spray droplets shows that the number density of droplet sizes is directly proportional to a power p of the droplet radius: where p=-5/2 during the early break-up stage and p=-2 for the fully fragmented state. This was confirmed by experimental observations. Here, we show that the recorded droplet number density follows the lognormal probability distribution with parameters related to the elapsed time since the initial wave impact. This statistical model of polydisperse spray may provide a basis for modelling droplet advection during wave overtopping events, allowing atmospheric processes leading to enhanced fluxes of mass, moisture, heat and momentum in the spray-mediated marine boundary layer over coasts to be described.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High
Ubiquity of density slope oscillations in the central regions of galaxy and cluster-sized systems
Young, Anthony M; Hjorth, Jens
2016-01-01
One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function $f(E)$, or differential energy distribution $N(E)$, such as isothermal spheres, King profiles, or DARKexp, a theoretically derived model for relaxed collisionless systems. Systems defined through $f(E)$ or $N(E)$ generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at $\\log(r/r_{-2})\\lesssim -2$, where $r_{-2}$ is the largest radius where $d\\...
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density
Size distribution of rare earth elements in coal ash
Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.
2015-01-01
Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported.
Analysis of the relationship between landslides size distribution and earthquake source area
Valagussa, Andrea; Crosta, Giovanni B.; Frattini, Paolo; Xu, Chong
2014-05-01
The spatial distribution of earthquake induced landslides around the seismogenetic source has been analysed to better understand the triggering of landslides in seismic areas and to forecast the maximum distance at which an earthquake, with a certain magnitude, can induce landslides (e.g Keefer, 1984). However, when applying such approaches to old earthquakes (e.g 1929 Buller and 1968 Iningahua earthquakes New Zealand; Parker, 2013; 1976 Friuli earthquake, Italy) one should be concerned about the undersampling of smaller landslides which can be cancelled by erosion and landscape evolution. For this reason, it is important to characterize carefully the relationship between landslide area and number with distance from the source, but also the size distribution of landslides as a function of distance from the source. In this paper, we analyse the 2008 Wenchuan earthquake landslide inventory (Xu et al, 2013). The earthquake triggered more than 197,000 landslides of different type, including rock avalanches, rockfalls, translational and rotational slides, lateral spreads and derbies flows. First, we calculated the landslide intensity (number of landslides per unit area) and spatial density (landslide area per unit area) as a function of distance from the source area of the earthquake. Then, we developed magnitude frequency curves (MFC) for different distances from the source area. Comparing these curves, we can describe the relation between the distance and the frequency density of landslide in seismic area. Keefer D K (1984) Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421. Parker R N, (2013) Hillslope memory and spatial and temporal distributions of earthquake-induced landslides, Durham theses, Durham University. Xu, C., Xu, X., Yao, X., & Dai, F. (2013). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis
Directory of Open Access Journals (Sweden)
Fanny de Busserolles
Full Text Available The mesopelagic zone of the deep-sea (200-1000 m is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae. We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density, indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence, potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns. Depth distribution at night was a significant factor in most
de Busserolles, Fanny
2014-06-13
The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the
Density distribution of particles upon jamming after an avalanche in a 2D silo
Directory of Open Access Journals (Sweden)
Rodolfo O. Uñac
2015-05-01
Full Text Available We present a complete analysis of the density distribution of particles in a two dimensional silo after discharge. Simulations through a pseudo-dynamic algorithm are performed for filling and subsequent discharge of a plane silo. Particles are monosized hard disks deposited in the container and subjected to a tapping process for compaction. Then, a hole of a given size is open at the bottom of the silo and the discharge is triggered. After a clogging at the opening is produced, and equilibrium is restored, the final distribution of the remaining particles at the silo is analyzed by dividing the space into cells with different geometrical arrangements to visualize the way in which the density depression near the opening is propagated throughout the system. The different behavior as a function of the compaction degree is discussed. Received: 9 December 2014, Accepted: 13 April 2015; Edited by: L. A. Pugnaloni; Reviewed by: F. Vivanco, Dpto. de Física, Universidad de Santiago de Chile, Chile; DOI: http://dx.doi.org/10.4279/PIP.070007 Cite as: R. O. Uñac, J. L. Sales, M. V. Gargiulo, A. M. Vidales, Papers in Physics 7, 070007 (2015
Uddayasankar, Uvaraj; Krull, Ulrich J
2013-11-25
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7×10(11)particles cm(-2)) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed
Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011
Energy Technology Data Exchange (ETDEWEB)
Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.
2012-09-01
Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.
Tiller size/population density compensation in grazed Coastcross bermudagrass swards
Directory of Open Access Journals (Sweden)
Sbrissia André Fischer
2001-01-01
Full Text Available Several compensatory mechanisms in pastures do not allow optimisation of responses from the processes of herbage production and utilisation. Compensation due to tiller size/density relationships is one of these mechanisms. This experiment evaluated this process for Coastcross bermudagrass and compared the responses to those reported for temperate forages. Treatments were "steady state" sward surface heights of 5, 10, 15, and 20 cm that were maintained from August, 1998, through July, 1999 by sheep grazing. The experimental design was a randomised complete block, replicated four times. Pasture responses were evaluated on four separate dates (15/12/1998, 25/01/1999, 07/04/1999 and 04/07/1999 with respect to: tiller population density, tiller weight, leaf mass and leaf area per tiller and herbage mass (biomass. Tiller volume, leaf area index (LAI, tiller leaf:stem ratio and tiller leaf area:volume ratio (R were calculated. Simple regression analyses between tiller population density and tiller weight were also performed. Coastcross swards showed a tiller size/density compensation mechanism where high tiller population densities were associated with small tillers and vice-versa; except on the last evaluation. However, regression analysis revealed linear coefficients of -3.83 to -2.05, which are lower than the theoretical expectation of -3/2. The lower R values observed, when compared to those reported for perennial ryegrass, suggest that Coastcross swards optimised their LAI via clonal integration among tillers in contrast with tillers of cool-season grasses that respond more as individuals. However, this hypothesis has yet to be experimentally verified.
SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis
Ruiz-Martínez, Gabriel; Rivillas-Ospina, Germán Daniel; Mariño-Tapia, Ismael; Posada-Vanegas, Gregorio
2016-07-01
This paper presents a new computational tool called SANDY© which calculates the sediment size distribution and its textural parameters from a sieved sediment sample using Matlab®. The tool has been developed for professionals involved in the study of sediment transport along coastal margins, estuaries, rivers and desert dunes. The algorithm uses several types of statistical analyses to obtain the main textural characteristics of the sediment sample (D50, mean, sorting, skewness and kurtosis). SANDY© includes the method of moments (geometric, arithmetic and logarithmic approaches) and graphical methods (geometric, arithmetic and mixed approaches). In addition, it provides graphs of the sediment size distribution and its classification. The computational tool automatically exports all the graphs as enhanced metafile images and the final report is also exported as a plain text file. Parameters related to bed roughness such as Nikuradse and roughness length are also computed. Theoretical depositional environments are established by a discriminant function analysis. Using the uniformity coefficient the hydraulic conductivity of the sand as well as the porosity and void ratio of the sediment sample are obtained. The maximum relative density related to sand compaction is also computed. The Matlab® routine can compute one or several samples. SANDY© is a useful tool for estimating the sediment textural parameters which are the basis for studies of sediment transport.
Multi-component Erlang distribution of plant seed masses and sizes
Fan, San-Hong; Wei, Hua-Rong
2012-12-01
The mass and the size distributions of plant seeds are very similar to the multi-component Erlang distribution of final-state particle multiplicities in high-energy collisions. We study the mass, length, width, and thickness distributions of pumpkin and marrow squash seeds in this paper. The corresponding distribution curves are obtained and fitted by using the multi-component Erlang distribution. In the comparison, the method of χ2-testing is used. The mass and the size distributions of the mentioned seeds are shown to obey approximately the multi-component Erlang distribution with the component number being 1.
Formal Difference Analysis and Unification on p-Norm Distribution Density Functions
Institute of Scientific and Technical Information of China (English)
LIU Zhengcai; ZHU Jianjun; WANG Huaiyu
2006-01-01
The cause of the formal difference of p-norm distribution density functions is analyzed, two problems in the deduction of p-norm formulating are improved, and it is proved that two different forms of p-norm distribution density functions are equivalent. This work is useful for popularization and application of the p-norm theory to surveying and mapping.
Temperature Dependence of Particle Size Distribution in Transformer Oil-Based Ferrofluid
Józefczak, Arkadiusz; Hornowski, Tomasz; Skumiel, Andrzej
2011-04-01
The temperature dependence of the particle size distribution (PSD) of a transformer oil-based ferrofluid was studied using an ultrasound method. The measurements of the ultrasound velocity and attenuation were carried out in the absence of an external magnetic field as a function of the volume concentration of magnetite particles at temperatures ranging from 10 °C to 80 °C. The experimental results of ultrasound measurements were analyzed within the framework of the Vinogradov-Isakovich theory which takes into account contributions to acoustical parameters due to friction and heat exchange between magnetic particles and the surrounding carrier liquid. From the best fit of the experimental results and theoretical predictions, the parameters characterizing the PSD at different temperatures were determined. In order to analyze ultrasonic data, the density and viscosity of ferrofluid samples and the transformer oil were also measured.
Particle size distributions in and exhausted from a poultry house
Here we describe a study looking at the full particulate size range of particles in a poultry house. Agricultural particulates are typically thought of as coarse mode dust. But recent emphasis of PM2.5 regulations on pre-cursors such as ammonia and volatile organic compounds increasingly makes it ne...
HI column density distribution function at z=0 : Connection to damped Ly alpha statistics
Zwaan, Martin; Verheijen, MAW; Briggs, FH
We present a measurement of the HI column density distribution function f(N-HI) at the present epoch for column densities > 10(20) cm(-2). These high column densities compare to those measured in damped Ly alpha lines seen in absorption against background quasars. Although observationally rare, it
HI column density distribution function at z=0 : Connection to damped Ly alpha statistics
Zwaan, Martin; Verheijen, MAW; Briggs, FH
1999-01-01
We present a measurement of the HI column density distribution function f(N-HI) at the present epoch for column densities > 10(20) cm(-2). These high column densities compare to those measured in damped Ly alpha lines seen in absorption against background quasars. Although observationally rare, it a
Hassan, Md Kamrul; Haque, Syed Arefinul
2016-01-01
We investigate the growth of a class of networks in which a new node first picks a mediator at random and connects with $m$ randomly chosen neighbors of the mediator at each time step. We show that degree distribution in such a mediation-driven attachment (MDA) network exhibits power-law $P(k)\\sim k^{-\\gamma(m)}$ with a spectrum of exponents depending on $m$. To appreciate the contrast between MDA and Barab\\'{a}si-Albert (BA) networks, we then discuss their rank-size distribution. To quantify how long a leader, the node with the maximum degree, persists in its leadership as the network evolves, we investigate the leadership persistence probability $F(\\tau)$ i.e. the probability that a leader retains its leadership up to time $\\tau$. We find that it exhibits a power-law $F(\\tau)\\sim \\tau^{-\\theta(m)}$ with persistence exponent $\\theta(m) \\approx 1.51 \\ \\forall \\ m$ in the MDA networks and $\\theta(m) \\rightarrow 1.53$ exponentially with $m$ in the BA networks.
