WorldWideScience

Sample records for density rotation axis

  1. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  2. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    Science.gov (United States)

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M; Onishi, N; Tajima, N [Tokyo Univ. (Japan); Horibata, T

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  4. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    Science.gov (United States)

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.

  5. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Science.gov (United States)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  6. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  7. Titan's interior from its rotation axis orientation and its Love number

    Science.gov (United States)

    Baland, Rose-Marie; Gabriel, Tobie; Axel, Lefèvre

    2013-04-01

    The tidal Love number k2 of Titan has been recently estimated from Cassini flybys radio-tracking and is consistent with the presence of a global ocean in Titan's interior, located between two ice layers (Iess et al. 2012), in accordance with prediction from interior and evolutionary models for Titan. Previously, the orientation of the rotation axis of Titan has been measured on the basis of radar images from Cassini (Stiles et al. 2008). Titan's obliquity, is about 0.3. The measured orientation is more consistent with the presence of a global internal liquid ocean than with an entirely solid Titan (Baland et al. 2011). The global topography data of Titan seem to indicate some departure from the hydrostatic shape expected for a synchronous satellite under the influence of its rotation and the static tides raised by the central planet (Zebker et al. 2009). This may be explained by a differential tidal heating in the ice shell which flattens the poles (Nimmo and Bills 2010). A surface more flattened than expected implies compensation in depth to explain the measured gravity coefficients C20 and C22 of Iess et al. (2012). Here, all layers are assumed to have a tri-axial ellipsoid shape, but with polar and equatorial flattenings that differ from the hydrostatic expected ones. We assess the influence of this non-hydrostatic shape on the conclusions of Baland et al. (2011), which developped a Cassini state model for the orientation of the rotation axis of a synchronous satellite having an internal liquid layer. We assess the possibility to constrain Titan's interior (and particularly the structure of the water/ice layer) from both the rotation axis orientation and the Love number. We consider a range of internal structure models consistent with the mean density and the mean radius of Titan, and made of a shell, an ocean, a mantle, and a core, from the surface to the center, with various possible compositions (e.g. ammonia mixed with water for the ocean). The internal

  8. Determination of a sagittal plane axis of rotation for a dynamic office chair.

    Science.gov (United States)

    Bauer, C M; Rast, F M; Böck, C; Kuster, R P; Baumgartner, D

    2018-10-01

    This study investigated the location of the axis of rotation in sagittal plane movement of the spine in a free sitting condition to adjust the kinematics of a mobile seat for a dynamic chair. Dynamic office chairs are designed to avoid continuous isometric muscle activity, and to facilitate increased mobility of the back during sitting. However, these chairs incorporate increased upper body movement which could distract office workers from the performance of their tasks. A chair with an axis of rotation above the seat would facilitate a stable upper back during movements of the lower back. The selection of a natural kinematic pattern is of high importance in order to match the properties of the spine. Twenty-one participants performed four cycles of flexion and extension of the spine during an upper arm hang on parallel bars. The location of the axis of rotation relative to the seat was estimated using infrared cameras and reflective skin markers. The median axis of rotation across all participants was located 36 cm above the seat for the complete movement and 39 cm for both the flexion and extension phases, each with an interquartile range of 20 cm. There was no significant effect of the movement direction on the location of the axis of rotation and only a weak, non-significant correlation between body height and the location of the axis of rotation. Individual movement patterns explained the majority of the variance. The axis of rotation for a spinal flexion/extension movement is located above the seat. The recommended radius for a guide rail of a mobile seat is between 36 cm and 39 cm. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Axis of eye rotation changes with head-pitch orientation during head impulses about earth-vertical.

    Science.gov (United States)

    Migliaccio, Americo A; Schubert, Michael C; Clendaniel, Richard A; Carey, John P; Della Santina, Charles C; Minor, Lloyd B; Zee, David S

    2006-06-01

    The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) "impulses" about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30 degrees nose down, 15 degrees nose down, 0 degrees, 15 degrees nose up, 30 degrees nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 80 degrees /s, and peak-acceleration of approximately 1000 degrees /s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 150 degrees /s, and peak-acceleration of approximately 3000 degrees /s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 +/- 0.09), to the starting pitch head orientation (P rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR.

  10. Assessment of movement distribution in the lumbar spine using the instantaneous axis of rotation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Won [Trine University, Angola (Indonesia)

    2014-12-15

    The position of the torso and the magnitude of exertion are thought to influence the distribution pattern of intervertebral movements within the lumbar spine. Abnormal intervertebral movements have been correlated with the risk of spine injuries. Since the capability to measure movement distribution within the lumbar spine noninvasively is limited, a convenient method to diagnose joint motion function was proposed. The goal of this research was to test the efficacy of the instantaneous axis of rotation for assessment of the distribution of movement within the lumbar spine. The proposed method was evaluated in the bio mechanical model. The results showed that the location of instantaneous axis of rotation lowered with increased trunk exertion force, and slightly moved higher with increased trunk angle. Recognizing that abnormal location of the instantaneous axis of rotation correlated with spinal pain, these results suggest potential the location of the instantaneous axis of rotation relates to the risk of low back pain on distributed spinal kinematics.

  11. An additional reference axis improves femoral rotation alignment in image-free computer navigation assisted total knee arthroplasty.

    Science.gov (United States)

    Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi

    2013-05-01

    Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Instability of nuclear wobbling motion and tilted axis rotation

    International Nuclear Information System (INIS)

    Matsuzaki, Masayuki; Ohtsubo, Shin-Ichi

    2004-01-01

    We study a possible correspondence between the softening of the wobbling mode and the 'phase transition' of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface for the observed wobbling mode excited on the triaxial superdeformed states in 163 Lu is also analyzed

  13. Daily GPS-Derived Estimates Of Axis Of Rotation Of Earth

    Science.gov (United States)

    Lindqwister, Ulf J.; Blewitt, Geoffrey; Freedman, Adam

    1994-01-01

    Report describes study in which data gathered by worldwide network of 21 Global Positioning System (GPS) receivers during 3-week experiment in January and February 1991 used to estimate location of axis of rotation of Earth.

  14. Interplay between tilted and principal axis rotation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradip [Ananda Mohan College, 102/1 Raja Rammohan Sarani, Kolkata 700 009 (India); Roy, Santosh; Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2014-08-14

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely {sup 109,110}Ag and {sup 108,110}Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay.

  15. Interplay between tilted and principal axis rotation

    International Nuclear Information System (INIS)

    Datta, Pradip; Roy, Santosh; Chattopadhyay, S.

    2014-01-01

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely 109,110 Ag and 108,110 Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay

  16. Vestibulo-ocular reflex of the squirrel monkey during eccentric rotation with centripetal acceleration along the naso-occipital axis

    Science.gov (United States)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1996-01-01

    The vestibulo-ocular reflexes (VOR) are determined not only by angular acceleration, but also by the presence of gravity and linear acceleration. This phenomenon was studied by measuring three-dimensional nystagmic eye movements, with implanted search coils, in four male squirrel monkeys. Monkeys were rotated in the dark at 200 degrees/s, centrally or 79 cm off-axis, with the axis of rotation always aligned with gravity and the spinal axis of the upright monkeys. The monkey's position relative to the centripetal acceleration (facing center or back to center) had a dramatic influence on the VOR. These studies show that a torsional response was always elicited that acted to shift the axis of eye rotation toward alignment with gravito-inertial force. On the other hand, a slow phase downward vertical response usually existed, which shifted the axis of eye rotation away from the gravito-inertial force. These findings were consistent across all monkeys. In another set of tests, the same monkeys were rapidly tilted about their interaural (pitch) axis. Tilt orientations of 45 degrees and 90 degrees were maintained for 1 min. Other than a compensatory angular VOR during the rotation, no consistent eye velocity response was ever observed during or following the tilt. The absence of any response following tilt proves that the observed torsional and vertical responses were not a positional nystagmus. Model simulations qualitatively predict all components of these eccentric rotation and tilt responses. These simulations support the conclusion that the VOR during eccentric rotation may consist of two components: a linear VOR and a rotational VOR. The model predicts a slow phase downward, vertical, linear VOR during eccentric rotation even though there was never a change in the force aligned with monkey's spinal (Z) axis. The model also predicts the torsional components of the response that shift the rotation axis of the angular VOR toward alignment with gravito-inertial force.

  17. Nystagmus responses in a group of normal humans during earth-horizontal axis rotation

    Science.gov (United States)

    Wall, Conrad, III; Furman, Joseph M. R.

    1989-01-01

    Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.

  18. Surface acoustic wave micromotor with arbitrary axis rotational capability

    Science.gov (United States)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  19. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)

    2011-07-01

    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  20. Density distortion within a rotating body

    International Nuclear Information System (INIS)

    Lanzano, P.

    1975-01-01

    This paper ascertains the distortion of the density distribution within a self-gravitating body in hydrostatic equilibrium under the influence of rotation. For this purpose, the Poisson equation has been solved by using the undistorted density profile within the Laplacian to obtain the distorted density. The Laplacian has been expressed in terms of a system of curvilinear coordinates for which the equipotential surfaces constitute a family of fundamental surfaces. In performing the requisite algebraic manipulations, the Clairaut and Radau equations developed in a previous paper (Lanzano,1974) were utilized to eliminate the derivatives of the elements pertaining to the equipotential surfaces. The density distortion has been obtained up to third-order terms in a small rotational parameter. (Auth.)

  1. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

  2. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    Science.gov (United States)

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed

  3. The role of the crystal rotation axis in experimental three- and four-beam phase determination

    International Nuclear Information System (INIS)

    Post, B.; Gong, P.P.; Kern, L.; Ladell, J.

    1986-01-01

    The geometry of four-beam diffraction and procedures for generating it systematically are described. These utilize relatively simple Renninger-type experimental arrangements. The four reciprocal-lattice points involved in each four-beam interaction are located at the corners of rectangles or symmetrical trapezoids in reciprocal space. One of the sides, or a diagonal, of each such quadrilateral serves as the axis of the azimuthal rotation of the crystal. Experiments designed to compare the relative merits of different types of rotation axes have been carried out. It is found that axes of twofold (or higher) symmetry provide advantages over alternate arrangements for experimental phase determination. Four-beam interations are then generated systematically and in greater abundance than in all other n-beam interations combined (n > 2). Such interactions usually provide stronger phase indications than comparable three-beam interaction. The experiments also showed that, although the phase of an 'invariant' quartet is clearly invariant to the choice of unit-cell origin, it is not necessarily invariant to a change of rotation axis from one two-fold axis to another. (orig.)

  4. Antihysteresis of perceived longitudinal body axis during continuous quasi-static whole-body rotation in the earth-vertical roll plane.

    Science.gov (United States)

    Tatalias, M; Bockisch, C J; Bertolini, G; Straumann, D; Palla, A

    2011-03-01

    Estimation of subjective whole-body tilt in stationary roll positions after rapid rotations shows hysteresis. We asked whether this phenomenon is also present during continuous quasi-static whole-body rotation and whether gravitational cues are a major contributing factor. Using a motorized turntable, 8 healthy subjects were rotated continuously about the earth-horizontal naso-occipital axis (earth-vertical roll plane) and the earth-vertical naso-occipital axis (earth-horizontal roll plane). In both planes, three full constant velocity rotations (2°/s) were completed in clockwise and counterclockwise directions (acceleration = 0.05°/s(2), velocity plateau reached after 40 s). Subjects adjusted a visual line along the perceived longitudinal body axis (pLBA) every 2 s. pLBA deviation from the longitudinal body axis was plotted as a function of whole-body roll position, and a sine function was fitted. At identical whole-body earth-vertical roll plane positions, pLBA differed depending on whether the position was reached by a rotation from upright or by passing through upside down. After the first 360° rotation, pLBA at upright whole-body position deviated significantly in the direction of rotation relative to pLBA prior to rotation initiation. This deviation remained unchanged after subsequent full rotations. In contrast, earth-horizontal roll plane rotations resulted in similar pLBA before and after each rotation cycle. We conclude that the deviation of pLBA in the direction of rotation during quasi-static earth-vertical roll plane rotations reflects static antihysteresis and might be a consequence of the known static hysteresis of ocular counterroll: a visual line that is perceived that earth-vertical is expected to be antihysteretic, if ocular torsion is hysteretic.

  5. Measurements of isocenter path characteristics of the gantry rotation axis with a smartphone application

    International Nuclear Information System (INIS)

    Schiefer, H.; Peters, S.; Plasswilm, L.; Ingulfsen, N.; Kluckert, J.

    2015-01-01

    Purpose: For stereotactic radiosurgery, the AAPM Report No. 54 [AAPM Task Group 42 (AAPM, 1995)] requires the overall stability of the isocenter (couch, gantry, and collimator) to be within a 1 mm radius. In reality, a rotating system has no rigid axis and thus no isocenter point which is fixed in space. As a consequence, the isocenter concept is reviewed here. It is the aim to develop a measurement method following the revised definitions. Methods: The mechanical isocenter is defined here by the point which rotates on the shortest path in the room coordinate system. The path is labeled as “isocenter path.” Its center of gravity is assumed to be the mechanical isocenter. Following this definition, an image-based and radiation-free measurement method was developed. Multiple marker pairs in a plane perpendicular to the assumed gantry rotation axis of a linear accelerator are imaged with a smartphone application from several rotation angles. Each marker pair represents an independent measuring system. The room coordinates of the isocenter path and the mechanical isocenter are calculated based on the marker coordinates. The presented measurement method is by this means strictly focused on the mechanical isocenter. Results: The measurement result is available virtually immediately following completion of measurement. When 12 independent measurement systems are evaluated, the standard deviations of the isocenter path points and mechanical isocenter coordinates are 0.02 and 0.002 mm, respectively. Conclusions: The measurement is highly accurate, time efficient, and simple to adapt. It is therefore suitable for regular checks of the mechanical isocenter characteristics of the gantry and collimator rotation axis. When the isocenter path is reproducible and its extent is in the range of the needed geometrical accuracy, it should be taken into account in the planning process. This is especially true for stereotactic treatments and radiosurgery

  6. Measurements of isocenter path characteristics of the gantry rotation axis with a smartphone application

    Energy Technology Data Exchange (ETDEWEB)

    Schiefer, H., E-mail: johann.schiefer@kssg.ch; Peters, S.; Plasswilm, L. [Klinik für Radio-Onkologie, Kantonsspital St.Gallen, Rorschacherstrasse 107, St.Gallen CH-9007 (Switzerland); Ingulfsen, N.; Kluckert, J. [Kantonsschule am Burggraben St.Gallen, Burggraben 21, St.Gallen CH-9000 (Switzerland)

    2015-03-15

    Purpose: For stereotactic radiosurgery, the AAPM Report No. 54 [AAPM Task Group 42 (AAPM, 1995)] requires the overall stability of the isocenter (couch, gantry, and collimator) to be within a 1 mm radius. In reality, a rotating system has no rigid axis and thus no isocenter point which is fixed in space. As a consequence, the isocenter concept is reviewed here. It is the aim to develop a measurement method following the revised definitions. Methods: The mechanical isocenter is defined here by the point which rotates on the shortest path in the room coordinate system. The path is labeled as “isocenter path.” Its center of gravity is assumed to be the mechanical isocenter. Following this definition, an image-based and radiation-free measurement method was developed. Multiple marker pairs in a plane perpendicular to the assumed gantry rotation axis of a linear accelerator are imaged with a smartphone application from several rotation angles. Each marker pair represents an independent measuring system. The room coordinates of the isocenter path and the mechanical isocenter are calculated based on the marker coordinates. The presented measurement method is by this means strictly focused on the mechanical isocenter. Results: The measurement result is available virtually immediately following completion of measurement. When 12 independent measurement systems are evaluated, the standard deviations of the isocenter path points and mechanical isocenter coordinates are 0.02 and 0.002 mm, respectively. Conclusions: The measurement is highly accurate, time efficient, and simple to adapt. It is therefore suitable for regular checks of the mechanical isocenter characteristics of the gantry and collimator rotation axis. When the isocenter path is reproducible and its extent is in the range of the needed geometrical accuracy, it should be taken into account in the planning process. This is especially true for stereotactic treatments and radiosurgery.

  7. Development of a model counter-rotating type horizontal-axis tidal turbine

    Science.gov (United States)

    Huang, B.; Yoshida, K.; Kanemoto, T.

    2016-05-01

    In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.

  8. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  9. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    Science.gov (United States)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  10. Rotation and transport in Alcator C-Mod ITB plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 ITB density profile is observed (0.5 ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  11. Vergence-mediated changes in the axis of eye rotation during the human vestibulo-ocular reflex can occur independent of eye position.

    Science.gov (United States)

    Migliaccio, Americo A; Cremer, Phillip D; Aw, Swee T; Halmagyi, G Michael; Curthoys, Ian S; Minor, Lloyd B; Todd, Michael J

    2003-07-01

    The aim of this study was to determine whether vergence-mediated changes in the axis of eye rotation in the human vestibulo-ocular reflex (VOR) would obey Listing's Law (normally associated with saccadic eye movements) independent of the initial eye position. We devised a paradigm for disassociating the saccadic velocity axis from eye position by presenting near and far targets that were centered with respect to one eye. We measured binocular 3-dimensional eye movements using search coils in ten normal subjects and 3-dimensional linear head acceleration using Optotrak in seven normal subjects. The stimuli consisted of passive, unpredictable, pitch head rotations with peak acceleration of approximately 2000 degrees /s(2 )and amplitude of approximately 20 degrees. During the pitch head rotation, each subject fixated straight ahead with one eye, whereas the other eye was adducted 4 degrees during far viewing (94 cm) and 25 degrees during near viewing (15 cm). Our data showed expected compensatory pitch rotations in both eyes, and a vergence-mediated horizontal rotation only in the adducting eye. In addition, during near viewing we observed torsional eye rotations not only in the adducting eye but also in the eye looking straight ahead. In the straight-ahead eye, the change in torsional eye velocity between near and far viewing, which began approximately 40 ms after the start of head rotation, was 10+/-6 degrees /s (mean +/- SD). This change in torsional eye velocity resulted in a 2.4+/-1.5 degrees axis tilt toward Listing's plane in that eye. In the adducting eye, the change in torsional eye velocity between near and far viewing was 16+/-6 degrees /s (mean +/- SD) and resulted in a 4.1+/-1.4 degrees axis tilt. The torsional eye velocities were conjugate and both eyes partially obeyed Listing's Law. The axis of eye rotation tilted in the direction of the line of sight by approximately one-third of the angle between the line of sight and a line orthogonal to Listing

  12. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.

    Science.gov (United States)

    Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T

    2005-10-01

    Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.

  13. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  14. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  15. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  16. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  17. Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform with Counter-Rotating Vertical-Axis Wind Turbines

    Science.gov (United States)

    Kanner, Samuel Adam Chinman

    The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of

  18. An axis-specific rotational rainbow in the direct scatter of formaldehyde from Au(111) and its influence on trapping probability.

    Science.gov (United States)

    Park, G Barratt; Krüger, Bastian C; Meyer, Sven; Kandratsenka, Alexander; Wodtke, Alec M; Schäfer, Tim

    2017-08-02

    The conversion of translational to rotational motion often plays a major role in the trapping of small molecules at surfaces, a crucial first step for a wide variety chemical processes that occur at gas-surface interfaces. However, to date most quantum-state resolved surface scattering experiments have been performed on diatomic molecules, and little detailed information is available about how the structure of nonlinear polyatomic molecules influences the mechanisms for energy exchange with surfaces. In the current work, we employ a new rotationally resolved 1 + 1' resonance-enhanced multiphoton ionization (REMPI) scheme to measure the rotational distribution in formaldehyde molecules directly scattered from the Au(111) surface at incidence kinetic energies in the range 0.3-1.2 eV. The results indicate a pronounced propensity to excite a-axis rotation (twirling) rather than b- or c-axis rotation (tumbling or cartwheeling), and are consistent with a rotational rainbow scattering model. Classical trajectory calculations suggest that the effect arises-to zeroth order-from the three-dimensional shape of the molecule (steric effects). Analysis suggests that the high degree of rotational excitation has a substantial influence on the trapping probability of formaldehyde at incidence translational energies above 0.5 eV.

  19. The rotation of P/Halley

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Szegoe, K.; Kondor, A.; Merenyi, E.; Smith, B.A.; Larson, S.; Toth, I.

    1987-11-01

    The nucleus of the comet Halley rotates as a slightly asymmetric top, the orientation of the rotation axis (the orientation of the angular momentum vector) is b=54 deg +-15 deg, l=219 deg +-15 deg in the ecliptic system. In the case of the rotation of an asymmetric top the rotation axis is not fixed rigidly to the body, which means that while the nucleus rotates around the axis with a period of 2.2+-0.05 d, its long axis 'nods' periodically with a period of 7.4+-0.05 d. The amplitude of the 'nodding' is about 15 deg +-3 deg in both directions relative to a plane perpendicular to the rotation axis. (author) 21 refs.; 6 figs.; 2 tabs

  20. Major and minor axis kinematics of 22 ellipticals

    International Nuclear Information System (INIS)

    Franx, M.; Illingworth, G.; Heckman, T.

    1989-01-01

    Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. Rotation was detected in all but one galaxy, even though the sample was biased toward round ellipticals. Minor axis rotation larger than major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. Roughly 10 percent of ellipticals may show large minor axis velocities relative to those on the major axis. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6 deg. The rotational and photometric minor axes aligned to better than 10 deg for 60 percent of the sample, implying that the direction of the angular momentum is related to the orientation of the figure of the galaxy. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 has a core with its angular momentum perpendicular to that of the outer parts. 46 refs

  1. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building

    Science.gov (United States)

    Gregory, Laura C.; Mac Niocaill, Conall; Walker, Richard T.; Bayasgalan, Gantulga; Craig, Tim J.

    2018-06-01

    The Altay Mountains of Western Mongolia accommodate 10-20% of the current shortening of the India-Asia collision in a transpressive regime. Kinematic models of the Altay require faults to rotate anticlockwise about a vertical axis in order to accommodate compressional deformation on the major strike slip faults that cross the region. Such rotations should be detectable by palaeomagnetic data. Previous estimates from the one existing palaeomagnetic study from the Altay, on Oligocene and younger sediments from the Chuya Basin in the Siberian Altay, indicate that at least some parts of the Altay have experienced up to 39 ± 8° of anticlockwise rotation. Here, we present new palaeomagnetic results from samples collected in Cretaceous and younger sediments in the Zereg Basin along the Har-Us-Nuur fault in the eastern Altay Mountains, Mongolia. Our new palaeomagnetic results from the Zereg Basin provide reliable declinations, with palaeomagnetic directions from 10 sites that pass a fold test and include magnetic reversals. The declinations are not significantly rotated with respect to the directions expected from Cretaceous and younger virtual geomagnetic poles, suggesting that faults in the eastern Altay have not experienced a large degree of vertical axis rotation and cannot have rotated >7° in the past 5 m.y. The lack of rotation along the Har-Us-Nuur fault combined with a large amount of rotation in the northern Altay fits with a kinematic model for transpressional deformation in which faults in the Altay have rotated to an orientation that favours the development of flower structures and building of mountainous topography, while at the same time the range widens at the edges as strain is transferred to better oriented structures. Thus the Har-Us-Nuur fault is a relatively young fault in the Altay, and has not yet accommodated significant rotation.

  2. Ordered structures in rotating ultracold Bose gases

    International Nuclear Information System (INIS)

    Barberan, N.; Dagnino, D.; Lewenstein, M.; Osterloh, K.

    2006-01-01

    Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω

  3. Investigating the effect of a targets time-varying doppler generating axis of rotation on isar image distortion

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2007-10-01

    Full Text Available , contributes to ISAR image blurring. Quaternion algebra is used to aid the characterisation of a time-varying Doppler generating axis of rotation on the migration through cross-range cells. Real motion data of a sailing yacht is used to examine the effects of 3...

  4. Patella dislocation with vertical axis rotation: the "dorsal fin" patella.

    Science.gov (United States)

    Gamble, David; Otto, Quentin; Carrothers, Andrew D; Khanduja, Vikas

    2015-01-01

    A 44-year-old woman presented following minor trauma to her right knee. While dancing she externally rotated around a planted foot and felt sudden pain in her right knee. She presented with her knee locked in extension with a "dorsal fin" appearance of the soft tissues tented over the patella. This was diagnosed as a rare case of an intraarticular patella dislocation, which was rotated 90 degrees about the vertical axis. Closed reduction in the emergency room was unsuccessful but was achieved in theatre under general anaesthetic with muscle relaxation. Postreduction arthroscopy demonstrated that no osteochondral or soft tissue damage to the knee had been sustained. In patients presenting with a knee locked in extension with tenting of skin over the patella (the "dorsal fin" appearance), intra-articular patella dislocation should be suspected. Attempts to reduce vertical patella dislocations under sedation with excessive force or repeatedly without success should be avoided to prevent unnecessary damage to the patellofemoral joint. In this clinical situation we recommend closed reduction under general anaesthetic followed by immediate knee arthroscopy under the same anaesthetic to ensure that there is no chondral damage to the patella or femoral trochlea and to rule out an osteochondral fracture.

  5. Factors affecting femoral rotational angle based on the posterior condylar axis in gap-based navigation-assisted total knee arthroplasty for valgus knee.

    Science.gov (United States)

    Lee, Sung-Sahn; Lee, Yong-In; Kim, Dong-Uk; Lee, Dae-Hee; Moon, Young-Wan

    2018-01-01

    Achieving proper rotational alignment of the femoral component in total knee arthroplasty (TKA) for valgus knee is challenging because of lateral condylar hypoplasia and lateral cartilage erosion. Gap-based navigation-assisted TKA enables surgeons to determine the angle of femoral component rotation (FCR) based on the posterior condylar axis. This study evaluated the possible factors that affect the rotational alignment of the femoral component based on the posterior condylar axis. Between 2008 and 2016, 28 knees were enrolled. The dependent variable for this study was FCR based on the posterior condylar axis, which was obtained from the navigation system archives. Multiple regression analysis was conducted to identify factors that might predict FCR, including body mass index (BMI), Kellgren-Lawrence grade (K-L grade), lateral distal femoral angles obtained from the navigation system and radiographs (NaviLDFA, XrayLDFA), hip-knee-ankle (HKA) axis, lateral gap under varus stress (LGVS), medial gap under valgus stress (MGVS), and side-to-side difference (STSD, MGVS - LGVS). The mean FCR was 6.1° ± 2.0°. Of all the potentially predictive factors evaluated in this study, only NaviLDFA (β = -0.668) and XrayLDFA (β = -0.714) predicted significantly FCR. The LDFAs, as determined using radiographs and the navigation system, were both predictive of the rotational alignment of the femoral component based on the posterior condylar axis in gap-based TKA for valgus knee. A 1° increment with NaviLDFA led to a 0.668° decrement in FCR, and a 1° increment with XrayLDFA led to a 0.714° decrement. This suggests that symmetrical lateral condylar hypoplasia of the posterior and distal side occurs in lateral compartment end-stage osteoarthritis with valgus deformity.

  6. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  7. Plasma rotation and radial electric field with a density ramp in an ohmically heated tokamak

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-10-01

    Measurements of toroidal and poloidal rotation of the TCA plasma with Alfven Wave Heating and different levels of gas feed are reported. The temporal evolution of the rotation was inferred from intrinsic spectral lines of CV, CIII and, using injected helium gas, from HeII. The light collection optics and line intensity permitted the evolution of the plasma rotation to be measured with a time resolution of 2ms. The rotation velocities were used to deduce the radial electric field. With Alfven heating there was no observable change of this electric field that could have been responsible for the density rise which is characteristic of the RF experiments on TCA. The behaviour of the plasma rotation with different plasma density ramp rates was investigated. The toroidal rotation was observed to decrease with increasing plasma density. The poloidal rotation was observed to follow the value of the plasma density. With hard gas puffing, changes in the deduced radial electric field were found to coincide with changes in the peaking of the plasma density profile. Finally, with frozen pellet injection, the expected increase in the radial electric field due to the increased plasma density was not observed, which may explain the poorer confinement of the injected particles. Even in an ohmically heated tokamak, the measurement of the plasma rotation and the radial electric field are shown to be strongly related to the confinement. A thorough statistical analysis of the systematic errors is presented and a new and significant source of uncertainty in the experimental technique is identified. (author) 18 figs., 18 refs

  8. A Paleomagnetic Investigation of Large-Scale Vertical Axis Rotations in Coastal Sonora: Evidence for Transtensional Proto-Gulf Deformation

    Science.gov (United States)

    Herman, S. W.; Gans, P. B.