Hassan, Md. Kamrul; Islam, Liana; Haque, Syed Arefinul
2017-03-01
We investigate the growth of a class of networks in which a new node first picks a mediator at random and connects with m randomly chosen neighbors of the mediator at each time step. We show that the degree distribution in such a mediation-driven attachment (MDA) network exhibits power-law P(k) ∼k - γ(m) with a spectrum of exponents depending on m. To appreciate the contrast between MDA and Barabási-Albert (BA) networks, we then discuss their rank-size distribution. To quantify how long a leader, the node with the maximum degree, persists in its leadership as the network evolves, we investigate the leadership persistence probability F(τ) i.e. the probability that a leader retains its leadership up to time τ. We find that it exhibits a power-law F(τ) ∼τ - θ(m) with persistence exponent θ(m) ≈ 1.51 ∀ m in MDA networks and θ(m) → 1.53 exponentially with m in BA networks.
Energy Technology Data Exchange (ETDEWEB)
Ma, Chun-Wang; Bai, Xiao-Man; Yu, Jiao; Wei, Hui-Ling [Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China)
2014-09-15
The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich {sup 48}Ca. By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of {sup 48}Ca are obtained. The yields of fragments in the 80A MeV {sup 40,} {sup 48}Ca + {sup 12}C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Furukawa, Hiroyoshi; Hara, Tsuyoshi; Taniguchi, Tetsushi (Shimizu Kosei Hospital, Shizuoka (Japan))
1992-06-01
Evaluation of incremental dynamic CT scan and histologic findings were compared in order to clarify the cause of the differences in colorectal carcinoma as observed on CT after administration of contrast medium. In 48 cases demonstrated on postcontrast dynamic CT scan, the CT density of the tumor was homogeneous (Type 1) in 26 (54.2%) cases and heterogeneous (Type 2) in 22 (45.8%) cases. Well differentiated adenocarcinoma was seen as Type 1 in 11 of 13 (84.6%) cases while moderately differentiated adenocarcinoma was of Type 1 in 15 of 29 (51.7%) cases. Poorly differentiated and mucinous adenocarcinoma were detected as Type 2 in all cases. A comparison of CT types and tumor size showed that as tumor size increased, the number of Type 1 cases decreased while Type 2 cases increased. Histologically, high density areas consisted mainly of well-developed tubular, branching glands of adenocarcinoma, while low density areas were composed of fibrous or mucinous stroma or necrosis. Dynamic CT scans for colorectal cancer are useful not only for preoperative staging but also for tissue characterization. (author).
Directory of Open Access Journals (Sweden)
Karzan A. Omar
2013-11-01
Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.
Specification of Density Functional Approximation by Radial Distribution Function of Bulk Fluid
Institute of Scientific and Technical Information of China (English)
ZHOUShi－Qi
2002-01-01
A systematic methodology is proposed to deal with the weighted density approximation version of classical density functional theory by employing the knowledge of radial distribution function of bulk fluid.The present methodology results from the concept of universality of the free energy density functional combined with the test particle method.It is shown that the new method is very accurate for the predictions of density distribution of a hard sphere fluid at different confining geometries.The physical foundation of the present methodology is also applied to the quantum density functional theory.
City-size distributions and the world urban system in the twentieth century.
Ettlinger, N; Archer, J C
1987-09-01
"In this paper we trace and interpret changes in the geographical pattern and city-size distribution of the world's largest cities in the twentieth century. Since 1900 the geographical distribution of these cities has become increasingly dispersed; their city-size distribution by rank was nearly linear in 1900 and 1940, and convex in 1980. We interpret the convex distribution which emerged following World War 2 as reflecting an economically integrated but politically and demographically partitioned global urban system. Our interpretation of changes in size distribution of cities emphasizes demographic considerations, largely neglected in previous investigations, including migration and relative rates of population change."
Spurious finite-size instabilities in nuclear energy density functionals: Spin channel
Pastore, A.; Tarpanov, D.; Davesne, D.; Navarro, J.
2015-08-01
Background: It has been recently shown that some Skyrme functionals can lead to nonconverging results in the calculation of some properties of atomic nuclei. A previous study has pointed out a possible link between these convergence problems and the appearance of finite-size instabilities in symmetric nuclear matter (SNM) around saturation density. Purpose: We show that the finite-size instabilities not only affect the ground-state properties of atomic nuclei, but they can also influence the calculations of vibrational excited states in finite nuclei. Method: We perform systematic fully-self consistent random phase approximation (RPA) calculations in spherical doubly magic nuclei. We employ several Skyrme functionals and vary the isoscalar and isovector coupling constants of the time-odd term s .Δ s . We determine critical values of these coupling constants beyond which the RPA calculations do not converge because the RPA stability matrix becomes nonpositive. Results: By comparing the RPA calculations of atomic nuclei with those performed for SNM we establish a correspondence between the critical densities in the infinite system and the critical coupling constants for which the RPA calculations do not converge. Conclusions: We find a quantitative stability criterion to detect finite-size instabilities related to the spin s .Δ s term of a functional. This criterion could be easily implemented in the standard fitting protocols to fix the coupling constants of the Skyrme functional.
On the HI column density - radio source size anti-correlation in compact radio sources
Curran, S J; Glowacki, M; Whiting, M T; Sadler, E M
2013-01-01
Existing studies of the atomic hydrogen gas content in distant galaxies, through the absorption of the 21-cm line, often infer that the total column density is anti-correlated with the linear extent of the background radio source. We investigate this interpretation, by dissecting the various parameters from which the column density is derived, and find that the relationship is driven primarily by the observed optical depth, which, for a given absorber size, is anti-correlated with the linear size. Therefore, the inferred anti-correlation is merely the consequence of geometry, in conjunction with the assumption of a common spin temperature/covering factor ratio for each member of the sample, an assumption for which there is scant observational justification. While geometry can explain the observed correlation, many radio sources comprise two radio lobes and so we model the projected area of a two component emitter intercepted by a foreground absorber. From this, the observed optical depth/linear size relations...
Estimation of current density distribution of PAFC by analysis of cell exhaust gas
Energy Technology Data Exchange (ETDEWEB)
Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)
1996-12-31
To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.
Distribution of local density of states in superstatistical random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Abul-Magd, A.Y. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)]. E-mail: a_y_abul_magd@hotmail.com
2007-07-02
We expose an interesting connection between the distribution of local spectral density of states arising in the theory of disordered systems and the notion of superstatistics introduced by Beck and Cohen and recently incorporated in random matrix theory. The latter represents the matrix-element joint probability density function as an average of the corresponding quantity in the standard random-matrix theory over a distribution of level densities. We show that this distribution is in reasonable agreement with the numerical calculation for a disordered wire, which suggests to use the results of theory of disordered conductors in estimating the parameter distribution of the superstatistical random-matrix ensemble.
Size distribution of particle systems analyzed with organic photodetectors
Sentis, Matthias
2015-01-01
As part of a consortium between academic and industry, this PhD work investigates the interest and capabilities of organic photo-sensors (OPS) for the optical characterization of suspensions and two-phase flows. The principle of new optical particle sizing instruments is proposed to characterize particle systems confined in a cylinder glass (standard configuration for Process Analytical Technologies). To evaluate and optimize the performance of these systems, a Monte-Carlo model has been specifically developed. This model accounts for the numerous parameters of the system: laser beam profile, mirrors, lenses, sample cell, particle medium properties (concentration, mean & standard deviation, refractive indices), OPS shape and positions, etc. Light scattering by particles is treated either by using Lorenz-Mie theory, Debye, or a hybrid model (that takes into account the geometrical and physical contributions). For diluted media (single scattering), particle size analysis is based on the inversion of scatter...
Using ultrasound tomography to identify the distributions of density throughout the breast
Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark E.; Gierach, Gretchen L.
2016-04-01
Women with high breast density are at increased risk of developing breast cancer. Breast density has usually been defined using mammography as the ratio of fibroglandular tissue to total breast area. Ultrasound tomography (UST) is an emerging modality that can also be used to measure breast density. UST creates tomographic sound speed images of the patient's breast which is useful as sound speed is directly proportional to tissue density. Furthermore, the volumetric and quantitative information contained in the sound speed images can be used to describe the distribution of breast density. The work presented here measures the UST sound speed density distributions of 165 women with negative screening mammography. Frequency distributions of the sound speed voxel information were examined for each patient. In a preliminary analysis, the UST sound speed distributions were averaged across patients and grouped by various patient and density-related factors (e.g., age, body mass index, menopausal status, average mammographic breast density). It was found that differences in the distribution of density could be easily visualized for different patient groupings. Furthermore, findings suggest that the shape of the distributions may be used to identify participants with varying amounts of dense and non-dense tissue.
Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.
2015-01-01
The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998
Preparation of ceria with large particle size and high appearance density
Institute of Scientific and Technical Information of China (English)
WANG Songling; LIU Junyun; JIA Jiangtao; LIAO Chunsheng; YAN Chunhua
2008-01-01
Cerium is one of the most abundant rare earth dements in both bastnasite and monazite. Ceria has been widely used in optical catalytic, electrolyte, and sensor materials, with unique performances. With the development of functional materials, great interest has been focused on the synthesis and characterization of specific fine/mesoporous ceria powder. In this study, the modified precipitation and recrystallization processes combined with a controlled calcination process for fabricating the ceria with large particle size and high appearance density was reported. During precipitation, a certain amount of mineral acid such as nitric acid served as an additive, to adjust the precipitation and crystallization processes of cerium oxalates. An appropriate acidic condition could lead the process into the Oswald ripening stage and made the particles become bigger. Thus, the appearance density of powder was increased. The optimized conditions, such as the temperature, feeding speed, type and concentration of mineral acids, and the concentration of cerium-contained stock solution, were investigated and evaluated.