    2006-12-01

    A paleomagnetic investigation into possible vertical axis rotations has been conducted in the Sierra el Aguaje and Sierra Tinajas del Carmen, Sonora, Mexico, in order assess proposed styles for oblique continental rifting in the Gulf of California. Two styles of rifting have been proposed; (1) strain partitioning (Stock and Hodges, 89), and (2) transtension (Gans, 97), for the Proto-Gulf period of the Gulf of California. The presence of large- scale vertical axis rotations would lend weight to the argument for transtension. The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico. The ranges represent the eastern-rifted margin of the central Gulf of California. This is one of the few areas of that margin which is entirely above water, with new ocean crust of the Guaymas basin lying immediately offshore of the western edge of the ranges. The ranges are composed of volcanic units and their corresponding volcaniclastic units that are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje and Sierra Tinajas del Carmen is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. Existing field relations suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. The results of the paleomagnetic investigation are consistent with the field evidence and show large clockwise rotations between ~30° and

  9. Vortex Breakdown Generated by off-axis Bifurcation in a cylinder with rotating covers

    DEFF Research Database (Denmark)

    Bisgaard, Anders; Brøns, Morten; Sørensen, Jens Nørkær

    2006-01-01

    Vortex breakdown of bubble type is studied for the flow in a cylinder with rotating top and bottom covers. For large ratios of the angular velocities of the covers, we observe numerically that the vortex breakdown bubble in the steady regime may occur through the creation of an off-axis vortex ring....... This scenario does not occur in existing bifurcation theory based on a simple degeneracy in the flow field. We extend the theory to cover a non-simple degeneracy, and derive the associated bifurcation diagrams. We show that the vortex breakdown scenario involving a vortex ring can be explained from this theory...

  10. Patella Dislocation with Vertical Axis Rotation: The “Dorsal Fin” Patella

    Directory of Open Access Journals (Sweden)

    David Gamble

    2015-01-01

    Full Text Available A 44-year-old woman presented following minor trauma to her right knee. While dancing she externally rotated around a planted foot and felt sudden pain in her right knee. She presented with her knee locked in extension with a “dorsal fin” appearance of the soft tissues tented over the patella. This was diagnosed as a rare case of an intraarticular patella dislocation, which was rotated 90 degrees about the vertical axis. Closed reduction in the emergency room was unsuccessful but was achieved in theatre under general anaesthetic with muscle relaxation. Postreduction arthroscopy demonstrated that no osteochondral or soft tissue damage to the knee had been sustained. In patients presenting with a knee locked in extension with tenting of skin over the patella (the “dorsal fin” appearance, intra-articular patella dislocation should be suspected. Attempts to reduce vertical patella dislocations under sedation with excessive force or repeatedly without success should be avoided to prevent unnecessary damage to the patellofemoral joint. In this clinical situation we recommend closed reduction under general anaesthetic followed by immediate knee arthroscopy under the same anaesthetic to ensure that there is no chondral damage to the patella or femoral trochlea and to rule out an osteochondral fracture.

  11. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  12. Rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada

    Science.gov (United States)

    Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott

    2011-10-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.

  13. Off-axis vortex breakdown in a shallow whirlpool.

    Science.gov (United States)

    Herrada, Miguel A; Shtern, Vladimir N; López-Herrera, José María

    2013-06-01

    The off-axis emergence of vortex breakdown (VB) is revealed. The steady axisymmetric flow in a vertical sealed cylinder, which is partially filled with water and the rest is filled with air, is driven by the rotating bottom disk. The numerical simulations show that VB can emerge away from the rotation axis, interface, and walls. As the rotation intensifies, VB first develops in the water region. If the water height is less (larger) than nearly one half of the cylinder radius, VB emerges off (on) the axis. As the rotation further increases, the off-axis VB ring touches the interface and then a thin countercirculation layer develops in the air flow above the water VB domain. This two-fluid VB ring shrinks (it even disappears in a very shallow whirlpool) as the interface approaches the bottom disk.

  14. Decay of the diocotron rotation and transport in a new low-density asymmetry-dominated regime

    International Nuclear Information System (INIS)

    Sarid, Eli; Gilson, Erik; Fajans, Joel

    2002-01-01

    The decay of the diocotron rotation was studied in a new regime in which trap asymmetries dominate. The decay does not conserve angular momentum, and is strongest for small, low-density columns. For such columns decay of the diocotron mode within few diocotron periods was observed, orders of magnitude faster than the rotational pumping prediction. However, transition to decay dominated by rotational pumping was observed for larger and denser columns. The new regime is characterized by 'magnetron-like' rotation in the trap, dominated by the end confinement fields. The asymmetry-dominated transport was also studied, and found to depend linearly on the line density (and not the density) over nearly 4 orders of magnitude

  15. FY 1998 annual summary report on 6-axis, high-precision non-rotating machining systems (first year); 1998 nendo 6 jiku koseido heru kako system no kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D program is aimed at development of high-precision systems, based on non-rotating machining, in order to improve precision of machining of curved surfaces, e.g., mold, and members of complex shapes, e.g., those for aircraft. For non-rotating machining of curved surfaces, it is necessary to continuously control attitude and sending speed of the tool, and hence to simultaneously control 6 axes of a high-speed, high-precision tool machine. New techniques, e.g., high-precision non-rotating machining, 6-axis CAM/CAE systems and high-speed, high-precision NC systems, are being developed, in order to realize the above objectives. The total systems combining these techniques are also being developed. The 6-axis, high-precision, non-rotating tool machine will be made on a trial basis, to demonstrate its practicality. The major FY 1998 results are development of a non-rotating machining tool for deep grooves (under the theme of machining techniques), development of software for cutter path generation for 6-axis non-rotating machining to confirm its validity by the tests with a commercial machine (CAD/CAM), and modification of NC for early-stage cutting tests (NC). (NEDO)

  16. Design, experimental analysis, and unsteady Reynolds-averaged Navier-Stokes simulation of laboratory-scale counter-rotating vertical-axis turbines in marine environment

    Science.gov (United States)

    Doan, Minh; Padricelli, Claudrio; Obi, Shinnosuke; Totsuka, Yoshitaka

    2017-11-01

    We present the torque and power measurement of laboratory-scale counter-rotating vertical-axis hydrokinetic turbines, built around a magnetic hysteresis brake as the speed controller and a Hall-effect sensor as the rotational speed transducer. A couple of straight-three-bladed turbines were linked through a transmission of spur gears and timing pulleys and coupled to the electronic instrumentation via flexible shaft couplers. A total of 8 experiments in 2 configurations were conducted in the water channel facility (4-m long, 0.3-m wide, and 0.15-m deep). Power generation of the turbines (0.06-m rotor diameter) was measured and compared with that of single turbines of the same size. The wakes generated by these experiments were also measured by particle image velocimetry (PIV) and numerically simulated by unsteady Reynolds-averaged Navier-Stokes (URANS) simulation using OpenFOAM. Preliminary results from wake measurement indicated the mechanism of enhanced power production behind the counter-rotating configuration of vertical-axis turbines. Current address: Politecnico di Milano.

  17. Rates and timing of vertical-axis block rotations across the Sierra Nevada-Walker Lane transition in the Bodie Hills

    Science.gov (United States)

    Rood, D. H.; Herman, S.; Burbank, D.; Bogue, S.

    2008-12-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotation across the Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. In zones of continental deformation, block rotations are an important mechanism for permanent stain accommodation, and thus may be crucial to testing geodetic block models and resolving geologic-geodetic slip discrepancies. In our study, data included in the paleomagetic site means are high quality AF demagnetization results (least squared fits that generally include 5-7 points with MAD values less than 1). Thermal demagnetization results match the AF directions, and both thermal demag and rockmag results indicate strong ChRM, mostly carried by single domain magnetite. The site means used to calculate the VGPs all have a95 values less than 10 (mostly 2-5) and include 6-11 sites each. Each site (and thus site mean) has a reasonably well-known structural correction. The VGP scatter values range from 12 to 16 degrees, indicating that they include appropriate secular variation. The mean declinations and 95 percent confidence limits for each VGP timeslice are statistically distinct from one another (71 ± 9, 39 ± 13, and 11 ± 11 degrees). The slope of a linear regression fit to the age versus declination data gives a rate of vertical axis block rotation of approximately 3-4 degrees/Myr. Fitting two separate lines to the age vs. declination data would indicate an increase in the rates of rotation since ~10 Ma. Two possible interpretations of the data are: (1) the rotations began during or before the Middle Miocene, or (2) rates of rotation were high initially (e.g. ~10 Ma) and decelerated until the Pliocene. These data have implications for the (1) timing and spatial extent of distributed strain accumulation related to the initiation of the San Andreas Fault-Eastern California Shear Zone-Walker Lane transform plate boundary, (2) transfer of transform plate boundary

  18. Electronic density measurement in the TB R-1 tokamak using Faraday rotation

    International Nuclear Information System (INIS)

    Elizondo, Juan Iraburu

    1996-01-01

    In this work, the experimental results of electronic density measurements in the TBR-1 tokamak, obtained by Faraday rotation of a microwave beam, are presented, The beam (65 GHz, 500 MW) is generated by a Klystron and crosses the plasma in the horizontal plane. The density values obtained are in agreement with the measurements of a conventional microwave interferometer. As a result of numerical simulations and measurements, it can be concluded that it would be advisable the use of lower wavelengths, to minimize the beam refraction when it crosses the plasma. The results show the feasibility of the Faraday rotation method for density measurement, in the first experiment performed in a tokamak, for the geometry considered. (author)

  19. Application of interferometry and Faraday rotation techniques for density measurements on ITER

    International Nuclear Information System (INIS)

    Snider, R.T.; Carlstrom, T.N.; Ma, C.H.; Peebles, W.A.

    1995-01-01

    There is a need for real time, reliable density measurement for density control, compatible with the restricted access and radiation environment on ITER. Line average density measurements using microwave or laser interferometry techniques have proven to be robust and reliable for density control on contemporary tokamaks. In ITER, the large path length, high density and density gradients, limit the wavelength of a probing beam to shorter then about 50 microm due to refraction effects. In this paper the authors consider the design of short wavelength vibration compensated interferometers and Faraday rotation techniques for density measurements on ITER. These techniques allow operation of the diagnostics without a prohibitively large vibration isolated structure and permits the optics to be mounted directly on the radial port plugs on ITER. A beam path designed for 10.6 microm (CO2 laser) with a tangential path through the plasma allows both an interferometer and a Faraday rotation measurement of the line average density with good density resolution while avoiding refraction problems. Plasma effects on the probing beams and design tradeoffs will be discussed along with radiation and long pulse issues. A proposed layout of the diagnostic for ITER will be present

  20. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Science.gov (United States)

    Graf, Eveline S.; Wright, Ian C.; Stefanyshyn, Darren J.

    2012-01-01

    The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location. PMID:22666303

  1. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Directory of Open Access Journals (Sweden)

    Eveline S. Graf

    2012-01-01

    Full Text Available The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location.

  2. An immediate effect of axial neck rotation training with real time visual feedback using a smartphone inclinometer on improvement in axial neck rotation function.

    Science.gov (United States)

    Park, Kyue-Nam; Kwon, Oh-Yun; Kim, Si-Hyun; Jeon, In-Cheol

    2017-03-01

    The purpose of this study was to compare the immediate effects of axial neck rotation training (Axi-NRT) with and without real-time visual feedback (VF) using a smartphone inclinometer on the range of motion (ROM) for axial neck rotation and the onset of compensatory neck lateral bending and extension during active neck rotation. Twenty participants with restricted ROM for neck rotation but no neck pain (21.1 ± 1.6 years and 8 males, 12 females) were recruited for Axi-NRT with VF, and twenty age- and gender-matched participants with restricted ROM for neck rotation were recruited for Axi-NRT without VF. Changes in ROM for neck rotation and the onset time of compensatory neck movement during active neck rotation were measured using an electromagnetic tracking system. Axi-NRT with VF was more effective in increasing ROM for neck rotation and decreasing and delaying the onset of compensatory neck movements during active neck rotation compared with Axi-NRT without VF. Repeated Axi-NRT using VF is useful to educate participants in maintaining the axis of the cervical spine and to increase ROM for axial neck rotation with less compensatory neck motion in participants with a restricted range of neck rotations.

  3. An estimation of Envisat's rotational state accounting for the precession of its rotational axis caused by gravity-gradient torque

    Science.gov (United States)

    Lin, Hou-Yuan; Zhao, Chang-Yin

    2018-01-01

    The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat's rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674 ± 0.068) · exp((4.5095 ± 0.0096) ×10-4 · t) s , where t is measured in days from the beginning of 2013. The standard deviation is 0.760 s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53 ° ± 0.42 ° with an amplitude from about 0.7 ° (in 2013) to 0.5 ° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8 days (in 2013) to 3.4 days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818 ± 0.0011 , and the initial longitude of the angular momentum in the orbital coordinate system is 40.5 ° ± 9.3 ° . The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20 ° closer to the negative normal of the orbital plane.

  4. One-electron densities of freely rotating Wigner molecules

    Science.gov (United States)

    Cioslowski, Jerzy

    2017-12-01

    A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.

  5. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  6. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    Science.gov (United States)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  7. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites.

    Science.gov (United States)

    Rondinelli, James M; Coh, Sinisa

    2011-06-10

    Using first-principles density functional theory calculations, we discover an anomalously large biaxial strain-induced octahedral rotation axis reorientation in orthorhombic perovskites with tendency towards rhombohedral symmetry. The transition between crystallographically equivalent (isosymmetric) structures with different octahedral rotation magnitudes originates from strong strain-octahedral rotation coupling available to perovskites and the energetic hierarchy among competing octahedral tilt patterns. By elucidating these criteria, we suggest many functional perovskites would exhibit the transition in thin film form, thus offering a new landscape in which to tailor highly anisotropic electronic responses.

  8. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  9. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  10. Generation and sustainment of plasma rotation by ICRF heating

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this process introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a non-slip boundary condition at the separatrix. Second, Monte-Carlo calculations show that energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts the on-axis rotation frequency Ω to be Ω=(4q max WJ*)eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where vertical bar J* vertical bar ∼ 5-10 is a non-dimensional rotation frequency calculated by the Monte-Carlo ORBIT code. Overall, agreement with experiment is good, when the resonance is on the low-field-side of the magnetic axis. The rotation becomes more counter-current and reverses sign on the high field side for a no-slip boundary. The velocity shear layer position is controllable and of sufficient magnitude to affect microinstabilities. (author)

  11. Internal wave patterns in enclosed density-stratified and rotating fluids

    NARCIS (Netherlands)

    Manders, A.M.A.

    2003-01-01

    Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate

  12. Propagation of angular errors in two-axis rotation systems

    Science.gov (United States)

    Torrington, Geoffrey K.

    2003-10-01

    Two-Axis Rotation Systems, or "goniometers," are used in diverse applications including telescope pointing, automotive headlamp testing, and display testing. There are three basic configurations in which a goniometer can be built depending on the orientation and order of the stages. Each configuration has a governing set of equations which convert motion between the system "native" coordinates to other base systems, such as direction cosines, optical field angles, or spherical-polar coordinates. In their simplest form, these equations neglect errors present in real systems. In this paper, a statistical treatment of error source propagation is developed which uses only tolerance data, such as can be obtained from the system mechanical drawings prior to fabrication. It is shown that certain error sources are fully correctable, partially correctable, or uncorrectable, depending upon the goniometer configuration and zeroing technique. The system error budget can be described by a root-sum-of-squares technique with weighting factors describing the sensitivity of each error source. This paper tabulates weighting factors at 67% (k=1) and 95% (k=2) confidence for various levels of maximum travel for each goniometer configuration. As a practical example, this paper works through an error budget used for the procurement of a system at Sandia National Laboratories.

  13. A novel vertical-axis wind turbine for distributed and utility deployment

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.Y. [Inha Univ., Incheon (Korea, Republic of); Lee, S. [Inha Univ., Incheon (Korea, Republic of)]|[KR Wind Energy Research Inst., Incheon (Korea, Republic of); Sabourin, T.; Park, K. [KR Windpower Inc., (United States)

    2008-07-01

    The rapid growth in the wind power industry can be attributed to energy cost saving, power reliability, grid support, and environmental concerns. Wind turbines should also comply with community noise and aesthetic requirements as well as meet a strong need for high capacity. Wind Turbine Generator Systems are classified as either horizontal axis wind turbine (HAWT) or vertical axis wind turbine (VAWT) depending on whether their axis of rotation is parallel or perpendicular to the ground. The average electric power produced by the wind turbine is proportional to the efficiency of the rotor, air density, projected area of the turbine, and cube of wind speed. The capacity factor should be increased to guarantee the economics of the turbine via increase in the rotor size or the turbine efficiency. The low rotational speed of VAWT rotors suggests that the machine will be quieter than the high-rotational speed of HAWTs, thereby being potentially suitable for applications closer to population centres. The slow rotating machine may also be considered to be visually more aesthetic. This paper presented the measured performance of a small-scale VAWT rated as 1 kW which has a tail consisting of a stabilizer and a rudder. It was tested for its electric power produced at specified wind conditions in an open-type wind tunnel. In order to eliminate the inevitable blockage effect by the size of turbine, the flow deceleration effect of the incoming air to the turbine was analyzed through model testing and numerical simulation and implemented to the proto-type testing. The turbine and its furling tail was shown to be safe. 9 refs., 1 tab., 10 figs.

  14. Vacuum in the presence of electromagnetic fields and rotating boundaries

    International Nuclear Information System (INIS)

    Manogue, C.A.

    1984-01-01

    Two investigations of the properties of the vacuum are made. The first is a reconsideration of the classic Klein paradox, particle creation due to the presence of very strong external electromagnetic potentials. Expectation values of the current, momentum, and number operators, each of which is a measure of particle creation, are calculated for both massive spin zero and massive spin one half fields. The relationship between super-radiance and pair creation is explained. A review of past work by other authors is included and common conceptual errors are pointed out. The second investigation concerns the rotation of the vacuum caused by the rotation of boundaries. Just as the presence of boundaries can create a change in the vacuum expectation value of the energy density (the Casimir effect), the rotation of such boundaries can create changes in the vacuum expectation value of the momentum density. Calculations of the Casimir effect are made for a massless scalar field confined to an infinitely long square box. The change in the vacuum expectation value of the momentum density is calculated if this same box is rotating around its long central axis. In contrast, it is shown that for an infinitely long circular cylinder there is no change in the momentum density

  15. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to symmetric core structures for all the studied metals....

  16. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H [Department of Automatic Measurement and Control, Harbin Institute of Technology, PO Box 305, Harbin, 150001 (China)

    2006-10-15

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  17. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    Science.gov (United States)

    Ma, H. P.; Jin, Y. Q.; Ha, Y. W.; Liu, L. H.

    2006-10-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system.

  18. Research on Dynamic Torque Measurement of High Speed Rotating Axis Based on Whole Optical Fiber Technique

    International Nuclear Information System (INIS)

    Ma, H P; Jin, Y Q; Ha, Y W; Liu, L H

    2006-01-01

    Non-contact torque measurement system of fiber grating is proposed in this paper. It is used for the dynamic torque measurement of the rotating axis in the spaceflight servo system. Optical fiber is used as sensing probe with high sensitivity, anti-electromagnetic interference, resistance to high temperature and corrosion. It is suitable to apply in a bad environment. Signals are processed by digital circuit and Single Chip Microcomputer. This project can realize super speed dynamic measurement and it is the first time to apply the project in the spaceflight system

  19. On LAM's and SAM's for Halley's rotation

    Science.gov (United States)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  20. Mean-field theory of differential rotation in density stratified turbulent convection

    Science.gov (United States)

    Rogachevskii, I.

    2018-04-01

    A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.

  1. Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations

    Science.gov (United States)

    Belozerov, A. S.; Leonov, I.; Anisimov, V. I.

    2013-03-01

    We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationally invariant Coulomb interaction. The proposed approach is employed to compute the electronic and magnetic properties of paramagnetic α iron and nickel. The obtained Curie temperatures agree well with experiment. Our results indicate that the magnetic transition temperature is significantly overestimated by using the density-density type of Coulomb interaction.

  2. The Density Difference of Cupula and Endolymph Changes the Mechanics of Semicircular Canals

    Science.gov (United States)

    Kondrachuk, Alexander V.; Boyle, Richard D.

    2011-11-01

    A precise balance of cupula and endolymph densities is key to the proper sensing of angular acceleration by the semicircular canals (SC). Estimates show that a density difference of cupula and endolymph (DD) as small as 10 - 4 g/cm3 is sufficient to make the SC sensitive to gravity and centrifugal forces provided they are comparable with gravity. As a result this might cause vestibular disorders. There are conditions under which the DD may even exceed this value. One of them is a change of intra-labyrinth pressure (IP) that may take place during a spaceflight. Here, the effect of DD on SC dynamics is considered using a simplified one-dimensional toroidal mathematical model of a canal for rotation with constant or harmonically oscillating angular velocities. The DD results in: dependence of cupula dynamics on orientation of both the gravity vector relative to the SC plane and the axis of rotation, as well as on the distance between the axis of rotation and the center of SC; shift of the cupula to a new position of equilibrium that depends on both the gravity vector and the parameters of head rotation; and onset of cupula oscillations with multiple frequencies under harmonic stimulation. The DD effect may be important under conditions of artificial gravity where the directions of centrifugal forces, the values of which are comparable with Earth's gravity, the orientations of the axis of rotation of a space station, and the axes of the SCs change during movements of the individuals and their habitat.

  3. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  4. The triaxial ellipsoid size, density, and rotational pole of asteroid (16) Psyche from Keck and Gemini AO observations 2004-2015

    Science.gov (United States)

    Drummond, Jack D.; Merline, William J.; Carry, Benoit; Conrad, Al; Reddy, Vishnu; Tamblyn, Peter; Chapman, Clark R.; Enke, Brian L.; Pater, Imke de; Kleer, Katherine de; Christou, Julian; Dumas, Christophe

    2018-05-01

    We analyze a comprehensive set of our adaptive optics (AO) images taken at the 10 m W. M. Keck telescope and the 8 m Gemini telescope to derive values for the size, shape, and rotational pole of asteroid (16) Psyche. Our fit of a large number of AO images, spanning 14 years and covering a range of viewing geometries, allows a well-constrained model that yields small uncertainties in all measured and derived parameters, including triaxial ellipsoid dimensions, rotational pole, volume, and density. We find a best fit set of triaxial ellipsoid diameters of (a,b,c) = (274 ± 9, 231 ± 7, 176 ± 7) km, with an average diameter of 223 ± 7 km. Continuing the literature review of Carry (2012), we find a new mass for Psyche of 2.43 ± 0.35 × 1019 kg that, with the volume from our size, leads to a density estimate 4.16 ± 0.64 g/cm3. The largest contribution to the uncertainty in the density, however, still comes from the uncertainty in the mass, not our volume. Psyche's M classification, combined with its high radar albedo, suggests at least a surface metallic composition. If Psyche is composed of pure nickel-iron, the density we derive implies a macro-porosity of 47%, suggesting that it may be an exposed, disrupted, and reassembled core of a Vesta-like planetesimal. The rotational pole position (critical for planning spacecraft mission operations) that we find is consistent with others, but with a reduced uncertainty: [RA;Dec]=[32°;+5°] or Ecliptic [λ; δ]=[32∘ ; -8∘ ] with an uncertainty radius of 3°. Our results provide independent measurements of fundamental parameters for this M-type asteroid, and demonstrate that the parameters are well determined by all techniques, including setting the prime meridian over the longest principal axis. The 5.00 year orbital period of Psyche produces only four distinct opposition geometries, suggesting that observations before the arrival of Psyche Mission in 2030 should perhaps emphasize observations away from opposition

  5. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  6. Effects of density asymmetries on heavy-impurity transport in a rotating tokamak-plasma

    International Nuclear Information System (INIS)

    Romanelli, M.; Ottaviani, M.

    1997-12-01

    The transport equations of heavy trace-impurities in a Tokamak plasma with strong toroidal rotation have been studied analytically in the collisional regime. It is found that the poloidal asymmetry of the impurity-density, which occurs because of the rotation, brings about a large enhancement of the diffusivity and indeed of the pinch velocity above the conventional Pfirsh-Schlueter values. (author)

  7. Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency.

    Science.gov (United States)

    Grabherr, Luzia; Nicoucar, Keyvan; Mast, Fred W; Merfeld, Daniel M

    2008-04-01

    Perceptual direction detection thresholds for yaw rotation about an earth-vertical axis were measured at seven frequencies (0.05, 0.1, 0.2, 0.5, 1, 2, and 5 Hz) in seven subjects in the dark. Motion stimuli consisted of single cycles of sinusoidal acceleration and were generated by a motion platform. An adaptive two-alternative categorical forced-choice procedure was used. The subjects had to indicate by button presses whether they perceived yaw rotation to the left or to the right. Thresholds were measured using a 3-down, 1-up staircase paradigm. Mean yaw rotation velocity thresholds were 2.8 deg s(-1) for 0.05 Hz, 2.5 deg s(-1) for 0.1 Hz, 1.7 deg s(-1) for 0.2 Hz, 0.7 deg s(-1) for 0.5 Hz, 0.6 deg s(-1) for 1 Hz, 0.4 deg s(-1) for 2 Hz, and 0.6 deg s(-1) for 5 Hz. The results show that motion thresholds increase at 0.2 Hz and below and plateau at 0.5 Hz and above. Increasing velocity thresholds at lower frequencies qualitatively mimic the high-pass characteristics of the semicircular canals, since the increase at 0.2 Hz and below would be consistent with decreased gain/sensitivity observed in the VOR at lower frequencies. In fact, the measured dynamics are consistent with a high pass filter having a threshold plateau of 0.71 deg s(-1) and a cut-off frequency of 0.23 Hz, which corresponds to a time constant of approximately 0.70 s. These findings provide no evidence for an influence of velocity storage on perceptual yaw rotation thresholds.

  8. Simultaneous measurement of line electron density and Faraday rotation in the ISX-B tokamak

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Staats, P.A.; Vander Sluis, K.L.

    1981-01-01

    A new diagnostic system utilizing a submillimetre-wave, phase-modulated polarimeter/interferometer has been used to simultaneously measure the time evolution of the line-averaged electron density and poloidal field-induced Faraday rotation in the ISX-B tokamak. The measurements, performed along four chords of the plasma column, have been correlated with poloidal field changes associated with a ramp in the Ohmic-heating current and by neutral-beam injection. These are the first simultaneous measurements of line electron density and Faraday rotation to be made along a chord of submillimetre laser beam in a tokamak plasma. (author)

  9. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  10. Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap.

    Science.gov (United States)

    Xie, Shuangquan; Kevrekidis, Panayotis G; Kolokolnikov, Theodore

    2018-05-01

    We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

  11. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  12. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations.

    Science.gov (United States)

    Lutnaes, Ola B; Teale, Andrew M; Helgaker, Trygve; Tozer, David J; Ruud, Kenneth; Gauss, Jürgen

    2009-10-14

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  13. Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus.

    Science.gov (United States)

    Shaikh, Aasef G; Solomon, David

    2017-06-01

    Constant velocity rotations in darkness evoke vestibulo-ocular reflex in form of pre- and post-rotational nystagmus under cerebellar supervision. Reorientation of the head with respect to gravity, stimulating otolith and semicircular canal, during post-rotational phase rapidly suppresses the post-rotational nystagmus. We asked if pure otolith stimulation without semicircular canal signal is sufficient for the suppression of post-rotational nystagmus. The experimental paradigm comprised of on-axis rotations in the horizontal plane when the subject was sitting upright, followed by a novel stimulus that combined off-axis centrifugation in the horizontal plane with amplitude matched, yet out-of-phase, on-axis horizontal rotation-double centrifugation. The resultant effect of double centrifugation was pure otolith stimulation that constantly changed direction, yet completely canceled out angular velocity (no horizontal semicircular canal stimulation). Double centrifugation without pre-existing on-axis rotations evoked mixture of horizontal and vertical eye movements, latter reflected the known uncertainty of the vestibular system to differentiate whether the sensory signal is related to low-frequency translations in horizontal plane or head tilts relative to the gravity. Double centrifugation during post-rotational phase suppressed the peak slow phase eye velocity of the post-rotational nystagmus, hence affecting the vestibular ocular reflex gain (eye velocity/head velocity) matrix. The decay time constant, however, was unchanged. Amount of suppression of the peak slow phase eye velocity of the post-rotational nystagmus during double centrifugation correlated with the peak vertical eye velocity evoked by the pure otolith stimuli in the absence of pre-existing on axis rotations. In post-rotational phase, the pure otolith signal affects vestibular ocular reflex gain matrix but does not affect the time constant.

  14. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  15. Coherent structure in geostrophic flow under density stratification; Mippei seisoka ni aru chikoryu no soshiki kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Iida, O.; Nagano, Y. [Nagoya Institute of Technology, Nagoya (Japan)

    1998-10-25

    The coherent structure and relevant heat transport in geostrophic flows under various density stratification has been studied by using both direct numerical simulation and rapid distortion theory. It is found that in a neutrally stratified flow under system rotation, the temperature fluctuations become very close to two-dimensional and their variation is very small in the direction parallel to the axis of rotation. Under the stable stratification, the velocity and temperature fluctuations tend to oscillate with the Brunt-Vaisala frequency. Under the unstable stratification, on the other hand, vortex columns are formed in the direction parallel to the axis of rotation. However, the generation of the elongated vortex columns cannot be predicted by the rapid distortion theory. The non-linear term is required to generate these characteristic vortex columns. 11 refs., 18 figs., 1 tab.

  16. A novel scanning interferometer for two-dimensional plasma density measurements

    International Nuclear Information System (INIS)

    Howard, J.

    1989-01-01

    A novel multichannel scanning interferometer designed for tomographically inferring contours of electron density in magnetically confined plasmas is described. The scanning element is a multi-sectored blazed rotating grating. The diffracted beam emerges at a different angle from each sector giving rise to a fan array of discrete beams for each rotation of the grating. Signals from the probing chords are multiplexed in time enabling the use of a single detecting element for the extraction of many channels of line integrated density information. An air turbine driven grating wheel assembly has been fabricated and initial tests performed. The proposed interferometer is to be installed on the H-1 helical axis stellarator currently under construction at the Australian National University. 16 refs., 12 figs

  17. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  19. Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3D arm motions.

    Science.gov (United States)

    Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C

    2009-12-29

    We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.

  20. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  1. Post-middle Miocene Tuffs of Bodie Hills and Mono Basin, California: Paleomagnetic Reference Directions and Vertical Axis Rotation

    Science.gov (United States)

    Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.

    2013-12-01

    The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since

  2. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  3. Optofluidic laser scanner based on a rotating liquid prism.

    Science.gov (United States)

    Kopp, Daniel; Lehmann, Lukas; Zappe, Hans

    2016-03-20

    We demonstrate an electrowetting-actuated optofluidic system based on a rotatable liquid prism implemented as a two-dimensional laser scanner. The system is fabricated through a novel technology using a patterned flexible polymeric foil on which a high density of electrodes is structured and which is subsequently inserted into a cylindrical housing. The resulting radial electrode array is used for electrowetting actuation of two fluids filled into the cylinder, which allows a controllable tilt and orientation of the planar liquid interface and thus represents a tunable rotating prism. Finite element simulations and subsequent experimental verification show that this highly planar and precisely positionable liquid/liquid interface may be actuated to a deflection angle of ±6.4°, with a standard deviation of ±0.18°, and rotated 360° about the vertical axis. Power consumption is limited to several microwatts, and switching times of several hundred milliseconds were determined.

  4. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    Science.gov (United States)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  5. Mixing on a spherical shell by cutting and shuffling with non-orthogonal rotation axes

    Science.gov (United States)

    Lynn, Thomas; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2017-11-01

    We examine a dynamical system that models the mixing of granular material in a half-filled spherical tumbler rotated about two horizontal alternating axes by using the machinery of cutting and shuffling through piecewise-isometries (PWI). Previous restrictions on how the domain is cut and shuffled are relaxed to allow non-orthogonal axes of rotation. Mixing is not only dependent on the amount of rotation used to induce mixing, but also on the relative orientation of the rotation axes. Well mixed regions within the PWI, which have a high density of cuts, typically interact with the periodic cutting boundary for both rotation axes. However, there are parameter combinations where the two rotations cut distinctly separate regions. The three-parameter space (a rotation about each axis and the relative orientation of the axes) is rich with detailed mixing features such as fractal boundaries and elliptic-like non-mixing regions. Supported by National Science Foundation Grant No. CMMI-1435065.

  6. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  7. Studying rotational dynamics with a smartphone—accelerometer versus gyroscope

    Science.gov (United States)

    Braskén, Mats; Pörn, Ray

    2017-07-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment of both the physics classroom and the instructional physics laboratory, encouraging an active interaction between measurements and modeling activities. Two useful sensors, available in most modern smartphones and tablets, are the 3-axis acceleration sensor and the 3-axis gyroscope. We explore the strengths and weaknesses of each type of sensor and use them to study the rotational dynamics of objects rotating about a fixed axis. Care has to be taken when interpreting acceleration sensor data, and in some cases the gyroscope will allow for rotational measurements not easily replicated using the acceleration sensor.

  8. [Correlation of fine structures of distributions of amplitudes of a photomultiplier dark current fluctuations with the Earth rotations about its axis].

    Science.gov (United States)

    Fedorov, M V; Belousov, L V; Voeĭkov, V L; Zenchenko, K I; Zenchenko, T A; Konradov, A A; Shnol', S E

    2001-01-01

    The fine structures of distributions of photomultiplier dark current fluctuations measured in two laboratories 2000 km distant from other: in the international Institute of Biophysics (Neuss, Germany) and in the Moscow State University (Moscow, Russia) were compared. It is shown that similar forms of appropriate histograms are apparently more often realized at both locations at the same local time. This confirms the previous conclusion that the fine structure of distributions correlates with rotation of the Earth about its axis.

  9. Computer modeling of the dynamics of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.

    1989-01-01

    Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.

  10. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  11. Apparatus and method for materials processing utilizing a rotating magnetic field

    Science.gov (United States)

    Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.; Wilgen, John B.

    2017-04-11

    An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.

  12. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    International Nuclear Information System (INIS)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-01-01

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated

  13. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  14. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    Science.gov (United States)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  15. Turbulence suppression in discharges with off-axis ECRH on the T-10 tokamak device

    International Nuclear Information System (INIS)

    Shelukhin, D.A.; Vershkov, V.A.; Razumova, K.A.

    2005-01-01

    A transient steep electron temperature gradient has been observed in T-10 tokamak plasmas at ρ=0.25 immediately after off-axis electron cyclotron resonance heating (ECRH) switch-off. The turbulence characteristics were investigated in these discharges by means of correlation reflectometry. It was found that the density fluctuation amplitude was two times lower than the ohmic level in a narrow region near ρ=0.25 after ECRH switch-off. The poloidal coherence of fluctuations is also decreased in this region. The suppression of quasi-coherent oscillations has been observed in discharges during the time when the strong temperature gradient exists. Measurements of turbulent poloidal rotation showed no velocity shear after ECRH switch-off. Analysis of the linear growth rates of instabilities shows that the ion temperature gradient (ITG) mode is unstable at ρ ∼ 0.25 during the whole discharge. A possible explanation for the observed phenomena is the rational surface density decrease near q=1 due to q profile transient flattening after off-axis ECRH switch-off. (author)

  16. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  17. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  18. Design for coordinated measurements of Faraday rotation and line-of-sight electron density using heterodyne techniques

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1977-07-01

    This report proposes a device which can overcome certain of the compromises of conventional Faraday rotation methods and at the same time measure the optical phase as well as the polarization. This would be useful for unfolding the Faraday rotation signal using the line-of-sight density along exactly the same path. Preliminary design parameters using a CO 2 laser are presented

  19. Spin imaging in solids using synchronously rotating field gradients and samples

    International Nuclear Information System (INIS)

    Wind, R.A.; Yannoni, C.S.

    1983-01-01

    A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data

  20. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees in a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.

  1. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  2. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    Science.gov (United States)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  3. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    Science.gov (United States)

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  4. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  5. The magnetic field generated by a rotating charged polygon

    International Nuclear Information System (INIS)

    Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A

    2014-01-01

    The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)

  6. Turbulent structures in cylindrical density currents in a rotating frame of reference

    Science.gov (United States)

    Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas

    2018-06-01

    Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.

  7. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  8. Simulation of electron beam from two strip electron guns and control of power density by rotation of gun

    International Nuclear Information System (INIS)

    Sahu, G K; Baruah, S; Thakur, K B

    2012-01-01

    Electron beam is preferably used for large scale evaporation of refractory materials. Material evaporation from a long and narrow source providing a well collimated wedge shaped atomic beam has applications in isotopic purification of metals relevant to nuclear industry. The electron beam from an electron gun with strip type filament provides a linear heating source. However, the high power density of the electron beam can lead to turbulence of the melt pool and undesirable splashing of molten metal. For obtaining quiet surface evaporation, the linear electron beam is generally scanned along its length. To further reduce the power density to maintain quiet evaporation the width of the vapour source can be controlled by rotating the electron gun on its plane, thereby scanning an inclined beam over the molten pool. The rotation of gun has further advantages. When multiple strip type electron guns are used for scaling up evaporation length, a dark zone appears between two beams due to physical separation of adjacent guns. This dark zone can be reduced by rotating the gun and thereby bringing two adjacent beams closer. The paper presented here provides the simulation results of the electron beam trajectory and incident power density originating from two strip electron guns by using in-house developed code. The effect of electron gun rotation on the electron beam trajectory and power density is studied. The simulation result is experimentally verified with the image of molten pool and heat affected zone taken after experiment. This technique can be gainfully utilized in controlling the time averaged power density of the electron beam and obtaining quiet evaporation from the metal molten pool.

  9. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  10. A novel algorithm for single-axis maximum power generation sun trackers

    International Nuclear Information System (INIS)

    Lee, Kung-Yen; Chung, Chi-Yao; Huang, Bin-Juine; Kuo, Ting-Jung; Yang, Huang-Wei; Cheng, Hung-Yen; Hsu, Po-Chien; Li, Kang

    2017-01-01

    Highlights: • A novel algorithm for a single-axis sun tracker is developed to increase the efficiency. • Photovoltaic module is rotated to find the optimal angle for generating the maximum power. • Electric energy increases up to 8.3%, compared with that of the tracker with three fixed angles. • The rotation range is optimized to reduce energy consumption from the rotation operations. - Abstract: The purpose of this study is to develop a novel algorithm for a single-axis maximum power generation sun tracker in order to identify the optimal stopping angle for generating the maximum amount of daily electric energy. First, the photovoltaic modules of the single-axis maximum power generation sun tracker are automatically rotated from 50° east to 50° west. During the rotation, the instantaneous power generated at different angles is recorded and compared, meaning that the optimal angle for generating the maximum power can be determined. Once the rotation (detection) is completed, the photovoltaic modules are then rotated to the resulting angle for generating the maximum power. The photovoltaic module is rotated once per hour in an attempt to detect the maximum irradiation and overcome the impact of environmental effects such as shading from cloud cover, other photovoltaic modules and surrounding buildings. Furthermore, the detection range is halved so as to reduce the energy consumption from the rotation operations and to improve the reliability of the sun tracker. The results indicate that electric energy production is increased by 3.4% in spring and autumn, 5.4% in summer, and 8.3% in winter, compared with that of the same sun tracker with three fixed angles of 50° east in the morning, 0° at noon and 50° west in the afternoon.

  11. Rotational image deblurring with sparse matrices

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos

    2014-01-01

    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary...

  12. Analysis of the Drivetrain Performance of a Large Horizontal-Axis Wind Turbine: An Aeroelastic Approach

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Preidikman, Sergio; Massa, Julio C

    2010-01-01

    by means of the rotor blades, and then converting the rotational energy of the rotor blades into electrical energy by using a generator. The amount of available energy which the wind transfers to the rotor depends on the mass density of the air, the sweep area of the rotor blades, and the wind speed...... to generate electricity from the kinetic energy of the wind. In order to capture this energy and convert it to electrical energy, one needs to have a device that is capable of extracting the energy available in the wind stream. This device, or turbine, is usually composed of three major parts: the ‘rotor...... blades’, the drivetrain and the generator. The blades are the part of the turbine that touches energy in the wind and rotates about an axis. Extracting energy from the wind is typically accomplished by first mechanically converting the velocity of the wind into a rotational motion of the wind turbine...

  13. Hindered rotational energy barriers of BH4- tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations

    DEFF Research Database (Denmark)

    Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.

    2012-01-01

    , around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...

  14. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  15. Finite-element analysis and modal testing of a rotating wind turbine

    Science.gov (United States)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    1982-10-01

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  16. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  17. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  18. Momentum transfer to rotating magnetized plasma from gun plasma injection

    International Nuclear Information System (INIS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  19. Three-dimensional analysis of otolith-ocular reflex during eccentric rotation in humans.

    Science.gov (United States)

    Takimoto, Yasumitsu; Imai, Takao; Okumura, Tomoko; Takeda, Noriaki; Inohara, Hidenori

    2016-10-01

    When a participant is rotated while displaced from the axis of rotation (eccentric rotation, ER), both rotational stimulation and linear acceleration are applied to the participant. As linear acceleration stimulates the otolith, the vestibulo-ocular reflex (VOR) caused by the otolith (linear VOR; lVOR) would be induced during ER. Ten participants were rotated sinusoidally at a maximum angular velocity of 50°/s and at frequencies of 0.1, 0.3, 0.5, and 0.7Hz. The radius of rotation during ER was 90cm. The participants sat on a chair at three different positions: on the axis (center rotation, CR), at 90cm backward from the axis (nose-in ER, NI-ER) and at 90cm forward from the axis (nose-out ER, NO-ER). Their eye movements during rotation were recorded and analyzed three-dimensionally. The VOR gain during NI-ER was lower at 0.5 and 0.7Hz, and that during NO-ER was higher at 0.3, 0.5, and 0.7Hz than during CR. These results indicate that lVOR actually worked at 0.5 and 0.7Hz during ER and that the enhancement and decline of the VOR gain relative to the VOR gain during CR was seen in humans. Thus, we suggest that otolith function can be assessed via rotational testing of NI-ER and NO-ER. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  20. Time-odd mean fields in covariant density functional theory: Rotating systems

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2010-01-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  1. Decrease of the atmospheric co-rotation with height

    International Nuclear Information System (INIS)

    Membrado, M; Pacheco, A F

    2010-01-01

    Considering our atmosphere as a steady viscous gaseous envelope that co-rotates with the Earth, we obtain a solution for the form in which this induced rotational effect decreases as a function of the distances to the centre of the Earth and to the rotation axis.

  2. Generation of plasma rotation in a tokamak by ion-cyclotron absorption of fast Alfven waves

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.B.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this heating introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a boundary condition at the separatrix. Second, Monte Carlo calculations show that ion-cyclotron energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts that ion-cyclotron heating will cause a rotational shear layer to develop. The corresponding jump in plasma rotation ΔΩ is found to be negative outwards when the ion-cyclotron surface lies on the low-field side of the magnetic axis and positive outwards with the resonance on the high-field side. The magnitude of the jump ΔΩ=(4q max WJ 2 *) (eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where |J 2 *|≅2-4 is a nondimensional rotation frequency calculated by the Monte Carlo ORBIT code [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)]. For a no-slip boundary condition when the resonance lies on the low-field side of the magnetic axis, the sense of predicted axial rotation is co-current and overall agreement with experiment is good. When the resonance lies on the high-field side, the predicted rotation becomes countercurrent for a no-slip boundary while the observed rotation remains co-current. The rotational shear layer position is controllable and of sufficient magnitude to affect microinstabilities

  3. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  4. Neutron emission spectra and level density of hot rotating 132Sn

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    The neutron emission spectrum of the highly excited compound nuclear system 132 Sn is investigated at high spin. The doubly magic nucleus 132 Sn undergoes a shape transition at high angular momentum which affects the nuclear level density and neutron emission probability considerably. The interplay of temperature, shape, deformation and rotational degrees of freedom and their influence on neutron emission is emphasized. We predict an enhancement of nucleonic emission at those spins where the nucleus suffers a transition from a spherical to deformed shape. (author)

  5. On the effects of rotation on interstellar molecular line profiles

    International Nuclear Information System (INIS)

    Adelson, L.M.; Chunming Leung

    1988-01-01

    Theoretical models are constructed to study the effects of systematic gas rotation on the emergent profiles of interstellar molecular lines, in particular the effects of optical depth and different velocity laws. Both rotational and radial motions (expansion or contraction) may produce similar asymmetric profiles, but the behaviour of the velocity centroid of the emergent profile over the whole cloud (iso-centroid maps) can be used to distinguish between these motions. Iso-centroid maps can also be used to determine the location and orientation of the rotation axis and of the equatorial axis. For clouds undergoing both radial and rotational motion, the component of the centroid due to the rotational motion can be separated from that due to the radial motion. Information on the form of the rotational velocity law can also be derived. (author)

  6. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    Science.gov (United States)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    representative of the AH-64 pilot location. Six test pilots flew three tasks that were specifically designed to represent a broad class of situations in which both lateral and yaw motion cues may be useful. For the first task, the pilot controlled only the yaw axis and was required to rapidly acquire a North heading from 15 deg yaw offsets to either the East or West. This task allowed for full, or 1:1, motion to be used in all axes (yaw, lateral, and longitudinal). The second task was a 10 sec., 180 deg. pedal turn over a runway, but with the pilot only controlling the yaw degree-of-freedom. The position of the vehicle's center-of-mass remained fixed. This maneuver was taken from a current U.S. Army rotary wing design standard5 and is representative of a maneuver performed for acceptance of military helicopters; however, it does not allow for full 1:1 motion, since the simulator cab cannot rotate 180 deg. The third task required the pilot to perform a rapid 9 ft climb at a constant heading. This task was challenging, because rapid collective lever movement in the unaugmented AH64 results in a substantial yawing moment (due to engine torque) that must be countered by the pilot. This task also had full motion in all axes, but, in this case, the pilot had two axes to control simultaneously, rather than one as in the previous tasks. Four motion configurations were examined for each task: full motion (except for the 180 deg turn, for which the motion system was configured to provide as much motion as possible), full linear with no yaw motion, full yaw with no linear motion, and no motion. Each configuration was flown four times in a randomized test matrix, and the pilots were not informed of the configuration given. Vehicle state data were recorded for objective performance comparisons, and pilots provided subjective comments and ratings. As part of the pilots' evaluation, they were asked to rate the compensation required, the overall fidelity of the motion as compared to real flight

  7. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  8. Finite element analysis and modal testing of a rotating wind turbine

    Science.gov (United States)

    Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.

    A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.

  9. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  10. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  11. Optical rotation calculated with time-dependent density functional theory: the OR45 benchmark.

    Science.gov (United States)

    Srebro, Monika; Govind, Niranjan; de Jong, Wibe A; Autschbach, Jochen

    2011-10-13

    Time-dependent density functional theory (TDDFT) computations are performed for 42 organic molecules and three transition metal complexes, with experimental molar optical rotations ranging from 2 to 2 × 10(4) deg cm(2) dmol(-1). The performances of the global hybrid functionals B3LYP, PBE0, and BHLYP, and of the range-separated functionals CAM-B3LYP and LC-PBE0 (the latter being fully long-range corrected), are investigated. The performance of different basis sets is studied. When compared to liquid-phase experimental data, the range-separated functionals do, on average, not perform better than B3LYP and PBE0. Median relative deviations between calculations and experiment range from 25 to 29%. A basis set recently proposed for optical rotation calculations (LPol-ds) on average does not give improved results compared to aug-cc-pVDZ in TDDFT calculations with B3LYP. Individual cases are discussed in some detail, among them norbornenone for which the LC-PBE0 functional produced an optical rotation that is close to available data from coupled-cluster calculations, but significantly smaller in magnitude than the liquid-phase experimental value. Range-separated functionals and BHLYP perform well for helicenes and helicene derivatives. Metal complexes pose a challenge to first-principles calculations of optical rotation.

  12. Description of multi-quasiparticle bands by the tilted axis cranking model

    International Nuclear Information System (INIS)

    Frauendorf, S.

    2000-01-01

    The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73

  13. Path integral of the angular momentum eigenstates evolving with the parameter linked with rotation angle under the space rotation transformation

    International Nuclear Information System (INIS)

    Zhang Zhongcan; Hu Chenguo; Fang Zhenyun

    1998-01-01

    The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals

  14. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  15. Numerical simulation in three space dimensions of time-dependent thermal convection in a rotating fluid

    International Nuclear Information System (INIS)

    Hathaway, D.H.; Somerville, R.C.J.; National Solar Observatory, Sunspot, NM; California Univ., La Jolla)

    1985-01-01

    Three-dimensional, time-dependent convection in a plane layer of fluid, uniformly heated from below and subject to vertical shear and to rotation about an axis tilted from the vertical, was simulated by the numerical solution of the Boussinesq equations, including all Coriolis terms. Rotation about a vertical axis produces smaller convection cells with diminished heat fluxes and considerable vorticity. When the rotation axis is tilted from the vertical to represent tropical latitudes, the convection cells become elongated in a N-S direction. Imposed flows with constant vertical shear produce convective rolls aligned with the mean flow. When the rotation vector is tilted from the vertical, the competing effects due to rotation and shear can stabilize the convective motions. 15 references

  16. Rotational-mode component of the density of levels of nuclei with A approx-lt 150

    International Nuclear Information System (INIS)

    Rastopchin, E.M.; Svirin, M.I.; Smirenkin, G.N.

    1992-01-01

    Some difficulties which arise in the use of the generalized superfluid model to describe the density of levels in the region A approx-lt 150, as the result of an imperfect understanding of collective nuclear excitations, are discussed. One possible way to overcome these difficulties is examined. The idea is to depart from the conventional classification of collective nuclear properties and make use of small static deformations predicted theoretically and a corresponding rotational-mode component of the density of levels of these nuclei

  17. NPSAT1 MEMS 3-AXIS Rate Sensor Suite Performance, Characterization, and Flight Unit Acceptance Testing

    Science.gov (United States)

    2011-09-01

    magnetometer as the sensor, and the ACS controller. The magnetic control approach of NPSAT1 relies on favorable moments of inertia by optimum equipment...parallel with the HAAS rotational axis. To cancel the earth’s rotational effects, the turntable was tilted at -36.4° (accounts for the geocentric ...this initialization. 108 a. Gyro Bias Calibration from Three-Axis Magnetometer Measurements Reference [35] presents a real-time approach for gyro

  18. Concept of a Programmable Fixture for 3-Axis CNC

    Directory of Open Access Journals (Sweden)

    Ahmad Dalloul

    2017-09-01

    Full Text Available CNC machine is the one of the major reasons for industrial advancement in recent decades for its ability of producing accurate parts. The most commen CNC machines are of 3-axis and adopted widely in the industrial sector. However, for producing more complicated parts 5-axis CNC machines are required. Although the introduction of the 5-axis machine came after the 3-axis CNC machine has established itself and many manufacturers did not make the move toward the newer model and its high pricing compared to the 3-axis model did not help either. In this time the development of a fixture or a platform to help transfer the 3-axis to a 5-axis to some degree. This paper discusses the concept of a programmable fixture that gives 3-axis CNC machine the freedom to act in similar manner as the 5-axis. The paper describes the mechanism with some initial results of the testing. Result showed that the platform moves in translation manner with an average error of 5.58 % and 7.303% average error for rotation movement.

  19. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  20. Elastic-plastic stresses in a thin rotating disk with shafthaving density variation parameter under steady-state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Steady thermal stresses in a rotating disc with shaft having density variation parameter subjected to thermal load have been derived by using Seth's transition theory. Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted graphically. It has been seen that compressible material required higher percentage increased angular speed to become fully-plastic as compare to rotating disc made of incompressible material. Circumferential stresses are maximal at the outer surface of the rotating disc. With the introduction of thermal effect it decreases the value of radial and circumferential stresses at inner and outer surface for fully-plastic state.

  1. [Localization and registration of the hinge axis in black Africans].

    Science.gov (United States)

    Assi, K D; N'Guessan, K S; N'Dindin, C; Bamba, A

    2003-06-01

    The study of the cinematic method using "SAM" and "Quick Axis of FAG" added to mandibular condyle palpation for the hinge axis limited points, show that the Black Africans mandibular condyle rotation axis position is higher (3.5 mm) and backer (2 mm) than the Caucasians. The axial points are located to between 11 and 12 mm in front of the tragus and between 7 and 8 mm below on the perpendicular line to the furrow defining the tragus superior side to the Ectocanthus.

  2. Astigmatic single photon emission computed tomography imaging with a displaced center of rotation

    International Nuclear Information System (INIS)

    Wang, H.; Smith, M.F.; Stone, C.D.; Jaszczak, R.J.

    1998-01-01

    A filtered backprojection algorithm is developed for single photon emission computed tomography (SPECT) imaging with an astigmatic collimator having a displaced center of rotation. The astigmatic collimator has two perpendicular focal lines, one that is parallel to the axis of rotation of the gamma camera and one that is perpendicular to this axis. Using SPECT simulations of projection data from a hot rod phantom and point source arrays, it is found that a lack of incorporation of the mechanical shift in the reconstruction algorithm causes errors and artifacts in reconstructed SPECT images. The collimator and acquisition parameters in the astigmatic reconstruction formula, which include focal lengths, radius of rotation, and mechanical shifts, are often partly unknown and can be determined using the projections of a point source at various projection angles. The accurate determination of these parameters by a least squares fitting technique using projection data from numerically simulated SPECT acquisitions is studied. These studies show that the accuracy of parameter determination is improved as the distance between the point source and the axis of rotation of the gamma camera is increased. The focal length to the focal line perpendicular to the axis of rotation is determined more accurately than the focal length to the focal line parallel to this axis. copyright 1998 American Association of Physicists in Medicine

  3. Changes in the earth's rotation by tectonics : gravito-elastodynamics

    NARCIS (Netherlands)

    Vermeersen, L.L.A.

    1993-01-01

    The rotation of the Earth is not regular. It changes on virtually every timescale we know in both position of the rotation axis and rotation rate. Even in our daily lives we sometimes experience the consequences of such changes, such as the second that is subtracted or added to clocks at the

  4. The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement.

    Science.gov (United States)

    Kim, C W; Seo, S S; Kim, J H; Roh, S M; Lee, C R

    2014-11-01

    The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, sd 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. ©2014 The British Editorial Society of Bone & Joint Surgery.

  5. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  6. c-Axis projected electron-positron momentum density in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Bansil, A.; Smedskjaer, L.C.

    1990-11-01

    The authors present the theoretical c-axis projected electron-positron momentum density N 2γ (P x ,p y ) in YBa 2 Cu 3 O 7 based on the local density approximation (LDA) framework along various lines in momentum space. The calculations use the Korringa-Kohn-Rostoker (KKR) band structure formalism. The anisotropic distribution defined by taking cuts through the calculated spectra along different lines in the (p x ,p y ) plane possesses complex structures which arise from both Fermi surface effects and the anisotropy of the smoothly varying underlying background from filled bands; the maximum size of the anisotropy is about 10% of N 2γ (0,0). The theoretically predicted N 2γ (p x , y ) distribution is compared with the measured 2D-ACAR spectrum. The considerations suggest that in interpreting the 2D-ACAR data on YBa 2 Cu 3 O 7 in terms of a band theory LDA picture, a substantial, largely isotropic, background should be subtracted from both the 2D-ACAR's and the associated LCW-folded spectra

  7. 47 CFR 25.223 - Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Off-axis EIRP spectral density limits for feeder link earth stations in the 17/24 GHz BSS. 25.223 Section 25.223 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25...

  8. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

    Directory of Open Access Journals (Sweden)

    Brahim Berrabah

    2017-02-01

    Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.

  9. Design and analysis of a semi-submersible vertical axis wind turbine

    OpenAIRE

    Siddique, Muhammad Abu Zafar

    2017-01-01

    Wind energy are deployed by two types of wind turbines. They are Horizontal Axis Wind Turbine (HAWT) and Vertical Axis Wind Turbine (VAWT), classified according to their axis of rotation. In recent years, offshore wind energy playing a vital role in the wind turbine industry due to high intensity of air, less turbulent and comparatively clean and easily employed in large area which is difficult to manage for onshore or near-shore. The advantages of HAWTs are now facing different challenge in ...

  10. Hall effect in the presence of rotation

    Science.gov (United States)

    Zubkov, M. A.

    2018-02-01

    A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.

  11. The tumbling rotational state of 1I/`Oumuamua

    Science.gov (United States)

    Fraser, Wesley C.; Pravec, Petr; Fitzsimmons, Alan; Lacerda, Pedro; Bannister, Michele T.; Snodgrass, Colin; Smolić, Igor

    2018-05-01

    The discovery1 of 1I/2017 U1 (1I/`Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects2-7. 1I/`Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1 (refs 1,4,5,8). Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 h (refs 4-6,9). Here, we analyse all the available optical photometry data reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/`Oumuamua appears to be in an excited rotational state undergoing non-principal axis rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 h-1 and implies a longest-to-shortest axis ratio of ≳5:1, although the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to non-principal axis rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/`Oumuamua's tumbling is at least one billion years. 1I/`Oumuamua was probably set tumbling within its parent planetary system and will remain tumbling well after it has left ours.