Numerical analysis of atomic density distribution in arc driven negative ion sources
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, T., E-mail: t.yamamoto@ppl.appi.keio.ac.jp; Shibata, T.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Kashiwagi, M.; Hanada, M. [Japan Atomic Energy Agency (JAEA), 801-1 Mukouyama, Naka 311-0193 (Japan); Sawada, K. [Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)
2014-02-15
The purpose of this study is to calculate atomic (H{sup 0}) density distribution in JAEA 10 ampere negative ion source. A collisional radiative model is developed for the calculation of the H{sup 0} density distribution. The non-equilibrium feature of the electron energy distribution function (EEDF), which mainly determines the H{sup 0} production rate, is included by substituting the EEDF calculated from 3D electron transport analysis. In this paper, the H{sup 0} production rate, the ionization rate, and the density distribution in the source chamber are calculated. In the region where high energy electrons exist, the H{sup 0} production and the ionization are enhanced. The calculated H{sup 0} density distribution without the effect of the H{sup 0} transport is relatively small in the upper region. In the next step, the effect should be taken into account to obtain more realistic H{sup 0} distribution.
Sanderson, Brian A; Sowersby, Drew S; Crosby, Sergio; Goss, Marcus; Lewis, L Kevin; Beall, Gary W
2013-12-01
Hydrotalcite (HT) and other layered double metal hydroxides are of great interest as gene delivery and timed release drug delivery systems and as enteric vehicles for biologically active molecules that are sensitive to gastric fluids. HT is a naturally occurring double metal hydroxide that can be synthesized as a nanomaterial consisting of a brucite structure with isomorphous substitution of aluminum ions. These positively charged nanoparticles exhibit plate-like morphology with very high aspect ratios. Biomolecules such as nucleic acids and proteins form strong associations with HT because they can associate with the positively charged layers. The binding of nucleic acids with HT and other nanomaterials is currently being investigated for potential use in gene therapy; however, the binding of specific nucleic acid forms, such as single- and double-stranded DNA, has been little explored. In addition, the effects of charge density and particle size on DNA adsorption has not been studied. In this paper, the binding of different forms of DNA to a series of HTs prepared at different temperatures and with different anion exchange capacities has been investigated. Experiments demonstrated that HTs synthesized at higher temperatures associate with both single- and double-stranded oligomers and circular plasmid DNA more tightly than HTs synthesized at room temperature, likely due to the hydrothermal conditions promoting larger particle sizes. HT with an anion exchange capacity of 300 meq/100 g demonstrated the highest binding of DNA, likely due to the closer match of charge densities between the HT and DNA. The details of the interaction of various forms of DNA with HT as a function of charge density, particle size, and concentration are discussed.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva
2017-02-01
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.
Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.
Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I
2016-03-15
Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.
Nagayama, T; Florido, R; Mayes, D; Tommasini, R; Koch, J A; Delettrez, J A; Regan, S P; Smalyuk, V A
2014-01-01
Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.
Effect of bubble size and density on methane conversion to hydrate
Energy Technology Data Exchange (ETDEWEB)
Leske, J.; Taylor, C.E.; Ladner, E.P.
2007-03-01
Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.
Convergence of the frequency-size distribution of global earthquakes
Bell, Andrew F.; Naylor, Mark; Main, Ian G.
2013-06-01
The Gutenberg-Richter (GR) frequency-magnitude relation is a fundamental empirical law of seismology, but its form remains uncertain for rare extreme events. Here, we show that the temporal evolution of model likelihoods and parameters for the frequency-magnitude distribution of the global Harvard Centroid Moment Tensor catalog is inconsistent with an unbounded GR relation, despite if being the preferred model at the current time. During the recent spate of 12 great earthquakes in the last 8 years, record-breaking events result in profound steps in favor of the unbounded GR relation. However, between such events the preferred model gradually converges to the tapered GR relation, and the form of the convergence cannot be explained by random sampling of an unbounded GR distribution. The convergence properties are consistent with a global catalog composed of superposed randomly-sampled regional catalogs, each with different upper bounds, many of which have not yet sampled their largest event.
Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores
Directory of Open Access Journals (Sweden)
Dańko R.
2017-03-01
Full Text Available The results of investigations of the influence of the matrix grain sizes on properties of cores made by the blowing method are presented in the hereby paper. Five kinds of matrices, differing in grain size compositions, determined by the laser diffraction method in the Analysette 22NanoTec device, were applied in investigations. Individual kinds of matrices were used for making core sands in the Cordis technology. From these sands the shaped elements, for determining the apparent density of compacted sands and their bending strength, were made by the blowing method. The shaped elements (cores were made at shooting pressures being 3, 4 and 5 atn. The bending strength of samples were determined directly after their preparation and after the storing time of 1 hour.
Size and density of East Greenland polar bear (Ursus maritimus) skulls
DEFF Research Database (Denmark)
Sonne, C.; Bechshøft, T.O.; Rigét, F.F.
2013-01-01
density (BMD) in 87 East Greenland male polar bears (Ursus maritimus) sampled in the time period of 1892-2010. The purpose of the study was to investigate if these measures are potential candidates as indicators for stress associated with climate change and long-range transported toxic industrial...... chemicals. The analyses showed that both BMD and CBL in polar bears sampled in period 4 (1999-2010, n = 57) were significantly lower when compared with period 2 (1920-1936, n = 19) (both p ... that BMD and body size have decreased in East Greenland polar bear males over the past 120 years and that exposure to organohalogen contaminants may explain the BMD reductions. It is, however, not entirely clear if and how climatic oscillations affected the reductions in body size and BMD mainly because...
Energy Technology Data Exchange (ETDEWEB)
S.K. Kawatra; T.C. Eisele; T. Weldum; D. Larsen; R. Mariani; J. Pletka
2005-07-01
The goal of this project was to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process were used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced could be minimized. The goal was to save energy by reducing the amount of material that was ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that were too fine to be useful. Extensive plant sampling and mathematical modeling of the grinding circuits was carried out to determine how to correct this problem. The approaches taken included (1) Modeling of the circuit to determine process bottlenecks that restrict flowrates in one area while forcing other parts of the circuit to overgrind the material; (2) Modeling of hydrocyclones to determine the mechanisms responsible for retaining fine, high-density particles in the circuit until they are overground, and improving existing models to accurately account for this behavior; and (3) Evaluation of the potential of advanced technologies to improve comminution efficiency and produce sharper product size distributions with less overgrinding. The mathematical models were used to simulate novel circuits for minimizing overgrinding and increasing throughput, and it is estimated that a single plant grinding 15 million tons of ore per year saves up to 82.5 million kWhr/year, or 8.6 x 10{sup 11} BTU/year. Implementation of this technology in the midwestern iron ore industry, which grinds an estimated 150 million tons of ore annually to produce over 50 million tons of iron ore concentrate, would save an estimated 1 x 10{sup 13} BTU/year.
Number size distributions and seasonality of submicron particles in Europe 2008-2009
Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; Leeuw, G. de; Henzing, B.; Harrison, R.M.; Beddows, D.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.
2011-01-01
Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle
An analysis of the size distribution of Italian firms by age
Cirillo, Pasquale
2010-02-01
In this paper we analyze the size distribution of Italian firms by age. In other words, we want to establish whether the way that the size of firms is distributed varies as firms become old. As a proxy of size we use capital. In [L.M.B. Cabral, J. Mata, On the evolution of the firm size distribution: Facts and theory, American Economic Review 93 (2003) 1075-1090], the authors study the distribution of Portuguese firms and they find out that, while the size distribution of all firms is fairly stable over time, the distributions of firms by age groups are appreciably different. In particular, as the age of the firms increases, their size distribution on the log scale shifts to the right, the left tails becomes thinner and the right tail thicker, with a clear decrease of the skewness. In this paper, we perform a similar analysis with Italian firms using the CEBI database, also considering firms’ growth rates. Although there are several papers dealing with Italian firms and their size distribution, to our knowledge a similar study concerning size and age has not been performed yet for Italy, especially with such a big panel.
A model study of the size and composition distribution of aerosols in an aircraft exhaust
Energy Technology Data Exchange (ETDEWEB)
Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)
1997-12-31
A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.
The Effects of Mergers and Acquisitions on the Firm Size Distribution
Cefis, E.; Marsili, O.; Schenk, E.J.J
2006-01-01
This paper provides new empirical evidence on the effects of mergers and acquisitions on the shape of the firm size distribution (FSD), by using data of the population of manufacturing firms in the Netherlands. Our analysis shows that M&As do not affect the size distribution when we consider the
The effects of mergers and acquisitions on the firm size distribution
Cefis, E.; Marsili, Orietta; Schenk, E.J.J.
2008-01-01
This paper provides new empirical evidence on the effects of mergers and acquisitions (M&As) on the shape of the firm size distribution, by using data of the population of manufacturing firms in the Netherlands. Our analysis shows that M&As do not affect the size distribution when we consider the
The effects of mergers and acquisitions on the firm size distribution
E. Cefis (Elena); O. Marsili (Orietta); H. Schenk (Hans)
2009-01-01
textabstractThis paper provides new empirical evidence on the effects of mergers and acquisitions (M&As) on the shape of the firm size distribution, by using data of the population of manufacturing firms in the Netherlands. Our analysis shows that M&As do not affect the size distribution when we
Kosmovskiĭ, S Iu; Vasin, S L; Rozanova, I B; Sevast'ianov, V I
1999-01-01
The paper proposes a method for mathematical treatment of the distribution of human platelets by sizes to detect the heterogeneity of cell populations. Its use allowed the authors to identify three platelet populations that have different parameters of size distribution. The proposed method opens additional vistas for analyzing the heterogeneity of platelet populations without sophisticating experimental techniques.
Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike
2016-09-06
Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones.
Evolving Molecular Cloud Structure and the Column Density Probability Distribution Function
Ward, Rachel L; Sills, Alison
2014-01-01
The structure of molecular clouds can be characterized with the probability distribution function (PDF) of the mass surface density. In particular, the properties of the distribution can reveal the nature of the turbulence and star formation present inside the molecular cloud. In this paper, we explore how these structural characteristics evolve with time and also how they relate to various cloud properties as measured from a sample of synthetic column density maps of molecular clouds. We find that, as a cloud evolves, the peak of its column density PDF will shift to surface densities below the observational threshold for detection, resulting in an underlying lognormal distribution which has been effectively lost at late times. Our results explain why certain observations of actively star-forming, dynamically older clouds, such as the Orion molecular cloud, do not appear to have any evidence of a lognormal distribution in their column density PDFs. We also study the evolution of the slope and deviation point ...
Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap
Institute of Scientific and Technical Information of China (English)
HAO Ya-Jiang
2011-01-01
By the density-functional calculation we investigate the ground-state properties of Bose-Fermi mixture confined in one-dimensional harmonic traps. The homogeneous mixture of bosons and polarized fermions with contact interaction can be exactly solved by the Bethe-ansatz method. After giving the exact formula of ground state energy density, we employ the local-density approximation to determine the density distribution of each component. It is shown that with the increase in interaction, the total density distribution evolves to Fermi-like distribution and the system exhibits phase separation between two components when the interaction is strong enough but finite. While in the infinite interaction limit both bosons and fermions display the completely same Fermi-like distributions and phase separation disappears.
Campoli, G; Baka, N; Kaptein, B L; Valstar, E R; Zachow, S; Weinans, H; Zadpoor, A A
2014-10-17
It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies.
3D Hail Size Distribution Interpolation/Extrapolation Algorithm
Lane, John
2013-01-01
Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.
New algorithm and system for measuring size distribution of blood cells
Institute of Scientific and Technical Information of China (English)
Cuiping Yao(姚翠萍); Zheng Li(李政); Zhenxi Zhang(张镇西)
2004-01-01
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.
Evidence of bimodal crystallite size distribution in {mu}c-Si:H films
Energy Technology Data Exchange (ETDEWEB)
Ram, Sanjay K. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: sanjayk.ram@gmail.com; Islam, Md. Nazrul [QAED-SRG, Space Application Centre (ISRO), Ahmedabad 380015 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2009-03-15
We report on the microstructural characterization studies carried out on plasma deposited highly crystalline undoped microcrystalline silicon films to explore the crystallite size distribution present in this material. The modeling of results of spectroscopic ellipsometry using two different sized crystallites is corroborated by the deconvolution of experimental Raman profiles using a modeling method that incorporates a bimodal size distribution of crystallites. The presence of a bimodal size distribution of crystallites is demonstrated as well by the results of atomic force microscopy and X-ray diffraction studies. The qualitative agreement between the results of different studies is discussed.
Experimental study on bubble size distributions in a direct-contact evaporator
Directory of Open Access Journals (Sweden)
Ribeiro Jr. C. P.
2004-01-01
Full Text Available Experimental bubble size distributions and bubble mean diameters were obtained by means of a photographic technique for a direct-contact evaporator operating in the quasi-steady-state regime. Four gas superficial velocities and three different spargers were analysed for the air-water system. In order to assure the statistical significance of the determined size distributions, a minimum number of 450 bubbles was analysed for each experimental condition. Some runs were also conducted with an aqueous solution of sucrose to study the solute effect on bubble size distribution. For the lowest gas superficial velocity considered, at which the homogeneous bubbling regime is observed, the size distribution was log-normal and depended on the orifice diameter in the sparger. As the gas superficial velocity was increased, the size distribution progressively acquired a bimodal shape, regardless of the sparger employed. The presence of sucrose in the continuous phase led to coalescence hindrance.
ON ESTIMATION AND HYPOTHESIS TESTING OF THE GRAIN SIZE DISTRIBUTION BY THE SALTYKOV METHOD
Directory of Open Access Journals (Sweden)
Yuri Gulbin
2011-05-01
Full Text Available The paper considers the problem of validity of unfolding the grain size distribution with the back-substitution method. Due to the ill-conditioned nature of unfolding matrices, it is necessary to evaluate the accuracy and precision of parameter estimation and to verify the possibility of expected grain size distribution testing on the basis of intersection size histogram data. In order to review these questions, the computer modeling was used to compare size distributions obtained stereologically with those possessed by three-dimensional model aggregates of grains with a specified shape and random size. Results of simulations are reported and ways of improving the conventional stereological techniques are suggested. It is shown that new improvements in estimating and testing procedures enable grain size distributions to be unfolded more efficiently.
Institute of Scientific and Technical Information of China (English)
Tao Zong-Ming; Zhang Yin-Chao; Liu Xiao-Qin; Tan Kun; Shao Shi-Sheng; Hu Huan-Ling; Zhang Gai-Xia; Lü Yong-Hui
2004-01-01
A new method is proposed to derive the size distribution of aerosol from the simulated multiwavelength lidar extinction coefficients. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting function covering the entire radius region of a distribution. The weighting functions are calculated exactly from Mie theory. This method extends the inversion region by subtracting some extinction coefficient. The radius range of simulated size distribution is 0.1-10.0μm, the inversion radius range is 0.1-2.0μm, but the inverted size distributions are in good agreement with the simulated one.
Shapiro, Allen M.; Evans, Chrsitopher E.; Hayes, Erin C.
2017-01-01
Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~ 0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix.
Shapiro, Allen M; Evans, Christopher E; Hayes, Erin C
2017-08-01
Characterizing properties of the rock matrix that control retention and release of chlorinated solvents is essential in evaluating the extent of contamination and the application of remediation technologies in fractured rock. Core samples from seven closely spaced boreholes in a mudstone subject to trichloroethene (TCE) contamination were analyzed using Mercury Intrusion Porosimetry to investigate porosity and pore size distribution as a function of mudstone characteristics, and depth and lateral extent in the aquifer; organic carbon content was also evaluated to identify the potential for adsorption. Porosity and retardation factor varied over two orders of magnitude, with the largest porosities and largest retardation factors associated with carbon-rich mudstone layers. Larger porosities were also measured in the shallow rock that has been subject to enhanced groundwater flow. Porosity also varied over more than an order of magnitude in spatially continuous mudstone layers. The analyses of the rock cores indicated that the largest pore diameters may be accessible to entry of the nonaqueous form of TCE. Although the porosity associated with the largest pore diameters is small (~0.1%), that volume of TCE can significantly affect the total TCE that is retained in the rock matrix. The dimensions of the largest pore diameters may also be accessible to microbes responsible for reductive dechlorination; however, the small percentage of the pore space that can accommodate microbes may limit the extent of reductive dechlorination in the rock matrix. Published by Elsevier B.V.
Moni, Christophe; Hatton, Pierre-Joseph; Bernd, Zeller; Derrien, Delphine; Markus, Kleber
2013-04-01
Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In the present communication we explore whether physical fractionation techniques isolate soil compartments meaningful and functionally relevant for the investigation of litter-derived nitrogen dynamics at the decadal time scale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of 15N labelled litter. Our approach consisted in representing the results of both fractionation procedures on a condensed scheme. First, principle component analysis (PCA) was used to reduce the set of organic matter related data (including C and N contents, C/N ratio, δ13C) to two independent variables or principal components (PC) that accounted for the majority of the data variability. The second step consisted of resolving the plane defined by the two principal components into contour maps of 15N label incorporation among physical fractions from both fractionation procedures. By doing this, dynamics of litter derived N transformation can be visualized as trajectories in the PCA plane. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined
Bihani, A. D.; Daigle, H.; Cook, A.; Glosser, D.; Shushtarian, A.
2015-12-01
Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.
Energy Technology Data Exchange (ETDEWEB)
Bihani, Abhishek [University of Texas at Austin; Daigle, Hugh [University of Texas at Austin; Cook, Ann [Ohio State University; Glosser, Deborah [Ohio State University; Shushtarian, Arash [University of Texas at Austin
2015-12-15
Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.
Why liquid displacement methods are sometimes wrong in estimating the pore-size distribution
Gijsbertsen-Abrahamse, A.J.; Boom, R.M.; Padt, van der A.
2004-01-01
The liquid displacement method is a commonly used method to determine the pore size distribution of micro- and ultrafiltration membranes. One of the assumptions for the calculation of the pore sizes is that the pores are parallel and thus are not interconnected. To show that the estimated pore size
A facile synthesis of Te nanoparticles with binary size distribution by green chemistry.
He, Weidong; Krejci, Alex; Lin, Junhao; Osmulski, Max E; Dickerson, James H
2011-04-01
Our work reports a facile route to colloidal Te nanocrystals with binary uniform size distributions at room temperature. The binary-sized Te nanocrystals were well separated into two size regimes and assembled into films by electrophoretic deposition. The research provides a new platform for nanomaterials to be efficiently synthesized and manipulated.
Bipartite Producer-Consumer Networks and the Size Distribution of Firms
Dahui, W; Zengru, D; Dahui, Wang; Li, Zhou; Zengru, Di
2005-01-01
A bipartite producer-consumer network is constructed to describe the industrial structure. The edges from consumer to producer represent the choices of the consumer for the final products and the degree of producer can represent its market share. So the size distribution of firms can be characterized by producer's degree distribution. The probability for a producer receiving a new consumption is determined by its competency described by initial attractiveness and the self-reinforcing mechanism in the competition described by preferential attachment. The cases with constant total consumption and with growing market are studied. The following results are obtained: 1, Without market growth and a uniform initial attractiveness $a$, the final distribution of firm sizes is Gamma distribution for $a>1$ and is exponential for $a=1$. If $a<1$, the distribution is power in small size and exponential in upper tail; 2, For a growing market, the size distribution of firms obeys the power law. The exponent is affected b...
Institute of Scientific and Technical Information of China (English)
Jianhua Chen; Hongfeng Zheng; Wei Wang; Hongjie Liu; Ling Lu; Linfa Bao; Lihong Ren
2006-01-01
Traffic-generated fugitive dust is a source of urban atmospheric particulate pollution in Beijing. This paper introduces the resuspension method, recommended by the US EPA in AP-42 documents, for collecting Beijing road-surface dust. Analysis shows a single-peak distribution in the number size distribution and a double-peak mode for mass size distribution of the road surface dust. The median diameter of the mass concentration distribution of the road dust on a high-grade road was higher than that on a low-grade road. The ratio of PM2.5 to PM10 was consistent with that obtained in a similar study for Hong Kong. For the two selected road samples, the average relative deviation of the size distribution was 10.9% and 11.9%. All results indicate that the method introduced in this paper can effectively determine the size distribution of fugitive dust from traffic.
On bimodal size distribution of spin clusters in the one dimensional Ising model
Ivanytskyi, A. I.; Chelnokov, V. O.
2015-01-01
The size distribution of geometrical spin clusters is exactly found for the one dimensional Ising model of finite extent. For the values of lattice constant $\\beta$ above some "critical value" $\\beta_c$ the found size distribution demonstrates the non-monotonic behavior with the peak corresponding to the size of largest available cluster. In other words, at high values of lattice constant there are two ways to fill the lattice: either to form a single largest cluster or to create many cluster...
Effect of the size distribution of nanoscale dispersed particles on the Zener drag pressure
Eivani, A.R.; Valipour, S.; Ahmed, H.; Zhou, J; Duszczyk, J.
2010-01-01
In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relationships. Microstructural observations indicated a clear correlation between the size distribution of dispersed particles and recrystallized grain sizes in the AA7020 aluminum alloy. However, the ex...
van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal d
Inversion of the Abel equation for toroidal density distributions
Ciotti, L
1999-01-01
In this paper I present three new results of astronomical interest concerning the theory of Abel inversion. 1) I show that in the case of a spatial emissivity that is constant on toroidal surfaces and projected along the symmetry axis perpendicular to the torus' equatorial plane, it is possible to invert the projection integral. From the surface (i.e. projected) brightness profile one then formally recovers the original spatial distribution as a function of the toroidal radius. 2) By applying the above-described inversion formula, I show that if the projected profile is described by a truncated off-center gaussian, the functional form of the related spatial emissivity is very simple and - most important - nowhere negative for any value of the gaussian parameters, a property which is not guaranteed - in general - by Abel inversion. 3) Finally, I show how a generic multimodal centrally symmetric brightness distribution can be deprojected using a sum of truncated off-center gaussians, recovering the spatial emis...
Specification of Density Functional Approximation by Radial Distribution Function of Bulk Fluid
Institute of Scientific and Technical Information of China (English)
ZHOU Shi-Qi
2002-01-01
A systematic methodology is proposed to deal with the weighted density approximation version of clas-sical density functional theory by employing the knowledge of radial distribution function of bulk fluid. The presentmethodology results from the concept of universality of the free energy density functional combined with the test particlemethod. It is shown that the new method is very accurate for the predictions of density distribution ofa hard sphere fluidat different confining geometries. The physical foundation of the present methodology is also applied to the quantumdensity functional theory.
Evaluation of mobile dislocation density based on distribution function of dislocation segments
Institute of Scientific and Technical Information of China (English)
周志敏; 孙艳蕊; 周海涛
2004-01-01
A function is offered to represent the distribution of reduced length of dislocation segments. The segment distribution of materials, e. g. , MgO and Cu, can be well described by taking appropriate values of parametersm and n. Based on this function, a model for evaluating the mobile dislocation density is developed. Provided the total dislocation density and applied stress are known, the mobile dislocation density could be readily assessed by using this model. For pure copper the mobile dislocation density and strain rates at deferent strains are evaluated. The calculated results are consistent with the known experimental data.
Energy Technology Data Exchange (ETDEWEB)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H., E-mail: B.H.Erne@uu.nl
2015-04-15
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment.
Pauling bond strength, bond length and electron density distribution
Energy Technology Data Exchange (ETDEWEB)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.
2014-01-18
A power law regression equation, /r)-0.21, determined for a large number of oxide crystals at ambient conditions and /r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/
Geospatial modeling of fire-size distributions in historical low-severity fire regimes
McKenzie, D.; Kellogg, L. B.; Larkin, N. K.
2006-12-01
Low-severity fires are recorded by fire-scarred trees. These records can provide temporal depth for reconstructing fire history because one tree may record dozens of separate fires over time, thereby providing adequate sample size for estimating fire frequency. Estimates of actual fire perimeters from these point-based records are uncertain, however, because fire boundaries can only be located approximately. We indirectly estimate fire-size distributions without attempting to establish individual fire perimeters. The slope and intercept of the interval-area function, a power-law relationship between sample area and mean fire-free intervals for that area, provide surrogates for the moments of a fire-size distribution, given a distribution of fire- free intervals. Analogously, by deconstructing variograms that use a binary distance measure (Sorensen's index) for the similarity of the time-series of fires recorded by pairs of recorder trees, we provide estimates of modal fire size. We link both variograms and interval-area functions to fire size distributions by simulating fire size distributions on neutral landscapes with and without right- censoring to represent topographic controls on maximum fire size. From parameters of the two functions produced by simulations we can back-estimate means and variances of fire sizes on real landscapes. This scale-based modeling provides a robust alternative to empirical and heuristic methods and a means to extrapolate estimates of fire-size distributions to unsampled landscapes.
Vertical profile and aerosol size distribution measurements in Iceland (LOAC)
Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Renard, Jean-Baptiste; Vignelles, Damien; Verdier, Nicolas
2014-05-01
Cold climate and high latitudes regions contain important dust sources where dust is frequently emitted, foremost from glacially-derived sediments of riverbeds or ice-proximal areas (Arnalds, 2010; Bullard, 2013). Iceland is probably the most active dust source in the arctic/sub-arctic region (Dagsson-Waldhauserova, 2013). The frequency of days with suspended dust exceeds 34 dust days annually. Icelandic dust is of volcanic origin; it is very dark in colour and contains sharp-tipped shards with bubbles. Such properties allow even large particles to be easily transported long distances. Thus, there is a need to better understand the spatial and temporal variability of these dusts. Two launch campaigns of the Light Optical Aerosols Counter (LOAC) were conducted in Iceland with meteorological balloons. LOAC use a new optical design that allows to retrieve the size concentrations in 19 size classes between 0.2 and 100 microm, and to provide an estimate of the main nature of aerosols. Vertical stratification and aerosol composition of the subarctic atmosphere was studied in detail. The July 2011 launch represented clean non-dusty season with low winds while the November 2013 launch was conducted during the high winds after dusty period. For the winter flight (performed from Reykjavik), the nature of aerosols strongly changed with altitude. In particular, a thin layer of volcanic dust was observed at an altitude of 1 km. Further LOAC measurements are needed to understand the implication of Icelandic dust to the Arctic warming and climate change. A new campaign of LAOC launches is planned for May 2014. Reference: Arnalds, O., 2010. Dust sources and deposition of aeolian materials in Iceland. Icelandic Agricultural Sciences 23, 3-21. Bullard, J.E., 2013. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes and Landforms 38, 71-89. Dagsson-Waldhauserova, P., Arnalds O., Olafsson H. 2013. Long-term frequency and characteristics of dust storm events in
Gondo, Y
1995-02-01
By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.
Western, L.; Watson, M.; Francis, P. N.
2014-12-01
Volcanic ash particle size distributions are critical in determining the fate of airborne ash in drifting clouds. A significant amount of global airspace is managed using dispersion models that rely on a single ash particle size distribution, derived from a single source - Hobbs et al., 1991. This is clearly wholly inadequate given the range of magmatic compositions and eruptive styles that volcanoes present. Available measurements of airborne ash lognormal particle size distributions show geometric standard deviation values that range from 1.0 - 2.5, with others showing mainly polymodal distributions. This paucity of data pertaining to airborne sampling of volcanic ash results in large uncertainties both when using an assumed distribution to retrieve mass loadings from satellite observations and when prescribing particle size distributions of ash in dispersion models. Uncertainty in the particle size distribution can yield order of magnitude differences to mass loading retrievals of an ash cloud from satellite observations, a result that can easily reclassify zones of airspace closure. The uncertainty arises from the assumptions made when defining both the geometric particle size and particle single scattering properties in terms of an effective radius. This has significant implications for airspace management and emphasises the need for an improved quantification of airborne volcanic ash particle size distributions.
Fissure formation in coke. 3: Coke size distribution and statistical analysis
Energy Technology Data Exchange (ETDEWEB)
D.R. Jenkins; D.E. Shaw; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences
2010-07-15
A model of coke stabilization, based on a fundamental model of fissuring during carbonisation is used to demonstrate the applicability of the fissuring model to actual coke size distributions. The results indicate that the degree of stabilization is important in determining the size distribution. A modified form of the Weibull distribution is shown to provide a better representation of the whole coke size distribution compared to the Rosin-Rammler distribution, which is generally only fitted to the lump coke. A statistical analysis of a large number of experiments in a pilot scale coke oven shows reasonably good prediction of the coke mean size, based on parameters related to blend rank, amount of low rank coal, fluidity and ash. However, the prediction of measures of the spread of the size distribution is more problematic. The fissuring model, the size distribution representation and the statistical analysis together provide a comprehensive capability for understanding and predicting the mean size and distribution of coke lumps produced during carbonisation. 12 refs., 16 figs., 4 tabs.
Directory of Open Access Journals (Sweden)
Han Liwei
2014-07-01
Full Text Available Monitoring data on an earth-rockfill dam constitutes a form of spatial data. Such data include much uncertainty owing to the limitation of measurement information, material parameters, load, geometry size, initial conditions, boundary conditions and the calculation model. So the cloud probability density of the monitoring data must be addressed. In this paper, the cloud theory model was used to address the uncertainty transition between the qualitative concept and the quantitative description. Then an improved algorithm of cloud probability distribution density based on a backward cloud generator was proposed. This was used to effectively convert certain parcels of accurate data into concepts which can be described by proper qualitative linguistic values. Such qualitative description was addressed as cloud numerical characteristics-- {Ex, En, He}, which could represent the characteristics of all cloud drops. The algorithm was then applied to analyze the observation data of a piezometric tube in an earth-rockfill dam. And experiment results proved that the proposed algorithm was feasible, through which, we could reveal the changing regularity of piezometric tube’s water level. And the damage of the seepage in the body was able to be found out.
Edge distribution and density in the characteristic sequence
Malliaris, M E
2009-01-01
The characteristic sequence of hypergraphs $$ associated to a formula $\\phi(x;y)$, introduced in [arXiv:0908.4111], is defined by $P_n(y_1,... y_n) = (\\exists x) \\bigwedge_{i\\leq n} \\phi(x;y_i)$. This paper continues the study of characteristic sequences, showing that graph-theoretic techniques, notably Szemer\\'edi's celebrated regularity lemma, can be naturally applied to the study of model-theoretic complexity via the characteristic sequence. Specifically, we relate classification-theoretic properties of $\\phi$ and of the $P_n$ (considered as formulas) to density between components in Szemer\\'edi-regular decompositions of graphs in the characteristic sequence. In addition, we use Szemer\\'edi regularity to calibrate model-theoretic notions of independence by describing the depth of independence of a constellation of sets and showing that certain failures of depth imply Shelah's strong order property $SOP_3$; this sheds light on the interplay of independence and order in unstable theories.
Estimating Functions of Distributions Defined over Spaces of Unknown Size
Directory of Open Access Journals (Sweden)
David H. Wolpert
2013-10-01
Full Text Available We consider Bayesian estimation of information-theoretic quantities from data, using a Dirichlet prior. Acknowledging the uncertainty of the event space size m and the Dirichlet prior’s concentration parameter c, we treat both as random variables set by a hyperprior. We show that the associated hyperprior, P(c, m, obeys a simple “Irrelevance of Unseen Variables” (IUV desideratum iff P(c, m = P(cP(m. Thus, requiring IUV greatly reduces the number of degrees of freedom of the hyperprior. Some information-theoretic quantities can be expressed multiple ways, in terms of different event spaces, e.g., mutual information. With all hyperpriors (implicitly used in earlier work, different choices of this event space lead to different posterior expected values of these information-theoretic quantities. We show that there is no such dependence on the choice of event space for a hyperprior that obeys IUV. We also derive a result that allows us to exploit IUV to greatly simplify calculations, like the posterior expected mutual information or posterior expected multi-information. We also use computer experiments to favorably compare an IUV-based estimator of entropy to three alternative methods in common use. We end by discussing how seemingly innocuous changes to the formalization of an estimation problem can substantially affect the resultant estimates of posterior expectations.