  12. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  13. Rotational states of odd Z rare earth proton emitter 131Eu

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2013-01-01

    Recent observation of proton radioactivity and rotational bands in 131 Eu and 141 Ho with large deformations β ≈ 0.3 and γ softness have already proven the study of excited states of deformed proton emitters a source of valuable information on the structure of proton decaying states and response of proton emitters on the stress of rotation. The rare earth nuclei below the N = 82 shell closure form one of the few regions of the nuclear chart where nuclear shapes are expected to change rapidly with coexistence of oblate and prolate shapes in some nuclei. We evaluate shapes and deformation of 131 Eu by combining classical collective properties of the liquid drop model with the quantum corrections due to shell effects via Strutinsky formalism adequately described in. Excited states are treated using statistical theory. Nuclear shapes and deformation are traced by minimizing free energy (F = E-TS) w.r.t. deformation parameters β from 0 to 0.4 in steps of 0.01 and γ from -180° (oblate with symmetry axis parallel to the rotation axis) to -120° (prolate with symmetry axis perpendicular to rotation axis) and then to -60° (oblate collective) to 0° (prolate non-collective)

  14. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  15. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  16. Spinning pipe gas lens aberrations along the axis and in the boundary layer

    CSIR Research Space (South Africa)

    Mafusire, C

    2013-11-01

    Full Text Available When the walls of an open-ended horizontal steel pipe are heated before the pipe is rotated along its axis, the exchange of the expelled heated air with the incoming cooler air, sucked in along the axis, results in a medium capable of focusing a...

  17. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  18. On the symmetry of cylindrical implosions driven by a rotating beam of fast ions

    International Nuclear Information System (INIS)

    Basko, M.M.; Schlegel, T.; Maruhn, J.

    2004-01-01

    Cylindrical implosions driven by intense beams of heavy ions are one of the promising ways to create high energy density states in matter. To ensure the needed azimuthal symmetry of the beam energy deposition, it was proposed [Sharkov et al., Nucl. Instrum. Methods Phys. Res. A 464, 1 (2001)] to rotate the ion beam around the target axis. Combining analytical calculations with two-dimensional hydrodynamic simulations, a lower limit is established on the frequency ν of the beam rotation dictated by the target hydrodynamics. This limit is shown to be directly proportional to the desired radial convergence ratio C r for stepwise beam power profiles, and to C r 1/2 for smooth pulses. With a smooth pulse, 6-10 beam revolutions per pulse should be sufficient to reach C r ≅30, while a stepwise pulse requires ≅100 revolutions. Also, the upper bound on the asymmetry of the elliptical focal spot of a rotating ion beam is calculated

  19. Do axes of rotation change during fast and slow motions of the dominant and non-dominate arms?

    Directory of Open Access Journals (Sweden)

    Pagano Christopher

    2011-12-01

    Full Text Available The velocity-dependent change in rotational axes observed in the control of unconstrained 3D arm rotations for the dominant limb seems to conform to a minimum inertia resistance (MIR principle [4]. This is an efficient biomechanical solution that allows for the reduction of torques. We tested whether the MIR principle governs rotating movement when subjects were instructed to maintain the shoulder-elbow joint axis close to horizontal for both dominant and non dominant limbs. Subjects (n=12 performed externalinternal rotations of their arms in two angular positions (90° versus 150°, two angular velocities (slow (S versus fast (F, and in two sensory conditions (kinaesthetic (K versus visuo- kinaesthetic (VK. We expected more scattered displacements of the rotation axis employed for rotating the non dominant limb compared to the dominant limb. The results showed that the rotational axis of a multiarticulated limb coincided with SH-EL at S & F velocity for both arms.

  20. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  1. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  2. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  3. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    Science.gov (United States)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  4. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation.

    Science.gov (United States)

    Ortiz, J L; Santos-Sanz, P; Sicardy, B; Benedetti-Rossi, G; Bérard, D; Morales, N; Duffard, R; Braga-Ribas, F; Hopp, U; Ries, C; Nascimbeni, V; Marzari, F; Granata, V; Pál, A; Kiss, C; Pribulla, T; Komžík, R; Hornoch, K; Pravec, P; Bacci, P; Maestripieri, M; Nerli, L; Mazzei, L; Bachini, M; Martinelli, F; Succi, G; Ciabattari, F; Mikuz, H; Carbognani, A; Gaehrken, B; Mottola, S; Hellmich, S; Rommel, F L; Fernández-Valenzuela, E; Bagatin, A Campo; Cikota, S; Cikota, A; Lecacheux, J; Vieira-Martins, R; Camargo, J I B; Assafin, M; Colas, F; Behrend, R; Desmars, J; Meza, E; Alvarez-Candal, A; Beisker, W; Gomes-Junior, A R; Morgado, B E; Roques, F; Vachier, F; Berthier, J; Mueller, T G; Madiedo, J M; Unsalan, O; Sonbas, E; Karaman, N; Erece, O; Koseoglu, D T; Ozisik, T; Kalkan, S; Guney, Y; Niaei, M S; Satir, O; Yesilyaprak, C; Puskullu, C; Kabas, A; Demircan, O; Alikakos, J; Charmandaris, V; Leto, G; Ohlert, J; Christille, J M; Szakáts, R; Farkas, A Takácsné; Varga-Verebélyi, E; Marton, G; Marciniak, A; Bartczak, P; Santana-Ros, T; Butkiewicz-Bąk, M; Dudziński, G; Alí-Lagoa, V; Gazeas, K; Tzouganatos, L; Paschalis, N; Tsamis, V; Sánchez-Lavega, A; Pérez-Hoyos, S; Hueso, R; Guirado, J C; Peris, V; Iglesias-Marzoa, R

    2017-10-11

    Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

  5. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  6. Finite Difference Solution of Elastic-Plastic Thin Rotating Annular Disk with Exponentially Variable Thickness and Exponentially Variable Density

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2013-01-01

    Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.

  7. The Axial Curve Rotator.

    Science.gov (United States)

    Hunter, Walter M.

    This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

  8. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  9. On the Long-Term "Hesitation Waltz" Between the Earth's Figure and Rotation Axes

    Science.gov (United States)

    Couhert, A.; Mercier, F.; Bizouard, C.

    2017-12-01

    The principal figure axis of the Earth refers to its axis of maximum inertia. In the absence of external torques, the latter should closely coincide with the rotation pole, when averaged over many years. However, because of tidal and non-tidal mass redistributions within the Earth system, the rotational axis executes a circular motion around the figure axis essentially at seasonal time scales. In between, it is not clear what happens at decadal time spans and how well the two axes are aligned. The long record of accurate Satellite Laser Ranging (SLR) observations to Lageos makes possible to directly measure the long time displacement of the figure axis with respect to the crust, through the determination of the degree 2 order 1 geopotential coefficients for the 34-year period 1983-2017. On the other hand, the pole coordinate time series (mainly from GNSS and VLBI data) yield the motion of the rotation pole with even a greater accuracy. This study is focused on the analysis of the long-term behavior of the two time series, as well as the derivation of possible explanations for their discrepancies.

  10. Radiographic femoral varus measurement is affected unpredictably by femoral rotation

    DEFF Research Database (Denmark)

    Miles, James Edward

    Radiographic measurements of femoral varus are used to determine if intervention to correct femoral deformity is required, and to calculate the required correction. The varus angle is defined as the angle between the proximal femoral long axis (PFLA) and an axis tangential to the distal femoral...... and externally by 5° and 10° using plastic wedges. Accuracy of rotation was within +1°. Digital radiographs were obtained at each position. Varus angles were measured using ImageJ, employing two definitions of PFLA. Mean varus angles increased with 10° of either internal or external rotation with both PFLA...... rotation angles. The effect of rotation on varus angle measurements in these femoral specimens contradicts a previous report using CT. The most probable explanation is the difference in femoral positioning: the CT study used a slightly elevated position compared to that in this study, resulting in better...

  11. Impact of rotating resonant magnetic perturbation fields on plasma edge electron density and temperature

    International Nuclear Information System (INIS)

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.

    2012-01-01

    Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)

  12. Constraints on Spin Axis and Thermal Properties of Asteroids in the WISE Catalog

    Science.gov (United States)

    MacLennan, Eric M.; Emery, J. P.

    2013-10-01

    It has widely been accepted that dynamical state of asteroids can strongly be influenced by radiation forces (e.g., Yarkovsky and YORP). Determination of an object’s thermal properties and spin state are a critical step towards understanding the effects of these forces. In this respect, observations of thermal flux emitted from the surfaces of asteroids are a powerful tool. The emission of flux is determined by the temperature distribution which is controlled by the thermal inertia, rotation rate, and spin axis orientation. By gathering data at multiple viewing geometries, the temperature distribution can be modeled accurately enough to separate the effects attributed to (some of) these parameters. Over the length of its mission, the Wide-Field Infrared Survey Explorer (WISE) observed many asteroids in two epochs (i.e., on either side of opposition) such that data for both morning and afternoon times were gathered. We have begun a project that employs a Thermophysical Model (TPM) in order to analyze these multi-epoch thermal observations with the goal of deriving the thermal properties and spin axis of a large number of asteroids. Here, we first investigate the validity and limits of our method on objects with a previously determined spin axis. Asteroid (413) Edburga has a published spin axis of λ = 202o, β = - 45o (ecliptic longitude and latitude, respectively) using the lightcurve inversion method. With our technique, we estimate a solution consistent with the previous estimate. Applying our TPM to WISE multi-epoch thermal observations of (155) Scylla (no known spin axis estimate), we also place estimates for the ecliptic longitude and latitude of its spin axis. Analysis of multi-epoch thermal data enables determination of spin axis orientation without knowing the rotation period, in contrast to the lightcurve inversion method. This is due to the coupling of thermal inertia and rotation rate in determining the longitudinal distribution of temperature. Their

  13. Low-Friction, Low-Profile, High-Moment Two-Axis Joint

    Science.gov (United States)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2010-01-01

    The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal

  14. Modal Parameter Identification of New Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2013-01-01

    Vertical axis wind turbines have lower power efficiency than the horizontal axis wind turbines. However vertical axis wind turbines are proven to be economical and noise free on smaller scale. A new design of three bladed vertical axis wind turbine by using two airfoils in construction of each...... blade has been proposed to improve power efficiency. The purpose of two airfoils in blade design of vertical axis wind turbine is to create high lift which in turns gives higher power output. In such case the structural parameter identification is important to understand the system behavior due to its...... first kind of design before experimental analysis. Therefore a study is carried out to determine the natural frequency to avoid unstable state of the system due to rotational frequency of rotor. The present paper outlines a conceptual design of vertical axis wind turbine and a modal analysis by using...

  15. Hydromagnetic rotational braking of magnetic stars

    International Nuclear Information System (INIS)

    Fleck, R.C. Jr.

    1980-01-01

    It is suggested that the magnetic Ap stars can be rotationally decelerated to long periods by the braking action of the associated magnetic field on time scales of order 10 7 --10 10 years depending on whether the star's dipole field is aligned perpendicular or parallel to the rotation axis. Rotation includes a toroidal magnetic field in the plasma surrounding a star, and the accompanying magnetic stresses produce a net torque acting to despin the star. These results indicate that it is not necessary to postulate mass loss or mass accretion for this purely hydromagnetic braking effect

  16. The Karush–Kuhn–Tucker optimality conditions in minimum weight design of elastic rotating disks with variable thickness and density

    Directory of Open Access Journals (Sweden)

    Sanaz Jafari

    2011-10-01

    Full Text Available Rotating discs work mostly at high angular velocity. High speed results in large centrifugal forces in discs and induces large stresses and deformations. Minimizing weight of such disks yields various benefits such as low dead weights and lower costs. In order to attain a certain and reliable analysis, disk with variable thickness and density is considered. Semi-analytical solutions for the elastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption by authors in previous works. The optimum disk profile for minimum weight design is achieved by the Karush–Kuhn–Tucker (KKT optimality conditions. Inequality constrain equation is used in optimization to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk.

  17. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  18. Secondary flows and particle centrifugation in slightly tilted rotating pipes

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1995-01-01

    A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the

  19. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  20. Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe

    OpenAIRE

    Hamza, S. E. E.; El-Bakry, Mostafa Y.

    2015-01-01

    The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...

  1. The development and testing of a novel cross axis wind turbine

    Science.gov (United States)

    Chong, W. T.; Muzammil, W. K.; Gwani, M.; Wong, K. H.; Fazlizan, A.; Wang, C. T.; Poh, S. C.

    2016-06-01

    A novel cross axis wind turbine (CAWT) which comprises of a cross axis blades arrangement was presented and investigated experimentally. The CAWT is a new type of wind turbine that extracts wind energy from airflow coming from the horizontal and vertical directions. The wind turbine consists of three vertical blades and six horizontal blades arranged in a cross axis orientation. Hubs in the middle of the CAWT link the horizontal and vertical blades through connectors to form the CAWT. The study used a 45° deflector to guide the oncoming airflow upward (vertical wind direction). The results from the study showed that the CAWT produced significant improvements in power output and rotational speed performance compared to a conventional straight-bladed vertical axis wind turbine (VAWT).

  2. Comparison with Tilted Axis Cranking and particle rotor model for triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, Shin-ichi; Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    An extension of the cranking model in such a way to allow a rotation axis to deviate from the principal axes of the deformed mean-field is a promising tool for the spectroscopic study of rapidly rotating nuclei. We have applied such a `Tilted Axis Cranking` (TAC) method to a simple system of one-quasiparticle coupled to a triaxial rotor and compared it with a particle-rotor coupling calculation in order to check whether the spin-orientation degrees of freedom can be well described within the mean-field approximation. The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single-particle angular momenta. (author)

  3. Dynamics of a vortex ring moving perpendicularly to the axis of a rotating fluid

    NARCIS (Netherlands)

    Eisenga, A.H.M.; Verzicco, R.; Heijst, van G.J.F.

    1998-01-01

    The dynamics of a vortex ring moving orthogonally to the rotation vector of a uniformly rotating fluid is analysed by laboratory experiments and numerical simulations. In the rotating system the vortex ring describes a curved trajectory, turning in the opposite sense to the system's anti-clockwise

  4. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  5. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    Science.gov (United States)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(

  6. Rotational dynamics with Tracker

    International Nuclear Information System (INIS)

    Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

  7. Conjunct rotation: Codman's paradox revisited.

    Science.gov (United States)

    Wolf, Sebastian I; Fradet, Laetitia; Rettig, Oliver

    2009-05-01

    This contribution mathematically formalizes Codman's idea of conjunct rotation, a term he used in 1934 to describe a paradoxical phenomenon arising from a closed-loop arm movement. Real (axial) rotation is distinguished from conjunct rotation. For characterizing the latter, the idea of reference vector fields is developed to define the neutral axial position of the humerus for any given orientation of its long axis. This concept largely avoids typical coordinate singularities arising from decomposition of 3D joint motion and therefore can be used for postural (axial) assessment of the shoulder joint both clinically and in sports science in almost the complete accessible range of motion. The concept, even though algebraic rather complex, might help to get an easier and more intuitive understanding of axial rotation of the shoulder in complex movements present in daily life and in sports.

  8. Evaluation of Distal Femoral Rotational Alignment with Spiral CT Scan before Total Knee Arthroplasty (A Study in Iranian Population

    Directory of Open Access Journals (Sweden)

    Mahmoud Jabalameli

    2016-04-01

    Full Text Available Background: Evaluating the landmarks for rotation of the distal femur is a challenge for orthopedic surgeons. Although the posterior femoral condyle axis is a good landmark for surgeons, the surgical transepicondylar axis may be a better option with the help of preoperative CT scanning. The purpose of this study was to ascertain relationships among the axes’ guiding distal femur rotational alignment in preoperative CT scans of Iranian patients who were candidates for total knee arthroplasty and the effects of age, gender, and knee alignment on these relationships. Methods: One hundred and eight cases who were admitted to two university hospitals for total knee arthroplasty were included in this study. The rotation of the distal femur was evaluated using single axial CT images through the femoral epicondyle. Four lines were drawn digitally in this view: anatomical and surgical transepicondylar axes, posterior condylar axis and the Whiteside anteroposterior line. The alignment of the extremity was evaluated in the standing alignment view. Then the angles were measured along these lines and their relationship was evaluated. Results: The mean angle between the anatomical transepicondylar axis and posterior condylar axis and between the surgical transepicondylar axis and posterior condylar axis were 5.9 ± 1.6 degrees and 1.6±1.7 degrees respectively. The mean angle between the Whiteside’s anteroposterior line and the line perpendicular to the posterior condylar axis was 3.7±2.1 degrees. Significant differences existed between the two genders in these relationships. No significant correlation between the age of patients and angles of the distal femur was detected. The anatomical surgical transepicondylar axis was in 4.3 degrees external rotation in relation to the surgical transepicondylar axis. Conclusion: Preoperative CT scanning can help accurately determine rotational landmarks of the distal femur. If one of the reference axes cannot be

  9. Vibrational Suspension of Light Sphere in a Tilted Rotating Cylinder with Liquid

    Directory of Open Access Journals (Sweden)

    Victor G. Kozlov

    2014-01-01

    Full Text Available The dynamics of a light sphere in a quickly rotating inclined cylinder filled with liquid under transversal vibrations is experimentally investigated. Due to inertial oscillations of the sphere relative to the cavity, its rotation velocity differs from the cavity one. The intensification of the lagging motion of a sphere and the excitation of the outstripping differential rotation are possible under vibrations. It occurs in the resonant areas where the frequency of vibrations coincides with the fundamental frequency of the system. The position of the sphere in the center of the cylinder could be unstable. Different velocities of the sphere are matched with its various quasistationary positions on the axis of rotating cavity. In tilted rotating cylinder, the axial component of the gravity force appears; however, the light sphere does not float to the upper end wall but gets the stable position at a definite distance from it. It makes possible to provide a vibrational suspension of the light sphere in filled with liquid cavity rotating around the vertical axis. It is found that in the wide range of the cavity inclination angles the sphere position is determined by the dimensionless velocity of body differential rotation.

  10. Flux expulsion and trapping in rotating discs of type II superconductors

    International Nuclear Information System (INIS)

    Boyer, R.; Leblanc, M.A.R.

    1977-01-01

    The magnetic flux rotating in step with a type II superconducting disc is measured with orthogonal pick up coils for various previous magnetic histories vs H 0 applied at right angles to the axis of rotation. For some initial magnetic states, flux expulsion, independent of the rate of rotation, occurs during the initial rotation. A simple model where flux lines leave the specimen against the magnetic pressure in the active region accounts for the observations. (author)

  11. Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation

    International Nuclear Information System (INIS)

    Kahler, G.R.; Della Torre, E.

    2006-01-01

    This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization

  12. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  13. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    Science.gov (United States)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  14. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  15. Kinematic signature of a rotating bar near a resonance

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    Recent work based on H I, star count and emission data suggests that the Milky Way has rotating bar-like features. In this paper, I show that such features cause distinctive stellar kinematic signatures near Outer Lindblad Resonance (OLR) and Inner Lindblad Resonance (ILR). The effect of these resonances may be observable far from the peak density of the pattern and relatively nearby the solar position. The details of the kinematic signatures depend on the evolutionary history of the 'bar' and therefore velocity data, both systematic and velocity dispersion, may be used to probe the evolutionary history as well as the present state of Galaxy. Kinematic models for a variety of sample scenarios are presented. Models with evolving pattern speeds show significantly stronger dispersion signatures than those with static pattern speeds, suggesting that useful observational constraints are possible. The models are applied to the proposed rotating spheroid and bar models; we find (1) none of these models chosen to represent the proposed large-scale rotating spheroid are consistent with the stellar kinematics and (2) a Galactic bar with semimajor axis of 3 kpc will cause a large increase in velocity dispersion in the vicinity of OLR (approximately 5 kpc) with little change in the net radial motion and such a signature is suggested by K-giant velocity data. Potential future observations and analyses are discussed.

  16. The Role of Plasma Rotation in C-Mod Internal Transport Barriers

    Science.gov (United States)

    Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2010-11-01

    ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.

  17. Observability of the probability current density using spin rotator as a quantum clock

    International Nuclear Information System (INIS)

    Home, D.; Alok Kumar Pan; Md Manirul Ali

    2005-01-01

    Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)

  18. Design and implementation of five-axis transformation function in CNC system

    Directory of Open Access Journals (Sweden)

    Wang Feng

    2014-04-01

    Full Text Available To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle-tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software structure, the instructions with respect to the cutter’s position and orientation can be directly carried out in the CNC system.

  19. Rotation of intramedullary alignment rods affects distal femoral cutting plane in total knee arthroplasty.

    Science.gov (United States)

    Maderbacher, Günther; Matussek, Jan; Keshmiri, Armin; Greimel, Felix; Baier, Clemens; Grifka, Joachim; Maderbacher, Hermann

    2018-02-17

    Intramedullary rods are widely used to align the distal femoral cut in total knee arthroplasty. We hypothesised that both coronal (varus/valgus) and sagittal (extension/flexion) cutting plane are affected by rotational changes of intramedullary femoral alignment guides. Distal femoral cuts using intramedullary alignment rods were simulated by means of a computer-aided engineering software in 4°, 6°, 8°, 10°, and 12° of valgus in relation to the femoral anatomical axis and 4° extension, neutral, as well as 4°, 8°, and 12° of flexion in relation to the femoral mechanical axis. This reflects the different angles between anatomical and mechanical axis in coronal and sagittal planes. To assess the influence of rotation of the alignment guide on the effective distal femoral cutting plane, all combinations were simulated with the rod gradually aligned from 40° of external to 40° of internal rotation. Rotational changes of the distal femoral alignment guides affect both the coronal and sagittal cutting planes. When alignment rods are intruded neutrally with regards to sagittal alignment, external rotation causes flexion, while internal rotation causes extension of the sagittal cutting plane. Simultaneously the coronal effect (valgus) decreases resulting in an increased varus of the cutting plane. However, when alignment rods are intruded in extension or flexion partly contradictory effects are observed. Generally the effect increases with the degree of valgus preset, rotation and flexion. As incorrect rotation of intramedullary alignment guides for distal femoral cuts causes significant cutting errors, exact rotational alignment is crucial. Coronal cutting errors in the distal femoral plane might result in overall leg malalignment, asymmetric extension gaps and subsequent sagittal cutting errors.

  20. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

    Science.gov (United States)

    Lugt, H. J.

    Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

  1. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  2. Scaling laws for the rotational velocity of a J x B driven rotating plasma

    International Nuclear Information System (INIS)

    Igarashi, Yasuhito; Kataoka, Tomohiro; Ikehata, Takashi; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi

    1994-01-01

    Rapidly rotating plasmas of helium and argon have been extracted from a coaxial plasma gun operated in pulsed glow mode. The rotational velocity and its parametric dependence have been analyzed systematically by means of visible - emission spectroscopy. The plasma is observed to rotate rigidly inside the diameter of the gun anode while outside the velocity decreases rapidly ; furthermore, different ions are found to rotate at different angular frequencies as ω (Ar + ) = 0.5 x 10 6 rad/sec, ω (Ar 2+ ) = 1.1 x 10 6 rad/sec, ω (C 2+ ) = 1.8 x 10 6 rad/sec, ω (N + ) = 1.2 x 10 6 rad/sec. The plasma density and rotational velocity have been measured as a function of the discharge current and magnetic field to derive experimental scaling laws. They are summarized as : 1. Ion density is proportional to the square of discharge current. 2. Rotational and axial velocities are proportional to the driving force per ion. These results are confirmed to agree well with a theoretical prediction. (author)

  3. Low order physical models of vertical axis wind turbines

    Science.gov (United States)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  4. Partial rotational lattice order–disorder in stefin B crystals

    International Nuclear Information System (INIS)

    Renko, Miha; Taler-Verčič, Ajda; Mihelič, Marko; Žerovnik, Eva; Turk, Dušan

    2014-01-01

    Crystal lattice disorders are a phenomenon which may hamper the determination of macromolecular crystal structures. Using the case of the crystal structure of stefin B, identification of rotational order–disorder and structure determination are described. At present, the determination of crystal structures from data that have been acquired from twinned crystals is routine; however, with the increasing number of crystal structures additional crystal lattice disorders are being discovered. Here, a previously undescribed partial rotational order–disorder that has been observed in crystals of stefin B is described. The diffraction images revealed normal diffraction patterns that result from a regular crystal lattice. The data could be processed in space groups I4 and I422, yet one crystal exhibited a notable rejection rate in the higher symmetry space group. An explanation for this behaviour was found once the crystal structures had been solved and refined and the electron-density maps had been inspected. The lattice of stefin B crystals is composed of five tetramer layers: four well ordered layers which are followed by an additional layer of alternatively placed tetramers. The presence of alternative positions was revealed by the inspection of electron-density score maps. The well ordered layers correspond to the crystal symmetry of space group I422. In addition, the positions of the molecules in the additional layer are related by twofold rotational axes which correspond to space group I422; however, these molecules lie on the twofold axis and can only be related in a statistical manner. When the occupancies of alternate positions and overlapping are equal, the crystal lattice indeed fulfills the criteria of space group I422; when these occupancies are not equal, the lattice only fulfills the criteria of space group I4

  5. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  6. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    G. Nath

    2012-12-01

    Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

  7. On the gravitational instability of an ionized magnetized rotating plasma flowing through a porous medium with other transport processes and the suspended particles

    International Nuclear Information System (INIS)

    Vyas, M.K.; Chhajlani, R.K.

    1989-01-01

    The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)

  8. Electromagnetic forces on type-II superconducting rotating cylinders

    International Nuclear Information System (INIS)

    Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.

    1995-01-01

    Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)

  9. Control system for a vertical-axis windmill

    Science.gov (United States)

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  10. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    Energy Technology Data Exchange (ETDEWEB)

    Geerkens, A.; Frenck, H.J.; Ewert, S. [Technical Univ. of Cottbus (Germany)] [and others

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  11. Optical derotator alignment using image-processing algorithm for tracking laser vibrometer measurements of rotating objects.

    Science.gov (United States)

    Khalil, Hossam; Kim, Dongkyu; Jo, Youngjoon; Park, Kyihwan

    2017-06-01

    An optical component called a Dove prism is used to rotate the laser beam of a laser-scanning vibrometer (LSV). This is called a derotator and is used for measuring the vibration of rotating objects. The main advantage of a derotator is that it works independently from an LSV. However, this device requires very specific alignment, in which the axis of the Dove prism must coincide with the rotational axis of the object. If the derotator is misaligned with the rotating object, the results of the vibration measurement are imprecise, owing to the alteration of the laser beam on the surface of the rotating object. In this study, a method is proposed for aligning a derotator with a rotating object through an image-processing algorithm that obtains the trajectory of a landmark attached to the object. After the trajectory of the landmark is mathematically modeled, the amount of derotator misalignment with respect to the object is calculated. The accuracy of the proposed method for aligning the derotator with the rotating object is experimentally tested.

  12. Self-gravitating axially symmetric disks in general-relativistic rotation

    Science.gov (United States)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.

  13. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  14. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  15. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  16. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  17. Performance study on the east-west oriented single-axis tracked panel

    International Nuclear Information System (INIS)

    Chang, Tian Pau

    2009-01-01

    A theoretical study on the performance of an east-west oriented single-axis tracked panel was originally proposed in this paper. Mathematic expressions applicable for calculating the angle that the tracked panel should rotate by to follow the Sun are derived. The incident angle of sunlight upon the panel as well as the instantaneous increments of solar energy captured by the panel relative to a fixed horizontal surface are then demonstrated graphically. To simulate different operation environments, three kinds of radiation sources will be considered, i.e. the extraterrestrial radiation, global radiation predicted by empirical models under clear sky situation and global radiation observed in Taiwan. Simulation results show that the yearly gains correlate positively with the radiation level, i.e. 21.2%, 13.5% and 7.4% for the extraterrestrial, predicted and observed radiations, respectively, which are far less than those obtained from a north-south oriented single-axis tracked panel. The irradiation increases with the maximum rotation angle of the panel, the benefit of increasing the rotation in overcast environment is not as good as in clear sky, for annual energy collection 45 o is recommended. The irradiation received decreases with latitude, but it has a greater gain in higher latitude zone.

  18. Plasma rotation in coaxial discharges

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; Elkhalafawy, T.A.

    1985-01-01

    Plasma rotation has been observed near the breech of the coaxial electrodes, which propagates inside the coaxial gun and moreover this has been detected in the expansion chamber. Azimuthal component of plasma current has been detected. The measuring of the axial magnetic field distribution in time along the expansion chamber-axis shows a single maximum peak for all position. Azimuthal component of electric field exists along the axis of the expansion chamber and results for two angular positions (0 0 , 180 0 ) at r 2.5 cm has been presented. Thus it is obvious that the whole plasma bulk moves in a screw configuration before and after the focus position. 9 fig

  19. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  20. Magnetizability and rotational g tensors for density fitted local second-order Møller-Plesset perturbation theory using gauge-including atomic orbitals

    International Nuclear Information System (INIS)

    Loibl, Stefan; Schütz, Martin

    2014-01-01

    In this paper, we present theory and implementation of an efficient program for calculating magnetizabilities and rotational g tensors of closed-shell molecules at the level of local second-order Møller-Plesset perturbation theory (MP2) using London orbitals. Density fitting is employed to factorize the electron repulsion integrals with ordinary Gaussians as fitting functions. The presented program for the calculation of magnetizabilities and rotational g tensors is based on a previous implementation of NMR shielding tensors reported by S. Loibl and M. Schütz [J. Chem. Phys. 137, 084107 (2012)]. Extensive test calculations show (i) that the errors introduced by density fitting are negligible, and (ii) that the errors of the local approximation are still rather small, although larger than for nuclear magnetic resonance (NMR) shielding tensors. Electron correlation effects for magnetizabilities are tiny for most of the molecules considered here. MP2 appears to overestimate the correlation contribution of magnetizabilities such that it does not constitute an improvement over Hartree-Fock (when comparing to higher-order methods like CCSD(T)). For rotational g tensors the situation is different and MP2 provides a significant improvement in accuracy over Hartree-Fock. The computational performance of the new program was tested for two extended systems, the larger comprising about 2200 basis functions. It turns out that a magnetizability (or rotational g tensor) calculation takes about 1.5 times longer than a corresponding NMR shielding tensor calculation

  1. X-ray tube incorporating a rotating anode with magnetic bearings

    International Nuclear Information System (INIS)

    1979-01-01

    This patent describes an X-ray tube incorporating a rotating anode. The rotor consists of a single, soft-magnetic dish which is fixed on the axis and which seals the magnetic yoke of the stator. Looking in the direction of the axis, one side is equipped with two circular pole surfaces, one at least of which is provided with circular pole-shoes, separated from one another by concentric grooves. (T.P.)

  2. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  3. Effects of rotation radiographic dimensions of metacarpals

    International Nuclear Information System (INIS)

    Armes, F.M.; Horsman, A.; Bentley, H.B.

    1979-01-01

    An experiment is described which shows that small rotations of metacarpals about their long axis produce small systematic changes in the cortical dimensions as measured by radiographic morphometry. The effect is of no significance in cross-sectional studies but is an important source of error in sequential studies. (author)

  4. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    Science.gov (United States)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  5. Shape evolution in 76,78Kr nuclei at high spins in tilted axis ...

    Indian Academy of Sciences (India)

    band with J = 20–30 lying below the observed ground band is predicted. ... a given value of the quadrupole deformation parameter and pairing gaps for the ... about the oblate symmetry axis, i.e., the spin generated by rotation alignment of.

  6. Constraints on particle density evolution within a CME at Mercury

    Science.gov (United States)

    Exner, W.; Liuzzo, L.; Heyner, D.; Feyerabend, M.; Motschmann, U. M.; Glassmeier, K. H.; Shiota, D.; Kusano, K.

    2017-12-01

    Mercury (RM=2440) is the closest orbiting planet around the Sun and is embedded in an intensive and highly varying solar wind.Mercury's intrinsic dipole with a southward magnetic moment is aligned with the rotation axis and has a northward offset of 0.2 RM.In-situ data from the MESSENGER spacecraft of the magnetic environment near Mercury indicate that a coronal mass ejection (CME) passed the planet on 8 May 2012. The data constrain the direction and magnitude of the CME magnetic field but no information on its particle density could be determined.We apply the hybrid (kinetic ions, electron fluid) code A.I.K.E.F. to study the interaction of Mercury's magnetosphere with the CME.We use MESSENGER magnetic field observations as well as simulation results to constrain the evolution of the particle density inside the CME.We show that within a 24-hour period the particle density within the CME had to vary between 1-100 cm-3 in order to explain MESSENGER magnetic field observations.

  7. Secondary Flow Phenomena in Rotating Radial Straight Pipes

    OpenAIRE

    Cheng, K. C.; Wang, Liqiu

    1995-01-01

    Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...

  8. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  9. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  10. Penetration of steady fluid motions into an outer stable layer excited by MHD thermal convection in rotating spherical shells

    Science.gov (United States)

    Takehiro, Shin-ichi; Sasaki, Youhei

    2018-03-01

    Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.

  11. A four-axis hand controller for helicopter flight control

    Science.gov (United States)

    Demaio, Joe

    1993-01-01

    A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.

  12. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Masatoshi [Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Sánchez, Diego Paul [Senior Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu [Richard Seebass Chair, Professor, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States)

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  13. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Scheeres, Daniel J.

    2015-01-01

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode

  14. Switchable polarization rotation of visible light using a plasmonic metasurface

    Directory of Open Access Journals (Sweden)

    Stuart K. Earl

    2017-01-01

    Full Text Available A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  15. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...... of sensorless controllers using high-frequency signal injection techniques. The proposed method employs a static locked-rotor test using an ac +dc power supply. By injecting a high-frequency rotating voltage vector into the machine, the d- and q-axis inductances may simultaneously be determined with no need...

  16. Numerical modeling and preliminary validation of drag-based vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Krysiński Tomasz

    2015-03-01

    Full Text Available The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.

  17. Design of h-Darrieus vertical axis wind turbine

    Science.gov (United States)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  18. Design of h-Darrieus vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  19. Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents

    Science.gov (United States)

    Winner, A.; Ferrier, K.; Dufek, J.

    2016-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately

  20. A paleomagnetic investigation of vertical-axis rotations in coastal Sonora, Mexico: Evidence for distributed transtensional deformation during the Proto-Gulf shift from a subduction-dominated to transform-dominated plate boundary in the Gulf of California

    Science.gov (United States)

    Herman, Scott William

    The history of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California is key to understanding how Baja California was captured by the Pacific plate and how strain was partitioned during the Proto-Gulf period (12.5-6 Ma). The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico, and represent the eastern rifted margin of the central Gulf of California. The ranges are composed of volcanic units and their corresponding volcaniclastic units which are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. A paleomagnetic investigation into possible vertical axis rotations in the Sierra el Aguaje has uncovered evidence of clockwise rotations between ~13º and ~105º with possible translations. These results are consistent with existing field relations, which suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range, including large domains characterized by E-W strikes b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. These rotations occurred after 12 Ma and largely prior to 9 Ma, thus falling into the Proto-Gulf period. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would be the result of strain partitioning

  1. Improvement of the homogeneity of atomized particles dispersed in high uranium density research reactor fuels

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Kim, Ki-Hwan; Park, Jong-Man; Lee, Yoon-Sang; Lee, Don-Bae; Sohn, Woong-Hee; Hong, Soon-Hyung

    1998-01-01

    A study on improving the homogeneous dispersion of atomized spherical particles in fuel meats has been performed in connection with the development of high uranium density fuel. In comparing various mixing methods, the better homogeneity of the mixture could be obtained as in order of Spex mill, V-shape tumbler mixer, and off-axis rotating drum mixer. The Spex mill mixer required some laborious work because of its small capacity per batch. Trough optimizing the rotating speed parameter for the V-shape tumbler mixer, almost the same homogeneity as with the Spex mill could be obtained. The homogeneity of the extruded fuel meats appeared to improve through extrusion. All extruded fuel meats with U 3 Si powder of 50-volume % had fairly smooth surfaces. The homogeneity of fuel meats by V-shaped tumbler mixer revealed to be fairly good on micrographs. (author)

  2. Low Barrier Methyl Rotation in 3-PENTYN-1-OL as Observed by Microwave Spectroscopy

    Science.gov (United States)

    Eibl, Konrad; Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-01

    It is known that the barrier to internal rotation of the methyl groups in ethane (1) is about 1000 wn. If a C-C-triple bond is inserted between the methyl groups as a spacer (2), the torsional barrier is assumed to be dramatically lower, which is a common feature of ethinyl groups in general. To study this effect of almost free internal rotation, we measured the rotational spectrum of 3-pentyn-1-ol (3) by pulsed jet Fourier transform microwave spectroscopy in the frequency range from 2 to 26.5 GHz. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory yielded five stable conformers on the potential energy surface. The most stable conformer, which possesses C1 symmetry, was assigned and fitted using two theoretical approaches treating internal rotations, the rho axis method (BELGI-C1) and the combined axis method (XIAM). The molecular parameters as well as the internal rotation parameters were determined. A very low barrier to internal rotation of the methyl group of only 9.4545(95) wn was observed. R. M. Pitzer, Acc. Chem. Res., 1983, 16, 207-210

  3. Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation

    Science.gov (United States)

    Sharma, Prerana; Patidar, Archana

    2017-12-01

    The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to

  4. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  5. Subquadratic medial-axis approximation in $\\mathbb{R}^3$

    Directory of Open Access Journals (Sweden)

    Christian Scheffer

    2015-09-01

    Full Text Available We present an algorithm that approximates the medial axis of a smooth manifold in $\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\mathcal{O}(n\\log^3 n$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.

  6. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    Directory of Open Access Journals (Sweden)

    Kelly N. Salb

    2016-01-01

    Full Text Available Ankle instantaneous axis of rotation (IAR measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs were controlled as a function of a vertical ground reaction force (vGRF set at half body weight (356 N and a 50% vGRF (178 N Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions.

  7. Design and Development of a Solar Thermal Collector with Single Axis Solar Tracking Mechanism

    Directory of Open Access Journals (Sweden)

    Theebhan Mogana

    2016-01-01

    Full Text Available The solar energy is a source of energy that is abundant in Malaysia and can be easily harvested. However, because of the rotation of the Earth about its axis, it is impossible to harvest the solar energy to the maximum capacity if the solar thermal collector is placed fix to a certain angle. In this research, a solar thermal dish with single axis solar tracking mechanism that will rotate the dish according to the position of the sun in the sky is designed and developed, so that more solar rays can be reflected to a focal point and solar thermal energy can be harvested from the focal point. Data were collected for different weather conditions and performance of the solar thermal collector with a solar tracker were studied and compared with stationary solar thermal collector.

  8. Wire-Array Precursor Plasma Interactions With On-Axis Foam Targets

    Science.gov (United States)

    Palmer, J. B. A.; Bland, S. N.

    2005-10-01

    The Dynamic Hohlraum (DH) Z-pinch on Z at Sandia National Laboratory (SNL) has been used to drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP) relevant experiments. The power pulse from the DH cannot yet be reproduced using codes that can reproduce the performance of a Vacuum Hohlraum (VH) configuration on Z. Unlike the VH the DH has a low-density CH foam cylinder placed on the array axis. Production of precursor plasma, prior to the main implosion, is not included in the codes. This plasma is accelerated towards the array axis by the global J x B force and impacts onto the on-axis target. This bombardment alters the foam in various ways. Experiments have been performed on the 1 MA MAGPIE generator at Imperial College, London, to investigate the effect of this precursor bombardment. Diagnostics used were point-projection radiography with x-pinches, x-ray emission framing cameras, shadowgraphy and photoconduction diodes. Results show ablation of low-density plasma from the foam surface and compression of the foam by precursor pressure. Research sponsored by AWE, SNL, the SSAA program of NNSA under DOE Cooperative Agreement DE-FC03-02NA00057.

  9. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  10. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  11. Demonstration of pumping efficiency for rotating disks by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ogiwara, Norio

    2010-01-01

    We investigated the concept of creating a gas radial flow by employing the molecular drag effect upon gas molecules on rotating disks. All the gas molecules have a circumferential velocity rω (r: distance from the rotating axis, and ω: angular velocity) each time they leave a surface of the rotating disks. As a result, the gas molecules between the rotating disks tend on average to move outward from the center. That is, a radial flow appears. This idea was demonstrated by Monte Carlo simulation of 2 types of rotating disks (flat and corrugated ones). Pumping efficiency was clearly demonstrated for both types of disks when the velocity ratio rω/ ( : mean velocity) became larger than 1. (author)

  12. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  13. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    Science.gov (United States)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  14. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.

    Science.gov (United States)

    Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W

    2018-01-01

    The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and

  15. Modelling of convective heat and mass transfer in rotating flows

    CERN Document Server

    Shevchuk, Igor V

    2016-01-01

     This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

  16. Unsteady flow field in a mini VAWT with relative rotation blades: analysis of temporal results

    International Nuclear Information System (INIS)

    Bayeul-Lainé, A C; Simonet, S; Bois, G

    2013-01-01

    The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present work is an extended study starting in 2009. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine is very good for some blade stagger angles. Spectral analysis of unsteady results on specific points in the domain and temporal forces on blades was already presented for elliptic blades. The main aim here is to compare two kinds of blades in case of the best performances

  17. Midplane Faraday Rotation: A densitometer for BPX

    International Nuclear Information System (INIS)

    Jobes, F.C.; Mansfield, D.K.

    1992-02-01

    The density in a high field, high density tokamak such as BPX can be determined by measuring the Faraday rotation of a 10.6 μm laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n e (R) can be readily obtained with a simple Abel version about the center line of the tokamak. For BPX operated at full field and density, the rotation angle would be quite large -- about 75 degrees per pass. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 ''fringe,'' the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that BPX would be well served even at low densities by a Midplane Faraday Rotation densitometer of ∼64 channels. Both TFTR and PBX-M would be suitable test beds for the BPX system

  18. The effects of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb

    NARCIS (Netherlands)

    Carlson, Bruce M.

    1972-01-01

    Rotation of a skin cuff 180° around the proximodistal axis of the upper arm in the axolotl results in the formation of multiple regenerates in about 80° of cases after amputation of the limb through the rotated skin. Rotation of the dermis or the flexor and extensor muscles folowed by amputation

  19. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    International Nuclear Information System (INIS)

    Lin, Jianliang; Chistyakov, Roman

    2017-01-01

    Highlights: • Highly orientated AlN films were deposited by DOMS technique. • Controlled ion flux bombardment improved the texture and crystalline quality. • Excessive ion bombardment showed a detrimental effect on the c-axis orientation growth. • Improved c-axis alignment accompanied with stress relaxation with increasing film thickness. - Abstract: Highly c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm"−"2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm"−"2 improved the orientation. Further increasing the peak target current density to above 0.53 Acm"−"2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  20. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianliang, E-mail: Jianliang.lin@swri.org [Southwest Research Institute, San Antonio, TX 78238 (United States); Chistyakov, Roman [Zpulser LLC, Mansfield, MA 02048 (United States)

    2017-02-28

    Highlights: • Highly <0001> orientated AlN films were deposited by DOMS technique. • Controlled ion flux bombardment improved the <0001> texture and crystalline quality. • Excessive ion bombardment showed a detrimental effect on the c-axis orientation growth. • Improved c-axis alignment accompanied with stress relaxation with increasing film thickness. - Abstract: Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm{sup −2}) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm{sup −2} improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm{sup −2} showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  1. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  2. The role of quasiparticles in rotating transitional nuclei

    International Nuclear Information System (INIS)

    Frauendorf, Stefan

    1984-01-01

    The yrast sequency of nuclei rotating about the symmetry axis is classified in analogy to class I and II superconductors, where the quasiparticles play the role of the quantized flux in metals. The experimental spectra show a class I behaviour. The ω-dependence of the quasiparticle excitation energy in collectively rotating nuclei is used as evidence for magnitude of the pair correlations and the occurrence of triaxial shapes. A transition from triaxial to oblate shape explains the experimental spectra and E2-transition probabilities in the N=88-90 nuclei. (author)

  3. Quantum measurement of a rapidly rotating spin qubit in diamond.

    Science.gov (United States)

    Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M

    2018-05-01

    A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.

  4. Variations of the Earth's rotation rate and cyclic processes in geodynamics

    Directory of Open Access Journals (Sweden)

    B.W. Levin

    2017-05-01

    Full Text Available The authors analyzed the relationship between variations of the Earth's rotation rate and the geodynamic processes within the Earth's body, including seismic activity. The rotation rate of a planet determines its uniaxial compression along the axis of rotation and the areas of various surface elements of the body. The Earth's ellipticity variations, caused naturally by the rotation rate variations, are manifested in vertical components of precise GPS measurements. Comparative analysis of these variations is considered in view of modern theoretical ideas concerning the Earth's figure. The results justify further research that is of interest for improvement of space systems and technologies.

  5. Rotational instability in the outer region of protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tomohiro [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nomura, Hideko; Takeuchi, Taku, E-mail: ono.t@kusastro.kyoto-u.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-05-20

    We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.

  6. Rotational instability in the outer region of protoplanetary disks

    International Nuclear Information System (INIS)

    Ono, Tomohiro; Nomura, Hideko; Takeuchi, Taku

    2014-01-01

    We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.

  7. Femoral rotation unpredictably affects radiographic anatomical lateral distal femoral angle measurements

    DEFF Research Database (Denmark)

    Miles, James Edward

    2016-01-01

    Objective: To describe the effects of internal and external femoral rotation on radiographic measurements of the anatomical lateral distal femoral angle (a-LDFA) using two methods for defining the anatomical proximal femoral axis (a-PFA). Methods: Digital radiographs were obtained of 14 right...... femora at five degree intervals from 10° external rotation to 10° internal rotation. Using freely available software, a-LDFA measurements were made using two different a-PFA by a single observer on one occasion. Results: Mean a-LDFA was significantly greater at 10° external rotation than at any other...... rotation. The response of individual femora to rotation was unpredictable, although fairly stable within ±5° of zero rotation. Mean a-LDFA for the two a-PFA methods differed by 1.5°, but were otherwise similarly affected by femoral rotation. Clinical significance: If zero femoral elevation can be achieved...

  8. A mechanical rotator for neutron scattering measurements

    International Nuclear Information System (INIS)

    Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.

    2016-01-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

  9. Estimation of optical rotation of γ-alkylidenebutenolide, cyclopropylamine, cyclopropyl-methanol and cyclopropenone based compounds by a Density Functional Theory (DFT) approach.

    Science.gov (United States)

    Shahzadi, Iram; Shaukat, Aqsa; Zara, Zeenat; Irfan, Muhammad; Eliasson, Bertil; Ayub, Khurshid; Iqbal, Javed

    2017-10-01

    Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best-suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM-B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3-21G, 6-31G, aug-cc-pVDZ, aug-cc-pVTZ, DGDZVP, and DGDZVP2 were also applied with the best-suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug-cc-pVTZ for the estimation of optical rotation for selected compounds. © 2017 Wiley Periodicals, Inc.

  10. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  11. Rotation of vertically oriented objects during earthquakes

    Science.gov (United States)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  12. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  13. Shift-Peristrophic Multiplexing for High Density Holographic Data Storage

    Directory of Open Access Journals (Sweden)

    Zenta Ushiyama

    2014-03-01

    Full Text Available Holographic data storage is a promising technology that provides very large data storage capacity, and the multiplexing method plays a significant role in increasing this capacity. Various multiplexing methods have been previously researched. In the present study, we propose a shift-peristrophic multiplexing technique that uses spherical reference waves, and experimentally verify that this method efficiently increases the data capacity. In the proposed method, a series of holograms is recorded with shift multiplexing, in which the recording material is rotated with its axis perpendicular to the material’s surface. By iterating this procedure, multiplicity is shown to improve. This method achieves more than 1 Tbits/inch2 data density recording. Furthermore, a capacity increase of several TB per disk is expected by maximizing the recording medium performance.

  14. Simple UHV offset manipulator with independent theta and phi rotations

    International Nuclear Information System (INIS)

    Jamison, K.D.; Dunning, F.B.

    1984-01-01

    A simple UHV offset manipulator is described that not only allows a target crystal to be moved to any point on a circle centered on the manipulator axis but also provides indepedent theta and phi rotations at each position

  15. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  16. Spin Tunneling in a Rotating Nanomagnet

    Science.gov (United States)

    O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team

    2011-03-01

    We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.

  17. Role of initial vibrational and rotational

    Indian Academy of Sciences (India)

    To investigate the effects of reagent vibrational and rotational states on the stereodynamical pro- ... Han et al.8 reported the total reaction cross-section, the ... ity k is contained in the xz plane, while the y-axis ...... Han B R, Yang H, Zheng Y J and Varandas A J C 2010 ... Zhang L, Chen M D, Wang M L and Han K L 2000 J.

  18. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  19. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  20. Efficiency of the DOMUS 750 vertical-axis wind turbine

    Science.gov (United States)

    Hallock, Kyle; Rasch, Tyler; Ju, Guoqiang; Alonso-Marroquin, Fernando

    2017-06-01

    The aim of this paper is to present some preliminary results on the efficiency of a wind turbine for an off-grid housing unit. To generate power, the unit uses a photovoltaic solar array and a vertical-axis wind turbine (VAWT). The existing VAWT was analysed to improve efficiency and increase power generation. There were found to be two main sources of inefficiency: 1. the 750W DC epicyclic generator performed poorly in low winds, and 2. the turbine blades wobbled, allowing for energy loss due to off-axis rotation. A 12V DC permanent magnet alternator was chosen that met the power requirements of the housing unit and would generate power at lower wind speeds. A support bracket was designed to prevent the turbine blades from wobbling.

  1. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    Science.gov (United States)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  2. Assessment of the effect of three-dimensional mantle density heterogeneity on earth rotation in tidal frequencies.

    Science.gov (United States)

    Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia

    2016-11-01

    In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.

  3. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  4. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  5. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  6. Titrating decision processes in the mental rotation task.

    Science.gov (United States)

    Provost, Alexander; Heathcote, Andrew

    2015-10-01

    Shepard and Metzler's (1971) seminal mental-rotation task-which requires participants to decide if 1 object is a rotated version of another or its mirror image-has played a central role in the study of spatial cognition. We provide the first quantitative model of behavior in this task that is comprehensive in the sense of simultaneously providing an account of both error rates and the full distribution of response times. We used Brown and Heathcote's (2008) model of choice processing to separate out the contributions of mental rotation and decision stages. This model-based titration process was applied to data from a paradigm where converging evidence supported performance being based on rotation rather than other strategies. Stimuli were similar to Shepard and Metzler's block figures except a long major axis made rotation angle well defined for mirror stimuli, enabling comprehensive modeling of both mirror and normal responses. Results supported a mental rotation stage based on Larsen's (2014) model, where rotation takes a variable amount of time with a mean and variance that increase linearly with rotation angle. Differences in response threshold differences were largely responsible for mirror responses being slowed, and for errors increasing with rotation angle for some participants. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  7. Estimating the spin axis orientation of the Echostar-2 box-wing geosynchronous satellite

    Science.gov (United States)

    Earl, Michael A.; Somers, Philip W.; Kabin, Konstantin; Bédard, Donald; Wade, Gregg A.

    2018-04-01

    For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2's specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2's equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2's spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2's spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite's angular momentum vector.

  8. Analysis of piston behavior according to eccentricity ratio of disk in bent-axis type piston pump

    International Nuclear Information System (INIS)

    Baek, Il Hyun; Cho, Ihn Sung; Jung, Jae Youn; Hong, Lu

    2008-01-01

    To improve the performance of the bent-axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism for the bent-axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as the tilting angle of the piston and the ahead delay angle influence performance of the bent-axis type axial piston pump

  9. Elliptical Galaxies: Rotationally Distorted, After All

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2009-12-01

    Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0

  10. Turbulent convection in an anelastic rotating sphere: A model for the circulation on the giant planets

    Science.gov (United States)

    Kaspi, Yohai

    This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary

  11. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.

    Science.gov (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo

    2018-04-01

    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  13. Floating axis wind turbines for offshore power generation—a conceptual study

    International Nuclear Information System (INIS)

    Akimoto, Hiromichi; Tanaka, Kenji; Uzawa, Kiyoshi

    2011-01-01

    The cost of energy produced by offshore wind turbines is considered to be higher than land based ones because of the difficulties in construction, operation and maintenance on offshore sites. To solve the problem, we propose a concept of a wind turbine that is specially designed for an offshore environment. In the proposed concept, a floater of revolutionary shape supports the load of the wind turbine axis. The floater rotates with the turbine and the turbine axis tilts to balance the turbine thrust, buoyancy and gravity. The tilt angle is passively adjustable to wind force. The angle is 30° at rated power. The simplicity of the system leads to further cost reduction of offshore power generation.

  14. A-axis oriented superconductive YBCO thin films. Growth mechanism on MgO substrate. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Hamet, J F; Mercey, B; Hervieu, M; Poullain, G; Raveau, B [Centre de Materiaux Supraconducteurs, CRISMAT-ISMRa, 14 - Caen (France)

    1992-08-01

    The growth mechanism of a-axis oriented YBCO thin films has been studied by TEM. At 650degC, a disordered cubic perovskite is first formed with a[sub p]parallela[sub MgO], then a strained tetragonal a-axis oriented perovskite is observed, with c=3a[sub p], slightly misoriented with respect to MgO and showing a marquetry-like contrast. At 750degC, a [1anti 10] axis oriented perovskite is formed whose lattice exhibits a rotation with respect to MgO lattice, but also a tilting of the [CuO[sub 2

  15. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We ...

  16. Perception of self motion during and after passive rotation of the body around an earth-vertical axis.

    Science.gov (United States)

    Sinha, N; Zaher, N; Shaikh, A G; Lasker, A G; Zee, D S; Tarnutzer, A A

    2008-01-01

    We investigated the perception of self-rotation using constant-velocity chair rotations. Subjects signalled self motion during three independent tasks (1) by pushing a button when rotation was first sensed, when velocity reached a peak, when velocity began to decrease, and when velocity reached zero, (2) by rotating a disc to match the perceived motion of the body, or (3) by changing the static position of the dial such that a bigger change in its position correlated with a larger perceived velocity. All three tasks gave a consistent quantitative measure of perceived angular velocity. We found a delay in the time at which peak velocity of self-rotation was perceived (2-5 s) relative to the beginning or to the end of chair rotation. In addition the decay of the perception of self-rotation was preceded by a sensed constant-velocity interval or plateau (9-14 s). This delay in the rise of self-motion perception, and the plateau for the maximum perceived velocity, contrasts with the rapid rise and the immediate decay of the angular vestibuloocular reflex (aVOR). This difference suggests that the sensory signal from the semicircular canals undergoes additional neural processing, beyond the contribution of the velocity-storage mechanism of the aVOR, to compute the percept of self-motion.

  17. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  18. Rotational dynamics of propylene inside Na-Y zeolite cages

    Indian Academy of Sciences (India)

    We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved ...

  19. Identicity in high-K three quasiparticle rotational bands: a theoretical approach

    International Nuclear Information System (INIS)

    Kaur, Harjeet; Singh, Pardeep; Malik, Sham S

    2015-01-01

    The systematics are studied for the identical band phenomenon in high-K three quasiparticle rotational bands. The identical rotational bands based on the same bandhead spin are analyzed on the basis of similarities in γ-ray energies, dynamic moment of inertia and kinematic moment of inertia in particular, which is a function of deformation degrees of freedom, pairing strengths and Nilsson orbitals in nuclei. It is established that a combined effect of all these parameters decides the identicity of the moment of inertia in high-K three quasiparticle rotational bands as the systematics are backed by the Tilted Axis Cranking model calculations. (paper)

  20. Calibration of three-axis magnetometers with differential evolution algorithm

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Wang, Wei; Wang, Junya; Li, Ji; Luo, Shitu; Wan, Chengbiao; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-01-01

    The accuracy of three-axis magnetometers is influenced by different scale and bias of each axis and nonorthogonality between axes. One limitation of traditional iteration methods is that initial parameters influence the calibration, thus leading to the local optimal or wrong results. In this paper, a new method is proposed to calibrate three-axis magnetometers. To employ this method, a nonmagnetic rotation platform, a proton magnetometer, a DM-050 three-axis magnetometer and the differential evolution (DE) algorithm are used. The performance of this calibration method is analyzed with simulation and experiment. In simulation, the calibration results of DE, unscented Kalman filter (UKF), recursive least squares (RLS) and genetic algorithm (GA) are compared. RMS error using DE is least, which is reduced from 81.233 nT to 1.567 nT. Experimental results show that comparing with UKF, RLS and GA, the DE algorithm has not only the least calibration error but also the best robustness. After calibration, RMS error is reduced from 68.914 nT to 2.919 nT. In addition, the DE algorithm is not sensitive to initial parameters, which is an important advantage compared with traditional iteration algorithms. The proposed algorithm can avoid the troublesome procedure to select suitable initial parameters, thus it can improve the calibration performance of three-axis magnetometers. - Highlights: • The calibration results and robustness of UKF, GA, RLS and DE algorithm are analyzed. • Calibration error of DE is the least in simulation and experiment. • Comparing with traditional calibration algorithms, DE is not sensitive to initial parameters. • It can improve the calibration performance of three-axis magnetometers

  1. Propagation of light in the lithium niobate crystal along directions close to an optical axis

    International Nuclear Information System (INIS)

    Volkov, V.V.; Egorova, G.A.; Lonskij, Eh.S.; Potapov, E.V.; Rakov, A.V.