Martín Blanco, F; González Sansón, G; Pina Amargós, F; Clero Alonso, L
2010-06-01
The 1983-1984 mass mortality event of Diadema antillarum affected more than 93% of the total Caribbean population. Although there are no records about the status of Diadema populations before and after die-off on Cuban reefs, anecdotal information suggests that populations were struck. We analyzed spatial variation in the abundance and size structure of D. antillarum in 22 reefs sites in Jardines de la Reina, from June 2004 to September 2005. Counts of Diadema were performed in five 30x2 m transects at each sampling site and sampling time, and test diameters were measured in September 2005 at the same fore reefs. Abundances were higher at reef crests (mean densities 0.08-2.18 ind./m2), while reef slope populations reached a maximum site level of 0.13 ind./m2 at only one site and showed values up to three orders of magnitude lower than those from reef crests. Highest abundance occurred at the west margin of major channels between keys where larval recruitment seems to be favored by local oceanographic features and facilitated by the abundance of Echinometra lucunter. The size frequency distribution of D. antillarum indicates that recruitment began to be noticeable three years before September 2005, suggesting these populations were depleted in the past and they are recovering now.
Verdian, J. P.; Sklar, L. S.; Moore, J. R.; Rosenberg, D. J.
2016-12-01
What controls the size of sediments produced on hillslopes and supplied to river channels? This is an important but unanswered question in geomorphology and sedimentology. One hypothesis is that the initial size distribution of rock fragments eroded from bedrock is related to the distribution of spacing between pre-existing fractures in the bedrock. Slopes of talus that accumulate below eroding cliffs provide a simple natural experiment to test this hypothesis. We studied talus slopes and cliff faces at more than 20 locations in California, USA, where cliff retreat rates were previously measured by Moore et al., 2009. Rock types included andesite, basalt, granodiorite and meta-sediment. To quantify fracture spacing we measured fracture frequency and orientation along scan lines at the base of the cliff. We also used scaled photographs of the cliff face to characterize the shape, size and surface area of discrete blocks. We measured talus particle size distributions using surface point counts along transects oriented downslope from the cliff face, and mapped facies of distinct size distributions. To explore the effect of chemical weathering on talus size we sampled cliff faces and talus particles for x-ray fluorescence analysis to test for depletion of labile cations relative to source rock. Preliminary results suggest that talus size distributions are strongly correlated with bedrock fracture spacing, although systematic differences do occur. In some cases, talus sizes are larger than the spacing between fractures because the detached particles still retain truncated fractures. In other cases, talus is smaller than cliff fracture spacing, presumably because particle size is reduced by fragmentation on impact and weathering during transport down the talus slope. Further analysis will explore whether cliff retreat rate and extent of chemical weathering, as well as rock type and local climate, can explain between-site differences in the size of particles produced.
Are range-size distributions consistent with species-level heritability?
DEFF Research Database (Denmark)
Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten
2012-01-01
been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output...... of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability......The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...
Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies
McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.
2010-01-01
This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.
Magnetic pattern at supergranulation scale: the Void Size Distribution
Berrilli, Francesco; Del Moro, Dario
2014-01-01
The large-scale magnetic pattern of the quiet sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large scale cells of overturning plasma and exhibits voids in magnetic organization. Such voids include internetwork fields, a mixed-polarity sparse field that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern a fast circle packing based algorithm is applied to 511 SOHO/MDI high resolution magnetograms acquired during the outstanding solar activity minimum between 23 and 24 cycles. The computed Void Distribution Function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in such a range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay we have found that the voids reveal departure from a simple exponential decay around 35 Mm.
Lehtipalo, Katrianne; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimmer, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R; Kulmala, Markku
2014-01-01
The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive these directly from measurements in the size range below about 3 nm. The Airmodus Particle Size Magnifier has been used at the SMEAR II station in Hyytiälä, southern Finland, and during nucleation experiments in the CLOUD chamber at CERN for measuring particles as small as about 1 nm in mobility diameter. We developed several methods to determine the particle size distribution and growth rates in the size range of 1–3 nm from these data sets. Here we introduce the appearance-time method for calculating initial growth rates. The validity of the method was tested by simulations with the Ion-UHMA aerosol dynamic model.
Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem
Macleod, Amy C.; Boyd, Kristina L; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F; Annis, Kim; Graves, Tabitha A.
2016-01-01
The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study
Sifting attacks in finite-size quantum key distribution
Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.
2016-05-01
A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.
Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F
Institute of Scientific and Technical Information of China (English)
Daisaku Sakaguchi; Oluwo le Amida; Hironobu Ueki; Masahiro Ishida
2008-01-01
In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 μm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.
A study of the drop size distributions and hold-up in short Kühni columns
Directory of Open Access Journals (Sweden)
N. S. Oliveira
2008-12-01
Full Text Available The hydrodynamic behaviour of a short Kühni column was investigated under no mass transfer conditions using the binary system water (continuous phase and Exxsol D-80 (dispersed phase. The counter-current flow pattern of the liquid phases was characterised regarding the Sauter mean drop diameter, drop size distribution and hold-up; a photographic method was used to assess drop sizes. The following operating variables were studied: rotor speed, flow rate of both liquid phases and column stage. The log-normal probability density function was found to be adequate to fit the experimental drop size distributions along the column. As expected, smaller drops and more uniform drop size distributions were obtained with the increase of rotor speed and column stage number, thus indicating the predominance of drop breakage phenomena in short columns. The total hold-up was influenced mainly by rotor speed and flow rate of the dispersed phase. Recommended correlations available in the literature were found to be inadequate for predicting experimental drop sizes and hold-up, so alternative expressions, valid only for short Kühni columns, were proposed.
Okuzumi, Satoshi; Takeuchi, Taku; Sakagami, Masa-aki
2010-01-01
Collisional growth of submicron-sized dust grains into macroscopic aggregates is the first step of planet formation in protoplanetary disks. These aggregates are considered to carry nonzero negative charges in the weakly ionized gas disks, but its effect on their collisional growth has not been fully understood so far. In this paper, we investigate how the charging of dust aggregates affects the evolution of their size distribution properly taking into account the charging mechanism in a weakly ionized gas. To clarify the role of the size distribution, we divide our analysis into two steps. First, we analyze the collisional growth of charged aggregates assuming a monodisperse (i.e., narrow) size distribution. We show that the monodisperse growth stalls due to the electrostatic repulsion when a certain condition is met, as is already expected in the previous work. Second, we numerically simulate dust coagulation using Smoluchowski's method to see how the outcome changes when the size distribution is allowed to...
Earthquake Size Distribution: Power-Law with Exponent Beta = 1/2 ?
Kagan, Yan Y
2009-01-01
We propose that the widely observed and universal Gutenberg-Richter relation is a mathematical consequence of the critical branching nature of earthquake process in a brittle fracture environment. These arguments, though preliminary, are confirmed by recent investigations of the seismic moment distribution in global earthquake catalogs and by the results on the distribution in crystals of dislocation avalanche sizes. We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter beta of the power-law distribution of earthquake sizes. In particular we find that the decrease in relative moment uncertainties with earthquake size causes inflation in the beta-value by about 1-3%. Moreover, earthquake clustering greatly influences the beta-parameter. If clusters (aftershock sequences) are taken as the entity to be studied, then the exponent value for their size distribution would decrease by 5-10%. The complexity ...
Does the size distribution of mineral dust aerosols depend on the wind speed at emission?
Directory of Open Access Journals (Sweden)
J. F. Kok
2011-07-01
Full Text Available The size distribution of mineral dust aerosols greatly affects their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical dust emission models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. This finding is consistent with the recently formulated brittle fragmentation theory of dust emission, but inconsistent with other theoretical dust emission models. The independence of the emitted dust size distribution with wind speed simplifies both the parameterization of dust emission in atmospheric circulation models as well as the interpretation of geological records of dust deposition.
Does the size distribution of mineral dust aerosols depend on the wind speed at emission?
Kok, Jasper F
2011-01-01
The size distribution of mineral dust aerosols partially determines their interactions with clouds, radiation, ecosystems, and other components of the Earth system. Several theoretical models predict that the dust size distribution depends on the wind speed at emission, with larger wind speeds predicted to produce smaller aerosols. The present study investigates this prediction using a compilation of published measurements of the size-resolved vertical dust flux emitted by eroding soils. Surprisingly, these measurements indicate that the size distribution of naturally emitted dust aerosols is independent of the wind speed. The recently formulated brittle fragmentation theory of dust emission is consistent with this finding, whereas other theoretical dust emission models are not. The independence of the emitted dust size distribution with wind speed simplifies both the interpretation of geological records of dust deposition and the parameterization of dust emission in atmospheric circulation models.
Distribution and Size of Pyroxenite Bodies in the Mantle
Herzberg, C.
2006-12-01
lower in pyroxenite-source lavas owing to higher melt fractions. Peridotite-source lavas for the above-mentioned OIB from the Atlantic, Cook-Austral in the Pacific, and Turkana in East Africa have HIMU and FOZO isotopic characteristics, and have low Y/Nb and Zr/Nb. In contrast, peridotite-source lavas from the Caribbean, Ontong Java and North Atlantic display greater isotopic and trace element variability, indicating variable mixing and degradation of subducted crust. Pyroxenite is likely to range in size from grain boundary films to shield volcanoes.
Hirashita, Hiroyuki
2014-01-01
Full calculations of the evolution of grain size distribution in galaxies are in general computationally heavy. In this paper, we propose a simple model of dust enrichment in a galaxy with a simplified treatment of grain size distribution by imposing a `two-size approximation'; that is, all the grain population is represented by small (grain radius a 0.03 micron) grains. We include in the model dust supply from stellar ejecta, destruction in supernova shocks, dust growth by accretion, grain growth by coagulation and grain disruption by shattering, considering how these processes work on the small and large grains. We show that this simple framework reproduces the main features found in full calculations of grain size distributions as follows. The dust enrichment starts with the supply of large grains from stars. At a metallicity level referred to as the critical metallicity of accretion, the abundance of the small grains formed by shattering becomes large enough to rapidly increase the grain abundance by acc...