    1978-01-01

    Theoretical and experimental results are given of studying some characteristics of electrooptical modulator from lithium niobate when propagating in it linear-polarized light in directions close to the optical axis, the electric field being applied along the X axis. It has been shown that an increase in an angle of deviation from the optical axis of a light beam passing in the crystal changes the value of the controlling voltage. This is accompanied by the rotation of the polarization plane and the change in the intensity of the light being passed. The methods have been proposed of increasing the modulator aperture, determining the main refraction indices and some electrooptical coefficients fo the lithium niobate crystal

  2. Lift of a rotating circular cylinder in unsteady flows

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

    2012-01-01

    A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...

  3. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds' Search Performance in Spatial Rotation Tasks.

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  4. The effects of visual discriminability and rotation angle on 30-month-olds’ search performance in spatial rotation tasks

    Directory of Open Access Journals (Sweden)

    Mirjam Ebersbach

    2016-10-01

    Full Text Available Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29 performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  5. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds’ Search Performance in Spatial Rotation Tasks

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346

  6. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)

    2013-01-15

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)

  7. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    International Nuclear Information System (INIS)

    Barik, R.N.; Dash, G.C.; Rath, P.K.

    2013-01-01

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)

  8. Relativistic generalization of the Van-Cittert-Zernike theorem and coherent properties of rotating star radiation

    International Nuclear Information System (INIS)

    Mandjos, A.V.; Khmil', S.V.

    1979-01-01

    The formula is derived for the complex coherence degree of radiation from the surface moving arbitrarily in the gravitational field. The calculations are carried out referina to the rotating star observed at the spectral line by the interferometric method. The possibility of determining interferometrically the star rotational velocity and axis orientation is grounded

  9. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  10. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  11. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    Science.gov (United States)

    Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.

    2018-03-01

    To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

  12. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    Directory of Open Access Journals (Sweden)

    D. Gürer

    2018-03-01

    Full Text Available To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa–Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ∼ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP for this block since the Late Cretaceous, showing that it experienced a ∼ 30–35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler–Tecer Fault Zone in the north and by the African–Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

  13. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  14. Experimental study on flow past a rotationally oscillating cylinder

    Science.gov (United States)

    Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

    2017-08-01

    A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

  15. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    Science.gov (United States)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  16. Live-Axis Turning for the Fabrication of Non-Rotationally Symmetric Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposal is to develop a new method to create Non-Rotationally Symmetric (NRS) surfaces that overcomes the limitations of the current techniques and...

  17. Visual perception of axes of head rotation

    Science.gov (United States)

    Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

    2013-01-01

    Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is

  18. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  19. Vortex breakdown control by adding near-axis swirl and temperature gradients.

    Science.gov (United States)

    Herrada, Miguel Angel; Shtern, Vladimir

    2003-10-01

    Vortex breakdown (VB) is an intriguing effect of practical and fundamental interest, occurring, e.g., in tornadoes, above delta-wing aircraft, and in vortex devices. Depending on application, VB is either beneficiary or harmful and therefore requires a proper control. This study shows that VB can be efficiently controlled by a combination of additional near-axis swirl and heat. To explore the underlying mechanism, we address a flow in a cylindrical container driven by a rotating bottom disk. This model flow has been extensively studied being well suited for understanding both the VB mechanism and its control. Our numerical analysis explains experimentally observed effects of control corotation and counter-rotation (with no temperature gradient) and reveals some flaws of dye visualization. An important feature found is that a moderate negative (positive) axial gradient of temperature can significantly enforce (diminish) the VB enhancement by the counter-rotation. A strong positive temperature gradient stimulates the centrifugal instability and time oscillations in the flow with counter-rotation. An efficient time-evolution code for axisymmetric compressible flows has facilitated the numerical study.

  20. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    International Nuclear Information System (INIS)

    SivaRanjan, Uppala; Ramachandran, Ramesh

    2014-01-01

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R 2 ) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R 2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR

  1. Unraveling multi-spin effects in rotational resonance nuclear magnetic resonance using effective reduced density matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)

    2014-02-07

    A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.

  2. Correlation to predict heat transfer characteristics of a radially rotating heat pipe at vertical position

    Energy Technology Data Exchange (ETDEWEB)

    Waowaew, N.; Terdtoon, P.; Kamonpet, P.; Klongpanich, W. [Chiang Mai University (Thailand). Dept. of Mechanical Engineering; Maezawa, S. [Seikei University (Japan). Dept. of Mechanical Engineering

    2003-06-01

    The heat transfer characteristics of a radially rotating heat pipe (RRHP) depend on a number of parameters. This paper is a study of the effects of these parameters. They are the inner diameter of the tube, aspect ratio, rotational acceleration, working fluid and the dimensionless parameters of heat transfer. RRHPs, made of copper tubes with inner diameters of 11, 26, and 50.4 mm, were used in the experiments. The aspect ratios were 5, 10, 20 and 40 respectively. The selected working fluids were water, ethanol and R123 (CHCI{sub 2}CF{sub 3}) with a filling ratio of 60% of evaporator volume. The experiments were conducted at inclination angles of 0-90{sup o} from horizontal axis and the rotational accelerations were lower, higher and equal to gravitational acceleration. The working temperature was 90{sup o}C. The evaporator section was heated by electric power while heat in the condenser section was removed naturally by air. The evaporator and adiabatic section of the RRHP were well insulated with ceramic fibers. The experimental results showed that the heat flux decreases with an increasing inner diameter, and decreases with an increasing aspect ratio. The heat flux increases with an increasing rotational acceleration and decreases with an increasing liquid density of the working fluid. A correlation to predict the heat transfer rate at vertical position can be established. Further research will investigate a visual study of internal flow pattern and the formulation of a mathematical model. (author)

  3. Automated Axis Alignment for a Nanomanipulator inside SEM and Its Error Optimization

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-01-01

    Full Text Available In the motion of probing nanostructures, repeating position and movement is frequently happing and tolerance for position error is stringent. The consistency between the axis of manipulators and image is very significant since the visual servo is the most important tool in the automated manipulation. This paper proposed an automated axis alignment method for a nanomanipulator inside the SEM by recognizing the position of a closed-loop controlling the end-effector, which can characterize the relationship of these two axes, and then the rotation matrix can be calculated accordingly. The error of this method and its transfer function are also calculated to compare the iteration method and average method. The method in this paper can accelerate the process of axis alignment to avoid the electron beam induced deposition effect on the end tips. Experiment demonstration shows that it can achieve a 0.1-degree precision in 90 seconds.

  4. Internal rotation of 1-Aryl-3,3-dialkyltriazenes. Comparison of semiempirical molecular orbital calculations with far-infrared, Raman, and NMR spectroscopic results

    International Nuclear Information System (INIS)

    Panitz, J.C.; Lippert, T.; Wokaun, A.

    1994-01-01

    PM3 and AM1 semiempirical molecular orbital techniques are used to establish a model for internal rotation about the N 2 -N 3 axis of 1-aryl-3,3-dialkyltriazines. The PM3 method is satisfactory for obtaining agreement between the experimental and calculated results, but the AM1 method has an artifact in the potential energy curve of internal rotation about the N 2 -N 3 axis. 24 refs., 6 figs., 5 tabs

  5. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    We synthesized a number of aniline derivatives containing acyl groups to compare their barriers of rotation around ... KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION. Developments in ...

  6. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    Science.gov (United States)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  7. Developments in blade shape design for a Darrieus vertical axis wind turbine

    Science.gov (United States)

    Ashwill, T. D.; Leonard, T. M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  8. Effects of the APC materials on c-axis correlated pinning effects in a-axis oriented Y123/2D APC multilayer films

    International Nuclear Information System (INIS)

    Takamura, M.; Mukaida, M.; Horii, S.; Ichinose, A.; Kita, R.; Namba, M.; Awaji, S.; Watanabe, K.; Matsumoto, K.; Yoshida, Y.; Teranishi, R.; Yamada, K.; Mori, N.

    2009-01-01

    For a-axis oriented and c-axis in-plane aligned YBa 2 Cu 3 O 7-δ /artificial pinning center (Y123/APC) alternately-layered thin films, effects of the APC materials on the multilayer structures are discussed. Pr123, (Y 1-x Pr x )123 and Gd 2 CuO 4 (Gd214) were used as APCs. The multilayer structure was observed for Y123/Pr123 films and Y123/Gd214 films. However, some grains are also grown in the Y123/Gd214 film. For the Y123/Pr123 multilayer film, each Pr123 layer act as two-dimensional APCs (2D APCs) in the magnetic field angular dependences of the critical current density. The growth mechanism of the multilayer structure in the Y123/2D APC films is discussed by a transmission electron microscopy and an atomic force microscope. It is found that two conditions are needed to obtain the c-axis correlated pinning effects by 2D APC in the a-axis oriented and c-axis in-plane aligned Y123/APC multilayer films: the same structure as Y123; Y-free APC materials.

  9. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.

    2016-01-01

    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  10. Effect of three rotation systems on weed seed bank of barely fields in Karaj

    Directory of Open Access Journals (Sweden)

    mostafa oveysi

    2009-06-01

    Full Text Available Rotation can be used as an approach for weed management, because density and combination of weed seed bank may be affected by rotation. In this study effect of rotation in diversity and density of weed seed was studied in three rotation systems (fallow – barely, maize – barely and canola – barely. Results showed that fallow – barely rotation system have high population density in seed bank and highest amount of Shannon diversity index (H = 0.84. In canola – barely rotation system because of different herbicide uses and special traits of canola, population of weed seeds in seed bank was significantly lower that other rotation systems. Results showed that canola – barely rotation system because of combination special herbicide and agronomical and biological characteristic of canola, in comparison with other rotation systems is more successful in decreasing of weed seed bank.

  11. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  12. MHD equilibria in a straight system with a non-planar magnetic axis

    International Nuclear Information System (INIS)

    Harafuji, Kenji; Tsunematsu, Toshihide; Azumi, Masafumi; Takeda, Tatsuoki

    1984-03-01

    Numerical investigations of equilibria with free boundary are made in the straight syste m with a three dimensional magnetic axis. Grad-Shafranov equation is solved by both iterative SOR method and direct method on the basis of LU matrix decomposition. From the standpoint of CPU time, SOR method is better than direct method, when number of outer iterations is executed. A part of the ''Self-Stabilization Effect'' due to the increase of plasma pressure is successfully simulated. On the parameter space where the relation between the rotational transform due to the plasma current and that due to the torsion of helical magnetic axis is subtractive, the convergence region is very small. (author)

  13. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  14. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.

    Science.gov (United States)

    Čerňanský, Andrej

    2016-04-01

    The comparative vertebral morphology of the atlas-axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti-predation strategies, where conformation ranges from the lizard-like body to a snake-like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas-axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass-swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit-and-wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas-axis complex: for example, aforementioned presence of the atlas-axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas-axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas-axis morphology due to different

  15. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  16. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    Science.gov (United States)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  17. Cooling achieved by rotating an anisotropic superconductor in a constant magnetic field: A new perspective

    Directory of Open Access Journals (Sweden)

    Manh-Huong Phan

    2016-12-01

    Full Text Available A new type of rotary coolers based on the temperature change (ΔTrot of an anisotropic superconductor when rotated in a constant magnetic field is proposed. We show that at low temperature the Sommerfeld coefficient γ(B,Θ of a single crystalline superconductor, such as MgB2 and NbS2, sensitively depends on the applied magnetic field (B and the orientation of the crystal axis (Θ, which is related to the electronic entropy (SE and temperature (T via the expression: SE=γT. A simple rotation of the crystal from one axis to one another in a constant magnetic field results in a change in γ and hence SE: ΔSE=ΔγT. A temperature change −ΔTrot ∼ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔTrot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.

  18. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy.

    Science.gov (United States)

    Teixeira, Fernando Borge; Ramalho Júnior, Amancio; Morais Filho, Mauro César de; Speciali, Danielli Souza; Kawamura, Catia Miyuki; Lopes, José Augusto Fernandes; Blumetti, Francesco Camara

    2018-01-01

    Objective To evaluate the correlation between physical examination data concerning hip rotation and tibial torsion with transverse plane kinematics in children with cerebral palsy; and to determine which time points and events of the gait cycle present higher correlation with physical examination findings. Methods A total of 195 children with cerebral palsy seen at two gait laboratories from 2008 and 2016 were included in this study. Physical examination measurements included internal hip rotation, external hip rotation, mid-point hip rotation and the transmalleolar axis angle. Six kinematic parameters were selected for each segment to assess hip rotation and shank-based foot rotation. Correlations between physical examination and kinematic measures were analyzed by Spearman correlation coefficients, and a significance level of 5% was considered. Results Comparing physical examination measurements of hip rotation and hip kinematics, we found moderate to strong correlations for all variables (pphysical examination and hip rotation kinematics (rho range: 0.48-0.61). Moderate correlations were also found between the transmalleolar axis angle measurement on physical examination and foot rotation kinematics (rho range 0.44-0.56; p<0.001). Conclusion These findings may have clinical implications in the assessment and management of transverse plane gait deviations in children with cerebral palsy.

  19. Compact torus equilibria set up in the rotamak by rotating magnetic fields

    International Nuclear Information System (INIS)

    Storer, R.G.

    1983-01-01

    In the Rotamak, a rotating magnetic field is used to drive a steady toroidal current in a compact torus device. High power, short duration (approx.=80 μs) and low power, long duration experiments (approx.=3 ms) have been studied. In both of these experiments a steady phase exists which is well described by the assumption that the plasma is in an averaged magnetohydrodynamic pressure balance situation. Using a model based on this assumption, self-consistency imposes conditions relating the temperature and density of the plasma to the steady components of the internal magnetic fields. In the high power experiment, this steady phase evolves into a second steady phase, with lower toroidal current, which has a #betta#=1, mirror-like configuration which also appears to satisfy local pressure balance but with the magnetic axis (minimum of the poloidal flux) at the centre of the spherical vessel. (orig.)

  20. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    International Nuclear Information System (INIS)

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  1. The system design and performance test of hybrid vertical axis wind turbine

    Science.gov (United States)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  2. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  3. Assessment of the effect of three-dimensional mantle density heterogeneity on Earth rotation in tidal frequencies

    Directory of Open Access Journals (Sweden)

    Lanbo Liu

    2016-11-01

    Full Text Available In this paper, we report the assessment of the effect of the three-dimensional (3D density heterogeneity in the mantle on Earth orientation parameters (EOP (i.e., the polar motion, or PM, and the length of day, or LOD in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8 and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the preliminary reference earth model (PREM. Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal are estimated in both PM and LOD. When compared with mass or density perturbations originated on the Earth's surface such as the oceanic and barometric changes, the heterogeneous mantle contributes less than 10% of the total variation in PM and LOD in tidal frequencies. However, this is the gap that has not been explained to close the gap of the observation and modeling in PM and LOD. By computing the PM and LOD caused by 3D heterogeneity of the mantle during the period of continuous space geodetic measurement campaigns (e.g., CONT94 and the contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon in the same period, we got the lump-sum values of PM and LOD. The computed total effects and the observed PM and LOD are generally agree with each other. In another word, the difference of the observed PM and LOD and the model only considering ocean tides, at all tidal frequencies (long periods, diurnals, and semidiurnals contains the contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free Earth rotation may provide useful constraints to construct the reference earth model (REM, which is the next major objective in global

  4. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure

    International Nuclear Information System (INIS)

    Mittermaier, Anthony; Kay, Lewis E.; Forman-Kay, Julie D.

    1999-01-01

    Methyl axis (S2axis) and backbone NH (S2NH) order parameters derived from eight proteins have been analyzed. Similar distribution profiles for Ala S2axis and S2NH order parameters were observed. A good correlation between the two S2axis values of Val and Leu methyl groups is noted, although differences between order parameters can arise. The relation of S2axis or S2NH to solvent accessibility and packing density has also been investigated. Correlations are weak, likely reflecting the importance of collective, non-local motions in proteins. The lack of correlation between these simple structural parameters and dynamics emphasizes the importance of motional studies to fully characterize proteins

  5. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    International Nuclear Information System (INIS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-01-01

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  6. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    Science.gov (United States)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  7. Effect of rotation on Jeans instability of magnetized radiative quantum plasma

    Science.gov (United States)

    Joshi, H.; Pensia, R. K.

    2017-03-01

    The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.

  8. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  9. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines

    Science.gov (United States)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander

    2016-09-01

    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  10. Reliability of using DXA around RTHAs. Bone Mineral Density of the femoral neck in resurfacing hip arthroplasty. Precision biased by region of interest and rotation of the hip

    DEFF Research Database (Denmark)

    Penny, Jeannette Østergaard; Varmarken, Jens-Erik; Ovesen, Ole

    2009-01-01

      Introduction:  Resurfacing Total Hip Arthroplasty (RTHA) may preserve the femoral neck bone-stock post-operatively. Bone Mineral Density (BMD), could theoretically be affected by the hip-position, and bias longitudinal studies. We aimed to investigate BMD precision dependency on type of ROI...... the hip was rotated in increments of 15° and 30°, the mean CVs rose to 7.2%, 7.3% and 11.8%.  Rotation affected the precision most in the model that divided the neck in 6 sub regions, predominantly in the lateral and distal regions. For larger-region models, some rotation could be allowed without...

  11. Density characterization of radiochromic film through source axis distance (SAD) technique in linac with slab phantom for radiotherapy applications

    Science.gov (United States)

    Hariani, Yousida; Haris, Bambang

    2017-05-01

    Characterization of radiochromic film density is accomplished through Source Axis Distance (SAD) technique in a slab phantom Linac with various depths and breadths of field. Type of the film used is gafchromic RTQA2. The dose of radiation exposure of the film may cause changes in the film density. This research aims to determine the relation between the density and the dose depth through the characteristic of curves to identify the depth of the dose and particular breadth of the field as a reference for the dose of radiotherapy patients. The result shows that the higher the dose is absorbed, the darker the film will be, yet the lower the density is obtained. The dose depth is determined by measuring the amount of dose received at various depths and breadths of field using film that is placed on the slab phantom with 6 MV linac radiation and dose of 300 cGy. The variation of the depth at 1.5 cm; 4 cm; 6 cm; 8 cm; 10 cm, the field size at 4 × 4 cm2, and the dose depth at 359.7 cGy; 315.3 cGy; 281.4 cGy; 241.2 cGy; 220.5 cGy were settled. The field size 6 × 6 cm2 takes the dose depth 354.6 cGy; 314.1 cGy; 282.6 cGy; 244.5 cGy; 224.7 cGy. The field size 8 × 8 cm2 takes the dose depth 351.6 cGy; 313 cGy; 283.8 cGy; 247.2 cGy; 228 cGy. The field size 10 × 10 cm2 takes the dose depth 348.9 cGy; 342.6 cGy; 248.4 cGy; 249.6 cGy; 231 cGy.

  12. Density characterization of radiochromic film through source axis distance (SAD) technique in linac with slab phantom for radiotherapy applications

    International Nuclear Information System (INIS)

    Hariani, Yousida; Haris, Bambang

    2017-01-01

    Characterization of radiochromic film density is accomplished through Source Axis Distance (SAD) technique in a slab phantom Linac with various depths and breadths of field. Type of the film used is gafchromic RTQA2. The dose of radiation exposure of the film may cause changes in the film density. This research aims to determine the relation between the density and the dose depth through the characteristic of curves to identify the depth of the dose and particular breadth of the field as a reference for the dose of radiotherapy patients. The result shows that the higher the dose is absorbed, the darker the film will be, yet the lower the density is obtained. The dose depth is determined by measuring the amount of dose received at various depths and breadths of field using film that is placed on the slab phantom with 6 MV linac radiation and dose of 300 cGy. The variation of the depth at 1.5 cm; 4 cm; 6 cm; 8 cm; 10 cm, the field size at 4 × 4 cm 2 , and the dose depth at 359.7 cGy; 315.3 cGy; 281.4 cGy; 241.2 cGy; 220.5 cGy were settled. The field size 6 × 6 cm 2 takes the dose depth 354.6 cGy; 314.1 cGy; 282.6 cGy; 244.5 cGy; 224.7 cGy. The field size 8 × 8 cm 2 takes the dose depth 351.6 cGy; 313 cGy; 283.8 cGy; 247.2 cGy; 228 cGy. The field size 10 × 10 cm 2 takes the dose depth 348.9 cGy; 342.6 cGy; 248.4 cGy; 249.6 cGy; 231 cGy. (paper)

  13. Estimation of power in low velocity vertical axis wind turbine

    Science.gov (United States)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  14. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  15. Identical high- K three-quasiparticle rotational bands

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Harjeet; Singh, Pardeep [Guru Nanak Dev University, Department of Physics, Amritsar (India)

    2016-12-15

    A comprehensive study of high-K three-quasiparticle rotational bands in odd-A nuclei indicates the similarity in γ-ray energies and dynamic moment of inertia I{sup (2)}. The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia I{sup (2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(ℎ) vs. ℎω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations. (orig.)

  16. Vibrational analysis of vertical axis wind turbine blades

    Science.gov (United States)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  17. Dynamics of a discrete geotropic sensor subject to rotation-induced gravity compensation

    Energy Technology Data Exchange (ETDEWEB)

    Silver, I.L.

    1976-01-01

    A clinostat achieves gravity compensation by providing circular rotation with uniform speed, about a horizontal axis. The dynamics of an assumed, discrete and free-moving subcellular gravity receptor, subject to clinostat rotation, is analyzed. The results imply that there is an optimum rotation rate; higher speeds result in circular motions with diameters more comparable to thermal noise fluctuations, but with greater linear velocities due to increasing centrifugal forces. An optimizing function is proposed. The nucleolus and mitochondrion is chosen as a gravity receptor for illustrating the use of this theory. The characteristics of their clinostat-induced motions are incorporated with experimental results on Avena plant shoots in an illustrative example.

  18. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  19. Determination of the Three-Dimensional Rate of Cancer Cell Rotation in an Optically-Induced Electrokinetics Chip Using an Optical Flow Algorithm

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available Our group has reported that Melan-A cells and lymphocytes undergo self-rotation in a homogeneous AC electric field, and found that the rotation velocity of these cells is a key indicator to characterize their physical properties. However, the determination of the rotation properties of a cell by human eyes is both gruesome and time consuming, and not always accurate. In this paper, a method is presented to more accurately determine the 3D cell rotation velocity and axis from a 2D image sequence captured by a single camera. Using the optical flow method, we obtained the 2D motion field data from the image sequence and back-project it onto a 3D sphere model, and then the rotation axis and velocity of the cell were calculated. After testing the algorithm on animated image sequences, experiments were also performed on image sequences of real rotating cells. All of these results indicate that this method is accurate, practical, and useful. Furthermore, the method presented there can also be used to determine the 3D rotation velocity of other types of spherical objects that are commonly used in microfluidic applications, such as beads and microparticles.

  20. A review of what numerical simulations tell us about the internal rotation of the sun

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1986-01-01

    The simulated solar differential rotation from two independent numerical modeling efforts agree with each other and with present solar observations. The models solve the nonlinear, three-dimensional, time-dependent, anelastic equations of motion for thermal convection in a stratified, rotating, spherical shell. The simulated angular velocity in the convection zone is constant on cylinders coaxial with the rotation axis, maximum at the equator and decreasing with depth. The latitudinal variation of this angular velocity at the surface is in agreement with Doppler measurements of the solar surface rotation rate. The radial variation through the convection zone is consistent with the analysis of the rotational frequency splitting of solar oscillations. 15 refs., 5 figs

  1. Faraday rotation measurements at Ootacamund

    Science.gov (United States)

    Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.

    1978-01-01

    The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.

  2. Paleomagnetic and Rock Magnetic Study of Oligocene-Holocene Sedimentary Rocks from Northern Dominican Republic: Evidence of Vertical Axis Rotations

    Science.gov (United States)

    Anson Sanchez, M.; Kodama, K. P.; Pueyo, E. L.; Soto, R.; Garcia-Senz, J.; Escuder-Viruete, J.; Pastor-Galan, D.

    2017-12-01

    A paleomagnetic and rock magnetic study was conducted in the northern Dominican Republic to detect vertical axis rotations in an active left-lateral, strike slip fault zone. 191 samples from 21 sites were collected from a variety of lithologies including limestones, conglomerates, calcarenites and marls that ranged in age from the Oligocene to the Holocene. The rock magnetic portion of the study focused on the identification of magnetic minerals using coercivity, and Curie temperature (c vs temperature) measurement, modeling of IRM acquisition curves, and thermal demagnetization of IRMs (Lowrie, 19901). In the paleomagnetic portion of the study characteristic remanences (ChRMs) were isolated using thermal demagnetization (19 steps up to 680ºC) and alternating field (AF) demagnetization (17 steps up to 100 mT). In most cases the characteristic remanence is carried by magnetite, with peak unblocking temperatures of 575ºC. This interpretation was supported by c vs. T results that yielded Curie temperatures of 580˚C. In only a few cases (7 samples) higher unblocking temperatures suggested hematite as the magnetic carrier. The modeling of IRM acquisition curves, that shows two coercivity components, further supports the presence of magnetite. 75% of the IRM is carried by the low-coercivity component (100-300 mT, magnetite). 25% of the IRM is carried by the high-coercivity component (1.2-1.6T) characteristic of hematite. The IRM acquisition data was collected from 24 samples (3-4 from each of the lithologies sampled). IRMs were acquired in fields from 4mT to 1T in 23 steps. The paleomagnetic results show a grouping by tectonic blocks with one group having westerly ChRM declinations (268˚-295˚) and a second group having northerly ChRM declinations (357˚-035˚). In most cases, inclinations are intermediate ( 35˚), in agreement with the 24˚-31˚ expected inclinations for Dominican Republic in the period Oligocene to Holocene. The rotation of the tectonic blocks, as

  3. Effects of the Tongue-in-Groove Maneuver on Nasal Tip Rotation.

    Science.gov (United States)

    Antunes, Marcelo B; Quatela, Vito C

    2018-03-27

    Changes in nasal tip rotation is a very common maneuver performed during rhinoplasty. Among the many techniques used to achieve this goal is the tongue-in-groove (TIG). This study addresses the long-term effect of the TIG on the nasal tip rotation 1 year after rhinoplasty. The authors prospectively identified patients who were submitted to a rhinoplasty with a TIG maneuver over a period of 1 year. The angle of rotation was measured along the nostril axis angle. The data was analyzed using the t-test and a linear regression model. Seventeen patients were included. The average preoperative tip rotation was 93.95° (SD, 3.12°). Immediate postoperative tip rotation averaged 114.47° (SD, 3.79°). At the 1-year follow-up appointment, the tip rotation averaged 106.55° (SD, 3.54°). There was a significant loss of rotation at the 1-year postoperative visit (pTIG is a more dependable technique than the ones that rely on healing and contraction to obtain rotation. Our data demonstrated a significant loss of rotation during the first year. This suggests that the surgeon needs to slightly overcorrect the tip rotation to account for this loss.

  4. Differential rotation of viscous neutron matter

    International Nuclear Information System (INIS)

    Nitsch, J.; Pfarr, J.; Heintzmann, H.

    1976-08-01

    The reaction of homogeneous sphere of neutron matter set in rotational motion under the influence of an external torque acting on its surface is investigated. For neutron matter with a typical neutron star density of 10 15 gcm -3 and a temperature varying between 10 6 and 10 9 K originally in uniform rotation, a time dependent differential motion sets in, which lasts a time scale of hours to some decades, resulting finally in co-rotation. During these times the braking index of a magnetic neutron sphere very sensitively depends on time

  5. Interactive modeling activities in the classroom—rotational motion and smartphone gyroscopes

    Science.gov (United States)

    Pörn, Ray; Braskén, Mats

    2016-11-01

    The wide-spread availability of smartphones makes them a valuable addition to the measurement equipment in both the physics classroom and the instructional laboratory, encouraging an active interaction between measurements and modeling activities. In this paper we illustrate this interaction by making use of the internal gyroscope of a smartphone to study and measure the rotational dynamics of objects rotating about a fixed axis. The workflow described in this paper has been tested in a classroom setting and found to encourage an exploratory approach to both data collecting and modeling.

  6. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  7. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  8. Inferring probabilistic stellar rotation periods using Gaussian processes

    Science.gov (United States)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  9. On the generation of short-axis and radial long-axis slices in thallium-201 myocardial perfusion single-photon emission tomography

    International Nuclear Information System (INIS)

    Hastenberg, R.P.J.M. van; Eindhoven Univ. of Technology; Kemernik, G.J.; Hasman, A.

    1996-01-01

    We tried to develop fully automatic reorientation algorithms in thallium-201 myocardial perfusion single-photon emission tomography, and tested a method to evaluate the quality of reorientation. The left ventricle was automatically segmented using count density information, contours generated with Laplacian operators in both transaxial and sagittal slices, and morphological and positional characteristics of the contours. Reorientation was automatically performed based on knowledge of the long axis of a second degree surface fitted to the myocardial wall. We tried to achieve improvement in reorientation without relying on any functional description of left ventricular shape. Quality of reorientation was evaluated and improved using interactive tools in combination with radial long-axis slices. Two groups of 50 patients, after stress and rest, were analysed using the traditional manual and the fully automatic procedures. Automatic segmentation was successful in 98 out of 100 cases, and automatic reorientation was of reasonable quality. Reorientation obtained with the radial long-axis slices tool was better than after traditional manual or automatic reorientation. Automatic reorientation based on second degree surface fitting was in our hands less successful than reported in the literature. The tool using radial long-axis slices provides a better standard for testing reorientation algorithms than the traditional manual method. (orig.)

  10. Numerical simulation of VAWT on the effects of rotation cylinder

    Science.gov (United States)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  11. Blanket design for imploding liner systems

    International Nuclear Information System (INIS)

    Schaffer, M. J.

    1980-01-01

    The blanket design comprises hot, molten, rotating liquid vortex systems suitable for rapidly compressing confined plasmas, in which stratified immiscible liquid layers having successively greater mass densities outwardly of the axis of rotation are provided

  12. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    Science.gov (United States)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  13. A study of direct- and pulse-current chromium electroplating on rotating cylinder electrode (RCE)

    International Nuclear Information System (INIS)

    Chang, J.H.; Hsu, F.Y.; Liao, M.J.; Huang, C.A.

    2007-01-01

    Direct- and pulse-current (DC and PC) chromium electroplating on Cr-Mo steel were performed in a sulfate-catalyzed chromic acid solution at 50 deg. C using a rotating cylinder electrode (RCE). The electroplating cathodic current densities were at 30, 40, 50 and 60 A dm -2 , respectively. The relationship between electroplating current efficiency and the rotating speed of the RCE was studied. The cross-sectional microstructure of Cr-deposit was examined by transmission electron microscope (TEM). Results showed that DC-plating exhibited higher current efficiency than the PC-plating under the same conditions of electroplating current density and the rotating speed. We found the critical rotating speed of RCE used in the chromium electroplating, above this rotating speed the chromium deposition is prohibited. At the same plating current density, the critical rotating speed for DC-plating was higher than that for PC-plating. The higher plating current density is, the larger difference in critical rotating speeds appears between DC- and PC-electroplating. Equiaxed grains, in a nanoscale size with lower dislocation density, nucleate on the cathodic surface in both DC- and PC-electroplating. Adjacent to the equiaxed grains, textured grains were found in other portion of chromium deposit. Fine columnar grains were observed in the DC-electroplated deposit. On the other hand, very long slender grains with high degree of preferred orientation were detected in PC-electroplated deposit

  14. Rotational instabilities in field reversed configurations

    International Nuclear Information System (INIS)

    Santiago, M.A.M.; Tsui, K.H.; Ponciano, B.M.B.; Sakanaka, P.H.

    1988-01-01

    The rotational instability (n = 2 toroidal mode) in field reversed configurations (FRC) using the ideal MHD equations in cylindrical geometry is studied. These equations are solved using a realistic densite profile, and the influence of some plasma parameters on the growth rate is analysed. The model shows good qualitative results. The growth rate increases rapidly as rotational frequency goes up and the mode m = 2 dominates over the m = 1 mode. With the variation of the density profile, it is observed that the growth rate decreases as the density dip at the center fills up. Calculated value ranges from 1/2 to 1/7 of the rotational frequency Ω whereas the measured value is around Ω/50. The developed analysis is valid for larger machines. The influence of the plasma resistivity on the mode stabilization is also analysed. The resistivity, which is the fundamental factor in the formation of compact torus, tends to decrease the growth rate. (author) [pt

  15. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    Science.gov (United States)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  16. Rotating Quark Stars in General Relativity

    Directory of Open Access Journals (Sweden)

    Enping Zhou

    2018-03-01

    Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.

  17. A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available We develop a reduced order model to represent the complex flow behaviour around vertical axis wind turbines. First, we simulate vertical axis turbines using an accurate high order discontinuous Galerkin–Fourier Navier–Stokes Large Eddy Simulation solver with sliding meshes and extract flow snapshots in time. Subsequently, we construct a reduced order model based on a high order dynamic mode decomposition approach that selects modes based on flow frequency. We show that only a few modes are necessary to reconstruct the flow behaviour of the original simulation, even for blades rotating in turbulent regimes. Furthermore, we prove that an accurate reduced order model can be constructed using snapshots that do not sample one entire turbine rotation (but only a fraction of it, which reduces the cost of generating the reduced order model. Additionally, we compare the reduced order model based on the high order Navier–Stokes solver to fast 2D simulations (using a Reynolds Averaged Navier–Stokes turbulent model to illustrate the good performance of the proposed methodology.

  18. Digital tomosynthesis using a 35 mm X-ray cinematogram during an isocentric rotational motion

    International Nuclear Information System (INIS)

    Maeda, Hirofumi; Aikawa, Hisayuki; Maeda, Tohru; Miyake, Hidetoshi; Sugahara, Tetsuo.

    1988-01-01

    Digital tomosynthesis is performed using a 35 mm X-ray cinematogram obtained during an isocentric rotational motion of the cineangiographic apparatus. Formula of image shift for digital tomosynthesis using an isocentric rotational motion is induced by perspective projection and affine transformation. Images of desired layer are aligned at the same point in the image processor and summed. Resultant final image is displayed in sharp focus. We can set tomosynthetic factors on any desired projection, sweep angle and depth as concerns digital tomosynthesis using an isocentric rotational motion. Especially we emphasize that tomosynthesis tilted for central axis of isocentric rotational motion can be obtained, using shear transformation of image in the image processor. (author)

  19. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  20. Design and Realization of Rotating Machinery Conditions Monitoring System Based on Labview

    Science.gov (United States)

    Fan, Qiyuan

    Nonlinear dynamic analysis of rotating machinery system has always been the hot spot of the rotational dynamics research. This article sets up a rotating machinery condition monitoring system to realize the measurement of system dynamic characteristic parameters based on NI(National Instruments) virtual instruments technology. The measurement of vibration signal of rotating machinery system is achieved by using NI company general data acquisition module of NI company. Meanwhile, by analyzing and processing the acquired data using Labview 2012, the dynamic characteristics, such as .the speed of the rotating machinery system, the axis trajectory, spectrum parameters, are attained. The measurement results show that the rotating machinery condition monitoring system based on Labview is easy to operate, easy to realize the function extension and maintenance, and that it can be used in the industrial engineering projects with rotation characteristics. Labview as the development tools used by virtual instrument function, is very powerful data acquisition software products support is one of the features of it, so using Labview programming and data acquisition is simple and convenient [1].

  1. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou

    2018-03-01

    HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.

  2. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  3. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  4. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus

    Science.gov (United States)

    Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia

    2018-04-01

    In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.

  5. Laboratory tests of catastrophic disruption of rotating bodies

    Science.gov (United States)

    Morris, A. J. W.; Burchell, M. J.

    2017-11-01

    The results of catastrophic disruption experiments on static and rotating targets are reported. The experiments used cement spheres of diameter 10 cm as the targets. Impacts were by mm sized stainless steel spheres at speeds of between 1 and 7.75 km s-1. Energy densities (Q) in the targets ranged from 7 to 2613 J kg-1. The experiments covered both the cratering and catastrophic disruption regimes. For static, i.e. non-rotating targets the critical energy density for disruption (Q*, the value of Q when the largest surviving target fragment has a mass equal to one half of the pre-impact target mass) was Q* = 1447 ± 90 J kg-1. For rotating targets (median rotation frequency of 3.44 Hz) we found Q* = 987 ± 349 J kg-1, a reduction of 32% in the mean value. This lower value of Q* for rotating targets was also accompanied by a larger scatter on the data, hence the greater uncertainty. We suggest that in some cases the rotating targets behaved as static targets, i.e. broke up with the same catastrophic disruption threshold, but in other cases the rotation helped the break up causing a lower catastrophic disruption threshold, hence both the lower value of Q* and the larger scatter on the data. The fragment mass distributions after impact were similar in both the static and rotating target experiments with similar slopes.

  6. Linear instability and nonlinear motion of rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.

    1985-01-01

    Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation

  7. A parametric study of axial segregation in a rotating cylinder.

    Energy Technology Data Exchange (ETDEWEB)

    Bielenberg, J. R. (James R.); Gladysz, G. M. (Gary M.); Graham, Alan L.

    2004-01-01

    When a cylindrical container, partially filled with a binary granular mixture of particles that differ in size or density, is rotated around its axis, a spontaneous segregation of the two granular components may occur. In order to better understand this phenomena, we have carried out an experimental study probing the effect of average particle size and relative size difference between particles on the onset of segregation. The experimental study is followed by a novel scaling analysis that relates the deterministic, convective driving force for particle segregation to the randomizing diffusional driving force present in these systems through the definition of an axial granular Peclet number. This Peclet number based approach will forgo some of the difficulties inherent in full-scale dynamic simulations, but will still allow us to determine the effects of system parameters on the final steady-state that is achieved. Values of this granular Peclet number are shown to successfully correlate with segregation behavior in the present experiment results, as well as in comparable results present in the literature.

  8. Mechanical design for modification of a neutral beam for off-axis injection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: anderson@fusion.gat.com; Hong, R.-M. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    DIII-D is planning to implement off-axis neutral beam current drive by neutral beam injection through a midplane port at angles up to 15 deg. from horizontal. To accommodate the beam-line tilting, the following modifications are planned: (1) move the beam line away from the tokamak by 0.39 m to allow for a 0.68 m inside diameter welded bellows of necessary length to provide 15 deg. of vertical motion between the vessel port and the beam line; (2) reduce the vertical height of the injected beam from 0.48 m to 0.43 m to provide clearance for the inclined beam as it passes through the length of the vessel port; (3) add a linkage system between the front of the beam line and the tokamak to restrain the NB against the vacuum loading from the bellows while maintaining zero roll about the axis of the beam line as it is moved about a virtual pivot axis; (4) add a forward and two rear vertical actuators for raising and lowering the beam line (These actuators require coordinated position control to rotate the NB about a virtual pivot axis.); (5) incorporate lateral restraint to comply with seismic requirements.

  9. Midplane Faraday rotation: A densitometer for large tokamaks

    International Nuclear Information System (INIS)

    Jobes, F.C.; Mansfield, D.K.

    1992-01-01

    The density in a large tokamak such as International Thermonuclear Experimental Reactor (ITER), or any of the proposed future US machines, can be determined by measuring the Faraday rotation of a 10.6 μm laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n e (R) can be readily obtained with a simple Abel inversion about the center line of the tokamak. For a large machine, operated at a full field of 30 T m and a density of 2x10 20 /m 3 , the rotation angle would be quite large-about 60 degree for two passes. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 ''fringe,'' the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that ITER, or any large tokamak, existing or proposed, would be well served even at low densities by a midplane Faraday rotation densitometer of ∼64 channels

  10. Evaluation of rotational set-up errors in patients with thoracic neoplasms

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Fan Min; Yang Huanjun; Ren Jun; Xu Zhiyong; Jiang Guoliang

    2010-01-01

    Objective: To assess the rotational set-up errors in patients with thoracic neoplasms. Methods: 224 kilovoltage cone-beam computed tomography (KVCBCT) scans from 20 thoracic tumor patients were evaluated retrospectively. All these patients were involved in the research of 'Evaluation of the residual set-up error for online kilovoltage cone-beam CT guided thoracic tumor radiation'. Rotational set-up errors, including pitch, roll and yaw, were calculated by 'aligning the KVCBCT with the planning CT, using the semi-automatic alignment method. Results: The average rotational set-up errors were -0.28 degree ±1.52 degree, 0.21 degree ± 0.91 degree and 0.27 degree ± 0.78 degree in the left-fight, superior-inferior and anterior-posterior axis, respectively. The maximal rotational errors of pitch, roll and yaw were 3.5 degree, 2.7 degree and 2.2 degree, respectively. After correction for translational set-up errors, no statistically significant changes in rotational error were observed. Conclusions: The rotational set-up errors in patients with thoracic neoplasms were all small in magnitude. Rotational errors may not change after the correction for translational set-up errors alone, which should be evaluated in a larger sample future. (authors)

  11. Atmospheric density determination using high-accuracy satellite GPS data

    Science.gov (United States)

    Tingling, R.; Miao, J.; Liu, S.

    2017-12-01

    Atmospheric drag is the main error source in the orbit determination and prediction of low Earth orbit (LEO) satellites, however, empirical models which are used to account for atmosphere often exhibit density errors around 15 30%. Atmospheric density determination thus become an important topic for atmospheric researchers. Based on the relation between atmospheric drag force and the decay of orbit semi-major axis, we derived atmospheric density along the trajectory of CHAMP with its Rapid Science Orbit (RSO) data. Three primary parameters are calculated, including the ratio of cross sectional area to mass, drag coefficient, and the decay of semi-major axis caused by atmospheric drag. We also analyzed the source of error and made a comparison between GPS-derived and reference density. Result on 2 Dec 2008 shows that the mean error of GPS-derived density can decrease from 29.21% to 9.20% when time span adopted on the process of computation increase from 10min to 50min. Result for the whole December indicates that when the time span meet the condition that the amplitude of the decay of semi-major axis is much greater than its standard deviation, then density precision of 10% can be achieved.

  12. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  13. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    Science.gov (United States)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  14. Beyond the Unified Model

    Science.gov (United States)

    Frauendorf, S.

    2018-04-01

    The key elements of the Unified Model are reviewed. The microscopic derivation of the Bohr Hamiltonian by means of adiabatic time-dependent mean field theory is presented. By checking against experimental data the limitations of the Unified Model are delineated. The description of the strong coupling between the rotational and intrinsic degrees of freedom in framework of the rotating mean field is presented from a conceptual point of view. The classification of rotational bands as configurations of rotating quasiparticles is introduced. The occurrence of uniform rotation about an axis that differs from the principle axes of the nuclear density distribution is discussed. The physics behind this tilted-axis rotation, unknown in molecular physics, is explained on a basic level. The new symmetries of the rotating mean field that arise from the various orientations of the angular momentum vector with respect to the triaxial nuclear density distribution and their manifestation by the level sequence of rotational bands are discussed. Resulting phenomena, as transverse wobbling, rotational chirality, magnetic rotation and band termination are discussed. Using the concept of spontaneous symmetry breaking the microscopic underpinning of the rotational degrees is refined.

  15. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  16. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  17. Functional correlates of the position of the axis of rotation of the mandible during chewing in non-human primates.

    Science.gov (United States)

    Iriarte-Diaz, Jose; Terhune, Claire E; Taylor, Andrea B; Ross, Callum F

    2017-10-01

    The location of the axis of rotation (AoR) of the mandible was quantified using the helical axis (HA) in eight individuals from three species of non-human primates: Papio anubis, Cebus apella, and Macaca mulatta. These data were used to test three hypotheses regarding the functional significance of anteroposterior condylar translation - an AoR located inferior to the temporomandibular joint (TMJ) - during chewing: minimizing impingement of the gonial region on cervical soft tissue structures during jaw opening; avoiding stretching of the inferior alveolar neurovascular bundle (IANB); and increasing jaw-elevator muscle torques. The results reveal that the HA is located near the occlusal plane in Papio and Cebus, but closer to the condyle in Macaca; is located anteroinferior to the TMJ during both opening and closing in Papio, as well as during opening in Macaca and Cebus; and varies in its location during closing in Macaca and Cebus. The impingement hypothesis is not supported by interspecific variation in HA location: species with larger gonial angles like Cebus do not have more inferiorly located HAs than species with more obtuse mandibular angles like Papio. However, intraspecific variation provides some support for the impingement hypothesis. The HA seldom passes near or through the lingula, falsifying the hypothesis that its location is determined by the sphenomandibular ligament, and the magnitudes of strain associated with a HA at the TMJ would not be large enough to cause problematic stretching of the IANB. HA location does affect muscle moment arms about the TMJ, with implications for the torque generation capability of the jaw-elevator muscles. In Cebus, a HA farther away from the TMJ is associated with larger jaw-elevator muscle moment arms about the joint than if it were at the TMJ. The effects of HA location on muscle strain and muscle moment arms are largest at large gapes and smallest at low gapes, suggesting that if HA location is of functional

  18. Negative Magnus lift on a rotating sphere at around the critical Reynolds number

    Science.gov (United States)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2012-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.

  19. A geometry calibration method for rotation translation trajectory

    International Nuclear Information System (INIS)

    Zhang Jun; Yan Bin; Li Lei; Lu Lizhong; Zhang Feng

    2013-01-01

    In cone-beam CT imaging system, it is difficult to directly measure the geometry parameters. In this paper, a geometry calibration method for rotation translation trajectory is proposed. Intrinsic parameters are solved from the relationship built on geometry parameter of the system and projection trajectory of calibration object. Parameters of rotation axis are extrapolated from the unified intrinsic parameter, and geometry parameters of the idle trajectory are acquired too. The calibration geometry can be analytically determined using explicit formulae, it can avoid getting into local optimum in iterative way. Simulation experiments are carried out on misaligned geometry, experiment results indicate that geometry artifacts due to misaligned geometry are effectively depressed by the proposed method, and the image quality is enhanced. (authors)

  20. Steady particulate flows in a horizontal rotating cylinder

    Science.gov (United States)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  1. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

  2. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  3. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    Science.gov (United States)

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  4. Rotational gait patterns in children and adolescents following tension band plating of idiopathic genua valga.

    Science.gov (United States)

    Farr, Sebastian; Kranzl, Andreas; Hahne, Julia; Ganger, Rudolf

    2017-08-01

    Literature suggests that children and adolescents with idiopathic genua valga present with considerable gait deviations in frontal and transverse planes, including altered frontal knee moments, reduced external knee rotation, and increased external hip rotation. This study aimed to evaluate gait parameters in these patients after surgical correction using tension band plating (TBP). We prospectively evaluated 24 consecutive, skeletally immature patients, who received full-length standing radiographs and three-dimensional gait analysis before and after correction, and compared the results observed to a group of 11 typically developing peers. Prior to TBP the cohort showed significantly decreased (worse) internal frontal knee moments compared to the control group. After axis correction the mean and maximum knee moments changed significantly into normalized knee moments (p gait. In addition, the effect of transverse plane changes on knee moments in patients with restored, straight limb axis was calculated. Hence, patients with restored alignment but persistence of decreased external knee rotation demonstrated significantly greater knee moments than those without rotational abnormalities (p = 0.001). This study found that frontal knee moments during gait normalized in children with idiopathic genua valga after surgery. However, decreased external knee rotation and increased external hip rotation during gait persisted in the study cohort. Despite radiological correction, decreased external rotation during gait was associated with increases in medial knee loading. Surgical correction for children with genua valga but normal knee moments may be detrimental, due to redistribution of dynamic knee loading into the opposite joint compartment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1617-1624, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Comparison radiation dose of Z-axis automatic tube current modulation technique with fixed tube current multi-detector row CT scanning of lower extremity venography

    International Nuclear Information System (INIS)

    Yoo, Beong Gyu; Kweon, Dae Cheol; Lee, Jong Seok; Jang, Keun Jo; Jeon, Sang Hwan; Kim, Yong Soo

    2007-01-01

    Z-axis automatic tube current modulation technique automatically adjusts tube current based on size of body region scanned. The purpose of the current study was to compare noise, and radiation dose of Multi-Detector row CT (MDCT) of lower extremity performed with Z-axis modulation technique of automatic tube current modulation with manual selection fixed tube current. Fifty consecutive underwent MDCT venography of lower extremity with use of a MDCT scanner fixed tube current and Z-axis automatic tube current modulation technique (10, 11 and 12 HU noise index, 70∼450 mA). Scanning parameters included 120 kVp, 0.5 second gantry rotation time, 1.35:1 beam pitch, and 1 mm reconstructed section thickness. For each subject, images obtained with Z-axis modulation were compared with previous images obtained with fixed tube current (200, 250, 300 mA) and with other parameters identical. Images were compared for noise at five levels: iliac, femoral, popliteal, tibial, and peroneal vein of lower extremity. Tube current and gantry rotation time used for acquisitions at these levels were recorded. All CT examinations of study and control groups were diagnostically acceptable, though objective noise was significantly more with Z-axis automatic tube current modulation. Compared with fixed tube current, Z-axis modulation resulted in reduction of CTDIvol (range, -6.5%∼-35.6%) and DLP (range,-0.2%∼-20.2%). Compared with manually selected fixed tube current, Z-axis automatic tube current modulation resulted in reduced radiation dose at MDCT of lower extremity venography

  6. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  7. Experimental profile evolution of a high-density field-reversed configuration

    International Nuclear Information System (INIS)

    Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.

    2006-01-01

    A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by π) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (∼10 17 cm -3 ) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter α (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD

  8. Vibrot, a simple device for the conversion of vibration into rotation mediated by friction: preliminary evaluation.

    Directory of Open Access Journals (Sweden)

    Ernesto Altshuler

    Full Text Available While "vibrational noise" induced by rotating components of machinery is a common problem constantly faced by engineers, the controlled conversion of translational into rotational motion or vice-versa is a desirable goal in many scenarios ranging from internal combustion engines to ultrasonic motors. In this work, we describe the underlying physics after isolating a single degree of freedom, focusing on devices that convert a vibration along the vertical axis into a rotation around this axis. A typical Vibrot (as we label these devices consists of a rigid body with three or more cantilevered elastic legs attached to its bottom at an angle. We show that these legs are capable of transforming vibration into rotation by a "ratchet effect", which is caused by the anisotropic stick-slip-flight motion of the leg tips against the ground. Drawing an analogy with the Froude number used to classify the locomotion dynamics of legged animals, we discuss the walking regime of these robots. We are able to control the rotation frequency of the Vibrot by manipulating the shaking amplitude, frequency or waveform. Furthermore, we have been able to excite Vibrots with acoustic waves, which allows speculating about the possibility of reducing the size of the devices so they can perform tasks into the human body, excited by ultrasound waves from the outside.

  9. GAROS, an aeroelastic code for coupled fixed-rotating structures

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)

    1996-09-01

    The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)

  10. Rotational order–disorder structure of fluorescent protein FP480

    International Nuclear Information System (INIS)

    Pletnev, Sergei; Morozova, Kateryna S.; Verkhusha, Vladislav V.; Dauter, Zbigniew

    2009-01-01

    An analysis of the rotational order–disorder structure of fluorescent protein FP480 is presented. In the last decade, advances in instrumentation and software development have made crystallography a powerful tool in structural biology. Using this method, structural information can now be acquired from pathological crystals that would have been abandoned in earlier times. In this paper, the order–disorder (OD) structure of fluorescent protein FP480 is discussed. The structure is composed of tetramers with 222 symmetry incorporated into the lattice in two different ways, namely rotated 90° with respect to each other around the crystal c axis, with tetramer axes coincident with crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates a rotational OD structure with statistically averaged I422 symmetry, although the presence of very weak and diffuse additional reflections suggests that the randomness is only approximate

  11. Sources of intrinsic rotation in the low-flow ordering

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.

    2011-01-01

    A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low-flow ordering contains new terms, neglected in previous first-principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.

  12. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density

    International Nuclear Information System (INIS)

    Jafari, S.; Hojjati, M.H.; Fathi, A.

    2012-01-01

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: ► Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. ► The KKT gives slightly less weight (6% less than SA and 1% less than PSO). ► Implementation of PSO and SA methods are easier and provide more flexibility. ► The effectiveness of the proposed optimization methods is shown.

  13. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, S. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Hojjati, M.H., E-mail: Hojjati@nit.ac.ir [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Fathi, A. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of)

    2012-04-15

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: Black-Right-Pointing-Pointer Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. Black-Right-Pointing-Pointer The KKT gives slightly less weight (6% less than SA and 1% less than PSO). Black-Right-Pointing-Pointer Implementation of PSO and SA methods are easier and provide more flexibility. Black-Right-Pointing-Pointer The effectiveness of the proposed optimization methods is shown.

  14. Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas

    International Nuclear Information System (INIS)

    Rice, J.E.; Reinke, M.L.; Podpaly, Y.A.; Churchill, R.M.; Cziegler, I.; Dominguez, A.; Ennever, P.C.; Fiore, C.L.; Granetz, R.S.; Greenwald, M.J.; Hubbard, A.E.; Hughes, J.W.; Irby, J.H.; Ma, Y.; Marmar, E.S.; McDermott, R.M.; Porkolab, M.; Duval, B.P.; Bortolon, A.; Diamond, P.H.

    2011-01-01

    Direction reversals of intrinsic toroidal rotation have been observed in Alcator C-Mod ohmic L-mode plasmas following modest electron density or toroidal magnetic field ramps. The reversal process occurs in the plasma interior, inside of the q = 3/2 surface. For low density plasmas, the rotation is in the co-current direction, and can reverse to the counter-current direction following an increase in the electron density above a certain threshold. Reversals from the co- to counter-current direction are correlated with a sharp decrease in density fluctuations with k R ≥ 2 cm -1 and with frequencies above 70 kHz. The density at which the rotation reverses increases linearly with plasma current, and decreases with increasing magnetic field. There is a strong correlation between the reversal density and the density at which the global ohmic L-mode energy confinement changes from the linear to the saturated regime.

  15. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  16. Impacts of Rotation Schemes on Ground-Dwelling Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2016-10-01

    Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. MHD rotating flow and heat transfer through a channel with Hall effects

    International Nuclear Information System (INIS)

    Ghosh, Sushil Kumar

    2016-01-01

    The present investigation is the flow and heat transfer of a viscous fluid through a rotating channel about the vertical axis under the influence of transverse magnetic field. The linear temperature dependent density has been introduced along with the induced magnetic field in horizontal directions. To study the temperature distribution, the energy equation consisting of viscous dissipation and joule heating term is solved analytically. The velocity distribution in axial and vertical directions is found to be interesting such as the magnetic Reynolds number and the parameter appears due to buoyancy forces have a substantial contribution to influence the flow pattern. Also the results obtained in the study for magnetic induction variables as well as temperature distribution put forward some significant insight in the fluid flow and heat transfer. The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. This is a key parameter to worm up or cool down the fluid in a useful purposes. - Highlights: • The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. • Buoyancy is a key parameter to worm up or cool down the fluid in useful purposes. • It may be predicted that the effect of buoyancy force and magnetic induction force suppress the flow at the lower wall and the effect of the forces lost its potential at the layers near to the upper walls. • It may suggest that the bouncy effect has more prominent role in the fluid flow phenomena as well as heat transfer than magnetic induction and Lorentz force. • The rotation enhances the advantage of circulation of fluid in up and down and tries to make the heat balance within the layers. Our result is true

  18. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    Science.gov (United States)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  19. Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations.

    Science.gov (United States)

    Thurtell, M J; Black, R A; Halmagyi, G M; Curthoys, I S; Aw, S T

    1999-05-01

    Vertical eye position-dependence of the human vestibuloocular reflex during passive and active yaw head rotations. The effect of vertical eye-in-head position on the compensatory eye rotation response to passive and active high acceleration yaw head rotations was examined in eight normal human subjects. The stimuli consisted of brief, low amplitude (15-25 degrees ), high acceleration (4,000-6,000 degrees /s2) yaw head rotations with respect to the trunk (peak velocity was 150-350 degrees /s). Eye and head rotations were recorded in three-dimensional space using the magnetic search coil technique. The input-output kinematics of the three-dimensional vestibuloocular reflex (VOR) were assessed by finding the difference between the inverted eye velocity vector and the head velocity vector (both referenced to a head-fixed coordinate system) as a time series. During passive head impulses, the head and eye velocity axes aligned well with each other for the first 47 ms after the onset of the stimulus, regardless of vertical eye-in-head position. After the initial 47-ms period, the degree of alignment of the eye and head velocity axes was modulated by vertical eye-in-head position. When fixation was on a target 20 degrees up, the eye and head velocity axes remained well aligned with each other. However, when fixation was on targets at 0 and 20 degrees down, the eye velocity axis tilted forward relative to the head velocity axis. During active head impulses, the axis tilt became apparent within 5 ms of the onset of the stimulus. When fixation was on a target at 0 degrees, the velocity axes remained well aligned with each other. When fixation was on a target 20 degrees up, the eye velocity axis tilted backward, when fixation was on a target 20 degrees down, the eye velocity axis tilted forward. The findings show that the VOR compensates very well for head motion in the early part of the response to unpredictable high acceleration stimuli-the eye position- dependence of the

  20. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    Science.gov (United States)

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

  1. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

  2. Constraining brane tension using rotation curves of galaxies

    Science.gov (United States)

    García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.