Intensity and degree of segregation in bimodal and multimodal grain size distributions
Katra, Itzhak; Yizhaq, Hezi
2017-08-01
The commonly used grain size analysis technique which applies moments (sorting, skewness and kurtosis) is less useful in the case of sediments with bimodal size distributions. Herein we suggest a new simple method for analyzing the degree of grain size segregation in sand-sized sediment that has clear bimodal size distributions. Two main features are used to characterize the bimodal distribution: grain diameter segregation, which is the normalized difference between coarse and fine grain diameters, and the frequency segregation which is the normalized difference in frequencies between two modes. The new defined indices can be calculated from frequency plot curves and can be graphically represented on a two dimensional coordinate system showing the dynamical aspects of the size distribution. The results enable comparison between granular samples from different locations and/or times to shed new light on the dynamic processes involved in grain size segregation of sediments. We demonstrate here the use of this method to analyze bimodal distributions of aeolian granular samples mostly from aeolian megaripples. Six different aeolian cases were analyzed to highlight the method's applicability, which is relevant to wide research themes in the Earth and environmental sciences, and can furthermore be easily adapted to analyze polymodal grain size distributions.
Gianazza, Elisabetta; Eberini, Ivano; Sirtori, Cesare R; Franceschini, Guido; Calabresi, Laura
2002-08-15
Lipid-free apolipoprotein A-I (apoA-I) and A-I(Milano) (A-I(M)) were compared for their denaturation behaviour by running across transverse gradients of a chaotrope, urea, and of a ionic detergent, SDS. For both apo A-I and monomeric apoA-I(M) in the presence of increasing concentrations of urea the transition from high to low mobility had a sigmoidal course, whereas for dimeric A-I(M)/A-I(M) a non-sigmoidal shape was observed. The co-operativity of the unfolding process was lower for dimeric A-I(M)/A-I(M) than for apoA-I or for monomeric apoA-I(M). A slightly higher susceptibility to denaturation was observed for dimeric A-I(M)/A-I(M) than for monomeric apoA-I(M). A similar behaviour of A-I(M)/A-IM versus apoA-I(M) was observed in CD experiments. Large- (12.7/12.5 nm) and small- (7.8 nm) sized reconstituted high-density lipoproteins (rHDL) containing either apoA-I or A-I(M)/A-I(M) were compared with respect to their protein-lipid dissociation behaviour by subjecting them to electrophoresis in the presence of urea, of SDS and of a non-ionic detergent, Nonidet P40. A higher susceptibility to dissociation of small-sized versus large-sized rHDL, regardless of the apolipoprotein component, was observed in all three instances. Our data demonstrate that the differential plasticity of the various classes of rHDL is a function of their size; the higher stability of 12.5/12.7 nm rHDL is likely connected to the higher number of protein-lipid and lipid-lipid interactions in larger as compared with smaller rHDL.
Guo, Sun-Wei; Zheng, Yu; Lu, Yuan; Liu, Xishi; Geng, Jian-Guo
2013-03-01
We recently reported that Slit/Roundabout (ROBO) 1 pathway may be a constituent biomarker for recurrence of endometriosis, likely through promoting angiogenesis. In this study, we sought to determine as whether Slit2 overexpression can facilitate angiogenesis, increase lesion size, and induce hyperalgesia in mice with induced endometriosis. We used 30 Slit2 transgenic (S) and 29 wild-type (W) mice and cross-transplanted endometrial fragments from S to W (group SW) and vice versa (group WS), and also within the S and W (groups SS and WW, respectively), into the peritoneal cavity, inducing endometriosis. We also performed a sham surgery within both S and W mice (groups Sm and Wm, respectively). The size of the ectopic implants, microvessel density (MVD) and immunoreactivity to ROBO1, and vascular endothelial cell growth factor (VEGF) in ectopic and eutopic endometrium, along with hotplate and tail-flick tests in all mice, were then evaluated. We found that the induction of endometriosis resulted in generalized hyperalgesia, which was unaffected by Slit2 overexpression. Slit2 overexpression did increase the lesion size significantly and correlated positively with the MVD in ectopic and eutopic endometrium. Slit2 expression levels appear to correlate with the MVD, but not with VEGF immunoreactivity, in ectopic endometrium. Consequently, we conclude that Slit2 may play an important role in angiogenesis in endometriosis. The increased angiogenesis, as measured by MVD, but not VEGF immunoreactivity, likely resulted in increased lesion size in induced endometriosis. Thus, SLIT2/ROBO1 pathway may be a potential therapeutic target for treating endometriosis.
Influence of stress-path on pore size distribution in granular materials
Directory of Open Access Journals (Sweden)
Das Arghya
2017-01-01
Full Text Available Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.
Influence of stress-path on pore size distribution in granular materials
Das, Arghya; Kumar, Abhinav
2017-06-01
Pore size distribution is an important feature of granular materials in the context of filtration and erosion in soil hydraulic structures. Present study focuses on the evolution characteristics of pore size distribution for numerically simulated granular assemblies while subjected to various compression boundary constrain, namely, conventional drained triaxial compression, one-dimensional or oedometric compression and isotropic compression. We consider the effects initial packing of the granular assembly, loose or dense state. A simplified algorithm based on Delaunay tessellation is used for the estimation of pore size distribution for the deforming granular assemblies at various stress states. The analyses show that, the evolution of pore size is predominantly governed by the current porosity of the granular assembly while the stress path or loading process has minimal influence. Further it has also been observed that pore volume distribution reaches towards a critical distribution at the critical porosity during shear enhanced loading process irrespective of the deformation mechanism either compaction or dilation.
Xiao, Zhiyong
2016-12-01
Accumulation of impact craters is the major reason causing equilibrium of crater populations on airless planetary surfaces. Besides primary craters, the effect of widespread secondaries on the equilibrium of local crater populations is little studied. Here the different secondary crater populations formed by the Hokusai crater on Mercury are systematically studied, and they are compared with those on the Moon to investigate their contribution to the evolution of local crater populations. Self-secondaries cause equilibrium on continuous ejecta deposits in a short time, and the equilibrium crater population has a differential size-frequency distribution (SFD) slope of about -3. Background secondaries are abundant on Mercury, and equilibrium caused by a combination of primaries and potential background secondaries follows the same pattern on the Moon and Mercury. The spatial dispersion of fragments that form both near-field and distant secondaries is the major factor affecting the degree of mutual destruction and thus the final crater SFD. Some clustered distant secondaries on Mercury are likely formed by individual fragments considering their large spatial dispersion and identical morphology with same-sized primaries, and the SFD rollovers of these secondaries possibly reflect the inherent SFD rollovers of the impact fragments. Near-field secondaries and many other distant secondaries have morphology and spatial distribution that are consistent with being formed by clustered fragments, and mutual destruction of secondaries may be the major reason causing the observed SFD rollovers. Heterogeneous secondary impacts are a potential explanation for both different crater densities within the equilibrium diameter range and different regolith thicknesses on coeval surfaces.
Kim, Kwang Pyo; Wu, Chang-Yu; Birky, Brian K; Bolch, Wesley E
2006-07-01
Previous studies have indicated that inhalation exposures to TENORM aerosols are potentially a major contributor to the annual total effective dose to workers in the Florida phosphate industry. Further research was deemed necessary to characterize the particle size distribution of these aerosols containing various radionuclides of the U decay series. In the present study, individualized assessments of worker committed effective doses are reported in which detailed information is used on the particle size distribution, particle density, particle shape, and radioactivity concentrations from sampled aerosols at 6 different phosphate facilities and at various worker areas within these facilities. Inhalation dose assessments are calculated using the ICRP 66 human respiratory tract model as implemented within the LUDEP and IMBA computer codes. Under the least conservative assumptions of radionuclide-specific lung solubility, the annual total effective doses are shown to be 0.31+/-0.12, 0.27+/-0.07, and 0.22+/-0.02 mSv at granulator, storage, and shipping areas, respectively, and thus all annual doses are below the annual limits to the members of the general public (1 mSv y). In contrast, the most conservative assumptions of lung solubility by radionuclide yield annual total effective doses of 2.24+/-2.53 mSv at granulator areas, 1.26+/-1.19 mSv at storage areas, and 0.56+/-0.36 mSv at shipping areas. In this later case, some 44%, 31%, and 15% of individual dose assessments yield worker doses above the annual dose limit. The study thus demonstrates the importance of facility- and area-specific particle solubility data in dose assessments for regulatory compliance and for making decisions regarding worker respiratory protection.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco
2017-04-01
Fractionation of soil organic matter (SOM), i.e. the separation of SOM into discrete fractions, can elucidate the temporal responses of soil organic carbon (SOC) to land-use and management changes. In order to reduce the workload and uncertainties associated with fractionation, we optimized and tested a simple size-density fractionation approach, containing a limited number of fractions and using relatively mild soil dispersion. We compared size-density fractionation, which isolated non-occluded particulate organic matter (POM), stable aggregates and silt- and clay-sized fraction, with aggregate size fractionation, i.e. an established method for aggregate separation, and with SOC content in the bulk soil. These methods were tested on soil samples collected from the mineral soil (0-20 cm) of a land-use and management gradient examining forest colonization on grassland in the Southern Alps (Italy). Differences in SOC stocks among successional stages were detected both by size-density fractions, aggregate size fractions and SOC content in the bulk soil. However, size-density fractions were better suited than aggregate size fractions for the detection of changes in SOC allocation within the study area. Therefore, the tested size-density fractionation approach may be preferred over aggregate size fractionation, considering its higher sensitivity to SOC differences in the land-use gradient. Stable aggregates obtained by size-density fractionation detected both changes in SOC allocation and stocks, and have the potential to be used as indicators of SOC changes in soils that express aggregate hierarchy. Further testing of the developed procedure across soil types, environmental conditions and land uses is required to confirm its repeatability and sensitivity to SOC changes.
Reinvestigation of the charge density distribution in arc discharge fusion system
Energy Technology Data Exchange (ETDEWEB)
Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)
2015-04-24
A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.
Wang, Guang-Hua; Wei, Nan-Nan; Liu, Wei; Lin, Jun; Fan, Xue-Bo; Yao, Jian; Geng, Yan-Hong; Li, Yu-Lan; Li, Yan
2010-09-01
Size distributions of organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) in atmospheric particles with size range from 7.20 microm, collected in Jiading District, Shanghai were determined. For estimating size distribution of SOC in these atmospheric particles, a method of determining (OC/EC)(pri) in atmospheric particles with different sizes was discussed and developed, with which SOC was estimated. According to the correlation between OC and EC, main sources of the particles were also estimated roughly. The size distributions of OC and SOC showed a bi-modal with peaks in the particles with size of 3.0 microm, respectively. EC showed both of a bi-modal and tri-modal. Compared with OC, EC was preferably enriched in particles with size of particles (particles. OC and EC were preferably enriched in fine particles (particles with different sizes accounted for 15.7%-79.1% of OC in the particles with corresponding size. Concentrations of SOC in fine aerosols ( 3.00 microm) accounted for 41.4% and 43.5% of corresponding OC. Size distributions of OC, EC and SOC showed time-dependence. The correlation between OC and EC showed that the main contribution to atmospheric particles in Jiading District derived from light petrol vehicles exhaust.
Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J
2016-02-21
We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles.
New Receiving Mode of Extinction for Determining Particle Size and Density without Convex Lens
Institute of Scientific and Technical Information of China (English)
WU Weiliang; CHEN Hanping; CAI Xiaoshu; WANG Naining
2002-01-01
In this article a new receiving mode for scattering light by particle is theoretically discussed. Using this receiving mode the convex lens can be omitted during determining the extinction of particle. Therefore the extinction coefficient of sphere particles is redefined by extrapolating the conventional one. In terms of the calculation results of light scattering the definition of near-field extinction coefficient of a swarm particle is depicted. Through the error analysis it is proved that the error coming from the new definition of extinction coefficient is acceptable for engineering application. In addition, a technique for determining the particle size and density is presented in this article and the advantage using this receiving mode is described.
Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities
Institute of Scientific and Technical Information of China (English)
LU Chang-Hong; SHI Qing-Fan; YANG Lei; SUN Gang
2008-01-01
We investigate the segregation effect of binary granular mixtures with the same size but different densities under vibration at different air pressures. Our experiments show that the segregation state is seriously dependent on the air pressure and there is a new type of partially segregated state at high air pressure, which has the characteristic that the lighter grains tend to stay at the bottom and form a pure layer, while heavier grains and remained lighter ones tend to rise and to form a mixed layer on the top of the system. We redefine the order parameter to study the variation of the segregation effect with the air pressure and vibration parameter in detail. Finally, the mechanism of the air-driven segregation is illustrated by the faster acceleration due to the airflow through the granular bed for lighter particles.
Density and group size influence shoal cohesion, but not coordination in zebrafish (Danio rerio).
Shelton, Delia S; Price, Brittany C; Ocasio, Karen M; Martins, Emília P
2015-02-01
The formations made by gregarious animals can range from loose aggregates to highly synchronized and ordered structures. For very large, coordinated groups, both physical and social environments are important for determining the physical arrangement of individuals in the group. Here we tested whether physical and social factors are also important in determining the structure of small, loosely coordinated groups of zebrafish. We found that even though our fish were not crowded and did not use most of the available space, the distance between individual fish was explained primarily by the amount of available space (i.e., density). Zebrafish in a larger space spread out more and the total dimensions of the shoal were an additive function also of group size. We, however, did not find any impact of social or physical environment on the orientation of individual fish or shoal. Thus, both physical and social factors were important for shoal spatial arrangements, but not individual orientation and shoal alignment.
Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora
2004-08-01
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.
Institute of Scientific and Technical Information of China (English)
Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long
2011-01-01
Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.
Determination of Size Distributions in Nanocrystalline Powders by TEM, XRD and SAXS
DEFF Research Database (Denmark)
Jensen, Henrik; Pedersen, Jørgen Houe; Jørgensen, Jens Erik
2006-01-01
available powders showed different morphologies. The SSEC78 powder showed the narrowest sizes distribution while UV100 and TiO2_5nm consisted of the smallest primary particles. SSEC78, UV100, and TiO2_5nm consisted of both primary particles as well as a secondary structure comprised of nanosized primary......Crystallite size distributions and particle size distributions were determined by TEM, XRD, and SAXS for three commercially available TiO2 samples and one homemade. The theoretical Guinier Model was fitted to the experimental data and compared to analytical expressions. Modeling of the XRD spectra...
Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A
2013-11-01
This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin-Rammler-Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a
Stated response to increased enforcement density and penalty size for speeding and driving unbelted.
Hössinger, Reinhard; Berger, Wolfgang J
2012-11-01
To what extent can traffic offences be reduced through stronger enforcement, higher penalties, and the provision of information to road users? This question was addressed with respect to the offences of "speeding" and "driving unbelted." Data were collected by a telephone survey of admitted speeders, followed by 438 face-to-face stated response interviews. Based on the data collected, separate statistical models were developed for the two offences. The models predict the behavioral effect of increasing enforcement density and/or penalty size as well as the additional effect of providing information to car drivers. All three factors are predicted to be effective in reducing speeding. According to the model, one additional enforcement event per year will cause a driver to reduce his current frequency of speeding by 5%. A penalty increase of 10 Euros is predicted to have the same effect. An announcement of stronger enforcement or higher fines is predicted to have an additional effect on behavior, independent of the actual magnitudes of increase in enforcement or fines. With respect to the use of a seat belt, however, neither an increase in enforcement density nor its announcement is predicted to have a significant effect on driver behavior. An increase in the penalty size is predicted to raise the stated wearing rate, which is already 90% in Austria. It seems that both the fear of punishment and the motivation for driving unbelted are limited, so that there is only a weak tradeoff between the two. This may apply to most traffic offences, with the exception of speeding, which accounts for over 80% of tickets alone, whereas all other offences account for less than 3% each. Copyright © 2012 Elsevier Ltd. All rights reserved.
Grain size distribution of quartz isolated from Chinese loess/paleosol
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Grain size distribution of bulk loess-paleosol and quartz chemically extracted from the loess/paleosol shows that mean size of the bulk samples is always finer than that of the quartz. The original aeolian depositions have been modified to various degrees by post-depositional weathering and pedogenic processes. The grain size distribution of the isolated quartz should be close to that of the primary aeolian sediment because the chemical pretreatment excludes secondary produced minerals. Therefore, the grain size of the quartz may be considered to more clearly reflect the variations of winter monsoon intensity.
An Earth-sized planet with an Earth-like density
Pepe, Francesco; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A
2013-01-01
Kepler-78 (KIC 8435766) was identified by Sanchis-Ojeda et al. (2013) as harbouring a transiting planet of 1.16 times the size of the Earth and an orbital period of only 8.5 hours. While the exquisite Kepler photometry was able to determine its radius and period, the mass of the planet (and thus its mean density) remained unconstrained in the absence of precise radial-velocity measurements. Here we present an accurate mass measurement of Kepler-78b using the HARPS-N spectrograph, recently installed on the Telescopio Nazionale Galileo (INAF) at the Roque de los Muchachos Observatory, La Palma, Spain. These new data yield a mass of 1.86 Earth masses. The resulting mean density of the planet is 5.57 grams per cubic centimetre, which is similar to that of the Earth and implies a composition of iron and rock. Kepler-78b, which orbits a Sun-like star called Kepler 78 located in the Cygnus constellation at a distance of about 400 light years from us, is now the smallest exoplanet for which both the mass and radius a...
Cabada, Juan C.; Rees, Sarah; Takahama, Satoshi; Khlystov, Andrey; Pandis, Spyros N.; Davidson, Cliff I.; Robinson, Allen L.
Size-resolved aerosol mass and chemical composition were measured during the Pittsburgh Air Quality Study. Daily samples were collected for 12 months from July 2001 to June 2002. Micro-orifice uniform deposit impactors (MOUDIs) were used to collect aerosol samples of fine particulate matter smaller than 10 μm. Measurements of PM 0.056, PM 0.10, PM 0.18, PM 0.32, PM 0.56, PM 1.0, PM 1.8 and PM 2.5 with the MOUDI are available for the full study period. Seasonal variations in the concentrations are observed for all size cuts. Higher concentrations are observed during the summer and lower during the winter. Comparison between the PM 2.5 measurements by the MOUDI and other integrated PM samplers reveals good agreement. Good correlation is observed for PM 10 between the MOUDI and an integrated sampler but the MOUDI underestimates PM 10 by 20%. Bouncing of particles from higher stages of the MOUDI (>PM 2.5) is not a major problem because of the low concentrations of coarse particles in the area. The main cause of coarse particle losses appears to be losses to the wall of the MOUDI. Samples were collected on aluminum foils for analysis of carbonaceous material and on Teflon filters for analysis of particle mass and inorganic anions and cations. Daily samples were analyzed during the summer (July 2001) and the winter intensives (January 2002). During the summer around 50% of the organic material is lost from the aluminum foils as compared to a filter-based sampler. These losses are due to volatilization and bounce-off from the MOUDI stages. High nitrate losses from the MOUDI are also observed during the summer (above 70%). Good agreement between the gravimetrically determined mass and the sum of the masses of the individual compounds is obtained, if the lost mass from organics and the aerosol water content are included for the summer. For the winter no significant losses of material are detected and there exists reasonable agreement between the gravimetrical mass and the
Evidence that platelet buoyant density, but not size, correlates with platelet age in man.
Mezzano, D; Hwang, K; Catalano, P; Aster, R H
1981-01-01
Following infusion of 51Cr-labeled autologous platelets into normal subjects, high-density (HD) and low-density (LD) platelet cohorts were isolated by prolonged centrifugation in isosmotic arabino-galactan (Stractan). Specific radio-activity of LD platelets declined rapidly post-infusion (T1/2 = 1.5 days), but specific radioactivity of HD platelets remained constant or increased over a 3--4-day period and gradually declined for 6--7 days thereafter. These differences were exaggerated when platelet cohorts enriched in LD or HD cells by slow centrifugation in high-density albumin were labeled and transfused. Mean survival of a platelet cohort enriched with HD cells was significantly (P less than 0.02) shorter (7.73 days) than that of a cohort enriched with LD cells (9.33) days). In normal subjects treated with aspirin, capacity for thromboxane synthesis was regained more rapidly (P less than 0.05) in LD than in HD platelets. HD and LD platelets differed only slightly in mean volume (HD platelets = 7.57 mu3, LD platelets = 6.87 mu3, 0.05 less than P less than 0.01). We believe the most logical interpretation of these findings is that under normal conditions in man, newly formed platelets are less dense on the average than total platelets and become more dense as they age in the circulation. Thus, specific radioactivity of LD platelets declines rapidly as these platelets move into a more dense compartment and are replaced by newly formed, unlabelled cells; specific radioactivity of HD platelets remains constant or increases as labelled platelets enter this compartment in numbers equal to or greater than the number leaving it at the end of their life span. The similarity in mean volumes of LD and HD platelets suggests that platelet size is unrelated to platelet age under normal conditions.
Evidence that platelet buoyant density, but not size, correlates with platelet age in man
Energy Technology Data Exchange (ETDEWEB)
Mezzano, D.; Hwang, K.;