    2018-04-01

    We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.

  3. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  4. Electron density measurement for steady state plasmas

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  5. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves.

    Science.gov (United States)

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2016-11-09

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  6. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer

    International Nuclear Information System (INIS)

    Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Borde, C.J.

    1991-01-01

    A calcium atomic beam excited in an optical Ramsey geometry was rotated about an axis perpendicular to the plane defined by the laser beams and the atomic beam. A frequency shift of the Ramsey fringes of several kHz has been measured which is proportional to the rotation frequency of the apparatus and to the distance between the laser beams. The results can be interpreted in three equivalent ways as the Sagnac effect in a calcium-atomic-beam interferometer: in the rotating frame of the laser beams either along straight paths or along the curved trajectories of the atoms, or in the inertial atomic frame

  7. Testing MONDian dark matter with galactic rotation curves

    International Nuclear Information System (INIS)

    Edmonds, Doug; Farrah, Duncan; Minic, Djordje; Takeuchi, Tatsu; Ho, Chiu Man; Ng, Y. Jack

    2014-01-01

    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z ≈ 0.003). For comparison, we also fit the galactic rotation curves using MOND and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (∼1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.

  8. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    Science.gov (United States)

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  9. Apparatus and method for preventing the rotation of rods used in nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Pilgrim, L.G. Jr.; Jackson, L.F.

    1985-01-01

    Apparatus and method for preventing the rotation of one or more elongated rods used in nuclear fuel assemblies include an end plug secured to one longitudinal end of such an elongated rod and having an out-of-cavity, non-round structure affixed thereto and configured to mate with a complementary shaped structure in a lower tie plate of a nuclear fuel assembly in such a manner as to prevent the rotation of the rod about its longitudinal axis. In one embodiment, the end plug includes a pair of flats formed on a portion of the end plug and configured to abut against a pair of flats formed on the outer surface of a cylindrical boss or sleeve of the lower tie plate, thereby to prevent the rotation of the rod. In another embodiment, four grooves, disposed 90 0 apart about the periphery of an end plug of a rod form a spline. The grooves are configured to receive four, radially inwardly protruding, key members disposed 90 0 apart about the periphery of a sleeve secured to the lower tie plate, thereby to prevent the rotation of the rod. In a further embodiment, a sleeve is secured to an end plug of a rod and includes four elongated slots disposed 90 0 apart about the periphery of the sleeve and configured in width, depth and spacing to receive and mate with four web portions of the lower tie plate of the nuclear fuel assembly, thereby to secure the rod against rotation about its longitudinal axis

  10. Experimental studies of rotating exchange flow

    Science.gov (United States)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows

  11. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  12. Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia

    NARCIS (Netherlands)

    Gürer, Derya; Van Hinsbergen, Douwe J.J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.

    2018-01-01

    To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Uluklisla and Sivas regions. We show

  13. Rotation and impurity studies in the presence of MHD activity and internal transport barriers on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Federspiel, L. I.

    2014-07-01

    This thesis focuses on measurements of toroidal rotation and impurity profiles in improved plasma scenarios and in the presence of magneto-hydrodynamic (MHD) activity. Experiments were performed on TCV, the Tokamak a Configuration Variable in Lausanne. In TCV, plasma rotation is measured by the charge exchange recombination spectroscopy diagnostic (CXRS). The CXRS is associated with a low power diagnostic neutral beam injector (DNBI) that provides CX emission from the hot plasma core, without perturbing the plasma with additional torque. The beam is observed transversally by the CXRS diagnostic so that local ion temperature, density and intrinsic velocity measurements are obtained. The three systems composing the present day CXRS2013 diagnostic cover the entire TCV radial midplane with up to 80 measurement locations separated by around 7 mm with a time resolution ranging from 2-30 ms. The main upgrades concerned the installation of new sensitive cameras, the overhaul of the toroidal system, the extended-chord configuration and the automation of the acquisition and analysis processes. These new Cars capabilities permitted the investigation of more complex scenarios featuring low intensity and/or fast events, like the low density electron internal transport barriers (eITBs) and the sawtooth (ST) instability. A comparison between rotation profiles measured over several sawtooth events and across a 'canonical' sawtooth cycle has been undertaken in limited L-mode plasmas. The averaged rotation profiles obtained with the upgraded CXRS diagnostic show that ST restrict the maximum attainable and that the rotation profiles are flattened and almost always display a small co-current contribution. It is this effect that results in the 1/I{sub p} scaling observed in TCV limited L-mode plasmas. The co-current core contribution is related to the ST crash, whilst, during the quiescent ramp of the sawtooth period, a plasma recoil outside the mixing radius is observed. A

  14. Rotation and impurity studies in the presence of MHD activity and internal transport barriers on TCV

    International Nuclear Information System (INIS)

    Federspiel, L. I.

    2014-01-01

    This thesis focuses on measurements of toroidal rotation and impurity profiles in improved plasma scenarios and in the presence of magneto-hydrodynamic (MHD) activity. Experiments were performed on TCV, the Tokamak a Configuration Variable in Lausanne. In TCV, plasma rotation is measured by the charge exchange recombination spectroscopy diagnostic (CXRS). The CXRS is associated with a low power diagnostic neutral beam injector (DNBI) that provides CX emission from the hot plasma core, without perturbing the plasma with additional torque. The beam is observed transversally by the CXRS diagnostic so that local ion temperature, density and intrinsic velocity measurements are obtained. The three systems composing the present day CXRS2013 diagnostic cover the entire TCV radial midplane with up to 80 measurement locations separated by around 7 mm with a time resolution ranging from 2-30 ms. The main upgrades concerned the installation of new sensitive cameras, the overhaul of the toroidal system, the extended-chord configuration and the automation of the acquisition and analysis processes. These new Cars capabilities permitted the investigation of more complex scenarios featuring low intensity and/or fast events, like the low density electron internal transport barriers (eITBs) and the sawtooth (ST) instability. A comparison between rotation profiles measured over several sawtooth events and across a 'canonical' sawtooth cycle has been undertaken in limited L-mode plasmas. The averaged rotation profiles obtained with the upgraded CXRS diagnostic show that ST restrict the maximum attainable and that the rotation profiles are flattened and almost always display a small co-current contribution. It is this effect that results in the 1/I p scaling observed in TCV limited L-mode plasmas. The co-current core contribution is related to the ST crash, whilst, during the quiescent ramp of the sawtooth period, a plasma recoil outside the mixing radius is observed. A high

  15. Emergent rotational symmetries in disordered magnetic domain patterns.

    Science.gov (United States)

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  16. Control of vortex breakdown in a closed cylinder with a rotating lid

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Aubry, Nadine

    2010-01-01

    The flow within a closed cylinder with a rotating lid is considered as a prototype for fundamental studies of vortex breakdown. Numerical simulations for various parameter values have been carried out to reproduce the known effect of a thin rotating rod positioned along the center axis as well...... as analyze the influence of local vorticity sources. As expected, the results show that the breakdown bubbles in the steady axisymmetric flow can be affected dramatically, i.e., fully suppressed or significantly enhanced, by rotating the rod. The main contribution of this article is to show that the observed...... behavior can be explained by the vorticity generated by the rod locally near the rotating lid and near the fixed lid, as analogous behavior is caused by the introduction of local vorticity sources in the flow without a rod. Moreover, we describe the influence on the breakdown bubbles of the vorticity...

  17. Dynamics of molecular rotors confined in two dimensions: transition from a 2D rotational glass to a 2D rotational fluid in a periodic mesoporous organosilica.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Bracco, Silvia; Beretta, Mario; Comotti, Angiolina; Sozzani, Piero; Garcia-Garibay, Miguel A

    2012-02-09

    The motional behavior of p-phenylene-d(4) rotators confined within the 2D layers of a hierarchically ordered periodic mesoporous p-divinylbenzenesilica has been elucidated to evaluate the effects of reduced dimensionality on the engineered dynamics of artificial molecular machines. The hybrid mesoporous material, characterized by a honeycomb lattice structure, has arrays of alternating p-divinylbenzene rotors and siloxane layers forming the molecularly ordered walls of the mesoscopic channels. The p-divinylbenzene rotors are strongly anchored between two adjacent siloxane sheets, so that the p-phenylene rotators are unable to experience translational diffusion and are allowed to rotate about only one fixed axis. Variable-temperature (2)H NMR experiments revealed that the p-phenylene rotators undergo an exchange process between sites related by 180° and a non-Arrhenius temperature dependence of the dynamics, with reorientational rates ranging from 10(3) to 10(8) Hz between 215 to 305 K. The regime of motion changes rapidly at about 280 K indicating the occurrence of a dynamical transition. The transition was also recognized by a steep change in the heat capacity at constant pressure. As a result of the robust lamellar architecture comprising the pore walls, the orientational dynamic disorder related to the phase transition is only realized in two dimensions within the layers, that is in the plane perpendicular to the channel axis. Thus, the aligned rotors that form the organic layers exhibit unique anisotropic dynamical properties as a result of the architecture's reduced dimensionality. The dynamical disorder restricted to two dimensions constitutes a highly mobile fluidlike rotational phase at room temperature, which upon cooling undergoes a transition to a more rigid glasslike phase. Activation energies of 5.9 and 9.5 kcal/mol respectively have been measured for the two dynamical regimes of rotation. Collectively, our investigation has led to the discovery of an

  18. Quantum ring in a rotating frame in the presence of a topological defect

    International Nuclear Information System (INIS)

    Dantas, L.; Furtado, C.; Silva Netto, A.L.

    2015-01-01

    In this contribution, we study the effects caused by rotation of an electron/hole in the presence of a screw dislocation confined in a quantum ring potential, within a quantum dynamics. The Tan–Inkson potential is used to model the confinement of the particle in two-dimensional quantum ring. We suppose that the quantum ring is placed in the presence of an external uniform magnetic field and an Aharonov–Bohm flux in the center of the system, and that the frame rotates around the z-axis. The Schrödinger equation is solved and the eigenfunctions and energy eigenvalues are exactly obtained for this configuration. The influence of the dislocation and the rotation on both the persistent current and magnetization is also studied. - Highlights: • Quantum ring in a rotating frame. • Tan–Inkson potential in the presence of rotation. • Quantum ring in the presence of screw dislocation. • Landau levels

  19. Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering

    1989-07-01

    We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).

  20. The torsional barriers of two equivalent methyl internal rotations in 2,5-dimethylfuran investigated by microwave spectroscopy

    Science.gov (United States)

    Van, Vinh; Bruckhuisen, Jonas; Stahl, Wolfgang; Ilyushin, Vadim; Nguyen, Ha Vinh Lam

    2018-01-01

    The microwave spectrum of 2,5-dimethylfuran was recorded using two pulsed molecular jet Fourier transform microwave spectrometers which cover the frequency range from 2 to 40 GHz. The internal rotations of two equivalent methyl tops with a barrier height of approximately 439.15 cm-1 introduce torsional splittings of all rotational transitions in the spectrum. For the spectral analysis, two different computer programs were applied and compared, the PAM-C2v-2tops code based on the principal axis method which treats several torsional states simultaneously, and the XIAM code based on the combined axis method, yielding accurate molecular parameters. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces depending on the torsional angles of both methyl groups were calculated and parametrized.

  1. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  2. Effects of rotational symmetry breaking in polymer-coated nanopores

    Science.gov (United States)

    Osmanović, D.; Kerr-Winter, M.; Eccleston, R. C.; Hoogenboom, B. W.; Ford, I. J.

    2015-01-01

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  3. Effects of rotational symmetry breaking in polymer-coated nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J. [London Centre for Nanotechnology (LCN) and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kerr-Winter, M.; Eccleston, R. C. [Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  4. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis

    Science.gov (United States)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang

    2017-07-01

    The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.

  5. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  6. Large rotating magnetocaloric effect in ErAlO3 single crystal

    Directory of Open Access Journals (Sweden)

    X. Q. Zhang

    2017-05-01

    Full Text Available Magnetic and magnetocaloric properties of ErAlO3 single crystal were investigated. Magnetization of ErAlO3 shows obvious anisotropy when magnetic field is applied along the a, b and c axes, which leads to large anisotropic magnetic entropy change. In particular, large rotating field entropy change from the b to c axis within the bc plane is obtained and reaches 9.7 J/kg K at 14 K in a field of 5 T. This suggests the possibility of using ErAlO3 single crystal for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  7. Modeling and design of a two-axis elliptical notch flexure hinge

    Science.gov (United States)

    Wu, Jianwei; Zhang, Yin; Lu, Yunfeng; Wen, Zhongpu; Bin, Deer; Tan, Jiubin

    2018-04-01

    As an important part of the joule balance system, the two-axis elliptical notch flexure hinge (TENFH) which typically consists of two single-axis elliptical notch flexure hinges was studied. First, a 6 degrees of freedom (6-DOF) compliance model was established based on the coordinate transformation method. In addition, the maximum stress of the TENFH was derived. The compliance and maximum stress model was verified using finite element analysis simulation. To decouple the attitude of the suspended coil system and reduce the offset between the centroid of the suspended coil mechanism and the mass comparator in the joule balance system, a new mechanical structure of TENFH was designed based on the compliance model and stress model proposed in this paper. The maximum rotation range is up to 10°, and the axial load is more than 5 kg, which meets the requirements of the system. The compliance model was also verified by deformation experimentation with the designed TENFH.

  8. Negative Magnus Effect on a Rotating Sphere at around the Critical Reynolds Number

    International Nuclear Information System (INIS)

    Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto; Oshima, Nobuyuki

    2011-01-01

    Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0× 10 4 , 2.0 × 10 5 , and 1.14 × 10 6 . The numerical methods adopted are first validated on a non-rotating sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed at around the critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed depending on the Reynolds number and the rotating speed imposed. At the Reynolds number in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect to be independent of the rotational speed tested here. In contrast, negative lift is observed at the Reynolds number at the critical region when particular rotating speeds are imposed. The negative Magnus effect is discussed in the context of the suppression or promotion of boundary layer transition around the separation point.

  9. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  11. A comparative study of the accuracy of Ranawat's and Pierchon's methods to determine the centre of rotation in bilateral coxopathy

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo-Garcia, N.; Lopez-Prats, F.; Agullo, A.; Ortuno, A.; Palazon, A. [Hospital Universitario de San Juan, Alicante (Spain). Dept. de Patologia y Cirugia

    2000-11-01

    Objective. The objective of the study was to compare two methods (Ranawat's and Pierchon's) used to determine the centre of rotation of the hip and establish which method calculates a position nearer to the real centre of rotation.Patients and design. We selected 24 patients with unilateral osteoarthritis of the hip. The centre of rotation of the healthy hip was determined in two consecutive radiographic studies by superimposing a template of circles and using two axes as the reference lines (X-axis=teardrop line; Y-axis=a line perpendicular to the X-axis, drawn from the intersection of the ilio-ischiatic line and the teardrop line). After ensuring the stability of these references, both methods were applied to the same radiograph to determine which one established a centre of rotation nearer to the anatomical centre identified by the template of circles.Results. When the values for the healthy hip are compared with those obtained using Ranawat's method, highly significant differences are observed for both X (P<0.0001) and Y (P<0.0001). When the results for the healthy hip are compared with the values obtained using Pierchon's method, neither the X (P=0.722) nor the Y values (P=0.112) show any significant differences. It would be advisable to use Pierchon's method to determine the centre of rotation during the preoperative planning for a total hip arthroplasty when the anatomical alteration is bilateral. (orig.)

  12. Vacuum energy of the electromagnetic field in a rotating system

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.

    1986-01-01

    The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)

  13. Protostellar formation in rotating interstellar clouds. VI. Nonuniform initial conditions

    International Nuclear Information System (INIS)

    Boss, A.P.

    1987-01-01

    The collapse and fragmentation of rotating protostellar clouds is explored, starting from nonuniform density and nonuniform rotation initial conditions. Whether binary fragmentation occurs during the first dynamic collapse phase depends strongly on the initial density profile. Exponential clouds are only somewhat more resistant to fragmentation than uniform-density clouds, but power-law clouds do not undergo fragmentation for likely values of a relevant parameter. Because binary fragments start from profiles intermediate between uniform density and exponential clouds, minimum protostellar mass for population I stars should be increased to approximately 0.02 solar mass. The axisymmetric Terey et al. (1984) model should be stable with respect to nonaxisymmetric perturbations. Considering the observed binary frequency, collapse from power-law initial conditions appears to be less common than collapse from more uniform initial conditions. 34 references

  14. Structure and stability of rapidly rotating fluid bodies in general relativity. II. The structure of uniformly rotating pseudopolytropes

    International Nuclear Information System (INIS)

    Butterworth, E.M.

    1976-01-01

    A method is described for obtaining numerical solutions to the exact Einstein field equations that represent uniformly rotating perfect fluid bodies which are stationary and obey equations of state of the form (pressure) proportional (energy density) 1+1 //subn/. Sequences parametrized by the rate of rotation are generated for polytropic indices n between 0.5 and 3 and for varying strengths of relativity. All are found to terminate at surface velocities which are approximately 10 percent or more of the velocity of light. The configurations considered here are probably at least as relativistic as any stable astrophysical object in uniform rotation now thought to exist, but the phenomenon of an ergoregion appears in none of them and probably is absent in actual stars if magnetic viscosity or some other mechanism can induce rigid rotation

  15. Transitions in rapidly rotating convection dynamos

    Science.gov (United States)

    Tilgner, A.

    2013-12-01

    It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

  16. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    International Nuclear Information System (INIS)

    Du, Weiliang; Gao, Song

    2011-01-01

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  17. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weiliang; Gao, Song [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 (United States)

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  18. Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field

    Science.gov (United States)

    Fishman, Randy S.

    2018-01-01

    Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.

  19. Faraday-rotation measurements in ISX-B

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Ma, C.H.; Staats, P.A.; Vander Sluis, K.L.

    1982-01-01

    A submillimeter-wave, phase-modulated polarimeter/interferometer is used for simultaneous time-dependent measurement of line-averaged electron density and poloidal field-induced Faraday rotation along chords of the plasma column in ISX-B tokamak. Heterodyne detection and hollow dielectric waveguide are utilized to achieve the high sensitivity required for the multichord experiment. A data analysis code has been developed to reconstruct the asymmetric distributions of plasma density. The validity of the code is examined, and the result shows good agreement with density profiles measured by Thomson scattering

  20. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  1. The methods of the LHC magnets' magnetic axis location measurement

    International Nuclear Information System (INIS)

    Bottura, L.; Buzio, M.; Deferne, G.; Sievers, P.; Smirnov, N.; Villar, F.P.; Walckiers, L.

    1999-01-01

    More than 8 thousands LHC magnets of various types will be extensively measured during series magnetic test at both room and superfluid helium temperature. The precise knowledge of the magnetic axis positioning is vital for the alignment of those magnets in the tunnel. The most efficient and cost effective method with rotating pick up coil is chosen currently as a baseline for series measurement. The position of the measuring coil axis herewith is measured with a dedicated optical system. The deflection of the light beam in the air due to temperature gradient either passing through the cold bore when the magnet excited for warm measurement or through the anti-cryostat during cold measurement can reach magnitudes significantly exceeding tolerance and therefore is a critical issue. We present studies of the light deflection in 10 m long dipole at warm and cold and propose means to reduce it. The result of the dipole centring powered in Quadrupole Configured Dipole (QCD) or 'ugly quad' configuration and correlation with centring based on high order harmonics are presented as well. (authors)

  2. Spin currents of charged Dirac particles in rotating coordinates

    Science.gov (United States)

    Dayi, Ö. F.; Yunt, E.

    2018-03-01

    The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.

  3. Device for passive flow control around vertical axis marine turbine

    Science.gov (United States)

    Coşoiu, C. I.; Georgescu, A. M.; Degeratu, M.; Haşegan, L.; Hlevca, D.

    2012-11-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  4. Device for passive flow control around vertical axis marine turbine

    International Nuclear Information System (INIS)

    Coşoiu, C I; Georgescu, A M; Degeratu, M; Haşegan, L; Hlevca, D

    2012-01-01

    The power supplied by a turbine with the rotor placed in a free stream flow may be increased by augmenting the velocity in the rotor area. The energy of the free flow is dispersed and it may be concentrated by placing a profiled structure around the bare turbine in order to concentrate more energy in the rotor zone. At the Aerodynamic and Wind Engineering Laboratory (LAIV) of the Technical University of Civil Engineering of Bucharest (UTCB) it was developed a concentrating housing to be used for hydro or aeolian horizontal axis wind turbines, in order to increase the available energy in the active section of turbine rotor. The shape of the concentrating housing results by superposing several aero/hydro dynamic effects, the most important being the one generated by the passive flow control devices that were included in the housing structure. Those concentrating housings may be also adapted for hydro or aeolian turbines with vertical axis. The present paper details the numerical research effectuated at the LAIV to determine the performances of a vertical axis marine turbine equipped with such a concentrating device, in order to increase the energy quantity extracted from the main flow. The turbine is a Darrieus type one with three vertical straight blades, symmetric with respect to the axis of rotation, generated using a NACA4518 airfoil. The global performances of the turbine equipped with the concentrating housing were compared to the same characteristics of the bare turbine. In order to validate the numerical approach used in this paper, test cases from the literature resulting from experimental and numerical simulations for similar situations, were used.

  5. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  6. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  7. Spinning solutions in general relativity with infinite central density

    Science.gov (United States)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  8. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Poulipoulis, G.; Throumoulopoulos, G. N. [Physics Department, University of Ioannina, Ioannina 451 10 (Greece); Konz, C. [Max-Planck Institut für Plasma Physics, 85748 Garching bei München (Germany)

    2016-07-15

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  9. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    International Nuclear Information System (INIS)

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C

    2014-01-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories. (paper)

  10. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    Science.gov (United States)

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.

    2014-07-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.

  11. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films

    International Nuclear Information System (INIS)

    Kim, Sang-Koog; Lee, Jeong-Won; Shin, Sung-Chul; Song, Han Wook; Lee, Chang Ho; No, Kwangsoo

    2003-01-01

    We have established a spontaneous magnetization-axis switching in ferromagnetic films by applying a low voltage to a piezoelectric layer in a newly developed hybrid system comprised of the ferromagnetic and piezoelectric films. The magnetization easy axis along which a spontaneous magnetization is oriented, is readily switchable by a voltage without applying an external magnetic field through both the inverse magnetostrictive and piezoelectric effects of CoPd and lead-zirconate-titanate alloy films, respectively. This challenging work provides a new way into the memory writing as well as storage means of ultrahigh bit densities in nonvolatile magnetic random access memory

  12. Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate

    International Nuclear Information System (INIS)

    Ha, Jin Sook; Chung, Yoon Sun; Lee, Ik Jae; Shin, Dong Bong; Kim, Jong Dae; Kim, Sei Joon; Jeon, Mi Jin; Chok, Yoon Jin; Kim, Ki Kwang; Lee, Seul Bee

    2011-01-01

    Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector (√x 2 +√y 2 +√z 2 ) value for assessing overall movement. Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group

  13. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  14. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

    International Nuclear Information System (INIS)

    Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van

    2005-01-01

    Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities

  15. Knee rotation influences the femoral tunnel angle measurement after anterior cruciate ligament reconstruction: a 3-dimensional computed tomography model study

    Science.gov (United States)

    Tang, Jing; Thorhauer, Eric; Marsh, Chelsea; Fu, Freddie H.

    2013-01-01

    Purpose Femoral tunnel angle (FTA) has been proposed as a metric for evaluating whether ACL reconstruction was performed anatomically. In clinic, radiographic images are typically acquired with an uncertain amount of internal/external knee rotation. The extent to which knee rotation will influence FTA measurement is unclear. Furthermore, differences in FTA measurement between the two common positions (0° and 45° knee flexion) have not been established. The purpose of this study was to investigate the influence of knee rotation on FTA measurement after ACL reconstruction. Methods Knee CT data from 16 subjects were segmented to produce 3D bone models. Central axes of tunnels were identified. The 0° and 45° flexion angles were simulated. Knee internal/external rotations were simulated in a range of ±20°. FTA was defined as the angle between the tunnel axis and femoral shaft axis, orthogonally projected into the coronal plane. Results Femoral tunnel angle was positively/negatively correlated with knee rotation angle at 0°/45° knee flexion. At 0° knee flexion, FTA for anterio-medial (AM) tunnels was significantly decreased at 20° of external knee rotation. At 45° knee flexion, more than 16° external or 19° internal rotation significantly altered FTA measurements for single-bundle tunnels; smaller rotations (±9° for AM, ±5° for PL) created significant errors in FTA measurements after double-bundle reconstruction. Conclusion Femoral tunnel angle measurements were correlated with knee rotation. Relatively small imaging malalignment introduced significant errors with knee flexed 45°. This study supports using the 0° flexion position for knee radiographs to reduce errors in FTA measurement due to knee internal/external rotation. Level of evidence Case–control study, Level III. PMID:23589127

  16. Covariant Density Functionals: time-odd channel investigated

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2009-01-01

    The description of exotic nuclear systems and phenomena requires a detailed understanding of all channels of density functional theories. The role of time-odd mean fields, their evidence in experiment, and an accurate description of these fields are subject of current interest. Recent studies advanced the understanding of these fields in energy density functional theories based on the Skyrme force [1,2]. Time-odd mean fields are related to nuclear magnetism in covariant density functional (CDF) theories [3]. They arise from space-like components of vector mesons and Lorentz invariance requires that their coupling strengths are identical to that of time-like components. There were only few limited efforts to understand the role of time-odd mean fields in covariant density functional theory [4,5]. For example, the microscopic role of nuclear magnetism and its impact on rotational properties of nuclei has been studied in Ref. [5]. It is known that time-odd mean fields modify the angular momentum content of the single-particle orbitals and thus the moments of inertia, effective alignments, alignment gains at the band crossings and other physical observables. We aim on more detailed and systematic understanding of the role of time-odd mean fields in covariant density functional theory. This investigation covers both rotating and non-rotating systems. It is shown that contrary to the Skyrme energy density functionals time-odd mean fields of CDF theory always provide additional binding in the systems with broken time-reversal symmetry (rotating nuclei, odd mass nuclei). This additional binding increases with spin and has its maximum exactly at the terminating state [6], where it can reach several MeV. The impact of time-odd mean fields on the properties of rotating systems has been studied in a systematic way (as a function of particle number and deformation) across the nuclear chart [7]. In addition, this contribution extends these studies to non-rotating systems such as

  17. Levitating Drop in a Tilted Rotating Tank - Gallery of Fluid Motion Entry V044

    OpenAIRE

    White, Andrew; Swan, David; Ward, Thomas

    2011-01-01

    A cylindrical acrylic tank with inner diameter D = 4 in. is mounted such that its axis of symmetry is at some angle measured from the vertical plane. The mixing tank is identical to that described in [1] The tank is filled with 200 mL of 1000 cSt silicone oil and a 5 mL drop of de-ionized water is placed in the oil volume. The water drop is allowed to come to rest and then a motor rotates the tank about its axis of symmetry at a fixed frequency = 0.3 Hz. Therefore the Reynolds number is fixed...

  18. Eilenberger equation for rotating superfluid 3He and calculation of the upper critical angular velocity Ω/sub c/2

    International Nuclear Information System (INIS)

    Schopohl, N.

    1980-01-01

    On the basis of Gorkov's formulation of superconductivity theory, generalized Eilenberger equations are derived which apply to rotating superfluid 3 He in the presence of a magnetic field h and finite superflow v. In analyogy to conventional type II superconductors, the possibility of vortex solutions in discussed. An implicit equation determining the upper critical angular velocity Ω/sub c/2 as a function of temperature T, magnetic field h, and superflow v parallel to the rotation axis is-inferred from the linearized Eilenberger equations. In contrast to the case of slowly rotating 3 He-A, the solution of the eigenvalue problem determining the order parameter Δ near the the upper critical angular velocity admits no coreless vortex no coreless solutions. The space-dependent amplitude of the order parameter is analogous to Abrikosov's vortex array solution, while the spin-orbit part is given either by a polar-state type or an Anderson-Brinkman-Morel (ABM)-state-type eigensolution. Among the possible eigensolutions the polar-state type yields for vanishing superflow v the highest critical rotation frequency. For finite superflow v parallel to the rotation axis, however, the ABM-state-type solution is stabilized in comparison to the polar state for Vertical BarvVertical Bar> or approx. =0.2π(Tc/sub c/0/T/sub F/)v/sub f/ at zero temperature

  19. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    Science.gov (United States)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  20. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

    Science.gov (United States)

    Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

    2016-09-01

    We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.